EP2891214B1 - Steckereinheit und elektrisches gerät mit einer derartigen steckereinheit - Google Patents

Steckereinheit und elektrisches gerät mit einer derartigen steckereinheit Download PDF

Info

Publication number
EP2891214B1
EP2891214B1 EP13744559.9A EP13744559A EP2891214B1 EP 2891214 B1 EP2891214 B1 EP 2891214B1 EP 13744559 A EP13744559 A EP 13744559A EP 2891214 B1 EP2891214 B1 EP 2891214B1
Authority
EP
European Patent Office
Prior art keywords
plug
temperature sensor
contact
carrier
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13744559.9A
Other languages
English (en)
French (fr)
Other versions
EP2891214A1 (de
Inventor
Christian SCHÄDLE
Karl KNEZAR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapp Engineering AG
Original Assignee
Lapp Engineering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapp Engineering AG filed Critical Lapp Engineering AG
Publication of EP2891214A1 publication Critical patent/EP2891214A1/de
Application granted granted Critical
Publication of EP2891214B1 publication Critical patent/EP2891214B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a plug unit for an electrical device, in particular for a device with a high current consumption, comprising at least two current-carrying current paths when the device is in operation, each of which has a contact element with a plug-in contact body and a line connection electrically conductively connected to the plug-in contact body and a line connection connected to the line connection comprises an electrically conductively connected line end piece of a supply cable leading to the device, a plug bridge with a contact carrier on which the contact elements are held in such a way that the plug contact body is on one side of the contact carrier and the line connections are on the other side of the contact carrier, and a connector housing which encloses the connector bridge, the cable connections and the line end pieces.
  • Such connector units are known from the prior art, for example from EP0274605 A1 or the DE102010025728 A1 .
  • the problem with these connector units is that the contact elements heat up significantly when contact resistance is increased due to surface corrosion or other phenomena due to the high current flow and can thus damage the connector unit and/or the connector receptacle connected to the connector unit.
  • the invention is therefore based on the object of improving a plug unit of the generic type in such a way that current-related heating or heating of the contact elements can be detected as reliably as possible.
  • the plug unit comprises at least one first temperature sensor and at least one second temperature sensor, that the at least one first temperature sensor is thermally coupled to at least one of the current paths to a greater extent than the at least one second one Temperature sensor and that the at least one second temperature sensor is thermally coupled to a greater extent with at least one reference area of the connector housing than the at least one first temperature sensor.
  • the advantage of the solution according to the invention can therefore be seen in the fact that the different degrees of coupling of the at least first and the at least second temperature sensor to at least one of the current paths and the different degrees of coupling of the at least one second and the at least one first temperature sensor to a reference area of the connector housing there is the possibility of recognizing whether the heat detected in the connector unit is due to the fact that the contact elements are heated due to the current flow or is caused by the entire connector unit being heated due to an increase in ambient temperature.
  • thermoelectric sensor is thermally coupled to at least one of the current paths by thermally conductive physical contact.
  • thermally conductive physical contact can take place either through direct direct contact of the first temperature sensor with one of the current paths or also indirectly through a mass ensuring heat conduction through physical contact, such as a thermally conductive compound, an adhesive compound or a casting compound.
  • the at least one first temperature sensor is thermally coupled to at least one of the contact elements by thermally conductive physical contact.
  • thermally conductive physical contact can be implemented either by arranging the first temperature sensor directly on or in one of the contact elements.
  • thermally conductive physical contact through indirect contact, for example by means of an adhesive compound or a thermally conductive compound or another embedding material.
  • a particularly favorable solution is that the at least one temperature sensor is arranged in thermally conductive physical contact with the plug bridge.
  • the at least one first temperature sensor is arranged in thermally conductive physical contact with the contact carrier, since the contact carrier is the first element of the connector bridge by directly touching the contact elements Heating of one of the contact elements or both contact elements themselves is also heated.
  • first temperature sensor in the case of a thermally conductive thermal coupling of the first temperature sensor to the contact carrier, there is the possibility of providing only a single first temperature sensor, which is preferably arranged between the two contact elements, in particular centrally between the two contact elements, so that the first temperature sensor detects heating when one of the contact elements begins to heat up.
  • the reference area of the plug housing is a surface area of the plug housing, since such a surface area of the plug housing preferably lies at a reference temperature when it is largely decoupled from the current paths and in particular from the contact carrier, which is determined by the ambient temperature of the connector unit is determined.
  • the surface area of the plug housing is a surface area that lies in the gripping area of the plug housing.
  • the second temperature sensor on or in the reference area of the connector housing.
  • a particularly favorable solution provides for the at least one second temperature sensor to be arranged inside the connector housing and in thermally conductive physical contact with the reference area of the connector housing.
  • This solution has the advantage that there is the possibility of arranging the at least one second temperature sensor in a protected manner in the plug housing, but also of arranging the second temperature sensor through the thermally conductive physical contact with the reference area in such a way that it detects a temperature corresponding to the reference area.
  • Such a thermally conductive physical contact with the reference area can be effected by a special thermally conductive compound leading to the reference area.
  • the thermal coupling to the reference area can be ensured by keeping the second temperature sensor at a small distance from the reference area, without high demands on the thermal conductivity of the material creating the thermally conductive physical contact between the reference area and the second temperature sensor.
  • the first temperature sensor directly on the connector bridge, preferably on the contact carrier.
  • a solution that can be implemented in a structurally particularly favorable manner provides that the at least one temperature sensor is arranged on a carrier.
  • the at least one second temperature sensor is also arranged on a carrier.
  • the carrier for the first temperature sensor and the carrier for the second temperature sensor could be separate from one another.
  • a particularly favorable solution provides that the at least one first temperature sensor and the at least one second temperature sensor are arranged on a common carrier.
  • a particularly favorable solution provides that the carrier is supported on the connector bridge.
  • the connector housing in the form of an outer shell as a one-part or multi-part housing that can be fixed to or connected to the connector bridge and thereby fixes the supply cable relative to the connector bridge, with the line connections and the line end pieces then being located in an interior space of the connector housing are arranged.
  • the plug housing to be a plug housing cast onto the plug bridge and the supply cable, i.e. the plug housing firmly connects them to one another by casting onto the plug bridge on the one hand and onto the supply cable on the other hand, and thus to one forms a unit that can only be separated by destruction.
  • the plug housing embeds the plug bridge and the line end pieces and the line connections.
  • the connector housing embeds the at least one first temperature sensor and the at least one second temperature sensor.
  • This embedding of the at least one first temperature sensor and/or at least one second temperature sensor ensures that the respective embedded temperature sensor is protected against external influences on the one hand and is arranged in the connector housing with a defined environment and defined thermal coupling on the other.
  • the at least one first temperature sensor and the at least one second temperature sensor are connected via temperature sensor lines routed through the supply cable a circuit of the electrical device are connected.
  • the invention also relates to an electrical device whose supply cable is provided with a plug unit, the plug unit being designed according to one or more of the above features.
  • the electrical device includes an evaluation circuit that detects and evaluates a first temperature value of the at least one first temperature sensor and a second temperature value of the at least one second temperature sensor.
  • the evaluation circuit compares the first temperature value and the second temperature value with one another and thereby detects current-related heating of at least one of the contact elements.
  • the evaluation circuit detects and compares the first temperature value and the second temperature value during an evaluation interval.
  • Such a comparison of the first temperature value and the second temperature value during an evaluation interval makes it possible, for example, to suppress short-term variations that come about as a result of undefined influences by taking into account the overall course during the evaluation interval.
  • the evaluation circuit compares the changes in the first temperature value and the second temperature value within the evaluation interval and can thus use the changes during the evaluation interval to detect the extent to which the type of change poses a risk to the connector unit and/or the connector receptacle due to a strong heating of the contact elements.
  • the evaluation circuit detects current-related heating of at least one of the contact elements when the first temperature value is above the second temperature value.
  • the evaluation can be carried out in such a way that the evaluation circuit determines a measure of the current-related heating of at least one of the contact elements from the difference between the first temperature value and the second temperature value.
  • Such a measure of the current-related heating of at least one of the contact elements is therefore based on a relative measurement of the temperature value of the first temperature sensor in relation to the temperature value of the second temperature sensor, so that environmental influences, such as the ambient temperature of the plug unit, have no effect.
  • a particularly favorable solution provides that the evaluation circuit generates a current-limiting signal when the degree of current-related heating of the at least one contact element exceeds a threshold value.
  • the evaluation circuit is able to determine that the current-related heating of the at least one contact element means that the temperature of the connector unit corresponds to a still subcritical state or is approaching a critical state that makes it necessary to avoid this state using a current limiting signal .
  • the evaluation circuit is preferably coupled to a control circuit for the current consumption of the device and the control circuit reduces the current consumption of the electrical device when the current reduction signal of the evaluation circuit is present.
  • the current reduction signal can be used so that the control circuit merely reduces the current consumption in order to reduce the current-related heating of the at least one of the contact elements.
  • control circuit interrupts the current consumption of the electrical device when a current reduction signal is present.
  • the schematic electrical device 10 shown for example a charger for a battery, in particular a vehicle battery, comprises a device housing designated as a whole by 12, in which a control circuit 14 is provided, which on the one hand controls the current and voltage in a charging cable 16 leading away from the device housing 12 and on the other hand also controls a current consumption of a supply cable 18 leading away from the device housing 12, which is provided at the end with a plug unit designated as a whole with 20, the plug unit 20 being able to be plugged into a plug receptacle designated as a whole with 22.
  • the plug unit 20 is preferably designed as a standard protective contact plug which can be plugged into a corresponding standard protective contact socket as a plug receptacle 22 .
  • the connector unit 20 is designed in accordance with the CEE 7/7 standard and the connector receptacle 22 is also designed in accordance with this standard.
  • a plug unit 20 of this type and a plug receptacle 22 of this type are standard plug connections provided in a building installation for supplying power to any electrical devices that are provided with such a standard plug unit 20 of this type.
  • the current paths S1 and S2 carry the current required for generating the charging current through the supply cable 18 via the line L1 and the contact element K1 or the line L2 and the contact element K2 the protective line LS serves to dissipate the short-circuit current in the event of damage, for example in the event of a short circuit.
  • the plug unit designated as a whole with 20 comprises a plug housing 24, which encloses the supply cable 18 with a supply cable receptacle 26, for example, with the supply cable 18 inside the plug housing 24 by removing a cable jacket in line end pieces LE1 and LE2 of the lines L1 and L2 and in the line end piece LES divides the line LS, which lead to the individual contact elements K1 and K2 in the case of the current paths S1 and S2 and SK in the case of the protective line LS.
  • contact elements K1, K2 and SK are, as in 3 shown, held in a connector bridge designated as a whole with 30, which in turn is accommodated by the connector housing 24, specifically in a contact-receiving area 28 of the connector housing 24.
  • the plug bridge 30 is in turn also designed, for example, according to the CEE 7/7 standard and in turn comprises a contact carrier 32, in which the contact elements K1 and K2 are inserted.
  • Each of the contact elements K1 and K2 comprises on the one hand a plug-in contact body 42, which extends from the contact carrier 32 to one end 44, a holding body 46 adjoining the plug-in contact body 42 on a side of the plug-in contact body 42 opposite the end 44 and which is mounted in the contact carrier 32 sits embedded, and a cable connection 48 which extends beyond the contact carrier 32 on a side opposite the plug-in contact body 42 and which can be connected to the respective line end piece LE.
  • the cable connection 48 is designed as a so-called crimp connection, which means that the cable connection can be electrically connected to the electrical conductor of the respective conductor end piece LE by deformation.
  • the plug-in contact body 42, the holding body 46 and the cable connection 48 are preferably designed as a coherent one-piece part which is embedded in the contact carrier 32 by overmolding in the area of the holding body 46.
  • the contact carrier 32 also carries, as in 3 shown, two guide bodies 52 and 54 for the protective contact SK, which is designed on the one hand as a U-shaped clip contact 56, which comprises two side legs 62 and 64, which are connected to one another by a middle leg 66, the two side legs 62 and 64 forming a protective contact connection are able to produce according to the European standard IEC 60884-1.
  • the side legs 62 and 64 are guided through respective outer sides of the guide bodies 52 and 54 .
  • the guide body 54 is also designed as a hollow body, in which a plug-in contact sleeve 68 is arranged, which is held on the middle leg 66 and into which a contact pin of the plug receptacle 22 according to the European standard IEC 60884-1 can be inserted through an opening 72 in the middle leg is, so that with such a protective contact connection, the protective contact can be produced via the plug-in contact sleeve 68, which is arranged in the hollow guide body 54.
  • a cable connection 74 is additionally formed on the central leg 66, which is also designed in such a way that it can be used to produce a crimp connection with the electrical conductor of the line end piece LES.
  • a carrier 80 is provided within the connector housing 24 in the connector unit 20, which carrier extends transversely to the contact carrier 32, with the contact carrier 32 in turn extending extends transversely to the central axis 34 of the respective contact elements K1 and K2 ( figure 5 ).
  • the carrier 80 preferably extends in a first approximation parallel to the central axis 34 of the contact elements K1 and K2, wherein in a first approximation parallel also includes an inclination of +/ ⁇ 30° compared to an exactly parallel course.
  • the carrier 80 supports itself, as in figure 5 and 6 shown, with an end face 82 on the contact carrier 32 and is preferably firmly connected to the contact carrier 32 via an adhesive connection 84 .
  • the carrier is preferably located between the cable connections 48 of the contact elements K1 and K2 and the guide body 54 of the plug bridge 30.
  • a first temperature sensor 92 is arranged on carrier 80, which is located in a foot region 88, for example on a side of carrier 80 facing cable connections 48, and is also located near contact carrier 32, preferably still in contact with contact carrier 32, so that a physical thermally conductive connection takes place between the contact elements K1 and K2 via the contact carrier 32 to the first temperature sensor 92, with physical heat conduction involving the contact carrier 32 being involved here.
  • the first temperature sensor 92 is preferably located in the middle between the contact elements K1 and K2, preferably in the middle between their cable connections 48, so that heat input from each of the contact elements K1 and K2 into the first temperature sensor 92 takes place to an essentially identical extent and is therefore independent of whether the contact element K1 or the contact element K2 heats up first, in each case the heat input into the first temperature sensor 92 is approximately identical.
  • an improved thermal coupling of the first temperature sensor 92 to the contact bridge 32 is preferably provided by an adhesive compound 94 or a thermally conductive compound 94, which ensures the best possible thermal coupling between the contact carrier 32 and the first temperature sensor 92.
  • carrier 80 Also provided on carrier 80 is a second temperature sensor 96, which sits on an end region 86 of carrier 80 that faces away from contact carrier 32 and foot region 88 and thus also faces away from end face 82, and is therefore separated from first temperature sensor 92 and also from contact carrier 32 as well is also at the greatest possible distance from the line end pieces LE1 and LE2.
  • the carrier 80 is preferably designed in such a way that the end region 86 is in an in 2 98 designated handle area of the connector housing 24, which is arranged opposite the contact receiving area 28 on the connector housing 24 and is thus thermally decoupled as far as possible from the contact elements K1 and K2 and also the line end pieces LE1 and LE2.
  • the second temperature sensor 96 is preferably located as close as possible to a surface 102 of the grip area 98 of the plug housing 24, so that the second temperature sensor 96 is thermally coupled to the surface 102 as well as possible and a temperature of the surface 102 is thus detected by the second temperature sensor 96, with this
  • the temperature of the surface 102 in the grip area 98 represents the temperature of the area surrounding the connector unit 20 and thus represents a reference temperature which represents a measure of the temperature for the area surrounding the connector unit 20 .
  • the two temperature sensors 92 and 94 are connected to an evaluation circuit 110 of the electrical device 10 via a common ground line M and via the temperature sensor lines TL1 and TL2, all of which also run in the supply cable 18, the evaluation circuit 110 being arranged in the device housing 12.
  • the connector housing 24 is formed by overmoulding the connector bridge 30, the carrier 80 with the first temperature sensor 92 and the second temperature sensor 96 and overmoulding the line end pieces LE1, LE2 and LES and the temperature sensor lines TL1, TL2 and ML leading to the temperature sensors 92 and 94 in the area of the Connector unit 20 is formed, the thermal coupling through the material forming the connector housing 24 between the first temperature sensor 92 and the second temperature sensor 96 through this material is negligible, so that the temperature value T1 measured by the first temperature sensor 92 is essentially is dominated by the heating of the contact element K1 and/or the contact element K2 via the heat conduction of the contact carrier, while the temperature value T2 is dominated by the temperature of the surface 102 in the grip area 98, although in this case it is physically transmitted through the material of the connector housing 24.
  • the thermal conduction of the carrier 80 between the first temperature sensor 92 and the second temperature sensor 94 is negligible.
  • the evaluation circuit 110 is now able, as in Figures 7 and 8 shown to distinguish whether a temperature increase in the connector unit 20 is caused by the environment or by the heating of the contact units K1 and / or K2.
  • a temperature value T2 of the second temperature sensor 96 which is detected by the evaluation circuit 110, initially rising within the provided evaluation interval AW, while the temperature value T1 of the first temperature sensor 92 is below the temperature value T2 and, for example, rises at least with a delay and only rises with a delay to the same extent as the temperature value T2 of the second temperature sensor, as in 7 shown.
  • the temperature value T1 of the first temperature sensor 92 will rise very quickly within the evaluation interval AW, while the temperature value T2 of the second temperature sensor only rises with a delay, if at all remains below the temperature value T1.
  • the evaluation circuit 110 is thus able to recognize whether the heating in the connector unit 20 is caused by heating in the area surrounding the connector unit 20, if namely, the temperature value T2 is greater than the temperature value T1, or is due to heating in the area of the contact units K1 and K2, namely when the temperature value T1 is greater than the temperature value T2.
  • Evaluation circuit 110 is also able to compare the difference formed between temperature value T1 and temperature value T2 with a threshold value SW to be defined according to the structure of plug unit 20 and then, when the temperature difference between temperature value T1 and temperature value T2 Exceeds threshold value SW to generate a current reduction signal SR and to transmit it to control circuit 14, which either interrupts or at least reduces current consumption via supply cable 18 when current reduction signal SR is present, in order to prevent further heating of plug unit 20.
  • a first threshold value SW leading to a first current reduction signal SR, which causes the control circuit 14 to reduce the current consumption through the supply cable 18 and thus also the plug unit 20, and to provide a second threshold value SW , when it is exceeded, a second current reduction signal SR is transmitted to the control circuit 14, which interrupts the current consumption via the supply cable 18 and the plug unit 20 when this second current reduction signal SR occurs, in order to prevent the plug unit 20 or the plug receptacle 22 from being destroyed.
  • the carrier 80' is designed differently in that it carries two first temperature sensors 92 1 and 92 2 , with the two first temperature sensors 92 1 and 92 2 each being arranged adjacent to the corresponding cable connection 48 of the respective contact unit K1 and K2, respectively, in order to to ensure that every temperature change and in particular every increase in temperature in one of the contact elements K1 and/or K2 is detected as quickly as possible by the respective first temperature sensor 92 1 or 92 2 , since in this case the respective temperature sensor 92 1 or 92 2 has a has even better thermal coupling to the respective contact element K1 and/or K2 than in the first exemplary embodiment,
  • a single second temperature sensor 96 can also be provided, but a second temperature sensor 96 1 or 96 2 can also be arranged on opposite sides in the area 86 ′ of the carrier 80 ′, in order to thereby measure the temperature on the surface 102 of the grip area 98 of the connector housing 24 as optimally as possible and, if necessary, to form an average value between the temperature values that are detected by the second temperature sensors 96 1 and 96 2 in order to be able to compensate for uneven heating of the connector housing 24 in the handle area 98 by averaging.
  • the carrier 80' is provided with an opening 122, for example in an intermediate region between the first temperature sensors 92 1 and 92 2 and the second temperature sensors 96 1 and 96 2 , so that webs 124 and 126 connect the end area 86 to the foot area 88 adjoining the end face 82, so that a thermal coupling between the end area 86' and the foot area 88 above the carrier 80 is reduced by the webs 124 and 126, in order to prevent a thermal coupling of the first temperature sensors 92 1 and 92 2 with the second temperature sensors 96 1 and 96 2 via the carrier 80' as far as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Description

  • Die Erfindung betrifft eine Steckereinheit für ein elektrisches Gerät, insbesondere für ein Gerät mit hoher Stromaufnahme, umfassend mindestens zwei im Betrieb des Geräts stromführende Strompfade, von denen jeder ein Kontaktelement mit einem Steckkontaktkörper sowie einem mit dem Stecckontaktkörper elektrisch leitend verbundenen Leitungsanschluss sowie ein mit dem Leitungsanschluss elektrisch leitend verbundenes Leitungsendstück eines zu dem Gerät führenden Zuleitungskabels umfasst, eine Steckerbrücke mit einem Kontaktträger, an welchem die Kontaktelemente so gehalten sind, dass die Steckkontaktkörper auf einer Seite des Kontaktträgers und die Leitungsanschlüsse auf der andere Seite des Kontaktträgers liegen, und ein Steckergehäuse, welches die Steckerbrücke, die Kabelanschlüsse und die Leitungsendstücke umschließt.
  • Derartige Steckereinheiten sind aus dem Stand der Technik bekannt, beispielsweise aus der EP0274605 A1 oder der DE102010025728 A1 .
  • Bei diesen Steckereinheiten besteht das Problem, dass sich die Kontaktelemente bei durch Oberflächenkorrosion oder andere Erscheinungen erhöhten Übergangswiderständen aufgrund des hohen Stromflusses stark erwärmen und somit zu einer Beschädigung der Steckereinheit und/oder der mit der Steckereinheit verbundenen Steckeraufnahme führen können.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Steckereinheit der gattungsgemäßen Art derart zu verbessern, dass eine strombedingte Erwärmung oder Erhitzung der Kontaktelemente möglichst zuverlässig erkannt werden kann.
  • Diese Aufgabe wird bei einer Steckereinheit der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, dass die Steckereinheit mindestens einen ersten Temperatursensor und mindestens einen zweiten Temperatursensor umfasst, dass der mindestens eine erste Temperatursensor in stärkerem Maße thermisch mit mindestens einem der Strompfade gekoppelt ist als der mindestens eine zweite Temperatursensor und dass der mindestens eine zweite Temperatursensor in stärkerem Maße thermisch mit mindestens einem Referenzbereich des Steckergehäuses gekoppelt ist als der mindestens eine erste Temperatursensor.
  • Der Vorteil der erfindungsgemäßen Lösung ist somit darin zu sehen, dass durch die unterschiedlich starke Kopplung des mindestens ersten und des mindestens zweiten Temperatursensors mit mindestens einem der Strompfade und die unterschiedlich starke Kopplung des mindestens einen zweiten und des mindestens einen ersten Temperatursensors mit einem Referenzbereich des Steckergehäuses die Möglichkeit besteht, zu erkennen, ob die festgestellte Erwärmung in der Steckereinheit dadurch zustande kommt, dass aufgrund des Stromflusses eine Erhitzung der Kontaktelemente eintritt oder dadurch zustande kommt, dass aufgrund einer Erhöhung einer Umgebungstemperatur eine Erwärmung der gesamten Steckereinheit eintritt.
  • Damit lässt sich eine strombedingte Erwärmung oder Erhitzung der Kontaktelemente sicher erkennen und auch sicher von einer allgemeinen Erwärmung der Steckereinheit, beispielsweise durch Umgebungseinflüsse, die nicht im Zusammenhang mit der Stromaufnahme steht, unterscheiden.
  • Hinsichtlich der Ankopplung des mindestens einen Temperatursensors an den mindestens einen der Strompfade wurden bislang keine näheren Angaben gemacht.
  • So sieht eine vorteilhafte Lösung vor, dass der mindestens eine erste Temperatursensor durch wärmeleitenden körperlichen Kontakt thermisch mit mindestens einem der Strompfade thermisch gekoppelt ist.
  • Ein derartiger wärmeleitender körperlicher Kontakt kann entweder durch direkten unmittelbaren Kontakt des ersten Temperatursensors mit einem der Strompfade erfolgen oder auch mittelbar durch eine die Wärmeleitung durch körperlichen Kontakt sicherstellende Masse, wie beispielsweise eine Wärmeleitmasse, eine Klebemasse oder eine Vergussmasse.
  • Besonders günstig ist es, wenn der mindestens eine erste Temperatursensor durch wärmeleitenden körperlichen Kontakt mindestens mit einem der Kontaktelemente thermisch gekoppelt ist.
  • Ein derartiger wärmeleitender körperlicher Kontakt kann entweder durch unmittelbare Anordnung des ersten Temperatursensors an oder in einem der Kontaktelemente realisiert sein. Es besteht aber auch die Möglichkeit durch mittelbaren Kontakt, beispielsweise mittels einer Klebemasse oder einer wärmeleitenden Masse oder einem anderen Einbettmaterial einen derartigen wärmeleitenden körperlichen Kontakt herzustellen.
  • Eine besonders günstige Lösung sieht, dass der mindestens eine Temperatursensor in wärmeleitendem körperlichem Kontakt mit der Steckerbrücke angeordnet ist.
  • In diesem Fall ist zwar kein direkter wärmeleitender körperlicher Kontakt zwischen einem der Kontaktelemente und dem ersten Temperatursensor hergestellt, der Vorteil dieser Lösung ist jedoch der, dass über die Erwärmung der Steckerbrücke eine Erfassung einer Erwärmung von der Kontakteinheiten möglich ist.
  • Besonders günstig ist es dabei, wenn der mindestens eine erste Temperatursensor in wärmeleitendem körperlichen Kontakt mit dem Kontaktträger angeordnet ist, da der Kontaktträger durch unmittelbares Berühren der Kontaktelemente das erste Element der Steckerbrücke ist, welches bei einer Erwärmung von einem der Kontaktelemente oder beiden Kontaktelementen selbst ebenfalls erwärmt wird.
  • Insbesondere besteht im Fall einer wärmeleitenden thermischen Kopplung des ersten Temperatursensors mit dem Kontaktträger die Möglichkeit, nur einen einzigen ersten Temperatursensor vorzusehen, welcher vorzugsweise zwischen den beiden Kontaktelementen, insbesondere mittig zwischen den beiden Kontaktelementen angeordnet ist, so dass der erste Temperatursensor eine Erwärmung erfasst, wenn eines der Kontaktelemente sich zu erwärmen beginnt.
  • Es besteht aber auch die Möglichkeit, an dem Kontaktträger zwei erste Temperatursensoren vorzusehen und zwar jeweils in geringem Abstand von den Kontakteinheiten, so dass die Erwärmung jedes der Kontaktelemente zu einer Erwärmung des diesem zugeordneten und am Kontaktträger angeordneten oder mit dem Kontaktträger gekoppelten jeweiligen ersten Temperatursensors führt.
  • Hinsichtlich der Anordnung des Referenzbereichs des Steckergehäuses wurden bislang ebenfalls keine näheren Angaben gemacht.
  • So sieht eine vorteilhafte Lösung vor, dass der Referenzbereich des Steckergehäuses ein Oberflächenbereich des Steckergehäuses ist, da vorzugsweise ein derartiger Oberflächenbereich des Steckergehäuses dann, wenn er weitgehend von den Strompfaden und insbesondere von dem Kontaktträger entkoppelt ist, auf einer Referenztemperatur liegt, die durch die Umgebungstemperatur der Steckereinheit bestimmt ist.
  • Besonders günstig ist es, wenn der Oberflächenbereich des Steckergehäuses ein im Griffbereich des Steckergehäuses liegender Oberflächenbereich ist.
  • Hinsichtlich der Anordnung des mindestens einen zweiten Temperatursensors mit thermischer Kopplung zu dem Referenzbereich wurden bislang keine näheren Angaben gemacht.
  • Beispielsweise wäre es denkbar, den zweiten Temperatursensor auf oder in dem Referenzbereich des Steckergehäuses anzuordnen.
  • Eine besonders günstige Lösung sieht jedoch vor, dass der mindestens eine zweite Temperatursensor innerhalb des Steckergehäuses und in wärmeleitendem körperlichem Kontakt mit dem Referenzbereich des Steckergehäuses angeordnet ist.
  • Diese Lösung hat den Vorteil, dass die Möglichkeit besteht, den mindestens einen zweiten Temperatursensor geschützt im Steckergehäuse anzuordnen, andererseits aber auch durch den wärmeleitenden körperlichen Kontakt mit dem Referenzbereich den zweiten Temperatursensor so anzuordnen, dass dieser eine dem Referenzbereich entsprechende Temperatur erfasst.
  • Ein derartiger wärmeleitender körperlicher Kontakt zu dem Referenzbereich kann durch eine spezielle zu dem Referenzbereich führende wärmeleitende Masse erfolgen.
  • Es besteht aber auch die Möglichkeit, einen derartigen wärmeleitenden körperlichen Kontakt zwischen dem zweiten Temperatursensor und dem Referenzbereich des Steckergehäuses dadurch zu erreichen, dass dieser durch ein das Steckergehäuse bildendes Material, im Fall eines gegossenen Steckergehäuses die das Steckergehäuse bildende Gießmasse, gebildet wird.
  • Dabei lässt sich die thermische Kopplung mit dem Referenzbereich durch einen geringen Abstand des zweiten Temperatursensors von dem Referenzbereich sicherstellen, ohne dass hohe Anforderungen an die Wärmeleitfähigkeit des den wärmeleitenden körperlichen Kontakt zwischen dem Referenzbereich und dem zweiten Temperatursensor erstellenden Materials notwendig sind.
  • Hinsichtlich der Anordnung des mindestens einen ersten Temperatursensors wurden bislang keine näheren Angaben gemacht.
  • So wäre es beispielsweise denkbar, den ersten Temperatursensor unmittelbar an der Steckerbrücke, vorzugsweise an dem Kontaktträger, anzuordnen.
  • Eine konstruktiv besonders günstig realisierbare Lösung sieht jedoch vor, dass der mindestens eine Temperatursensor auf einem Träger angeordnet ist.
  • Desgleichen wäre es denkbar, den mindestens einen zweiten Temperatursensor in dem Steckergehäuse oder durch Einbettung desselben in das Steckergehäuse anzuordnen.
  • Um die Lage des mindestens einen zweiten Temperatursensors jedoch definiert festlegen zu können, hat es sich als vorteilhaft erwiesen, wenn der mindestens eine zweite Temperatursensor ebenfalls auf einem Träger angeordnet ist.
  • Dabei könnten der Träger für den ersten Temperatursensor und der Träger für den zweiten Temperatursensor voneinander getrennt sein.
  • Eine besonders günstige Lösung sieht jedoch vor, dass der mindestens eine erste Temperatursensor und der mindestens eine zweite Temperatursensor auf einem gemeinsamen Träger angeordnet sind.
  • Hinsichtlich der Fixierung des Trägers für den ersten und/oder zweiten Temperatursensor innerhalb der Steckereinheit wurden bislang keine näheren Angaben gemacht.
  • Eine besonders günstige Lösung sieht dabei vor, dass der Träger an der Steckerbrücke abgestützt ist.
  • Besonders günstig ist es, wenn der Träger an dem Kontaktträger der Steckerbrücke abgestützt ist.
  • Noch vorteilhafter ist es, wenn der Träger mit der Steckerbrücke fest verbunden ist.
  • Dabei besteht beispielsweise die Möglichkeit den Träger mit der Steckerbrücke durch ein Verschweißen oder ein Verkleben zu verbinden und damit den ersten Temperatursensor und/oder den zweiten Temperatursensor relativ zur Steckerbrücke definiert anzuordnen.
  • Hinsichtlich der Ausbildung des Steckergehäuses wurden im Zusammenhang mit der bisherigen Erläuterung der einzelnen Ausführungsbeispiele keine näheren Angaben gemacht.
  • So wäre es beispielsweise denkbar das Steckergehäuse in Form einer Außenschale als ein- oder mehrteiliges Gehäuse auszubilden, welches an der Steckerbrücke fixierbar oder mit dieser verbindbar ist und dabei das Zuleitungskabel relativ zur Steckerbrücke fixiert, wobei in einem Innenraum des Steckergehäuses dann die Leitungsanschlüsse und die Leitungsendstücke angeordnet sind.
  • Eine besonders günstige Lösung sieht jedoch vor, dass das Steckergehäuse ein an die Steckerbrücke und das Zuleitungskabel angegossenes Steckergehäuse ist, das heißt, dass das Steckergehäuse einerseits durch Angießen an die Steckerbrücke und andererseits durch Angießen an das Zuleitungskabel diese fest miteinander verbindet und somit mit diesen eine nur durch Zerstörung trennbare Einheit bildet.
  • Besonders vorteilhaft ist es dabei, wenn das Steckergehäuse die Steckerbrücke und die Leitungsendstücke sowie die Leitungsanschlüsse einbettet.
  • Durch diese Einbettung der Leitungsendstücke und der Leitungsanschlüsse wird ferner auch ein gegenüber äußeren Einflüssen dichter Abschluss zwischen den Leitungsendstücken und dem Zuleitungskabel sowie den Leitungsanschlüssen und der Steckerbrücke realisiert, der für ein Erfüllen der Sicherheitsanforderungen an die Steckereinheit von Bedeutung ist.
  • Ferner ist vorzugsweise vorgesehen, dass das Steckergehäuse den mindestens einen ersten Temperatursensor und den mindestens einen zweiten Temperatursensor einbettet.
  • Durch diese Einbettung des mindestens einen ersten Temperatursensors und/oder mindestens einen zweiten Temperatursensors wird sichergestellt, dass der jeweils eingebettete Temperatursensor einerseits gegenüber äußeren Einflüssen geschützt ist und andererseits mit definierter Umgebung und definierter thermischer Ankopplung im Steckergehäuse angeordnet ist.
  • Insbesondere ist bei einem derartigen an die Steckerbrücke und das Zuleitungskabel angegossenen Steckergehäuse vorgesehen, dass das Steckergehäuse den Träger einbettet.
  • Um sicherzustellen, dass die von dem mindesten einen ersten Temperatursensor und dem mindestens einen zweiten Temperatursensor erfassten Temperaturwerte durch das elektrische Gerät berücksichtigt werden können, ist vorzugsweise vorgesehen, dass der mindestens eine erste Temperatursensor und der mindestens eine zweite Temperartursensor über durch das Zuleitungskabel geführte Temperatursensorleitungen mit einer Schaltung des elektrischen Geräts verbunden sind.
  • Somit besteht in einfacher Art und Weise die Möglichkeit, die von dem mindestens einen ersten Temperatursensor und dem mindestens einen zweiten Temperatursensor gemessenen Werte auszuwerten und beim Betrieb des elektrischen Geräts zu berücksichtigen.
  • Ergänzend oder alternativ zu der eingangs genannten Steckereinheit betrifft die Erfindung ebenfalls ein elektrisches Gerät, dessen Zuleitungskabel mit einer Steckereinheit versehen ist, wobei erfindungsgemäß die Steckereinheit gemäß einem oder mehreren der voranstehenden Merkmale ausgebildet ist.
  • Insbesondere ist dabei vorgesehen, dass das elektrische Gerät eine Auswerteschaltung umfasst, die einen ersten Temperaturwert des mindestens einen ersten Temperatursensors und einen zweiten Temperaturwert des mindestens einen zweiten Temperatursensors erfasst und auswertet.
  • Insbesondere besteht bei einem derartigen elektrischen Gerät die Möglichkeit, für den Betrieb des elektrischen Geräts den ersten Temperaturwert und den zweiten Temperaturwert zu berücksichtigen.
  • Beispielsweise ist hierbei vorgesehen, dass die Auswerteschaltung den ersten Temperaturwert und den zweiten Temperaturwert miteinander vergleicht und dadurch eine strombedingte Erwärmung von mindestens einem der Kontaktelemente erkennt.
  • Dabei bestünde die Möglichkeit jeweils zu einem bestimmten Zeitpunkt den ersten Temperaturwert und den zweiten Temperaturwert zu erfassen und miteinander zu vergleichen.
  • Besonders günstig ist es, wenn die Auswerteschaltung den ersten Temperaturwert und den zweiten Temperaturwert während eines Auswerteintervalls erfasst und miteinander vergleicht.
  • Ein derartiger Vergleich des ersten Temperaturwerts und des zweiten Temperaturwertes während eines Auswerteintervalls erlaubt beispielsweise kurzzeitige Variationen, die durch undefinierte Einflüsse zustande kommen, zu unterdrücken, indem der Gesamtverlauf während des Auswerteintervalls berücksichtigt wird.
  • Insbesondere ist dabei vorgesehen, dass die Auswerteschaltung die Änderungen des ersten Temperaturwertes und des zweiten Temperaturwertes innerhalb des Auswerteintervalls vergleicht und somit über die Änderungen während des Auswerteintervalls erfassen kann, inwieweit aufgrund der Art der Änderung eine Gefährdung der Steckereinheit und/oder der Steckeraufnahme aufgrund einer zu starken Erhitzung der Kontaktelemente besteht.
  • Insbesondere ist es vorteilhaft, wenn die Auswerteschaltung dann, wenn der erste Temperaturwert über dem zweiten Temperaturwert liegt, eine strombedingte Erwärmung von mindestens einem der Kontaktelemente erkennt.
  • Insbesondere lässt sich dabei die Auswertung so durchführen, dass die Auswerteschaltung aus der Differenz des ersten Temperaturwerts und des zweiten Temperaturwerts ein Maß für die strombedingte Erwärmung von mindestens einem der Kontaktelemente ermittelt.
  • Ein derartiges Maß für die strombedingte Erwärmung von mindestens einem der Kontaktelemente erfolgt somit aufgrund einer Relativmessung des Temperaturwertes des ersten Temperatursensors bezogen auf den Temperaturwert des zweiten Temperatursensors, so dass dadurch Umgebungseinflüsse, wie beispielsweise die Umgebungstemperatur der Steckereinheit keine Auswirkung haben.
  • Eine besonders günstige Lösung sieht vor, dass die Auswerteschaltung dann, wenn das Maß für die strombedingte Erwärmung des mindestens einen Kontaktelements einen Schwellwert überschreitet, ein Strombegrenzungssignal erzeugt.
  • In diesem Fall ist die Auswerteschaltung in der Lage festzustellen, dass ein durch die strombedingte Erwärmung des mindestens einen Kontaktelements sich die Temperatur der Steckereinheit einem noch subkritischen Zustand entspricht oder sich einem kritischen Zustand annähert, der es erforderlich macht, diesen Zustand mittels eines Strombegrenzungssignals zu vermeiden.
  • Vorzugsweise ist dabei die Auswerteschaltung mit einer Steuerschaltung für die Stromaufnahme des Geräts gekoppelt und die Steuerschaltung reduziert bei Anliegen des Stromreduzierungssignals der Auswerteschaltung die Stromaufnahme des elektrischen Geräts.
  • Mit dieser Lösung lassen sich vorzugsweise kritische Zustände der Steckereinheit oder der Steckeraufnahme durch Reduzierung der Stromaufnahme des elektrischen Geräts vermeiden.
  • Dabei kann das Stromreduzierungssignal dazu ausgenützt werden, dass die Steuerschaltung lediglich die Stromaufnahme reduziert, um die strombedingte Erwärmung des mindestens einen der Kontaktelemente zu reduzieren.
  • Dies ist beispielsweise dann vorgesehen, wenn ein Schwellwert vorgesehen ist, ab welchem eine Reduzierung der Stromaufnahme ausreicht, um einen kritischen Zustand der Steckereinheit zu vermeiden.
  • Alternativ oder ergänzend hierzu sieht eine andere Möglichkeit vor, dass die Steuerschaltung die Stromaufnahme des elektrischen Geräts bei Anliegen eines Stromreduzierungssignals unterbricht.
  • In diesem Fall kann sichergestellt werden, dass ein kritischer Zustand der Steckereinheit und auch der Steckeraufnahme vermieden werden kann.
  • Weitere Merkmale und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung einiger Ausführungsbeispiele.
  • In der Zeichnung zeigen:
  • Fig. 1
    eine schematische Darstellung eines erfindungsgemäßen elektrischen Geräts mit einem mit einer erfindungsgemäßen Steckereinheit versehenen Zuleitungskabel;
    Fig. 2
    eine vergrößerte Darstellung der erfindungsgemäßen Steckereinheit;
    Fig. 3
    eine perspektivische Darstellung einer Steckerbrücke einer erfindungsgemäßen Steckereinheit;
    Fig. 4
    eine Draufsicht auf die Steckerbrücke in Richtung des Pfeils A in Fig. 3;
    Fig. 5
    eine Seitenansicht in Richtung des Pfeils B in Fig. 3 einer erfindungsgemäßen Steckerbrücke versehen mit einem Träger und einem ersten Temperatursensor sowie einem zweiten Temperatursensor;
    Fig. 6
    einen Schnitt längs Linie 6-6 in Fig. 5;
    Fig. 7
    eine Darstellung eines Verlaufs eines ersten Temperaturwerts und eines zweiten Temperaturwerts während eines Auswerteintervalls im Fall einer Temperaturerhöhung in einer Umgebung der Steckereinheit;
    Fig. 8
    eine schematische Darstellung des Verlaufs des ersten Temperaturwerts und des zweiten Temperaturwerts während eines Auswerteintervalls im Fall einer strombedingten Temperaturerhöhung im Bereich mindestens einer Kontakteinheit und
    Fig. 9
    einen Schnitt ähnlich Fig. 6 durch ein zweites Ausführungsbeispiel einer Steckerbrücke mit einem Träger einer erfindungsgemäßen Steckereinheit.
  • Ein in Fig. 1 dargestelltes schematisches elektrisches Gerät 10, beispielsweise ein Ladegerät für eine Batterie, insbesondere eine Fahrzeugbatterie, umfasst ein als Ganzes mit 12 bezeichnetes Gerätegehäuse, in welchem eine Steuerschaltung 14 vorgesehen ist, welche Strom und Spannung in einem von dem Gerätegehäuse 12 wegführenden Ladekabel 16 einerseits steuert und andererseits auch eine Stromaufnahme eines vom Gerätegehäuse 12 wegführenden Zuleitungskabels 18 steuert, welches endseitig mit einer als Ganzes mit 20 bezeichneten Steckereinheit versehen ist, wobei die Steckereinheit 20 in eine als Ganzes mit 22 bezeichnete Steckeraufnahme einsteckbar ist.
  • Vorzugsweise ist dabei die Steckereinheit 20 als normüblicher Schutzkontaktstecker ausgebildet, welcher in eine entsprechende normübliche Schutzkontaktsteckdose als Steckeraufnahme 22 einsteckbar ist.
  • Beispielsweise ist die Steckereinheit 20 gemäß der Norm CEE 7/7 ausgebildet und auch die Steckeraufnahme 22 entsprechend dieser Norm ausgebildet.
  • Bei einer derartigen Steckereinheit 20 und einer derartigen Steckeraufnahme 22 handelt es sich um übliche in einer Gebäudeinstallation vorgesehene Steckverbindungen zur Versorgung beliebiger elektrischer Geräte, die mit einer derartigen normüblichen Steckereinheit 20 versehen sind.
  • Durch das Zuleitungskabel 18 führen beim Betrieb des elektrischen Geräts 10, also beispielsweise bei einem Ladevorgang einer Batterie die Strompfade S1 und S2 über die Leitung L1 und das Kontaktelement K1 bzw. die Leitung L2 und das Kontaktelement K2 den für die Erzeugung des Ladestroms erforderlichen Strom während die Schutzleitung LS dazu dient, im Beschädigungsfall, beispielsweise im Fall eines Kurzschlusses, den Kurzschlussstrom abzuführen.
  • Bei diesen üblichen normgemäßen Steckverbindungen fließen üblicherweise, zumindest, über längere Zeiträume, Ströme die kleiner als 10 Ampere sind.
  • Werden jedoch beispielsweise Fahrzeugbatterien geladen, so ist dieser Ladevorgang sehr schnell durchzuführen, was wiederum zur Folge hat, dass die Stromaufnahme des elektrischen Geräts 10, wenn es sich um ein Batterieladegerät handelt, signifikant höher ist.
  • In diesem Fall fließen durch in dem Zuleitungskabel 18 und der Steckereinheit 20 vorgesehene Strompfade S1 und S2 (dies sind bei üblichem Wechselstrom zwei Strompfade, bei Drehstrom drei Strompfade) wesentlich höhere Ströme, was zur Folge hat, dass durch Kontaktalterung oder Kontaktkorrosion Übergangswiderständen zwischen den Kontaktelementen K1 und K2 sowie den entsprechenden Kontaktaufnahmen KA1 und KA2 der Steckereinheit 20 bzw. der Steckeraufnahme 22 auftreten, die im Bereich derselben zu einer Wärmeentwicklung führen und diese Wärmeentwicklung kann zur teilweisen Zerstörung der Steckereinheit 20 und/oder der Steckeraufnahme 22 führen.
  • Wie in Fig. 2 dargestellt, umfasst die als Ganzes mit 20 bezeichnete Steckereinheit ein Steckergehäuse 24, welches beispielsweise mit einer Zuleitungskabelaufnahme 26 das Zuleitungskabel 18 umschließt, wobei das Zuleitungskabel 18 innerhalb des Steckergehäuses 24 durch Entfernen eines Kabelmantels in Leitungsendstücke LE1 und LE2 der Leitungen L1 bzw. L2 und in das Leitungsendstück LES der Leitung LS aufteilt, die zu den einzelnen Kontaktelementen K1 bzw. K2 im Fall der Strompfade S1 und S2 und SK im Fall der Schutzleitung LS führen.
  • Diese Kontaktelemente K1, K2 und SK sind, wie in Fig. 3 dargestellt, in einer als Ganzes mit 30 bezeichneten Steckerbrücke gehalten, die ihrerseits von dem Steckergehäuse 24 aufgenommen ist, und zwar in einem Kontaktaufnahmebereich 28 des Steckergehäuses 24.
  • Die Steckerbrücke 30 ist ihrerseits ebenfalls beispielsweise gemäß der Norm CEE 7/7 ausgebildet und umfasst ihrerseits einen Kontaktträger 32, in welchen die Kontaktelemente K1 und K2 eingesetzt sind.
  • Dabei umfasst jedes der Kontaktelemente K1 und K2 einerseits einen Stecckontaktkörper 42, welcher sich ausgehend von dem Kontaktträger 32 bis zu einem Ende 44 erstreckt, einen sich an einer dem Ende 44 gegenüberliegenden Seite des Steckkontaktkörpers 42 an diesen anschließenden Haltekörper 46, der in dem Kontaktträger 32 eingebettet sitzt, und einen über den Kontaktträger 32 auf einer dem Steckkontaktkörper 42 gegenüberliegenden Seite hinaus sich erstreckenden Kabelanschluss 48, welcher mit dem jeweiligen Leitungsendstück LE verbindbar ist.
  • Beispielsweise ist der Kabelanschluss 48 dabei als sogenannte Crimpverbindung ausgebildet, das heißt, dass der Kabelanschluss durch Deformation mit dem elektrischen Leiter des jeweiligen Leiterendstücks LE elektrisch verbindbar ist.
  • Vorzugsweise sind dabei der Steckkontaktkörper 42, der Haltekörper 46 und der Kabelanschluss 48 als zusammenhängendes einstückiges Teil ausgebildet, das in den Kontaktträger 32 durch Umspritzen im Bereich des Haltekörpers 46 eingebettet ist.
  • Der Kontaktträger 32 trägt außerdem, wie in Fig. 3 dargestellt, noch zwei Führungskörper 52 und 54 für den Schutzkontakt SK, der einerseits als U-förmiger Bügelkontakt 56 ausgebildet ist, welcher zwei Seitenschenkel 62 und 64 umfasst, die durch einen Mittelschenkel 66 miteinander verbunden sind, wobei die beiden Seitenschenkel 62 und 64 eine Schutzkontaktverbindung gemäß der europäischen Norm IEC 60884-1 herzustellen in der Lage sind.
  • Die Seitenschenkel 62 und 64 sind dabei durch jeweilige Außenseiten der Führungskörper 52 und 54 geführt.
  • Darüber hinaus ist der Führungskörper 54 noch zusätzlich als Hohlkörper ausgebildet, in welchem eine Steckkontakthülse 68 angeordnet ist, die an dem Mittelschenkel 66 gehalten ist und in welche durch einen Durchbruch 72 im Mittelschenkel ein Kontaktstift der Steckeraufnahme 22 gemäß der europäischen Norm IEC 60884-1 hindurchsteckbar ist, so dass bei einer derartigen Schutzkontaktverbindung der Schutzkontakt über die Steckkontakthülse 68, angeordnet in dem hohlen Führungsköper 54, herstellbar ist.
  • Zur Verbindung mit dem Leitungsendstück LES der Schutzleitung LS ist an den Mittelschenkel 66 noch zusätzlich ein Kabelanschluss 74 angeformt, welcher ebenfalls so ausgebildet ist, dass mit diesem eine Crimpverbindung mit dem elektrischen Leiter des Leitungsendstücks LES herstellbar ist.
  • Um feststellen zu können, ob im Bereich eines der Kontaktelemente K1 oder K2 eine Erwärmung aufgrund eines erhöhten Übergangswiderstandes auftritt, ist innerhalb des Steckergehäuses 24 in der Steckereinheit 20 ein Träger 80 vorgesehen, der sich quer zum Kontaktträger 32 erstreckt, wobei sich der Kontaktträger 32 seinerseits quer zur Mittelachse 34 der jeweiligen Kontaktelemente K1 und K2 erstreckt (Fig. 5).
  • Somit erstreckt sich der Träger 80 vorzugsweise in erster Näherung parallel zu der Mittelachse 34 der Kontaktelemente K1 und K2, wobei in erster Näherung parallel auch noch eine Neigung von +/- 30° Grad gegenüber einem exakt parallelen Verlauf miteinschließt.
  • Der Träger 80 stützt sich dabei, wie in Fig. 5 und 6 dargestellt, mit einer Stirnseite 82 an dem Kontaktträger 32 ab und ist vorzugsweise über eine Klebeverbindung 84 fest mit dem Kontaktträger 32 verbunden.
  • Ferner liegt der Träger vorzugsweise zwischen den Kabelanschlüssen 48 der Kontaktelemente K1 und K2 und dem Führungskörper 54 der Steckerbrücke 30.
  • An dem Träger 80 ist ein erster Temperatursensor 92 angeordnet, welcher an einem Fußbereich 88 beispielsweise auf einer den Kabelanschlüssen 48 zugewandten Seite des Trägers 80 sitzt und außerdem nahe des Kontaktträgers 32 sitzt, vorzugsweise noch an dem Kontaktträger 32 anliegt, so dass eine körperliche wärmeleitende Verbindung zwischen den Kontaktelementen K1 und K2 über den Kontaktträger 32 zum ersten Temperatursensor 92 erfolgt, wobei es sich hier um eine körperliche Wärmeleitung unter Mitwirkung des Kontaktträgers 32 handelt.
  • Vorzugsweise sitzt dabei der erste Temperatursensor 92 mittig zwischen den Kontaktelementen K1 und K2, vorzugsweise mittig zwischen deren Kabelanschlüssen 48, so dass ein Wärmeeintrag von jedem der Kontaktelemente K1 und K2 in den ersten Temperatursensor 92 in im Wesentlichen identischem Maße erfolgt und somit unabhängig davon, ob sich das Kontaktelement K1 oder das Kontaktelement K2 zuerst erwärmt, jeweils der Wärmeeintrag in den ersten Temperatursensor 92 näherungsweise identisch ist.
  • Ferner ist vorzugsweise noch eine verbesserte thermische Ankopplung des ersten Temperatursensors 92 mit der Kontaktbrücke 32 durch eine Klebemasse 94 oder eine wärmeleitende Masse 94 vorgesehen, welche eine möglichst gute thermische Kopplung zwischen dem Kontaktträger 32 und dem ersten Temperatursensor 92 sicherstellt.
  • An dem Träger 80 ist ferner noch ein zweiter Temperatursensor 96 vorgesehen, welcher an einem dem Kontaktträger 32 und dem Fußbereich 88 abgewandten und somit auch der Stirnseite 82 abgewandten Endbereich 86 des Trägers 80 sitzt und somit vom ersten Temperatursensor 92 und auch von dem Kontaktträger 32 sowie auch von den Leitungsendstücken LE1 und LE2 eine möglichst große Entfernung aufweist.
  • Vorzugsweise ist der Träger 80 so ausgebildet, dass der Endbereich 86 in einem in Fig. 2 mit 98 bezeichneten Griffbereich des Steckergehäuses 24 liegt, der am Steckergehäuse 24 den Kontaktaufnahmebereich 28 gegenüberliegend angeordnet ist und somit möglichst weitgehend von den Kontaktelementen K1 und K2 und auch den Leitungsendstücken LE1 und LE2 thermisch entkoppelt ist.
  • Vorzugsweise liegt der zweite Temperatursensor 96 möglichst nahe einer Oberfläche 102 des Griffbereichs 98 des Steckergehäuses 24, so dass der zweite Temperatursensor 96 möglichst gut thermisch mit der Oberfläche 102 gekoppelt ist und somit eine Temperatur der Oberfläche 102 von dem zweiten Temperatursensor 96 erfasst wird, wobei diese Temperatur der Oberfläche 102 im Griffbereich 98 die Temperatur der Umgebung der Steckereinheit 20 repräsentiert und somit eine Referenztemperatur darstellt, die ein Maß für die Temperatur für die Umgebung der Steckereinheit 20 darstellt.
  • Wie in Fig. 2 dargestellt, sind die beiden Temperatursensoren 92 und 94 über eine gemeinsame Masseleitung M sowie über die Temperatursensorleitungen TL1 und TL2, die alle ebenfalls in dem Zuleitungskabel 18 verlaufen, mit einer Auswerteschaltung 110 des elektrischen Geräts 10, die Auswerteschaltung 110 in dem Gerätegehäuse 12 angeordnet ist.
  • Obwohl das Steckergehäuse 24 durch Umspritzen der Steckerbrücke 30, des Trägers 80 mit dem ersten Temperatursensor 92 und dem zweiten Temperatursensor 96 sowie Umspritzen der Leitungsendstücke LE1, LE2 und LES sowie der zu den Temperatursensoren 92 und 94 führenden Temperatursensorleitungen TL1, TL2 und ML im Bereich der Steckereinheit 20 gebildet ist, ist die thermische Kopplung durch das das Steckergehäuse 24 bildende Material zwischen dem ersten Temperatursensor 92 und dem zweiten Temperatursensor 96 durch dieses Material vernachlässigbar, so dass der vom ersten Temperatursensor 92 gemessene Temperaturwert T1 im Wesentlichen durch die Erwärmung des Kontaktelements K1 und/oder des Kontaktelements K2 über die Wärmeleitung des Kontaktträgers dominiert ist, während der Temperaturwert T2 durch die Temperatur der Oberfläche 102 im Griffbereich 98, allerdings in diesem Fall körperlich übertragen durch das Material des Steckergehäuses 24 dominiert ist.
  • Auch die Wärmeleitung des Trägers 80 zwischen dem ersten Temperatursensor 92 und dem zweiten Temperatursensor 94 ist vernachlässigbar.
  • Die Auswerteschaltung 110 ist nun in der Lage, wie in Fig. 7 und 8 dargestellt, zu unterscheiden, ob eine Temperaturerhöhung in der Steckereinheit 20 durch die Umgebung hervorgerufen wird oder durch die Erwärmung einer der Kontakteinheiten K1 und/oder K2.
  • Erfolgt beispielsweise eine Temperaturerhöhung in der Umgebung der Steckereinheit 20, so wird dies zur Folge haben, dass zunächst ein Temperaturwert T2 des zweiten Temperatursensors 96, der von der Auswerteschaltung 110 erfasst wird, innerhalb des vorgesehenen Auswerteintervalls AW ansteigt, während der Temperaturwert T1 des ersten Temperatursensors 92 unter dem Temperaturwert T2 liegt und beispielsweise zumindest verzögert ansteigt und erst mit Verzögerung in gleichem Maße ansteigt, wie der Temperaturwert T2 des zweiten Temperatursensors, wie in Fig. 7 dargestellt.
  • Erfolgt dagegen, wie in Fig. 8 dargestellt, eine Erwärmung im Bereich von einer oder beiden Kontakteinheiten K1 und/oder K2, so wird der Temperaturwert T1 des ersten Temperatursensors 92 innerhalb des Auswerteintervalls AW sehr schnell ansteigen, während der Temperaturwert T2 des zweiten Temperatursensors wenn überhaupt dann nur mit Verzögerung ansteigt, jedoch unterhalb des Temperaturwertes T1 bleibt.
  • Damit ist die Auswerteschaltung 110 in der Lage durch die Differenzbildung zwischen den Temperaturwerten T1 des ersten Temperatursensors 92 und den Temperaturwerten T2 des zweiten Temperatursensors 96 zu erkennen, ob die Erwärmung in der Steckereinheit 20 bedingt ist durch eine Erwärmung in der Umgebung der Steckereinheit 20, wenn nämlich der Temperaturwert T2 größer ist als der Temperaturwert T1, oder bedingt ist durch eine Erwärmung im Bereich der Kontakteinheiten K1 und K2, wenn nämlich der Temperaturwert T1 größer ist als der Temperaturwert T2.
  • Die Auswerteschaltung 110 ist darüber hinaus in der Lage, die gebildete Differenz zwischen dem Temperaturwert T1 und dem Temperaturwert T2 mit einem entsprechend dem Aufbau der Steckereinheit 20 zu definierenden Schwellwert SW zu vergleichen und dann, wenn die Temperaturdifferenz zwischen dem Temperaturwert T1 und dem Temperaturwert T2 den Schwellwert SW überschreitet, ein Stromreduzierungssignal SR zu erzeugen und der Steuerschaltung 14 zu übermitteln, welche entweder bei Anliegen des Stromreduzierungssignals SR eine Stromaufnahme über das Zuleitungskabel 18 unterbricht oder zumindest reduziert, um eine weitere Erwärmung der Steckereinheit 20 zu verhindern.
  • Beispielsweise ist es auch denkbar, zwei Schwellwerte SW vorzusehen, wobei ein erster Schwellwert SW zu einem ersten Stromreduzierungssignal SR führt, welches die Steuerschaltung 14 veranlasst, die Stromaufnahme durch das Zuleitungskabel 18 und somit auch die Steckereinheit 20 zu reduzieren, und einen zweiten Schwellwert SW vorzusehen, bei dessen Überschreitung ein zweites Stromreduzierungssignal SR der Steuerschaltung 14 übermittelt wird, welche bei diesem zweiten Stromreduzierungssignal SR die Stromaufnahme über das Zuleitungskabel 18 und die Steckereinheit 20 unterbricht, um eine Zerstörung der Steckereinheit 20 oder der Steckeraufnahme 22 zu verhindern.
  • Bei einem zweiten Ausführungsbeispiel einer Steckereinheit 20 für ein erfindungsgemäßes elektrisches Gerät, dargestellt in Fig. 9, ist der Träger 80' insoweit anders ausgebildet, als dieser zwei erste Temperatursensoren 921 und 922 trägt, wobei die zwei ersten Temperatursensoren 921 bzw. 922 jeweils dem entsprechenden Kabelanschluss 48 der jeweiligen Kontakteinheit K1 bzw. K2 benachbart angeordnet sind, um damit zu erreichen, dass jede Temperaturänderung und insbesondere jede Erwärmung in einem der Kontaktelemente K1 und/oder K2 von dem jeweiligen ersten Temperatursensor 921 bzw. 922 möglichst schnell erfasst wird, da in diesem Fall der jeweilige Temperatursensor 921 bzw. 922 eine noch bessere thermische Kopplung zu dem jeweiligen Kontaktelement K1 und/oder K2 aufweist als beim ersten Ausführungsbeispiel,
  • Das heißt, dass bei diesem zweiten Ausführungsbeispiel der jeweilige Temperaturwert T1 von jedem der ersten Temperatursensoren 921 und 922 bei einer Erwärmung des jeweiligen Kontaktelements K1 und/oder K2 noch schneller ansteigt.
  • Darüber hinaus kann ebenfalls ein einziger zweiter Temperatursensor 96 vorgesehen sein, es können aber auch auf gegenüberliegenden Seiten im Bereich 86' des Träger 80' jeweils ein zweiter Temperatursensor 961 bzw. 962 angeordnet sein, um dadurch die Temperatur an der Oberfläche 102 des Griffbereichs 98 des Steckergehäuses 24 möglichst optimal zu erfassen und gegebenenfalls zwischen den Temperaturwerten, die von den zweiten Temperatursensoren 961 und 962 erfasst werden, einen Mittelwert zu bilden, um eine ungleiche Erwärmung des Steckergehäuses 24 im Griffbereich 98 durch Mittelung kompensieren zu können.
  • Ferner ist der Träger 80' beispielsweise in einem zwischen den ersten Temperatursensoren 921 und 922 und den zweiten Temperatursensoren 961 und 962 liegenden Zwischenbereich mit einem Durchbruch 122 versehen, so dass jeweils nur seitlich des Durchbruchs 122 verbleibende Stege 124 und 126 den Endbereich 86 mit dem sich an die Stirnseite 82 anschließenden Fußbereich 88 verbinden, so dass durch die Stege 124 und 126 eine thermische Kopplung zwischen dem Endbereich 86' und dem Fußbereich 88 über dem Träger 80 reduziert ist, um eine thermische Kopplung der ersten Temperatursensoren 921 und 922 mit den zweiten Temperatursensoren 961 und 962 über den Träger 80' möglichst weitgehend zu reduzieren.

Claims (15)

  1. Steckereinheit (20) für ein elektrisches Gerät (10), insbesondere für ein Gerät (10) mit hoher Stromaufnahme, umfassend mindestens zwei im Betrieb des Geräts (10) stromführende Strompfade (S1, S2), von denen jeder ein Kontaktelement (K1, K2) mit einem Steckkontaktkörper (42) sowie einem mit dem Steckkontaktkörper (42) elektrisch leitend verbundenen Leitungsanschluss (48) sowie ein mit dem Leitungsanschluss (48) elektrisch leitend verbundenes Leitungsendstück (LE1, LE2) eines zu dem Gerät (10) führenden Zuleitungskabels (18) umfasst, eine Steckerbrücke (30) mit einem Kontaktträger (32), an welchem die Kontaktelemente (K1, K2) so gehalten sind, dass die Steckkontaktkörper (42) auf einer Seite des Kontaktträgers (32) und die Leitungsanschlüsse (48) auf der anderen Seite des Kontaktträgers (32) liegen, und
    ein Steckergehäuse (24), welches die Steckerbrücke (30), die Kabelanschlüsse (48) und die Leitungsendstücke (LE1, LE2) umschließt, dadurch gekennzeichnet, dass die Steckereinheit (10) mindestens einen ersten Temperatursensor (92) und mindestens einen zweiten Temperatursensor (96) umfasst, dass der mindestens eine erste Temperatursensor (92) in stärkerem Maße thermisch mit mindestens einem der Strompfade (S1, S2) gekoppelt ist als der mindestens eine zweite Temperatursensor (96) und dass der mindestens eine zweite Temperatursensor (96) in stärkerem Maße thermisch mit mindestens einem Referenzbereich (102) des Steckergehäuses (24) gekoppelt ist als der mindestens eine erste Temperatursensor (92).
  2. Steckereinheit nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine erste Temperatursensor (92) durch wärmeleitenden körperlichen Kontakt thermisch mit dem mindestens einen der Strompfade (S1, S2) thermisch gekoppelt ist.
  3. Steckereinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine erste Temperatursensor (92) durch wärmeleitenden körperlichen Kontakt mindestens mit einem der Kontaktelemente (K1, K2) thermisch gekoppelt ist.
  4. Steckereinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine erste Temperatursensor (92) in wärmeleitendem körperlichen Kontakt mit der Steckerbrücke (30) angeordnet ist und dass insbesondere der mindestens eine erste Temperatursensor (92) in wärmeleitendem körperlichen Kontakt mit dem Kontaktträger (32) angeordnet ist.
  5. Steckereinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Referenzbereich (102) des Steckergehäuses ein Oberflächenbereich (102) des Steckergehäuses (24) ist und dass insbesondere der Oberflächenbereich des Steckergehäuses (24) ein im Griffbereich (98) des Steckergehäuses (24) liegender Oberflächenbereich (102) ist.
  6. Steckereinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine zweite Temperatursensor (96) innerhalb des Steckergehäuses (24) und in wärmeleitendem körperlichem Kontakt mit dem Referenzbereich (102) des Steckergehäuses (24) angeordnet ist.
  7. Steckereinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine erste Temperatursensor (92) auf einem Träger (80) angeordnet ist.
  8. Steckereinheit nach Anspruch 7, dadurch gekennzeichnet, dass der Träger (80) an der Steckerbrücke (30) abgestützt ist und dass insbesondere der Träger (80) an dem Kontaktträger (32) abgestützt ist.
  9. Steckereinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Steckergehäuse (24) ein an die Steckerbrücke (30) und das Zuleitungskabel (18) angegossenes Steckergehäuse ist und dass insbesondere das Steckergehäuse (24) die Steckerbrücke (30) und die Leitungsendstücke (LE1, LE2) sowie die Leitungsanschlüsse (48) einbettet.
  10. Steckereinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Steckergehäuse (24) den mindestens einen ersten Temperatursensor (92) und/oder den mindestens einen zweiten Temperatursensor (96) einbettet.
  11. Steckereinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine erste Temperatursensor (92) und der mindestens eine zweite Temperatursensor (96) über durch das Zuleitungskabel (18) geführte Temperatursensorleitungen (TL1, TL2, ML) mit einer Schaltung (110) des elektrischen Geräts (10) verbunden sind.
  12. Elektrisches Gerät (10), dessen Zuleitungskabel mit einer Steckereinheit (20) versehen ist, dadurch gekennzeichnet, dass die Steckereinheit (20) nach einem der voranstehenden Ansprüche ausgebildet ist.
  13. Elektrisches Gerät nach Anspruch 12, dadurch gekennzeichnet, dass das elektrische Gerät (10) eine Auswerteschaltung (110) umfasst, die einen ersten Temperaturwert (T1) des mindestens einen ersten Temperatursensors (92) und einen zweiten Temperaturwert (T2) des mindestens einen zweiten Temperatursensors (96) erfasst und auswertet.
  14. Elektrisches Gerät nach Anspruch 13, dadurch gekennzeichnet, dass die Auswerteschaltung (110) den ersten Temperaturwert (T1) und den zweiten Temperaturwert (T2) miteinander vergleicht und dadurch eine strombedingte Erwärmung von mindestens einem der Kontaktelemente (K1, K2) erkennt.
  15. Elektrisches Gerät nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Auswerteschaltung (110) dann, wenn der erste Temperaturwert (T1) über dem zweiten Temperaturwert (T2) liegt, eine strombedingte Erwärmung von mindestens einem der Kontaktelemente (K1, K2) erkennt, dass insbesondere die Auswerteschaltung (110) aus der Differenz des ersten Temperaturwertes (T1) und des zweiten Temperaturwertes (T2) ein Maß für die strombedingte Erwärmung von mindestens einem der Kontaktelemente (K1, K2) ermittelt und dass insbesondere die Auswerteschaltung dann, wenn das Maß für die strombedingte Erwärmung des mindestens einen Kontaktelements einen Schwellenwert (SW) überschreitet, ein Stromreduzierungssignal (SR) erzeugt.
EP13744559.9A 2012-08-28 2013-08-01 Steckereinheit und elektrisches gerät mit einer derartigen steckereinheit Active EP2891214B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012107902.1A DE102012107902A1 (de) 2012-08-28 2012-08-28 Steckereinheit und elektrisches Gerät mit einer derartigen Steckereinheit
PCT/EP2013/066210 WO2014032906A1 (de) 2012-08-28 2013-08-01 Steckereinheit und elektrisches gerät mit einer derartigen steckereinheit

Publications (2)

Publication Number Publication Date
EP2891214A1 EP2891214A1 (de) 2015-07-08
EP2891214B1 true EP2891214B1 (de) 2022-02-16

Family

ID=48914301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13744559.9A Active EP2891214B1 (de) 2012-08-28 2013-08-01 Steckereinheit und elektrisches gerät mit einer derartigen steckereinheit

Country Status (3)

Country Link
EP (1) EP2891214B1 (de)
DE (1) DE102012107902A1 (de)
WO (1) WO2014032906A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014102991B3 (de) * 2014-03-06 2015-09-03 HARTING Automotive GmbH Steckverbinder mit Sensoranordnung
EP3127192B1 (de) 2014-04-02 2021-06-09 Harting Electric GmbH & Co. KG Modularer steckverbinder
DE102014111185A1 (de) * 2014-08-06 2016-02-11 Phoenix Contact E-Mobility Gmbh Steckverbinderteil mit einer Temperatursensoreinrichtung
DE102014111334A1 (de) 2014-08-08 2016-02-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladestecker, Ladekabel und Ladeverfahren für ein Elektrofahrzeug
DE102014016825B4 (de) * 2014-11-13 2023-06-29 Audi Ag Kraftfahrzeug-Ladedose mit Überhitzungsschutz
DE102015104170B4 (de) * 2015-03-20 2017-10-19 Kriwan Industrie-Elektronik Gmbh Anschlusssteckvorrichtung
DE102016220110A1 (de) * 2016-10-14 2018-04-19 Phoenix Contact E-Mobility Gmbh Temperaturüberwachtes Ladesystem zur Übertragung von elektrischen Ladeströmen
DE102017011491B4 (de) * 2017-12-13 2022-08-11 Audi Ag Vorrichtung zum Laden einer Batterie mit einem Batterieladegerät
DE102017222808A1 (de) * 2017-12-14 2019-06-19 Phoenix Contact E-Mobility Gmbh Lastkontaktmodul und Ladestecker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274605A1 (de) * 1986-11-29 1988-07-20 Taller GmbH Schutzkontaktstecker mit Steckerbrücke und Schutzkappe
WO2006109330A1 (en) * 2005-04-13 2006-10-19 Kem-O-Tek Italia Srl Electronic connector protecting method
US20090251832A1 (en) * 2008-04-07 2009-10-08 Technology Research Corporation Over heating detection and interrupter circuit
DE102010025728A1 (de) * 2010-07-01 2012-01-05 Thomas Waible Steckerkontaktstift und Stecker mit zumindest einem Steckerkontaktstift

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4114036A1 (de) * 1991-03-07 1992-09-10 Taller Gmbh Halterung fuer eine ringkerndrossel eines elektrischen netzsteckers
US6905362B2 (en) * 2000-07-28 2005-06-14 Roger C. Williams Electric vehicle battery rapid charging connector
DE102008010698A1 (de) * 2008-02-22 2009-10-29 Taller Gmbh Schutzkontakt-Steckerbrücke mit teilisolierten Kontaktlinsen
DE102009034886A1 (de) * 2009-07-27 2011-02-03 Rwe Ag Ladekabelstecker zur Verbindung eines Elektrofahrzeuges mit einer Ladestation
DE102010022140B4 (de) * 2010-05-20 2016-11-10 Küster Holding GmbH Anschlussvorrichtung für ein Elektrofahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274605A1 (de) * 1986-11-29 1988-07-20 Taller GmbH Schutzkontaktstecker mit Steckerbrücke und Schutzkappe
WO2006109330A1 (en) * 2005-04-13 2006-10-19 Kem-O-Tek Italia Srl Electronic connector protecting method
US20090251832A1 (en) * 2008-04-07 2009-10-08 Technology Research Corporation Over heating detection and interrupter circuit
DE102010025728A1 (de) * 2010-07-01 2012-01-05 Thomas Waible Steckerkontaktstift und Stecker mit zumindest einem Steckerkontaktstift

Also Published As

Publication number Publication date
DE102012107902A1 (de) 2014-03-06
EP2891214A1 (de) 2015-07-08
WO2014032906A1 (de) 2014-03-06

Similar Documents

Publication Publication Date Title
EP2891214B1 (de) Steckereinheit und elektrisches gerät mit einer derartigen steckereinheit
EP3433902B1 (de) Steckverbinderteil mit einem gekühlten kontaktelement
WO2018060152A1 (de) Elektrisches kabel mit einer kühlmittelleitung
EP3330976A1 (de) Hochstromkabel und stromversorgungssystem mit hochstromkabel
EP2631058B1 (de) Heißkanaldüse mit einem elektrischen Heizelement
DE102017222808A1 (de) Lastkontaktmodul und Ladestecker
DE102018208434B4 (de) Verbinder
DE102007035987A1 (de) Kurzschlussverbinder
DE102012218469A1 (de) Verbinder mit optimiertem Endstück
EP2286489B1 (de) Stecker eines steckverbinders
WO2016177598A1 (de) Steckverbinderteil mit einer temperaturabhängigen schalteinrichtung
DE102014102991B3 (de) Steckverbinder mit Sensoranordnung
EP3296141A1 (de) Stromabnehmer, schleifleitungssystem und schleifkontakt
EP3827270B1 (de) Überwachung des kontaktbereiches in einer steckvorrichtung
EP2991082B1 (de) Umspritzer stecker in schichtbauweise für elektroautos
DE102022112897A1 (de) Ladebuchsen-Anschlussrahmen-Anordnung und Ladebuchse
EP3073577B1 (de) Steckerteil, steckverbindung und verfahren zum herstellen eines steckerteils
DE102013217782A1 (de) Zellkontaktierungssystem für eine elektrochemische Vorrichtung und Verfahren zum Herstellen eines Zellkontaktierungssystems
DE102008022973B4 (de) Elektrische Verbindung mit mindestens zwei Bauteilen
WO2017194361A1 (de) Baugruppe zum übertragen eines elektrischen stroms, insbesondere für ein ladesystem zum aufladen eines elektrisch angetriebenen fahrzeugs
WO2012025524A1 (de) Kontaktelement zur kontaktierung eines schaltungsträgers, sowie schaltungsträger mit einem kontaktelement
WO2013034443A1 (de) Elektrischer verbinder mit berührschutz
DE102012222363A1 (de) Steckverbinder und Vorrichtung mit einem solchen Steckverbinder
DE102015214258B4 (de) Verbindermodul
EP2448369B1 (de) Elektrische Anschlusseinrichtung für ein elektrisches Heizelement einer Heißkanaldüse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KNEZAR, KARL

Inventor name: SCHAEDLE, CHRISTIAN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190514

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LAPP ENGINEERING AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013016075

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1469485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013016075

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 11

Ref country code: AT

Payment date: 20230822

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013016075

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF PATENTANWAELTE UND RECHT, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013016075

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240826

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240901

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240822

Year of fee payment: 12