EP2887157A1 - Echappement optimisé - Google Patents

Echappement optimisé Download PDF

Info

Publication number
EP2887157A1
EP2887157A1 EP13199427.9A EP13199427A EP2887157A1 EP 2887157 A1 EP2887157 A1 EP 2887157A1 EP 13199427 A EP13199427 A EP 13199427A EP 2887157 A1 EP2887157 A1 EP 2887157A1
Authority
EP
European Patent Office
Prior art keywords
mass
track
exhaust mechanism
polar
transverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13199427.9A
Other languages
German (de)
English (en)
Other versions
EP2887157B1 (fr
Inventor
Domenico Di
Jérôme Favre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP13199427.9A priority Critical patent/EP2887157B1/fr
Priority to CH01290/14A priority patent/CH710025B1/fr
Priority to EP14182532.3A priority patent/EP2990885B1/fr
Priority to EP17174621.7A priority patent/EP3299907A1/fr
Priority to CH01365/14A priority patent/CH709056A2/fr
Priority to EP14184158.5A priority patent/EP2889701B1/fr
Priority to CH01444/14A priority patent/CH709058A2/fr
Priority to EP14186261.5A priority patent/EP2889704B1/fr
Priority to CH01445/14A priority patent/CH709057B1/fr
Priority to EP14186262.3A priority patent/EP2894522B1/fr
Priority to CH01449/14A priority patent/CH709059B1/fr
Priority to CH01450/14A priority patent/CH709061A2/fr
Priority to EP14186296.1A priority patent/EP2911014A3/fr
Priority to EP14186297.9A priority patent/EP2911015B1/fr
Priority to EP14186652.5A priority patent/EP2891929B1/fr
Priority to US14/560,433 priority patent/US9292002B2/en
Priority to US15/106,433 priority patent/US9746829B2/en
Priority to RU2016130283A priority patent/RU2629168C1/ru
Priority to JP2016542197A priority patent/JP6236164B2/ja
Priority to RU2016130266A priority patent/RU2666451C2/ru
Priority to JP2016540025A priority patent/JP6196736B2/ja
Priority to CN201480070607.5A priority patent/CN105849651B/zh
Priority to PCT/EP2014/076936 priority patent/WO2015096974A2/fr
Priority to US15/104,135 priority patent/US9772604B2/en
Priority to PCT/EP2014/076930 priority patent/WO2015096973A2/fr
Priority to CN201480070342.9A priority patent/CN105849650B/zh
Priority to US15/028,599 priority patent/US9927773B2/en
Priority to JP2016533632A priority patent/JP6130603B2/ja
Priority to RU2016130276A priority patent/RU2660530C2/ru
Priority to US15/106,946 priority patent/US9665067B2/en
Priority to JP2016541562A priority patent/JP6196738B2/ja
Priority to PCT/EP2014/076958 priority patent/WO2015096975A2/fr
Priority to JP2016541686A priority patent/JP6166847B2/ja
Priority to PCT/EP2014/076991 priority patent/WO2015096976A2/fr
Priority to PCT/EP2014/077039 priority patent/WO2015096979A2/fr
Priority to CN201480070592.2A priority patent/CN105849653B/zh
Priority to US15/102,389 priority patent/US9651920B2/en
Priority to CN201480070616.4A priority patent/CN105849652B/zh
Priority to CN201480070489.8A priority patent/CN106062643B/zh
Priority to RU2016130281A priority patent/RU2624713C1/ru
Priority to PCT/EP2014/078518 priority patent/WO2015097066A2/fr
Priority to CN201480076238.0A priority patent/CN106062644B/zh
Priority to RU2016130289A priority patent/RU2648305C2/ru
Priority to JP2016542195A priority patent/JP6285556B2/ja
Priority to US15/107,721 priority patent/US9804570B2/en
Priority to JP2014257425A priority patent/JP6027602B2/ja
Priority to US15/109,066 priority patent/US9715217B2/en
Priority to EP14821180.8A priority patent/EP3087435B1/fr
Priority to PCT/EP2014/079036 priority patent/WO2015097172A2/fr
Priority to RU2014152039A priority patent/RU2665845C2/ru
Priority to CN201480076123.1A priority patent/CN106030422B/zh
Priority to CN201410815924.7A priority patent/CN104730897B/zh
Publication of EP2887157A1 publication Critical patent/EP2887157A1/fr
Priority to HK15110061.6A priority patent/HK1209495A1/xx
Priority to US14/994,887 priority patent/US20160209811A1/en
Application granted granted Critical
Publication of EP2887157B1 publication Critical patent/EP2887157B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/104Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel
    • G04C3/105Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel pawl and ratched-wheel being magnetically coupled
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means

Definitions

  • the invention relates to a watch exhaust mechanism comprising a stop between a resonator and an escapement mobile.
  • the invention also relates to a watch movement comprising at least one such escape mechanism.
  • the invention also relates to a timepiece comprising at least one such movement and / or having at least one such escape mechanism.
  • the invention relates to the field of watch mechanisms for the transmission of movement, and more particularly the field of escape mechanisms.
  • the Swiss lever escapement is a widely used device that is part of the regulating organ of mechanical watches. This mechanism simultaneously maintains the movement of a sprung balance resonator and synchronize the rotation of the drive train to the resonator.
  • the escape wheel interacts with the anchor using mechanical contact forces
  • the Swiss lever escapement uses this mechanical contact between the escape wheel and the Swiss anchor so as to perform a first function of transmitting the energy of the escape wheel to the sprung balance on the one hand, and to fulfill on the other hand a second function which consists in releasing and locking the escape wheel by jerks so that it advances a step at each alternation of the pendulum.
  • the mechanical contacts necessary for the accomplishment of these first and second functions alter the performance, the isochronism, the power reserve, and the lifetime of the watch.
  • the present invention proposes to replace the mechanical contact force between the anchor and the escape wheel by a non-contact force of magnetic or electrostatic origin, with an arrangement which makes it possible to ensure with certainty and in complete safety the second release function and jerky locking of the escape wheel.
  • the invention relates to a watch exhaust mechanism comprising a stop between a resonator and an escapement mobile, characterized in that the said mobile escapement comprises at least one magnetized or ferromagnetic track, respectively electrified or electrostatically conductive, with a running period in which its magnetic characteristics, respectively electrostatic, are repeated, said stop having at least one magnetized or ferromagnetic polar mass, respectively electrified or electrostatically conductive, said polar mass being movable in a transverse direction relative to the direction of travel of at least one element of a surface of said track, and at least said polar mass or said track creating a magnetic or electrostatic field in an air gap between said at least one polar mass and said at least one surface, and further characterized in that e said polar mass is opposed to a magnetic or electrostatic field barrier on said track just before each transverse movement of said stop controlled by the periodic action of said resonator.
  • said exhaust accumulates potential energy received from said mobile during each half of said period, and returns it to said resonator between said half-periods during said transversal movement of said stop controlled by the periodic action of said resonator , where said polar mass passes from a first relative transverse half-stroke through said exhaust mobile report to a second relative transverse half-stroke relative to said exhaust mobile, or vice versa.
  • At least said polar mass or said track creates said magnetic or electrostatic field of greater intensity in said first half-stroke than in said second half-stroke during a first half of period, and vice versa during a second half of the period.
  • the invention also relates to a watch movement comprising at least one such escape mechanism.
  • the invention also relates to a timepiece comprising at least one such movement and / or having at least one such escape mechanism.
  • the invention proposes to replace the usual mechanical contact force between a stop and an escape wheel by a non-contact force of magnetic or electrostatic origin.
  • the invention relates to a watch exhaust mechanism comprising a stop 30 between a resonator 20 and an escape wheel 40.
  • this escapement wheel 40 comprises at least one magnetized or ferromagnetic track 50, respectively electrified or electrostatically conductive, with a running period PD according to which its magnetic characteristics, respectively electrostatic, are repeated.
  • this track 50 has identical characteristics, geometric and physical, including its constitution (materials), its relief, its possible coating, its magnetization or possible electrification.
  • This stop 30 comprises at least one magnetized or ferromagnetic polar mass 3, respectively electrified or electrostatically conductive.
  • This polar mass 3 is movable in a transverse direction DT with respect to the direction of movement DD of at least one element of a surface 4 of the track 50.
  • This transverse mobility does not imply a total output of the track concerned, the arrangement is variable according to the embodiments, and in some of them, the polar mass leaves the track during part of the movement.
  • At least the polar mass 3 or the track 50 creates a magnetic or electrostatic field in an air gap 5 between this at least one polar mass 3 and this at least one surface 4.
  • the polar mass 3 is opposite a barrier 46 of magnetic or electrostatic field on the track 50 just before each transverse movement of the stop 30, which transverse movement is controlled by the periodic action of the resonator 20.
  • this escapement mechanism 10 accumulates energy received from the escape wheel 40 during each half of the PD period, stores a portion of it in the form of potential energy, and periodically restores it to the resonator. 20.
  • this accumulation function is equivalent to the progressive arming of a spring in a mechanism. This restitution of energy takes place between these half-periods, during the transversal movement of the stop 30 controlled by the periodic action of the resonator 20.
  • the polar mass 3 then passes a first half-stroke PDC transverse relative to the exhaust mobile 40 to a second relative transverse DDC half relative to the escapement mobile 40, or vice versa.
  • This polar mass 3 faces such a barrier 46 of magnetic or electrostatic field on the track 50 just before each transverse movement of the stop 30 controlled by the resonator 20 by tilting from one half-stroke to the other.
  • the magnetic or electrostatic field, generated by the polar mass 3 and / or the track 50 is of greater intensity in the first half-stroke PDC than in the second half-stroke DDC during a first half. of said scrolling period PD, and of a greater intensity in the second half-stroke DDC than in the first half-stroke PDC during a second half of the scrolling period PD.
  • the resonator 20 comprises at least one oscillator 2 with periodic movement.
  • the escape wheel 40 is powered by a power source such as a barrel or the like.
  • the stopper 30 provides a first function for transmitting the energy of the escapement wheel 40 to the resonator 20, and on the other hand a second function of release and blocking by jerks of the escapement wheel 40 for its advance of one step during a movement of the stop 30 controlled by the resonator 20 with each alternation of the oscillator 2.
  • the at least one track 50 is animated by a scrolling movement along a TD scrolling path .
  • each pole mass 3 is movable in a transverse direction DT relative to the track 50, according to a first half-path PDD and a second half-stroke DDC on either side of a fixed central position PM, along a transverse trajectory TT, preferably substantially orthogonal to the trajectory of travel TD of the track 50.
  • the escape mechanism 10 accumulates potential energy transmitted from the energy source via the escape wheel 40 during each first half or second half of the run period PD.
  • polar mass 3 is then faced with a barrier 46 of magnetic or electrostatic field at the part of track 50 in front of which it evolves, just before the transverse movement of the controlled stop 30 by the resonator 20. It is then that the escape mechanism 10 returns the energy corresponding to the oscillator 2 during the transverse movement of the stop 30 controlled periodically by the resonator 20 between the first half and second half of the PD scroll period. During this transverse movement, this polar mass 3 goes from the first half-stroke PDC to the second half-stroke DDC, or vice versa.
  • the escape mobile 4 can be constituted in different ways: in the conventional form of an escape wheel 400 as on the figures 1 and 4 , a double wheel as on the Figures 9 and 10 , or in the form of a cylinder as visible on the figure 16 , or a continuous band as visible on the figure 17 , Or other.
  • This presentation relates to the general case of a mobile (not necessarily pivoting), and the watchmaker will be able to apply it to the component that interests him, including a single or multiple wheel.
  • the characteristics of the magnetic or electrostatic field are alternated between the first half-stroke PDC and the second half-stroke DDC, with a phase shift of one half of the running period PD of the track 50 with respect to the polar mass 3.
  • transverse direction DT a direction which is substantially parallel to the transverse trajectory TT of the polar mass 3, or which the tangent in its median position PM, as visible on the figure 18 .
  • An axial direction DA is here called a direction that is orthogonal both to a transverse direction DT substantially parallel to the transverse trajectory TT of the polar mass, and to the direction of movement DF of the track 50, tangent to the trajectory of movement TD at the middle position PM.
  • the plane defined by the median position PM, the transverse direction DT and the direction of movement DF is called the plane plane PP.
  • At least one of the two antagonistic components (here "antagonists” are understood to mean that these components are facing each other, without there being any repulsion, annoyance, or other interaction), consisting of by the polar mass 3 and the track 50 carrying the surface 4 which faces it at the gap 5 at least over a portion of their relative stroke, comprises magnetic active means, respectively electrostatic, which are arranged to create this magnetic field, respectively electrostatic.
  • active means that creates a field
  • passive means that undergoes a field.
  • active does not imply here that a component is traversed by a current.
  • the component of this field in the axial direction DA is greater than its component in this plane PP, at their interface in the gap 5 between the polar mass 3 and the surface 4 which makes it face.
  • the direction of this magnetic or electrostatic field is substantially parallel to this axial direction DA of the escapement wheel 40.
  • substantially parallel is meant a field whose component in the axial direction DA is at least four times greater than its component in the PP plan.
  • the other antagonistic component at the level of the air gap 5 then comprises, or magnetic passive means, respectively electrostatic, to cooperate with the field thus created, or also magnetic means, respectively electrostatic, which are arranged to create a magnetic field, respectively electrostatic at the gap 5, this field may, depending on the case, be in concordance or in opposition to the field emitted by the first component, so as to generate a repulsion or otherwise an attraction at the level of the gap 5.
  • the stop 30 is disposed between a spiral balance spring resonator 2 of pivot axis A, and at least one escape wheel 400 which pivots about a pivot axis D (which defines with the axis of rotation). pivoting of the balance-spring A angular reference direction DREF).
  • This stop 30 provides the second function of releasing and blocking by jerks of the escapement wheel 40 for its advance of one step at each alternation of the sprung balance 2.
  • the polar mass 3 is arranged to move, over at least part of its transverse travel, facing at least one element of a surface 4 of the escapement wheel 40.
  • the polar mass In the first mode of the figure 1 the polar mass is always facing such a surface 4; in the second mode of the figure 4 , the stop 30 comprises two polar masses 3A, 3B, and each of them is, for a half-period facing such a surface 4, and during the other half-period remote from this surface 4, in a position where the magnetic or electrostatic interaction between them is negligible.
  • each of the two antagonistic components on either side of the air gap 5, constituted by the polar mass 3 and the bearing track 50 of the surface 4 which faces it at least over part of their relative course, comprises magnetic or electrostatic active means, which are arranged to create a magnetic field, respectively electrostatic, of direction substantially parallel to the axial direction DA, at their interface in the gap 5.
  • the polar mass 3 and / or the track 50 carrying the surface 4 facing it at this gap 5 comprises magnetic means, respectively electrostatic, which are arranged to create in the gap 5, in at least one transverse plane PT defined by the median position PM of the polar mass 3, the transverse direction DT and the axial direction DA, and in the transverse range, in the said transverse direction, the relative displacement of the polar mass 3 and the surface 4, a field magnetic, respectively electrostatic, variable intensity and non-zero both as a function of the transverse position of the polar mass 3 in the transverse direction DT, and as a function of time.
  • magnetic means respectively electrostatic, which are arranged to create in the gap 5, in at least one transverse plane PT defined by the median position PM of the polar mass 3, the transverse direction DT and the axial direction DA, and in the transverse range, in the said transverse direction, the relative displacement of the polar mass 3 and the surface 4, a field magnetic, respectively electrostatic, variable intensity and non-zero both as a function of the trans
  • each such polar mass 3 and each such track 50 carrying the surface 4 facing it comprises such magnetic means, respectively electrostatic, which are arranged to create a magnetic field, respectively electrostatic, between at least one such Polar mass 3 and at least one surface 4, in at least this transverse plane PT.
  • This magnetic field, respectively electrostatic, created by these antagonistic components is variable intensity and non-zero both as a function of the radial position of the polar mass 3 in the transverse direction DT, and as a function of time.
  • the object is to create the conditions for creating a force of magnetic or electrostatic origin between the stop 30 and the escapement wheel 40, so as to allow driving, or conversely braking, between these two components, without direct mechanical contact between them.
  • multi-level architectures allow a balancing of forces in a direction of pivoting of the escapement wheel 40 (in particular the direction of the pivot axis if the mobile 40 pivots about a single axis), and a maintenance relative position in the axial direction DA between the stop 30 and the escapement 40, as will be discussed below.
  • the component of the magnetic field, respectively electrostatic, in the axial direction DA is in the same direction over the entire range of the relative displacement of the polar mass 3 and the surface 4 facing it.
  • each polar mass 3 carried by the stopper 30 is magnetized, respectively permanently electrified, and generates a constant magnetic field, respectively electrostatic, and each surface 4 cooperating with each polar mass 3 defines with the such polar mass 3 concerned a gap 5 in which the magnetic field, respectively electrostatic, is variable according to the advance of the escapement wheel 40 on its path and is variable according to the relative transverse position of the polar mass 3 concerned with respect to the mobile exhaust 40 and which is related to the angular movement of the stop 30 if it is pivoting as in the case of an anchor, or its transverse movement if it is otherwise driven by the resonator 20.
  • each polar mass 3 carried by the stopper 30 is ferromagnetic, respectively electrostatically conductive, permanently, and each surface 4 cooperating with each polar mass 3 defines with the polar mass 3 concerned a gap 5 in which the field magnetic, respectively electrostatic, is variable according to the advance of the escape wheel 40 on its trajectory and is variable according to the relative transverse position of the polar mass 3 concerned with respect to the escapement wheel 40 and which is related to the angular deflection of the stop 30 if it is pivoting as in the case of an anchor, or its transverse movement if it is otherwise driven by the resonator 20.
  • each track 50 carrying such an antagonistic surface 4 is magnetized, respectively electrified, permanently and uniformly, and generates a magnetic field, respectively electrostatic, constant at its surface facing the polar mass 3 concerned, and comprises a relief arranged to generate a variable gap height in the gap 5, which gap height varies according to the advance of the escapement wheel 40 on its trajectory, and varies according to the relative angular position of the polar mass 3 concerned with respect to the escapement mobile 40.
  • each track 50 carrying such a surface 4 is ferromagnetic, respectively electrostatically conductive permanently, and comprises a relief arranged to generate a gap height in the gap 5, which gap height is variable according to the advance of the escape wheel 40 on its trajectory, and is variable according to the relative transverse position of the pole mass 3 concerned with respect to the escapement wheel 40.
  • each track 50 carrying such a surface 4 is magnetized, respectively electrified, permanently and variable depending on the local position on this track, and generates a magnetic field, respectively electrostatic, which is variable according to the advance of the escape wheel 40 in its trajectory, and is variable according to the relative transverse position of the pole mass 3 concerned with respect to the escapement wheel 40, at its surface facing the polar mass 3 concerned.
  • each track 50 carrying such a surface 4 is ferromagnetic, respectively electrostatically conductive, permanently and variable depending on the local position on this track, so as to vary the magnetic force, respectively electrostatic, exerted between stopping device 3 and the escapement wheel 40 under the effect of their relative movement, which force is variable according to the advance of the escapement wheel 40 on its trajectory and is variable according to the relative transverse position of the polar mass 3 concerned relative to the escape wheel 40, at its surface facing the polar mass 3 concerned.
  • each polar mass 3 circulates between two surfaces 4 of the escapement wheel 40, and such a magnetic field, respectively electrostatic, is exerted on each side of the polar mass 3 in the axial direction DA in a symmetrical manner. on either side of the polar mass 3 so as to exert equal and opposite forces on the polar mass 3 in the axial direction DA. This results in axial balancing and minimal effort on the possible pivots, and thus minimal friction losses.
  • each surface 4 of the escapement wheel 40 circulates between two surfaces 31, 32, of each polar mass 3, and such a magnetic field, respectively electrostatic, is exerted on each side of the surface 4 in the direction axial axis symmetrically on both sides of the surface 4, so as to exert equal and opposite forces on the track 50 carrying the surface 4 in the axial direction DA.
  • the track 50 of the escapement wheel 40 comprises, on one of its two lateral surfaces 41, 42, a plurality of secondary tracks 43 adjacent to each other.
  • each secondary track 43 comprises an angular succession of elementary primary zones 44, each primary zone 44 having a magnetic behavior, respectively electrostatic, which is different, a from that of each other adjacent primary zone 44 on the secondary runway 43 to which it belongs, and on the other hand that of each other primary zone 44 which is adjacent to it and which is situated on another secondary runway 43 adjacent to the his.
  • the secondary tracks 43 are not concentric, but adjacent and preferably substantially parallel to each other. But the difference in magnetic behavior, respectively electrostatic, of two primary zones 44 immediately adjacent, applies in the same way.
  • the Figures 18 and 19 show the deflection of a polar mass 3 in a variant comprising two parallel tracks 43A and 43B, adjacent and parallel, phase shifted by half a period.
  • the succession of these primary zones 44 on each such given secondary track 43 is periodic according to a spatial period T, angular or linear as the case may be, constituting an integer submultiple of a revolution of the escape mobile 40.
  • spatial period T corresponds to the run period PD of track 50.
  • each such secondary track 43 comprises, on each such spatial period T, a ramp 45 comprising a succession, particularly monotonous, of such primary zones 44 interacting increasingly with such a polar mass 3 with a magnetic field, respectively electrostatic, the intensity of which varies to produce an increasing potential energy from a minimum interaction area 4MIN to a maximum interaction area 4MAX, the ramp 45 taking energy from the escape mobile 40.
  • the escape wheel 40 comprises, between two such successive ramps 45 and in the same direction, such a barrier 46 of magnetic field potential, respectively electrostatic, to trigger a momentary shutdown of the mobile phone. exhaust 40 prior to a tilting of the stop 30 under the action of the resonator 20, in particular a spring balance 2.
  • each such potential barrier 46 is steeper than each such ramp 45, with respect to its potential gradient.
  • these barriers are constituted by field barriers.
  • the illustrated variants thus correspond to magnetic fields, respectively electrostatic field field, and field barriers.
  • the escapement wheel 40 stops in a position where the potential gradient is equivalent to the driving torque.
  • This immobilization is not instantaneous, there is indeed a rebound phenomenon, which is damped, either by the natural friction, in particular of pivoting, in the mechanism, or by friction created for this purpose, viscous type such as friction by eddy currents (for example on a copper surface or the like integral with the escapement wheel 40) or aerodynamic or other friction, or else dry friction type spring jumper or other.
  • the escape wheel 40 is stretched by an upstream mechanism with constant torque or constant force, typically a cylinder.
  • the escapement wheel 4 therefore oscillates, before stopping in position, before the transverse tilting of the polar mass 3, and the losses are necessary to stop the oscillation in a time interval compatible with the kinematics.
  • the transition between the ramp and the barrier can be designed and adjusted so as to obtain a particular dependence of the energy transmitted to the resonator as a function of the driving torque.
  • a ramp without a break in slope makes it possible to operate the invention, it is more advantageous to combine a ramp 45 with a certain gradient, and a barrier 46 with another gradient, the shape of the transition zone between the ramp 45 and the barrier 46 having a significant influence on the operation.
  • the system accumulates energy during the ramp ramp, and restores energy to the resonator during the transverse movement of the polar mass.
  • the stopping point defines the quantity of energy thus restored, which depends on the shape of this transition zone between ramp and barrier.
  • the Figures 20, 22, and 24 illustrate non-limiting examples of ramp profile and barrier, with the abscissa scrolling, here a pivot angle e, and ordered the energy Ui expressed in mJ.
  • the Figures 21, 23, and 25 illustrate the transmitted energy, correlated with each ramp and barrier profile, with the same abscissa, and, on the ordinate, the CM cut in mN.m.
  • FIGS. 20 and 21 illustrate a smooth transition with a radius between the ramp and the barrier, the breakpoint of the system depends on the torque applied, and the energy transmitted to the resonator also depends on this applied torque.
  • the Figures 24 and 25 relate to an exponential transition between ramp and barrier, chosen so that the energy transmitted to the resonator, which is approximately proportional to the applied torque, and in particular in a particular variant, is substantially equal to the driving torque.
  • This example is interesting because it approaches closer to a Swiss lever escapement and thus allows to incorporate the present invention in an existing movement with the minimum of changes.
  • the escape wheel 40 further comprises, at the end of each such ramp 45 and just before each barrier 46, a transverse variation of magnetic or electrostatic field distribution when the surface 4 is magnetized, respectively electrified, or a profile variation when the surface 4 is ferromagnetic, respectively electrostatically conductive, so as to cause a pull on the polar mass 3.
  • the escape wheel 40 comprises, after each such barrier 46 of magnetic or electrostatic field potential, an anti-shock mechanical stop.
  • At least two such adjacent secondary tracks 43 comprise, with respect to each other, an alternation of such minimal interaction zones 4MIN and such 4MAX maximum interaction zones with an angular phase shift corresponding to half of the spatial period T.
  • the stop 30 comprises a plurality of such polar masses 3 arranged to cooperate simultaneously with such separate secondary tracks 43, as can be seen in particular in the second embodiment of the invention of the invention. figure 4 , with separate polar masses 3A and 3B, each having two magnets 31 and 32 on each side of the escape wheel 400.
  • the retainer 30 may comprise a comb extending parallel to the surface 4 of the escapement wheel 40 and comprising such polar masses 3 arranged side by side.
  • the stopper 30 is pivotable about a real or virtual pivot 35 and comprises such a single polar mass 3 arranged to cooperate with primary zones 44 that comprise such surfaces 4 located on beaches different from the escapement wheel 40 (or respectively different diameters in the case of an escape wheel 400), with which the polar mass 3 has a variable interaction during the advance (or respectively the revolution) of the mobile 40.
  • These primary zones 44 are alternately arranged around the periphery (or respectively the periphery) of the escapement 40 to constrain the polar mass 3 to a transverse movement relative to the escape wheel 40 during the search balance position of polar mass 3.
  • the stopper 30 is pivoted about a real or virtual pivot 35 and comprises a plurality of such polar masses 3 arranged to cooperate each with primary zones 44 that comprises at least one such surface 4 located on at least one range (respectively a diameter) of the escapement wheel 40, with which each such mass polar 3 has a variable interaction during the advance (or respectively of the revolution) of the escape wheel 40.
  • These primary zones 44 are alternately arranged around the periphery or the periphery of the escapement wheel 40 to constrain the polar mass 3 to a transverse movement relative to the escape wheel 40 during the search for equilibrium position of the polar mass 3.
  • At each instant at least one such polar mass 3 of the stopper 30 is in interaction with at least one such surface 4 of the escapement wheel 40.
  • the stopper 30 cooperates, on both sides, with a first exhaust mobile and a second exhaust mobile.
  • these first and second exhaust mobiles pivot integrally.
  • these first and second exhaust mobiles pivot independently of one another.
  • these first and second escape mobiles are coaxial.
  • the stop 30 cooperates, on both sides, with a first escape wheel 401 and a second escape wheel 402, each forming such an escape wheel 40.
  • these first 401 and second 402 escape wheels pivot integrally.
  • first 401 and second 402 escape wheels pivot independently of one another.
  • these first 401 and second 402 escape wheels are coaxial.
  • the escapement wheel 40 comprises at least one cylindrical surface 4 around a pivot axis D parallel to the transverse direction DT, and which carries magnetic tracks, respectively electrostatic, and the at least one polar mass 3 of the stop 30 is movable parallel to this pivot axis D.
  • the figure 17 shows a generalization according to which the escapement wheel 40 is a mechanism extending in a direction D, represented here by an endless band running on two rollers of axes parallel to the transverse direction T, this band carrying at least one surface 4.
  • the surface 4 may comprise a magnetized layer of variable thickness, or respectively an electrified layer of variable thickness, or a magnetized layer of constant thickness but variable magnetization, or respectively an electrified layer of constant thickness but of variable electrification, or a variable surface density of micro-magnets, or respectively a variable surface density of electrets, or a ferromagnetic layer of variable thickness, or respectively an electrostatically conductive layer of variable thickness or a ferromagnetic layer of variable shape, or respectively an electrostatically conductive layer of variable shape, or a ferromagnetic layer with a variable surface density of holes, or respectively an electrostatically conductive layer with a variable surface density of holes.
  • the stop 30 is an anchor.
  • the invention also relates to a watch movement 100 comprising at least one such escape mechanism 10.
  • the invention also relates to a timepiece 200, in particular a watch, comprising at least one such movement 100 and / or comprising at least one such escape mechanism 10.
  • the invention is applicable to different scales of timepieces, including watches. It is interesting for static parts such as clocks, living room clocks, morbiers, and the like; the spectacular and innovative character of the operation of the mechanism according to the invention brings an additional new interest in the highlighting of the mechanism, and an attraction for the user or the viewer.
  • the figures illustrate a particular, nonlimiting embodiment, in which the stopper 30 is an anchor, and show how the invention makes it possible to replace the usual mechanical contact force between an anchor and an escape wheel by a contactless force of magnetic or electrostatic origin.
  • Two nonlimiting embodiments are proposed: a first mode with a single polar mass and a second mode with several polar masses.
  • the first mode is illustrated, in a magnetic version only, by the Figures 1 to 3 .
  • the figure 1 schematically represents a magnetic retainer escapement mechanism 10, where this retainer 30 is an anchor.
  • the regulator device comprises a spiral balance resonator 20, a magnetic anchor 30, and an escapement wheel 40 formed by a magnetized escape wheel 400.
  • the magnet 3 of the anchor interacts repulsively with concentric magnetized secondary tracks 43 INT, 43 EXT, of the escapement wheel 40.
  • the symbols - / - / + / ++, on the secondary tracks 43 are representative of the intensity of the magnetization, increasing from - to ++: a zone - weakly pushes the magnet 3 of the anchor 30 then that an area ++ rejects it strongly.
  • the interaction force between the stop 30,, and the escape wheel 40 results from the interaction between a polar mass 3, in particular a magnet, placed on the anchor 30 and a magnetized structure placed on the mobile 40.
  • This magnetized structure is composed of two secondary tracks 43 (inner 43 INT and outer 43 EXT) whose magnetization intensity varies as a function of the angular position so as to produce the magnetic interaction potential represented on FIG. figure 2 .
  • the ramps 45 have the effect of taking energy from the escapement mobile 40, and the barriers 46 have the effect of blocking the advance of the mobile 40. The energy taken by a ramp 45 is then restored to the resonator 20. balance-spring when the anchor 30 rocking from one position to another.
  • the figure 2 represents, schematically, the potential magnetic interaction energy seen by the magnet 3 of the anchor 30 as a function of its position on the escapement wheel 40.
  • the dashed line shows the trajectory of a point reference M of the magnet 3 of the anchor 30 in operation.
  • the figure 3 represents, schematically, the variation of the potential energy along the magnetized secondary tracks 43 of the mobile 40.
  • the polar mass 3 of the anchor passes from the point P1 to the point P2 on the secondary track Internally 43 INT, the system draws energy from the escape mobile 40 to store it as potential energy. The system then stops at P2 under the combined effect of the potential barrier 46 and the friction of the mobile 40.
  • the anchor 30 tilts under the action of the balance-spring 2 on the opposite end of the anchor 30, the previously stored energy is restored to the balance spring resonator 20, while the system goes from P2 to P3, which corresponds to the change of track, the polar mass 3 coming in P3 on the external secondary track 43 EXT.
  • the same cycle then starts again on the other secondary track 43 EXT passing from P3 to P4 and from P4 to P5 with the return to P5 on the inner track 43 INT.
  • the friction of the mobile 40 allows the immobilization of the system at the foot of the barrier 46 potential.
  • the amount of energy transmitted to the sprung balance resonator 20 is still almost the same, provided that the potential barriers 46 are much steeper than the energy ramps 45. This condition is easy to achieve in practice.
  • the tilting of the anchor 30 is decoupled from the movement of the escapement wheel 40. More specifically, when the anchor 30 tilts, the potential energy can be restored to the balance spring resonator 20 2, even if the mobile of Exhaust 40 remains motionless.
  • the speed of the pulse is thus not limited by the inertia of the escapement wheel 40.
  • a polar mass 3 instead of being exactly above a track 50 (or 43 as the case may be), is slightly offset in a transverse direction DT with respect to the axis of the track concerned, so that that the interaction between the mobile 40 and the pole mass 3 permanently produces a small transverse force component, which keeps the stopper 30 in position.
  • the value of the offset is then adjusted so that the force produced stably maintains the polar mass 3 in each of its extreme positions, first half-stroke and second half-stroke.
  • the figure 4 thus illustrates a regulating device consisting of a resonator 20 with balance spring 2, a magnetic anchor 30, and a magnetized escape wheel 40.
  • the escapement wheel 40 is provided with a magnet track 49 of variable intensity which interact with the two magnets 31 and 32 of the anchor 30.
  • figure 4 shows the disposition of magnets 49 of increasing magnetization (in particular by increasing dimensions) so as to form ramps 45 (from P11 to P18) before stopping on barriers 46 formed for example of several magnets P20.
  • a major part of the draw is produced by a fine adjustment of the transverse position of the polar mass 3 with respect to the track 50 with which it interacts. More specifically, when the stopper 30 is positioned at the end of the first half-stroke (PDC) or at the end of the second half-stroke (DDC), the transverse position of the polar mass 3 which interacts with the Track 50 is adjusted (by a small transverse shift) so that the polar mass 3 undergoes a transverse force, called pulling force, large enough to maintain the polar mass 3 in its end position stably.
  • PDC first half-stroke
  • DDC the transverse position of the polar mass 3 which interacts with the Track 50 is adjusted (by a small transverse shift) so that the polar mass 3 undergoes a transverse force, called pulling force, large enough to maintain the polar mass 3 in its end position stably.
  • the resonator 20 in particular the balance 2, gives the initial impetus to the stop 30. But, as soon as the draft is overcome, the forces of magnetic origin or electrostatic take over and do their work to move in a transverse direction DT polar mass 3 to its new position.
  • At least one recessed magnet 48 (here placed on an upper positioning radius), with respect to the centering of a ramp 45 along a given radius, reinforces the pulling effect just before barrier 46.
  • effect of the ramps 45 and barriers 46 is similar to that of the first mode, the relative distribution is similar to the figure 2 .
  • the figure 5 shows the detail of their arrangement of the magnets 31 and 32 of the anchor relative to the magnets 49 of the escape wheel 40.
  • the figure 26 illustrates an achievement similar to that of the figure 4 but having two concentric rows of magnets of increasing magnetization, those of the inner track 43INT being polarized upwards, and those of the outer track 43 EXT being polarized downwards.
  • the polar masses 3 have the inverse configurations: an upper inner polar mass 3SINT is polarized downward, an upper outer polar mass 3SEXT is polarized upwards, a lower inner polar mass 3IINT is polarized downwards, and a lower polar mass 3IEXT exterior is polarized upwards.
  • the figure 27 schematically illustrates the orientation of the field lines in a cross section corresponding to this embodiment, where the field lines are substantially normal to the plane PP of the wheel 40 in the magnets, and substantially parallel to this plane in each air gap 5.
  • the potential resulting, visible on the figure 28 has ramps and alternate gates.
  • a magnetized structure of variable thickness or intensity deposited on an escape wheel comes into interaction with a magnetic field created by a magnetic circuit integral with an anchor.
  • the interaction can be repulsive or attractive.
  • a ferromagnetic structure of variable thickness comes into interaction with a magnetic field created by a magnetic circuit integral with an anchor.
  • the figure 9 shows two magnetized structures of variable thickness or intensity deposited on two faces of an escape wheel, interacting with a magnetic field created by a magnet secured to an anchor, or with a magnetic circuit without a solid field source of an anchor. The interaction can be repulsive or attractive.
  • the figure 10 illustrates two ferromagnetic structures of variable thickness (or with a variable gap) on two faces of an escape wheel, which interact with a magnetic field created by a magnet or a magnetic circuit with a field source integral with a anchor.
  • the retainer 30 On the opposite side to the polar mass 3, or to the polar masses 3 if the retainer comprises several, the retainer 30, in particular an anchor, comprises means of cooperation with the resonator 20 (in particular a balance-spring 2), which interact with this resonator to trigger the transverse movement of the polar mass 3.
  • these cooperation means can use a mechanical contact, such as an anchor fork cooperating with a rocker pin.
  • the extrapolation of the arresting-mobile escape cooperation proposed by the invention is conceivable for the resonator-stop cooperation, which then makes it possible to use here also a force of magnetic or electrostatic origin with the aim of further minimizing the friction.
  • An additional advantage due to the removal of a plateau pin is to allow cooperation over angular ranges greater than 360 °, for example with a helical track.
  • the polar mass 3 is symmetrical in the transverse direction.
  • the potential for magnetic interaction, or / and electrostatic, composed of alternating ramps with barriers provides a behavior as close as possible to the traditional Swiss anchor escapement.
  • the optimization of the shape of the potential gradients makes it possible to increase the efficiency of the exhaust.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Transmission Devices (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Particle Accelerators (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Mécanisme d'échappement (10) d'horlogerie comportant un arrêtoir (30) entre un résonateur (20) et un mobile d'échappement (40). Ledit mobile (40) comporte une piste (50) magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement, avec une période de défilement (PD) selon laquelle ses caractéristiques magnétiques, respectivement électrostatiques, se répètent, ledit arrêtoir (30) comportant au moins une masse polaire (3) magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement, mobile selon une direction transversale (DT) par rapport à une direction de défilement d'une surface (4) de ladite piste (50). Au moins ladite masse polaire (3) ou ladite piste (50) crée un champ magnétique ou électrostatique dans un entrefer (5) entre ladite masse polaire (3) et ladite surface (4), et ladite masse polaire (3) est opposée à une barrière (46) de champ magnétique ou électrostatique sur ladite piste (50) juste avant chaque mouvement transversal dudit arrêtoir (30) commandé périodiquement par ledit résonateur (20).

Description

    Domaine de l'invention
  • L'invention concerne un mécanisme d'échappement d'horlogerie comportant un arrêtoir entre un résonateur et un mobile d'échappement.
  • L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel mécanisme d'échappement.
  • L'invention concerne encore une pièce d'horlogerie comportant au moins un tel mouvement ou/et comportant au moins un tel mécanisme d'échappement.
  • L'invention concerne le domaine des mécanismes d'horlogerie pour la transmission de mouvement, et plus particulièrement le domaine des mécanismes d'échappement.
  • Arrière-plan de l'invention
  • L'échappement à ancre suisse est un dispositif très répandu qui fait partie de l'organe régulateur des montres mécaniques. Ce mécanisme permet simultanément d'entretenir le mouvement d'un résonateur à balancier-spiral et de synchroniser la rotation du rouage d'entraînement au résonateur.
  • Pour remplir ces fonctions, la roue d'échappement interagit avec l'ancre à l'aide de forces de contact mécaniques, et l'échappement à ancre suisse utilise ce contact mécanique entre la roue d'échappement et l'ancre suisse de sorte à remplir une première fonction de transmission de l'énergie de la roue d'échappement au balancier-spiral d'une part, et à remplir d'autre part une deuxième fonction qui consiste à libérer et bloquer la roue d'échappement par saccades pour qu'elle avance d'un pas à chaque alternance du balancier.
  • Les contacts mécaniques nécessaires à l'accomplissement de ces premières et deuxième fonction altèrent le rendement, l'isochronisme, la réserve de marche, et la durée de vie de la montre.
  • Différentes études ont proposé de synchroniser la rotation d'une roue d'entraînement à un résonateur mécanique en utilisant une force sans contact, tels les échappements de type « Clifford ». Ces systèmes utilisent tous une force d'interaction d'origine magnétique qui permet de transférer de l'énergie de la roue d'entraînement au résonateur à un rythme imposé par la fréquence propre du résonateur. Toutefois, ils souffrent tous du désavantage de ne pas remplir la deuxième fonction de libération et blocage saccadés de la roue d'échappement avec certitude. Plus précisément, suite à un choc la roue peut se désynchroniser du résonateur mécanique, et par conséquent les fonctions du régulateur ne sont plus assurées.
  • Résumé de l'invention
  • La présente invention se propose de remplacer la force de contact mécanique entre l'ancre et la roue d'échappement par une force sans contact d'origine magnétique ou électrostatique, avec un agencement qui permette d'assurer avec certitude et en toute sécurité la deuxième fonction de libération et blocage saccadés de la roue d'échappement.
  • A cet effet, l'invention concerne un mécanisme d'échappement d'horlogerie comportant un arrêtoir entre un résonateur et un mobile d'échappement, caractérisé en ce que ledit mobile d'échappement comporte au moins une piste magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement, avec une période de défilement selon laquelle ses caractéristiques magnétiques, respectivement électrostatiques, se répètent, ledit arrêtoir comportant au moins une masse polaire magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement, ladite masse polaire étant mobile selon une direction transversale par rapport à la direction de défilement d'au moins un élément d'une surface de ladite piste, et au moins ladite masse polaire ou ladite piste créant un champ magnétique ou électrostatique dans un entrefer entre ladite au moins une masse polaire et ladite au moins une surface, et encore caractérisé en ce que ladite masse polaire est opposée à une barrière de champ magnétique ou électrostatique sur ladite piste juste avant chaque mouvement transversal dudit arrêtoir commandé par l'action périodique dudit résonateur.
  • Selon une caractéristique de l'invention, ledit échappement accumule de l'énergie potentielle reçue dudit mobile pendant chaque moitié de ladite période, et la restitue audit résonateur entre lesdites moitiés de période lors dudit mouvement transversal dudit arrêtoir commandé par l'action périodique dudit résonateur, où ladite masse polaire passe d'une première demi-course transversale relative par rapport audit mobile d'échappement à une deuxième demi-course transversale relative par rapport audit mobile d'échappement, ou inversement.
  • Selon une caractéristique de l'invention, au moins ladite masse polaire ou ladite piste crée ledit champ magnétique ou électrostatique d'intensité plus grande dans ladite première demi-course que dans ladite deuxième demi-course pendant une première moitié de période, et inversement pendant une deuxième moitié de période.
  • L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel mécanisme d'échappement.
  • L'invention concerne encore une pièce d'horlogerie comportant au moins un tel mouvement ou/et comportant au moins un tel mécanisme d'échappement.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, de façon schématisée, un premier mode de réalisation d'un mécanisme d'échappement selon l'invention, comportant un arrêtoir sous la forme d'une ancre-baguette avec une masse polaire magnétique unique, au niveau d'une baguette d'ancre, et qui coopère avec une roue d'échappement laquelle est magnétisée avec plusieurs pistes secondaires concentriques, chacune de ces pistes comportant une succession de zones magnétisées avec des intensités différentes, et exerçant des efforts de répulsion différents en interaction avec la masse polaire de l'ancre-baguette quand cette dernière est dans leur voisinage immédiat, les zones immédiatement voisines de deux pistes concentriques voisines étant aussi de niveau de magnétisation différent. Cette figure 1 représente une version simplifiée à deux pistes, intérieure et extérieure ;
    • la figure 2 représente, de façon schématisée et en vue de dessus, la répartition d'énergie potentielle d'interaction magnétique vue par la masse polaire de l'ancre-baguette de la figure 1 en fonction de sa position par rapport à la roue d'échappement, et la ligne brisée crénelée illustre la trajectoire de la masse polaire de l'ancre lors de son fonctionnement, en regard alternativement de la piste intérieure et de la piste extérieure de la figure 1 ;
    • la figure 3 est un diagramme illustrant, toujours pour le premier mode de réalisation des figures 1 et 2, la variation de l'énergie potentielle, en ordonnée, le long des pistes magnétisées, en fonction de l'angle au centre en abscisse, pour chacune des deux pistes de la figure 1 : piste intérieure en trait plein, et piste extérieure en trait interrompu, ce diagramme montrant l'accumulation d'énergie potentielle prélevée de la roue d'échappement sur les tronçons P1-P2 et P3-P4 correspondant chacun à une demi-période, et sa restitution par l'ancre au balancier lors du changement de piste de la masse polaire P2-P3 et P4-P5 ;
    • la figure 4 représente, de façon schématisée et en perspective, un deuxième mode de réalisation d'un mécanisme d'échappement selon l'invention, comportant une ancre comportant une pluralité de masses polaires magnétiques, ici sous la forme de deux fourches avec chacune deux masses polaires de part et d'autre du plan d'une roue d'échappement, les deux fourches étant réparties de part et d'autre du point de pivotement de l'ancre, de façon similaire aux palettes d'une ancre suisse classique. La roue d'échappement est munie d'une succession de rampes chacune formée d'une séquence d'aimants d'intensité variable et croissante, chaque rampe étant limitée par une barrière d'aimants, ces différents aimants étant agencés pour interagir successivement avec les deux fourches de l'ancre ;
    • la figure 5 est une vue en coupe d'une fourche de l'ancre de la figure 4, et le sens des champs des différents secteurs magnétisés de l'ancre et de la roue d'échappement ;
    • la figure 6 représente, en section dans un plan transversal dans lequel coopèrent un mobile d'échappement et un arrêtoir selon l'invention, différentes variantes d'agencement d'aimants en coopération pour concentrer un champ magnétique dans une zone d'entrefer ;
    • les figures 7 à 10 illustrent, en vue en coupe dans un plan passant par l'axe d'un mobile d'échappement et par une masse polaire antagoniste d'un arrêtoir en position de coopération, leurs composition respective dans différentes variantes d'exécution :
    • la figure 7 illustre une structure magnétisée d'épaisseur ou intensité variable déposée sur une roue d'échappement, en interaction avec un champ magnétique créé par un circuit magnétique solidaire d'une ancre, l'interaction pouvant alors être répulsive ou attractive ;
    • la figure 8 illustre une structure ferromagnétique d'épaisseur variable au niveau d'une piste de roue d'échappement, créant un entrefer variable en interaction avec le champ magnétique créé par un circuit magnétique solidaire d'une ancre ;
    • la figure 9 représente une roue d'échappement avec deux disques constitués de structures magnétisées d'épaisseur ou intensité variable déposées sur deux surfaces d'une roue d'échappement en interaction avec le champ magnétique créé par un aimant solidaire d'une ancre, qu'encadrent ces deux surfaces, l'interaction pouvant être répulsive ou attractive ;
    • la figure 10 représente une structure mécaniquement similaire à la figure 9, avec, sur les deux surfaces de la roue d'échappement se faisant face, des structures ferromagnétiques d'épaisseur variable créant un entrefer variable en interaction avec le champ magnétique créé par un aimant solidaire de l'ancre ;
    • les figures 11 à 14 représentent, de façon schématisée, la répartition de champ magnétique dans un plan transversal, passant par l'axe de pivotement de la roue d'échappement du mécanisme de la figure 1, sur les deux pistes secondaires, interne et externe, en corrélation avec les positions illustrées aux figures 2 et 3 : figure 11 : point P1 (et équivalente au point P5 décalé d'une période entière), figure 12 : point P2, figure 13 : point P3, figure 14 : point P4 ;
    • la figure 15 représente, sous forme d'un schéma-blocs, une pièce d'horlogerie comportant un mouvement lequel incorpore un mécanisme d'échappement selon l'invention ;
    • la figure 16 illustre une variante où le mobile d'échappement est un cylindre, l'arrêtoir comportant une masse polaire mobile à proximité d'une génératrice de ce cylindre ;
    • la figure 17 illustre une autre variante où le mobile d'échappement est une bande continue ;
    • la figure 18 illustre le débattement d'une masse polaire en regard d'une surface d'une piste d'un mobile d'échappement gauche ;
    • la figure 19 montre la périodicité de déplacement d'une masse polaire le long d'une piste comportant deux pistes secondaires parallèles ;
    • les figures 20 à 25 illustrent des profils de rampe et de barrière, et l'énergie transmise correspondant à chacun de ces profils ;
    • la figure 26 illustre, de façon partielle, une réalisation similaire à celle de la figure 4, mais comportant deux rangées concentriques d'aimants de magnétisation croissante, ceux de la piste intérieure étant polarisés vers le haut, et ceux de la piste extérieure étant polarisés vers le bas ;
    • la figure 27 illustre schématiquement l'orientation des lignes de champ dans une section transversale correspondant à la réalisation de la figure 26 ;
    • la figure 28 illustre la répartition de potentiel dans ce même exemple, avec en trait interrompu un centrage sur la piste, et en trait plein un tirage.
    Description détaillée des modes de réalisation préférés
  • L'invention se propose de remplacer la force de contact mécanique usuelle entre un arrêtoir et une roue d'échappement par une force sans contact d'origine magnétique ou électrostatique.
  • L'invention concerne un mécanisme d'échappement 10 d'horlogerie comportant un arrêtoir 30 entre un résonateur 20 et un mobile d'échappement 40.
  • Selon l'invention, ce mobile d'échappement 40 comporte au moins une piste 50 magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement, avec une période de défilement PD selon laquelle ses caractéristiques magnétiques, respectivement électrostatiques, se répètent. Selon cette période de défilement PD cette piste 50 présente des caractéristiques identiques, géométriques et physiques, notamment sa constitution (matériaux), son relief, son revêtement éventuel, sa magnétisation ou son électrisation éventuelle.
  • Cet arrêtoir 30 comporte au moins une masse polaire 3 magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement. Cette masse polaire 3 est mobile selon une direction transversale DT par rapport à la direction de défilement DD d'au moins un élément d'une surface 4 de la piste 50. Cette mobilité transversale n'implique pas une sortie totale de la piste concernée, l'agencement est variable selon les modes de réalisation, et, dans certains d'entre eux, la masse polaire sort de la piste pendant une partie du mouvement.
  • Au moins la masse polaire 3 ou la piste 50 crée un champ magnétique ou électrostatique dans un entrefer 5 entre cette au moins une masse polaire 3 et cette au moins une surface 4.
  • La masse polaire 3 est opposée à une barrière 46 de champ magnétique ou électrostatique sur la piste 50 juste avant chaque mouvement transversal de l'arrêtoir 30, lequel mouvement transversal est commandé par l'action périodique du résonateur 20.
  • Dans une réalisation particulière, ce mécanisme d'échappement 10 accumule de l'énergie reçue du mobile d'échappement 40 pendant chaque moitié de la période PD, en stocke une partie sous forme d'énergie potentielle, et la restitue de façon périodique au résonateur 20. Par analogie, cette fonction d'accumulation est équivalente à l'armage progressif d'un ressort dans un mécanisme. Cette restitution d'énergie a lieu entre ces moitiés de période, lors du mouvement transversal de l'arrêtoir 30 commandé par l'action périodique du résonateur 20. La masse polaire 3 passe alors d'une première demi-course PDC transversale relative par rapport au mobile d'échappement 40 à une deuxième demi-course DDC transversale relative par rapport au mobile d'échappement 40, ou inversement. Cette masse polaire 3 est face à une telle barrière 46 de champ magnétique ou électrostatique sur la piste 50 juste avant chaque mouvement transversal de l'arrêtoir 30 commandé par le résonateur 20 par basculement d'une demi-course à l'autre.
  • Dans une réalisation particulière, le champ magnétique ou électrostatique, généré par la masse polaire 3 ou/et la piste 50, est d'une intensité plus grande dans la première demi-course PDC que dans la deuxième demi-course DDC pendant une première moitié de ladite période de défilement PD, et d'une intensité plus grande dans la deuxième demi-course DDC que dans la première demi-course PDC pendant une deuxième moitié de la période de défilement PD.
  • Plus particulièrement, le résonateur 20 comporte au moins un oscillateur 2 à mouvement périodique. Le mobile d'échappement 40 est alimenté par une source d'énergie telle qu'un barillet ou similaire. L'arrêtoir 30 assure d'une part une première fonction de transmission de l'énergie du mobile d'échappement 40 au résonateur 20, et d'autre part une deuxième fonction de libération et de blocage par saccades du mobile d'échappement 40 pour son avance d'un pas lors d'un mouvement de l'arrêtoir 30 commandé par le résonateur 20 à chaque alternance de l'oscillateur 2. La au moins une piste 50 est animée d'un mouvement de défilement selon une trajectoire de défilement TD.
  • De préférence chaque masse polaire 3 est mobile selon une direction transversale DT par rapport à la piste 50, selon une première demi-course PDD et une deuxième demi-course DDC de part et d'autre d'une position médiane PM fixe, selon une trajectoire transversale TT, de préférence sensiblement orthogonale à la trajectoire de défilement TD de la piste 50.
  • C'est au niveau d'un entrefer 5 compris entre une telle masse polaire 3 et une surface 4 que comporte une telle piste 50 et qui fait face à cette masse polaire 3, que cette piste 50 ou/et cette masse polaire 3 crée ce champ magnétique ou électrostatique qui permet de créer un système de forces magnétiques ou électrostatiques sur l'arrêtoir 30 et sur le mobile d'échappement 40, en lieu et place des forces mécaniques de l'art antérieur.
  • Le mécanisme d'échappement 10 selon l'invention accumule de l'énergie potentielle transmise depuis la source d'énergie par l'intermédiaire du mobile d'échappement 40 pendant chaque première moitié ou deuxième moitié de la période de défilement PD. En fin de chaque demi-période, a masse polaire 3 est alors face à une barrière 46 de champ magnétique ou électrostatique au niveau de la partie de la piste 50 face à laquelle elle évolue, juste avant le mouvement transversal de l'arrêtoir 30 commandé par le résonateur 20. C'est alors que le mécanisme d'échappement 10 restitue l'énergie correspondante à l'oscillateur 2 lors du mouvement transversal de l'arrêtoir 30 commandé périodiquement par le résonateur 20 entre les première moitié et deuxième moitié de la période de défilement PD. Lors de ce mouvement transversal, cette masse polaire 3 passe de la première demi-course PDC à la deuxième demi-course DDC, ou inversement.
  • Le mobile d'échappement 4 peut être constitué de différentes manières : sous la forme classique d'une roue d'échappement 400 comme sur les figures 1 et 4, d'une double roue comme sur les figures 9 et 10, ou sous la forme d'un cylindre tel que visible sur la figure 16, ou encore d'une bande continue tel que visible sur la figure 17, ou autre. Le présent exposé concerne le cas général d'un mobile (non nécessairement pivotant), et l'horloger saura l'appliquer au composant qui l'intéresse, notamment une roue simple ou multiple.
  • De préférence, les caractéristiques du champ magnétique ou électrostatique sont alternées entre la première demi-course PDC et la deuxième demi-course DDC, avec un déphasage d'une moitié de la période de défilement PD de la piste 50 par rapport à la masse polaire 3. Mais il est également possible de faire fonctionner le dispositif avec, par exemple, des intensités de champ différentes, tout en respectant l'allure de répartition différentielle du champ entre différents secteurs. Ce peut être le cas par exemple dans la réalisation de la figure 1, où des secteurs angulaires délimités par des rayons différents n'auront nécessairement pas exactement les mêmes caractéristiques.
  • On appelle ici direction transversale DT une direction qui est sensiblement parallèle à la trajectoire transversale TT de la masse polaire 3, ou qui la tangente en sa position médiane PM, tel que visible sur la figure 18.
  • On appelle ici direction axiale DA une direction qui est orthogonale à la fois à une direction transversale DT sensiblement parallèle à la trajectoire transversale TT de la masse polaire, et à la direction de défilement DF de la piste 50, tangente à la trajectoire de défilement TD au niveau de la position médiane PM.
  • On appelle plan de piste PP le plan défini par la position médiane PM, la direction transversale DT et par la direction de défilement DF.
  • De préférence, au moins l'un des deux composants antagonistes (on entend ici par « antagonistes » que ces composants se font face, sans pour autant qu'il y ait entre eux une répulsion, une contrariété, ou une autre interaction), constitués par la masse polaire 3 et la piste 50 porteuse de la surface 4 qui lui fait face au niveau de l'entrefer 5 au moins sur une partie de leur course relative, comporte des moyens actifs magnétiques, respectivement électrostatiques, qui sont agencés pour créer ce champ magnétique, respectivement électrostatique.
  • On entend ici par « actif » un moyen qui crée un champ, et par « passif » un moyen qui subit un champ. Le terme « actif » n'implique pas ici qu'un composant soit parcouru par un courant.
  • Dans une variante particulière, la composante de ce champ selon la direction axiale DA, est supérieure à sa composante dans ce plan de piste PP, au niveau de leur interface dans l'entrefer 5 entre la masse polaire 3 et la surface 4 qui lui fait face.
  • Dans une variante particulière, la direction de ce champ magnétique ou électrostatique est sensiblement parallèle à cette direction axiale DA du mobile d'échappement 40. On entend par « sensiblement parallèle » un champ dont la composante selon la direction axiale DA est au moins quatre fois supérieure à sa composante dans le plan PP.
  • L'autre composant antagoniste au niveau de l'entrefer 5 comporte alors, ou bien des moyens passifs magnétiques, respectivement électrostatiques, pour coopérer avec le champ ainsi créé, ou bien également des moyens actifs magnétiques, respectivement électrostatiques, qui sont agencés pour créer un champ magnétique, respectivement électrostatique au niveau de l'entrefer 5, ce champ pouvant, selon le cas, être en concordance ou en opposition avec le champ émis par le premier composant, de façon à générer une répulsion ou au contraire une attraction au niveau de l'entrefer 5.
  • Dans une réalisation particulière, visible dans le premier mode de réalisation à la figure 1 et dans un deuxième mode de réalisation à la figure 4, l'arrêtoir 30 est disposé entre un résonateur 20 à balancier-spiral 2 d'axe de pivotement A, et au moins une roue d'échappement 400 qui pivote autour d'un axe de pivotement D (lequel définit avec l'axe de pivotement du balancier-spiral A une direction de référence angulaire DREF). Cet arrêtoir 30 assure la deuxième fonction de libération et de blocage par saccades du mobile d'échappement 40 pour son avance d'un pas à chaque alternance du balancier-spiral 2.
  • La masse polaire 3 est agencée pour se mouvoir, sur au moins une partie de sa course transversale, en regard d'au moins un élément d'une surface 4 du mobile d'échappement 40. Dans le premier mode de la figure 1, la masse polaire est toujours en regard d'une telle surface 4 ; dans le deuxième mode de la figure 4, l'arrêtoir 30 comporte deux masses polaires 3A, 3B, et chacune d'elle est, pendant une demi-période face à une telle surface 4, et pendant l'autre demi-période éloignée de cette surface 4, dans une position où l'interaction magnétique ou électrostatique entre elles est négligeable.
  • Dans une variante, chacun des deux composants antagonistes de part et d'autre de l'entrefer 5, constitués par la masse polaire 3 et la piste 50 porteuse de la surface 4 qui lui fait face au moins sur une partie de leur course relative, comporte des moyens actifs magnétiques, respectivement électrostatiques, qui sont agencés pour créer un champ magnétique, respectivement électrostatique, de direction sensiblement parallèle à la direction axiale DA, au niveau de leur interface dans l'entrefer 5.
  • Dans une réalisation avantageuse, la masse polaire 3 ou/et la piste 50 porteuse de la surface 4 qui lui fait face au niveau de cet entrefer 5 comporte des moyens magnétiques, respectivement électrostatiques, qui sont agencés pour créer dans l'entrefer 5, dans au moins un plan transversal PT défini par la position médiane PM de la masse polaire 3, par la direction transversale DT et la direction axiale DA, et sur la plage transversale, selon ladite direction transversale, de déplacement relatif de la masse polaire 3 et de la surface 4, un champ magnétique, respectivement électrostatique, d'intensité variable et non nulle à la fois en fonction de la position transversale de la masse polaire 3 selon la direction transversale DT, et en fonction périodique du temps.
  • Dans une réalisation particulière, chaque telle masse polaire 3 et chaque telle piste 50 porteuse de la surface 4 qui lui fait face comportent de tels moyens magnétiques, respectivement électrostatiques, qui sont agencés pour créer un champ magnétique, respectivement électrostatique, entre au moins une telle masse polaire 3 et au moins une surface 4, dans au moins ce plan transversal PT. Ce champ magnétique, respectivement électrostatique, créé par ces composants antagonistes, est d'intensité variable et non nulle à la fois en fonction de la position radiale de la masse polaire 3 selon la direction transversale DT, et en fonction périodique du temps.
  • On comprend qu'il s'agit de créer les conditions de création d'une force d'origine magnétique ou électrostatique entre l'arrêtoir 30 et le mobile d'échappement 40, de façon à permettre un entraînement, ou a contrario un freinage, entre ces deux composants, sans contact mécanique direct entre eux.
  • Les conditions de création d'un champ magnétique ou électrostatique par un des composants, et de la réception de ce champ par le composant antagoniste, lequel est susceptible d'émettre lui-même un champ magnétique ou électrostatique, permettent d'envisager différents types de fonctionnement, en répulsion ou en attraction relative de ces composants antagonistes. En particulier, des architectures multi-niveaux permettent un équilibrage des efforts selon une direction de pivotement du mobile d'échappement 40 (notamment la direction de l'axe de pivotement si le mobile 40 pivote autour d'un axe unique), et un maintien relatif en position selon la direction axiale DA entre l'arrêtoir 30 et le mobile d'échappement 40, comme il sera exposé plus loin.
  • Dans une réalisation particulière, la composante du champ magnétique, respectivement électrostatique, selon la direction axiale DA, est de même sens sur toute la plage du déplacement relatif de la masse polaire 3 et de la surface 4 qui lui fait face.
  • Différentes configurations sont réalisables, selon la nature du champ, et selon que l'arrêtoir 30, ou/et le mobile d'échappement 40, joue un rôle actif ou passif en ce qui concerne l'établissement d'un champ magnétique ou électrostatique dans au moins un entrefer entre cet arrêtoir 30, et ce mobile d'échappement 40, en effet, il peut exister plusieurs entrefers 5 entre différentes masses polaires 3 de l'arrêtoir 30 et différentes pistes du mobile d'échappement 40. De façon non limitative, différentes variantes avantageuses sont décrites ci-après.
  • Ainsi, dans une variante, chaque masse polaire 3 que porte l'arrêtoir 30 est magnétisée, respectivement électrisée, de façon permanente, et génère un champ magnétique, respectivement électrostatique, constant, et chaque surface 4 coopérant avec chaque masse polaire 3 définit avec la telle masse polaire 3 concernée un entrefer 5 dans lequel le champ magnétique, respectivement électrostatique, est variable selon l'avance du mobile d'échappement 40 sur sa trajectoire et est variable selon la position transversale relative de la masse polaire 3 concernée par rapport au mobile d'échappement 40 et qui est liée au débattement angulaire de l'arrêtoir 30 s'il est pivotant comme dans le cas d'une ancre, ou à son débattement transversal s'il est entraîné autrement par le résonateur 20.
  • Dans une autre variante, chaque masse polaire 3 que porte l'arrêtoir 30 est ferromagnétique, respectivement conductrice électrostatiquement, de façon permanente, et chaque surface 4 coopérant avec chaque masse polaire 3 définit avec la masse polaire 3 concernée un entrefer 5 dans lequel le champ magnétique, respectivement électrostatique, est variable selon l'avance du mobile d'échappement 40 sur sa trajectoire et est variable selon la position transversale relative de la masse polaire 3 concernée par rapport au mobile d'échappement 40 et qui est liée au débattement angulaire de l'arrêtoir 30 s'il est pivotant comme dans le cas d'une ancre, ou à son débattement transversal s'il est entraîné autrement par le résonateur 20.
  • Dans une autre variante, chaque piste 50 porteuse d'une telle surface 4 antagoniste est magnétisée, respectivement électrisée, de façon permanente et uniforme, et génère un champ magnétique, respectivement électrostatique, constant à sa surface tournée vers la masse polaire 3 concernée, et comporte un relief agencé pour générer une hauteur d'entrefer variable dans l'entrefer 5, laquelle hauteur d'entrefer varie selon l'avance du mobile d'échappement 40 sur sa trajectoire, et varie selon la position angulaire relative de la masse polaire 3 concernée par rapport au mobile d'échappement 40.
  • Dans une autre variante, chaque piste 50 porteuse d'une telle surface 4 est ferromagnétique, respectivement conductrice électrostatiquement, de façon permanente, et comporte un relief agencé pour générer une hauteur d'entrefer dans l'entrefer 5, laquelle hauteur d'entrefer est variable selon l'avance du mobile d'échappement 40 sur sa trajectoire, et est variable selon la position transversale relative de la masse polaire 3 concernée par rapport au mobile d'échappement 40.
  • Dans une autre variante, chaque piste 50 porteuse d'une telle surface 4 est magnétisée, respectivement électrisée, de façon permanente et variable selon la position locale sur cette piste, et génère un champ magnétique, respectivement électrostatique, qui est variable selon l'avance du mobile d'échappement 40 sur sa trajectoire, et est variable selon la position transversale relative de la masse polaire 3 concernée par rapport au mobile d'échappement 40, au niveau de sa surface tournée vers la masse polaire 3 concernée.
  • Dans une autre variante, chaque piste 50 porteuse d'une telle surface 4 est ferromagnétique, respectivement conductrice électrostatiquement, de façon permanente et variable selon la position locale sur cette piste, de façon à faire varier la force magnétique, respectivement électrostatique, exercée entre l'arrêtoir 3 et le mobile d'échappement 40 sous l'effet de leur mouvement relatif, laquelle force est variable selon l'avance du mobile d'échappement 40 sur sa trajectoire et est variable selon la position transversale relative de la masse polaire 3 concernée par rapport au mobile d'échappement 40, au niveau de sa surface tournée vers la masse polaire 3 concernée.
  • Dans une autre variante, chaque masse polaire 3 circule entre deux surfaces 4 du mobile d'échappement 40, et un tel champ magnétique, respectivement électrostatique, s'exerce sur chaque côté de la masse polaire 3 selon la direction axiale DA de façon symétrique de part et d'autre de la masse polaire 3 de façon à exercer des efforts égaux et opposés sur la masse polaire 3 dans la direction axiale DA. On obtient ainsi un équilibrage axial et un effort minime sur les pivots éventuels, et donc des pertes par frottement minimales.
  • Dans une autre variante, chaque surface 4 du mobile d'échappement 40 circule entre deux surfaces 31 , 32, de chaque masse polaire 3, et un tel champ magnétique, respectivement électrostatique, s'exerce sur chaque côté de la surface 4 selon la direction axiale DA de façon symétrique de part et d'autre de la surface 4, de façon à exercer des efforts égaux et opposés sur la piste 50 porteuse de la surface 4 dans la direction axiale DA.
  • Dans une autre variante, la piste 50 du mobile d'échappement 40 comporte, sur l'une de ses deux surfaces latérales 41, 42, une pluralité de pistes secondaires 43 voisines les unes des autres.
  • Dans l'application particulière où le mobile d'échappement 40 est une roue d'échappement 400, ces pistes sont concentriques les unes aux autres par rapport à l'axe de pivotement D de a roue d'échappement 400, tel que visible sur les figures 1 et 2 qui montrent deux telle pistes secondaires, interne 43 INT et externe 43 EXT, et où chaque piste secondaire 43 comporte une succession angulaire de zones primaires élémentaires 44, chaque zone primaire 44 présentant un comportement magnétique, respectivement électrostatique, qui est différent, d'une part de celui de chaque autre zone primaire 44 adjacente sur la piste secondaire 43 à laquelle elle appartient, et d'autre part de celui de chaque autre zone primaire 44 qui lui est adjacente et qui est située sur une autre piste secondaire 43 adjacente à la sienne.
  • Dans d'autres variantes de réalisation où la piste 50 n'est pas assimilable à un disque, par exemple sur les exemples des figures 16 et 17, les pistes secondaires 43 ne sont pas concentriques, mais voisines et de préférence sensiblement parallèles les unes aux autres. Mais la différence de comportement magnétique, respectivement électrostatique, de deux zones primaires 44 immédiatement voisines, s'applique de la même façon. Les figures 18 et 19 montrent le débattement d'une masse polaire 3 dans une variante comportant deux pistes secondaires 43A et 43B, adjacentes et parallèles, déphasées d'une demi-période.
  • Plus particulièrement, la succession de ces zones primaires 44 sur chaque telle piste secondaire 43 donnée est périodique selon une période spatiale T, angulaire ou linéaire selon le cas, constituant un sous-multiple entier d'une révolution du mobile d'échappement 40. Cette période spatiale T correspond à la période de défilement PD de la piste 50.
  • Dans une réalisation avantageuse, chaque telle piste secondaire 43 comporte, sur chaque telle période spatiale T, une rampe 45 comportant une succession, notamment monotone, de telles zones primaires 44 interagissant de façon croissante avec une telle masse polaire 3 avec un champ magnétique, respectivement électrostatique, dont l'intensité varie de façon à produire une énergie potentielle croissante depuis une zone d'interaction minimale 4MIN vers une zone d'interaction maximale 4MAX, la rampe 45 prélevant de l'énergie au mobile d'échappement 40.
  • De façon particulière et propre à l'invention, le mobile d'échappement 40 comporte, entre deux telles rampes 45 successives et de même sens, une telle barrière 46 de potentiel de champ magnétique, respectivement électrostatique, pour déclencher un arrêt momentané du mobile d'échappement 40 préalable à un basculement de l'arrêtoir 30 sous l'action du résonateur 20, notamment d'un balancier-spiral 2.
  • De préférence, chaque telle barrière 46 de potentiel est plus raide que chaque telle rampe 45, en ce qui concerne son gradient de potentiel.
  • Il s'agit de créer des barrières d'énergie : dans les modes de réalisation présentés, ces barrières sont constituées par des barrières de champ. Les variantes illustrées correspondent ainsi à des rampes de champ magnétique, respectivement électrostatique, de champ, et à des barrières de champ.
  • Plus précisément, le mobile d'échappement 40 s'immobilise dans une position où le gradient de potentiel est équivalent au couple d'entraînement.
  • Cette immobilisation n'est pas instantanée, il existe en effet un phénomène de rebond, qui est amorti, soit par les frottements naturels, notamment de pivotement, dans le mécanisme, soit par des frottements créées à cet effet, de type visqueux comme des frottements par courants de Foucault (par exemple sur une surface en cuivre ou similaire solidaire du mobile d'échappement 40) ou des frottements aérodynamiques ou autres, ou encore de type frottements secs de type ressort sautoir ou autre. Typiquement, le mobile d'échappement 40 est tendu par un mécanisme en amont à couple constant ou à force constante, typiquement un barillet. Le mobile d'échappement 4 oscille donc, avant de s'arrêter en position, avant le basculement transversal de la masse polaire 3, et les pertes sont nécessaires pour cesser l'oscillation dans un intervalle de temps compatible avec la cinématique.
  • La transition entre la rampe et la barrière peut être conçue et ajustée de sorte à obtenir une dépendance particulière de l'énergie transmise au résonateur en fonction du couple d'entraînement.
  • Si une rampe sans rupture de pente permet de faire fonctionner l'invention, il est plus avantageux de combiner une rampe 45 avec un certain gradient, et une barrière 46 avec un autre gradient, la forme de la zone de transition entre la rampe 45 et la barrière 46 ayant une influence notable sur le fonctionnement.
  • On comprend que, selon l'invention, le système accumule de l'énergie lors du gravissement de la rampe, et restitue de l'énergie au résonateur lors du mouvement transversal de la masse polaire. Le point d'arrêt définit la quantité d'énergie ainsi restituée, ce qui dépend de la forme de cette zone de transition entre rampe et barrière.
  • Les figures 20, 22, et 24 illustrent des exemples non limitatifs de profil de rampe et de barrière, avec en abscisse le défilement, ici un angle de pivotement e, et ordonnée l'énergie Ui exprimée en mJ. Les figures 21, 23, et 25 illustrent l'énergie transmise, en corrélation avec chaque profil de rampe et de barrière, avec la même abscisse, et, en ordonnée, le coupe CM en mN.m.
  • Les figures 20 et 21 illustrent une transition douce avec un rayon entre la rampe et la barrière, le point d'arrêt du système dépend du couple appliqué, et l'énergie transmise au résonateur dépend aussi de ce couple appliqué.
  • Les figures 22 et 23 montrent une transition avec cassure de pente entre rampe et barrière, le point où le système s'arrête ne dépend alors pas du couple appliqué, et l'énergie transmise au résonateur est constante.
  • Les figures 24 et 25 concernent une transition de forme exponentielle entre rampe et barrière, choisie pour que l'énergie transmise au résonateur, qui est approximativement proportionnelle au couple appliqué, et notamment dans une variante particulière, soit sensiblement égale au couple d'entraînement. Cet exemple est intéressant car il s'approche au plus près d'un échappement à ancre suisse et permet donc d'incorporer la présente invention dans un mouvement existant avec le minimum de changements.
  • Dans une variante avantageuse de l'invention, le mobile d'échappement 40 comporte encore, en fin de chaque telle rampe 45 et juste avant chaque barrière 46, une variation transversale de répartition de champ magnétique ou électrostatique quand la surface 4 est magnétisée, respectivement électrisée, ou une variation de profil quand la surface 4 est ferromagnétique, respectivement conductrice électrostatiquement, de façon à provoquer un tirage sur la masse polaire 3.
  • Avantageusement le mobile d'échappement 40 comporte, après chaque telle barrière 46 de potentiel de champ magnétique ou électrostatique, une butée mécanique anti-choc.
  • Dans une variante, quand le mobile d'échappement 40 comporte plusieurs pistes secondaires 43, au moins deux telles pistes secondaires 43 adjacentes comportent, l'une par rapport à l'autre, une alternance de telles zones d'interaction minimale 4MIN et de telles zones d'interaction maximale 4MAX avec un déphasage angulaire correspondant à la moitié de la période spatiale T.
  • Dans une variante de l'invention, l'arrêtoir 30 comporte une pluralité de telles masses polaires 3 agencées pour coopérer simultanément avec des telles pistes secondaires 43 distinctes, tel que visible notamment dans le deuxième mode de réalisation de l'invention de la figure 4, avec des masses polaires 3A et 3B distinctes, comportant chacune deux aimants 31 et 32 de part et d'autre de la roue d'échappement 400.
  • Notamment, dans une réalisation particulière non illustrée, l'arrêtoir 30 peut comporter un peigne s'étendant parallèlement à la surface 4 du mobile d'échappement 40 et comportant des telles masses polaires 3 disposées côte à côte.
  • Dans une variante de l'invention, l'arrêtoir 30 est pivotant autour d'un pivot 35 réel ou virtuel, et comporte une telle masse polaire 3 unique agencée pour coopérer avec des zones primaires 44 que comportent des telles surfaces 4 situées sur des plages différentes du mobile d'échappement 40 (ou respectivement des diamètres différents dans le cas d'une roue d'échappement 400), avec lesquelles la masse polaire 3 a une interaction variable lors de l'avance (ou respectivement de la révolution) du mobile d'échappement 40. Ces zones primaires 44 sont disposées en alternance sur le pourtour (ou respectivement la périphérie) du mobile d'échappement 40 pour contraindre la masse polaire 3 à un mouvement transversal par rapport au mobile d'échappement 40 lors de la recherche de position d'équilibre de la masse polaire 3.
  • Dans une autre variante de l'invention, l'arrêtoir 30 est pivotant autour d'un pivot 35 réel ou virtuel et comporte une pluralité de telles masses polaires 3 agencées pour coopérer chacune avec des zones primaires 44 que comporte au moins une telle surface 4 située sur au moins une plage (respectivement un diamètre) du mobile d'échappement 40, avec lesquelles chaque telle masse polaire 3 a une interaction variable lors de l'avance (ou respectivement de la révolution) du mobile d'échappement 40. Ces zones primaires 44 sont disposées en alternance sur le pourtour ou la périphérie du mobile d'échappement 40 pour contraindre la masse polaire 3 à un mouvement transversal par rapport au mobile d'échappement 40 lors de la recherche de position d'équilibre de la masse polaire 3.
  • Dans une réalisation particulière, à chaque instant au moins une telle masse polaire 3 de l'arrêtoir 30 est en interaction avec au moins une telle surface 4 du mobile d'échappement 40.
  • Dans une réalisation particulière, l'arrêtoir 30 coopère, de part et d'autre, avec un premier mobile d'échappement et un deuxième mobile d'échappement.
  • Dans une réalisation particulière, ces premier et deuxième mobiles d'échappement pivotent de façon solidaire.
  • Dans une réalisation particulière, ces premier et deuxième mobiles d'échappement pivotent indépendamment l'un de l'autre.
  • Dans une réalisation particulière, ces premier et deuxième mobiles d'échappement sont coaxiaux.
  • Dans une réalisation particulière, l'arrêtoir 30 coopère, de part et d'autre, avec une première roue d'échappement 401 et une deuxième roue d'échappement 402, formant chacune un tel mobile d'échappement 40.
  • Dans une réalisation particulière, ces première 401 et deuxième 402 roues d'échappement pivotent de façon solidaire.
  • Dans une réalisation particulière, ces première 401 et deuxième 402 roues d'échappement pivotent indépendamment l'une de l'autre.
  • Dans une réalisation particulière, ces première 401 et deuxième 402 roues d'échappement sont coaxiales.
  • Dans une variante illustrée par la figure 16, le mobile d'échappement 40 comporte au moins une surface 4 cylindrique autour d'un axe de pivotement D parallèle à la direction transversale DT, et qui est porteuse de pistes magnétiques, respectivement électrostatiques, et la au moins une masse polaire 3 de l'arrêtoir 30 est mobile parallèlement à cet axe de pivotement D.
  • La figure 17 montre une généralisation selon laquelle le mobile d'échappement 40 est un mécanisme s'étendant selon une direction D, représenté ici par une bande sans fin circulant sur deux rouleaux d'axes parallèles à la direction transversale T, cette bande étant porteuse d'au moins une surface 4.
  • Naturellement d'autres configurations sont imaginables pour assurer une périodicité spatiale de surfaces 4 sur la ou les pistes 50, par exemple sur une chaîne, un anneau, une hélice, ou autre.
  • Selon l'invention, et non limitativement, la surface 4 peut comporter une couche magnétisée d'épaisseur variable, ou respectivement une couche électrisée d'épaisseur variable, ou une couche magnétisée d'épaisseur constante mais de magnétisation variable, ou respectivement une couche électrisée d'épaisseur constante mais d'électrisation variable, ou une densité surfacique variable de micro-aimants, ou respectivement une densité surfacique variable d'électrets, ou une couche ferromagnétique d'épaisseur variable, ou une respectivement une couche conductrice électrostatiquement d'épaisseur variable, ou une couche ferromagnétique de forme variable, ou respectivement une couche conductrice électrostatiquement de forme variable, ou une couche ferromagnétique avec une densité surfacique de trous variable, ou respectivement une couche conductrice électrostatiquement avec une densité surfacique de trous variable.
  • Dans une réalisation particulière, l'arrêtoir 30 est une ancre.
  • L'invention concerne encore un mouvement d'horlogerie 100 comportant au moins un tel mécanisme d'échappement 10 .
  • L'invention concerne encore une pièce d'horlogerie 200, notamment une montre, comportant au moins un tel mouvement 100 ou/et comportant au moins un tel mécanisme d'échappement 10.
  • L'invention est applicable à différentes échelles de pièces d'horlogerie, notamment des montres. Elle est intéressante pour des pièces statiques telles qu'horloges, pendules de salon, morbiers, et similaires ; le caractère spectaculaire et innovant du fonctionnement du mécanisme selon l'invention apporte un intérêt nouveau supplémentaire à la mise en évidence du mécanisme, et un attrait pour l'utilisateur ou le spectateur.
  • Les figures illustrent une réalisation particulière, non limitative, où l'arrêtoir 30 est une ancre, et montrent comment l'invention permet de remplacer la force de contact mécanique usuelle entre une ancre et une roue d'échappement par une force sans contact d'origine magnétique ou électrostatique.
  • Deux modes de réalisation, non limitatifs, sont proposés: un premier mode à masse polaire unique et un deuxième mode avec plusieurs masses polaires.
  • Le premier mode est illustré, dans une version magnétique seulement, par les figures 1 à 3.
  • La figure 1 représente, de façon schématisée, un mécanisme d'échappement 10 à arrêtoir 30 magnétique, où cet arrêtoir 30 est une ancre. Le dispositif régulateur comprend un résonateur 20 à balancier-spiral 2, une ancre 30 magnétique, et un mobile d'échappement 40 formé par une roue d'échappement 400 magnétisée. L'aimant 3 de l'ancre interagit de façon répulsive avec des pistes secondaires magnétisées concentriques 43 INT, 43 EXT, du mobile d'échappement 40.
  • Les symboles --/-/+/++, sur les pistes secondaires 43 sont représentatifs de l'intensité de la magnétisation, croissante de - à ++ : une zone -- repousse faiblement l'aimant 3 de l'ancre 30 alors qu'une zone ++ le repousse fortement.
  • Dans ce schéma de principe de la figure 1, la force d'interaction entre l'arrêtoir 30, , et le mobile d'échappement 40 résulte de l'interaction entre une masse polaire 3, notamment un aimant, placée sur l'ancre 30 et une structure magnétisée placée sur le mobile d'échappement 40. Cette structure magnétisée est composée de deux pistes secondaires 43 (intérieure 43 INT et extérieure 43 EXT) dont l'intensité de magnétisation varie en fonction de la position angulaire de sorte à produire le potentiel d'interaction magnétique représenté sur la figure 2. Le long de chaque piste secondaire 43, on observe une succession de rampes 45 et de barrières 46 de potentiel comme indiqué sur la figure 3. Les rampes 45 ont pour effet de prélever de l'énergie au mobile d'échappement 40, et les barrières 46 ont pour effet de bloquer l'avancement du mobile 40. L'énergie prélevée par une rampe 45 est ensuite restituée au résonateur 20 à balancier-spiral lorsque l'ancre 30 bascule d'une position à l'autre.
  • La figure 2 représente, de façon schématisée, l'énergie potentielle d'interaction magnétique vue par l'aimant 3 de l'ancre 30 en fonction de sa position sur le mobile d'échappement 40. La ligne en trait interrompu montre la trajectoire d'un point de référence M de l'aimant 3 de l'ancre 30 en fonctionnement.
  • La figure 3 représente, de façon schématisée, la variation de l'énergie potentielle le long des pistes secondaires magnétisées 43 du mobile 40. Lorsque la masse polaire 3 de l'ancre passe du point P1 au point P2 sur la piste secondaire interne 43 INT, le système prélève l'énergie du mobile d'échappement 40 pour la stocker sous forme d'énergie potentielle. Le système s'arrête alors en P2 sous l'effet conjugué de la barrière de potentiel 46 et du frottement du mobile 40. Finalement, lorsque l'ancre 30 bascule sous l'action du balancier-spiral 2 sur l'extrémité opposée de l'ancre 30, l'énergie précédemment stockée est restituée au résonateur 20 à balancier-spiral 2, pendant que le système passe de P2 à P3, ce qui correspond au changement de piste, la masse polaire 3 venant en P3 sur la piste secondaire externe 43 EXT. Le même cycle recommence ensuite sur l'autre piste secondaire 43 EXT en passant de P3 à P4 et de P4 à P5 avec le retour en P5 sur la piste interne 43 INT.
  • Dans cette variante magnétique de ce premier mode de réalisation, la forme du potentiel d'interaction magnétique est de préférence telle que :
    • les rampes 45 de potentiel sont conçues de sorte que l'énergie fournie au résonateur 20 à balancier-spiral soit suffisante pour entretenir son mouvement ;
    • la hauteur des barrières 46 de potentiel est suffisante pour bloquer le système.
  • Le frottement du mobile 40 permet l'immobilisation du système au pied de la barrière 46 de potentiel.
  • Pour conserver la sécurité de l'ancre en cas de choc, il est avantageux de disposer des butées mécaniques juste après chaque barrière 46 de potentiel magnétique (ces butées mécaniques ne sont pas représentées sur la figure 1 pour éviter sa surcharge). En fonctionnement normal, l'ancre 30 magnétique ne touche jamais ces butées mécaniques. Toutefois, en cas de choc suffisamment grand pour que le système vienne à traverser une barrière 46 de potentiel, ces butées mécaniques permettent de le bloquer pour ne pas perdre de pas.
  • Dans cette variante, la quantité d'énergie transmise au résonateur 20 à balancier-spiral est toujours quasiment la même, à condition que les barrières 46 de potentiel soient beaucoup plus raides que les rampes 45 d'énergie. Cette condition est facile à réaliser en pratique.
  • Le basculement de l'ancre 30 est découplé du mouvement du mobile d'échappement 40. Plus précisément, lorsque l'ancre 30 bascule, l'énergie potentielle peut être restituée au résonateur 20 à balancier-spiral 2, même si le mobile d'échappement 40 reste immobile. La rapidité de l'impulsion n'est ainsi pas limitée par l'inertie du mobile d'échappement 40.
  • Plusieurs solutions sont envisageables pour créer le potentiel proposé dans la figure 1. La structure magnétisée placée sur la roue d'échappement peut être, non limitativement, réalisée avec :
    • une couche magnétisée d'épaisseur variable ;
    • une couche magnétisée d'épaisseur constante mais de magnétisation variable ;
    • une densité surfacique variable de micro-aimants ;
    • une couche ferromagnétique d'épaisseur variable (dans ce cas la force est toujours attractive) ;
    • une couche ferromagnétique de profil ou/et de forme variable (emboutissage, découpage) ;
    • une couche ferromagnétique avec une densité surfacique de trous variable,
    ces agencements étant cumulables entre eux.
  • Le deuxième mode de réalisation est illustré par les figures 4 à 10. Ce deuxième mode de réalisation fonctionne de la même façon que le premier mode de réalisation. Les principales différences sont les suivantes :
    • il y a une seule piste 50 magnétisée sur le mobile d'échappement 40, comportant une succession d'aimants 49, mais l'ancre 30 porte deux structures magnétisées 3A, 3B, de sorte à reproduire le même potentiel d'interaction avec rampes et barrières alternées que celui présenté dans les figures 2 et 3 du premier mode ;
    • les aimants 49 de la roue d'échappement 400 sont pris en sandwich entre les aimants 31 et 32 de l'ancre 30, de sorte que les forces de répulsion axiales se compensent. Il ne reste alors plus que la composante de force dans le plan du mobile d'échappement 40 qui est utile au fonctionnement de l'échappement.
  • Avantageusement, une masse polaire 3, au lieu d'être exactement au-dessus d'une piste 50 (ou 43 selon le cas), est légèrement décalée selon une direction transversale DT par rapport à l'axe de la piste concernée, de façon à ce que l'interaction entre le mobile 40 et la masse polaire 3 produise en permanence une petite composante transverse de force, qui maintient l'arrêtoir 30 en position. La valeur du décalage est alors ajustée pour que la force produite maintienne de façon stable la masse polaire 3 dans chacune de ses positions extrêmes, en première demi-course et deuxième demi-course.
  • La figure 4 illustre ainsi un dispositif régulateur constitué d'un résonateur 20 à balancier-spiral 2, une ancre magnétique 30, et une roue d'échappement 40 magnétisée. Le mobile d'échappement 40 est muni d'une piste d'aimants 49 d'intensité variable qui interagissent avec les deux aimants 31 et 32 de l'ancre 30. Cette figure 4 montre la disposition d'aimants 49 de magnétisation croissante (notamment par des dimensions croissantes) de façon à former des rampes 45 (de P11 à P18) avant l'arrêt sur des barrières 46 formées par exemple de plusieurs aimants P20.
  • Une majeure partie du tirage est produite par un ajustement fin de la position transverse de la masse polaire 3 par rapport à la piste 50 avec laquelle elle interagit. Plus précisément, lorsque l'arrêtoir 30 est positionné à l'extrémité de la première demi-course (PDC) ou à l'extrémité de la deuxième demi-course (DDC), la position transverse de la masse polaire 3 qui interagit avec la piste 50 est ajustée (par un petit décalage transverse) de sorte à ce que la masse polaire 3 subisse une force transverse, dite force de tirage, suffisamment grande pour maintenir la masse polaire 3 dans sa position extrême de façon stable. Au moment où le résonateur 20 déclenche le basculement de l'arrêtoir 30, il doit vaincre cette force de tirage avant que la force magnétique ou électrostatique ne prenne le relais pour entraîner l'arrêtoir 30 dans la suite du basculement, et ainsi transmettre l'énergie potentielle accumulée au résonateur 20. L'effet d'un tirage obtenu par un décalage transversal de 2mm est illustré sur la figure 28, sur la réalisation particulière des figures 26 et 27.
  • On comprend que, sur un mécanisme d'échappement selon l'invention, le résonateur 20, notamment le balancier 2, donne l'impulsion initiale à l'arrêtoir 30. Mais, dès que le tirage est vaincu, les forces d'origine magnétique ou électrostatiques prennent le relais et font leur travail pour mouvoir selon une direction transversale DT la masse polaire 3 jusqu'à sa nouvelle position.
  • Avantageusement au moins un aimant 48 en retrait (ici placé sur un rayon supérieur de positionnement), par rapport au centrage d'une rampe 45 le long d'un rayon donné, renforce l'effet de tirage juste avant la barrière 46. L'effet des rampes 45 et barrières 46 est similaire à celui du premier mode, la répartition relative est similaire à la figure 2.
  • La figure 5 montre le détail de leur agencement des aimants 31 et 32 de l'ancre par rapport aux aimants 49 du mobile d'échappement 40.
  • La figure 26 illustre une réalisation similaire à celle de la figure 4, mais comportant deux rangées concentriques d'aimants de magnétisation croissante, ceux de la piste intérieure 43INT étant polarisés vers le haut, et ceux de la piste extérieure 43 EXT étant polarisés vers le bas. Les masses polaires 3 ont les configurations inverses : une masse polaire supérieure intérieure 3SINT est polarisée vers le bas, une masse polaire supérieure extérieure 3SEXT est polarisée vers le haut, une masse polaire inférieure intérieure 3IINT est polarisée vers le bas, et une masse polaire inférieure extérieure 3IEXT est polarisée vers le haut. La figure 27 illustre schématiquement l'orientation des lignes de champ dans une section transversale correspondant à cette réalisation, où les lignes de champ sont sensiblement normales au plan PP de la roue 40 dans les aimants, et sensiblement parallèles à ce plan dans chaque entrefer 5. Le potentiel qui en résulte, visible sur la figure 28, possède des rampes et des barrières alternées.
  • Dans ce deuxième mode, l'ancre 30 est basculante. De préférence, à un instant donné, au plus une seule masse polaire 3A ou 3B est en regard avec la surface 4 d'aimants 49 du mobile d'échappement 40.
    • La figure 6 montre comment renforcer la concentration du champ dans un entrefer 5, dans un exemple magnétique :
    • en A des aimants de polarités opposées sont disposés tête-bêche de chaque côté de l'entrefer 5, lequel ne voit localement que des polarités opposées les unes aux autres ;
    • en B l'efficacité d'au moins un aimant, ici l'aimant supérieur, est renforcée par au moins un aimant disposé selon une direction transversale DT à son champ ;
    • en C, deux entrefers de part et d'autre d'un aimant (comme aussi en figure 5) sont bordés de part et d'autre par deux assemblages d'aimants selon l'exemple B ci-dessus ;
    • en D, le champ est circulant par une barre de couplage ferromagnétique ou magnétisée, qui joint les aimants transversaux, dans la continuité de leur sens d'aimantation dans sa variante magnétisée.
  • Toujours dans cet exemple purement magnétique, on peut envisager plusieurs façons de créer l'interaction magnétique entre un arrêtoir 30 (notamment ancre) et un mobile d'échappement 40 (notamment roue d'échappement). Quatre configurations possibles sont présentées aux figures 7 à 10, et ne sont nullement limitatives. Les configurations des figures 9 et 10 ont l'avantage de mieux confiner les lignes de champ magnétique, ce qui est important pour réduire la sensibilité du système aux champs magnétiques extérieurs.
  • Selon la figure 7, une structure magnétisée d'épaisseur ou intensité variable déposée sur une roue d'échappement vient en interaction avec un champ magnétique créé par un circuit magnétique solidaire d'une ancre. L'interaction peut être répulsive ou attractive.
  • En figure 8, une structure ferromagnétique d'épaisseur variable (ou avec un entrefer variable) vient en interaction avec un champ magnétique créé par un circuit magnétique solidaire d'une ancre.
  • La figure 9 montre deux structures magnétisées d'épaisseur ou intensité variable déposées sur deux faces d'une roue d'échappement, en interaction avec un champ magnétique créé par un aimant solidaire d'une ancre, ou avec un circuit magnétique sans source de champ solidaire d'une ancre. L'interaction peut être répulsive ou attractive.
  • La figure 10 illustre deux structures ferromagnétiques d'épaisseur variable (ou avec un entrefer variable) sur deux faces d'une roue d'échappement, qui sont en interaction avec un champ magnétique créé par un aimant ou un circuit magnétique avec source de champ solidaire d'une ancre.
  • Du côté opposé à la masse polaire 3, ou aux masses polaires 3 si l'arrêtoir en comporte plusieurs, l'arrêtoir 30, notamment une ancre, comporte des moyens de coopération avec le résonateur 20 (notamment un balancier-spiral 2), qui interagissent avec ce résonateur pour déclencher le mouvement transversal de la masse polaire 3. De façon connue, ces moyens de coopération peuvent utiliser un contact mécanique, tels qu'une fourchette d'ancre coopérant avec une cheville de balancier. L'extrapolation de la coopération arrêtoir-mobile d'échappement proposée par l'invention est envisageable à la coopération résonateur-arrêtoir, ce qui permet alors d'utiliser là aussi une force d'origine magnétique ou électrostatique dans le but de minimiser encore les frottements. Un avantage supplémentaire du fait de la suppression d'une cheville de plateau est d'autoriser des coopérations sur des plages angulaires supérieures à 360°, par exemple avec une piste en hélice.
  • Dans une variante particulière de l'invention, la masse polaire 3 est symétrique selon la direction transversale.
  • Dans un exemple de réalisation sur la base du deuxième mode de réalisation de la figure 4, des résultats satisfaisants sont obtenus avec les valeurs suivantes :
    • Inertie de la roue d'échappement : 2*10-5 kg*m2
    • Couple d'entraînement : 1*10-2 Nm
    • Inertie du balancier : 2*10-4 kg*m2
    • Constante élastique du spiral : 7*10-4 Nm
    • Fréquence du résonateur : 0.3 Hz
    • Facteur de qualité du résonateur : 20
    • Hauteur de la rampe d'énergie : 2*10-3 Joule
    • Hauteur de la barrière d'énergie : 8*10-3 Joule
    • Aimants :
      • ■ Les masses polaires de l'ancre sont constituées de quatre aimants rectangulaire de dimensions 5mm x 5mm x 2.5mm en NdFeB (néodyme-fer-bore).
      • ■ La piste est constituée de rampes et de barrières comme suit. Les rampes de champ sont produites par des aimants cylindriques en NdFeB de diamètre 1.5mm et de hauteur variant entre 0 et 4mm. Chaque barrière est constituée de quatre aimants cylindriques en NdFeB de diamètre 2mm et hauteur 4mm.
  • En résumé, le potentiel d'interaction magnétique, ou/et électrostatique, composé de rampes alternées avec des barrières fournit un comportement aussi proche que possible de l'échappement à ancre Suisse traditionnel. L'optimisation de la forme des gradients de potentiel permet l'augmentation du rendement de l'échappement.
  • Le remplacement de la force de contact mécanique par une force sans contact d'origine magnétique ou électrostatique, selon l'invention, procure donc de nombreux avantages, car il permet de:
    • éliminer les frottements et par conséquent réduire l'usure, donc augmenter la durée de vie ;
    • augmenter le rendement de l'échappement, et par conséquent augmenter la réserve de marche ;
    • concevoir la transition entre les rampes et les barrières de potentiel afin d'obtenir une dépendance particulière désirée entre le couple d'entraînement et l'énergie transmise au résonateur, En particulier et de façon avantageuse, on peut rendre la quantité d'énergie transmise à l'oscillateur à chaque alternance quasiment constante et indépendante du couple d'entraînement ;
    • découpler le basculement de l'arrêtoir du mouvement du mobile d'échappement de sorte que la rapidité de l'impulsion ne soit pas limitée par l'inertie du mobile d'échappement.

Claims (43)

  1. Mécanisme d'échappement (10) d'horlogerie comportant un arrêtoir (30) entre un résonateur (20) et un mobile d'échappement (40), caractérisé en ce que ledit mobile d'échappement (40) comporte au moins une piste (50) magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement, avec une période de défilement (PD) selon laquelle ses caractéristiques magnétiques, respectivement électrostatiques, se répètent, ledit arrêtoir (30) comportant au moins une masse polaire (3) magnétisée ou ferromagnétique, respectivement électrisée ou conductrice électrostatiquement, ladite masse polaire (3) étant mobile selon une direction transversale (DT) par rapport à la direction de défilement (DD) d'au moins un élément d'une surface (4) de ladite piste (50), et au moins ladite masse polaire (3) ou ladite piste (50) créant un champ magnétique ou électrostatique dans un entrefer (5) entre ladite au moins une masse polaire (3) et ladite au moins une surface (4), et encore caractérisé en ce que ladite masse polaire (3) est opposée à une barrière (46) de champ magnétique ou électrostatique sur ladite piste (50) juste avant chaque mouvement transversal dudit arrêtoir (30) commandé par l'action périodique dudit résonateur (20).
  2. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que chaque dite piste (50) comporte, avant chaque dite barrière (46), une rampe (45) interagissant de façon croissante avec une dite masse polaire (3) avec un champ magnétique, respectivement électrostatique, dont l'intensité varie de façon à produire une énergie potentielle croissante, ladite rampe (45) prélevant de l'énergie audit mobile d'échappement (40).
  3. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que ledit mobile d'échappement (40) comporte, entre deux dites rampes (45) successives d'une même dite piste (50) ou de deux dites pistes (50) voisines selon ladite direction de défilement (DD), une dite barrière (46) de potentiel de champ magnétique, respectivement électrostatique, pour déclencher un arrêt momentané dudit mobile d'échappement (40) préalable à un basculement dudit arrêtoir (30) sous l'action périodique dudit oscillateur (20).
  4. Mécanisme d'échappement (10) d'horlogerie selon l'une des revendications 1 à 3, caractérisé en ce que ledit échappement (10) accumule de l'énergie potentielle reçue dudit mobile (40) pendant chaque moitié de ladite période (PD), et la restitue audit résonateur (20) entre lesdites moitiés de période lors dudit mouvement transversal dudit arrêtoir (30) commandé par l'action périodique dudit résonateur (20), où ladite masse polaire (3) passe d'une première demi-course (PDC) transversale relative par rapport audit mobile d'échappement (40) à une deuxième demi-course (DDC) transversale relative par rapport audit mobile d'échappement (40), ou inversement.
  5. Mécanisme d'échappement (10) d'horlogerie selon la revendication précédente, caractérisé en ce que au moins ladite masse polaire (3) ou ladite piste (50) crée ledit champ magnétique ou électrostatique d'intensité plus grande dans ladite première demi-course (PDC) que dans ladite deuxième demi-course (DDC) pendant une première moitié de période, et inversement pendant une deuxième moitié de période.
  6. Mécanisme d'échappement (10) d'horlogerie selon l'une des revendications 4 ou 5, caractérisé en ce que ledit résonateur (20) comporte au moins un oscillateur (2) à mouvement périodique, en ce que ledit mobile d'échappement (40) est alimenté par une source d'énergie, en ce que ladite au moins une piste (50) est animée d'un mouvement de défilement selon une trajectoire de défilement (TD) et comporte des caractéristiques physiques reproduites selon ladite période de défilement (PD), et en ce que ladite masse polaire (3) est mobile selon une direction transversale DT par rapport à la direction de défilement (DD) de ladite piste (50) selon une trajectoire transversale (TT) sensiblement orthogonale à ladite trajectoire de défilement (TD) et effectuant ladite première demi-course (PDC) d'un premier côté d'une position médiane (PM) fixe et ladite deuxième demi-course (DDC) d'un deuxième côté de ladite position médiane (PM), et où, dans ledit entrefer (5), ladite piste (50) ou/et ladite masse polaire (3) crée ledit champ magnétique ou électrostatique dont l'intensité est plus grande dans ladite première demi-course (PDC) que dans ladite deuxième demi-course (DDC) pendant une première moitié de ladite période de défilement (PD), et dont l'intensité est plus grande dans ladite deuxième demi-course (DDC) que dans ladite première demi-course (PDC) pendant une deuxième moitié de ladite période de défilement (PD), et en ce que ledit mécanisme d'échappement (10) accumule de l'énergie potentielle transmise de ladite source d'énergie par l'intermédiaire dudit mobile d'échappement (40) pendant chaque dite première moitié ou deuxième moitié de ladite période de défilement (PD), et en ce que ledit mécanisme d'échappement (10) restitue cette énergie audit oscillateur (2) lors dudit mouvement transversal dudit arrêtoir (30) commandé par ledit résonateur (20) entre lesdites première moitié et deuxième moitié de ladite période de défilement (PD) lors duquel mouvement transversal ladite masse polaire (3) passe de ladite première demi-course (PDC) à ladite deuxième demi-course (DDC) ou inversement sous l'effet de l'action périodique dudit oscillateur (2) sur ledit arrêtoir (30), ladite masse polaire (3) étant alors face à une dite barrière (46) de champ magnétique ou électrostatique au niveau de la partie de ladite piste (50) face à laquelle elle évolue juste avant ledit mouvement transversal.
  7. Mécanisme d'échappement (10) selon l'une des revendications 4 à 6, caractérisé en ce que les caractéristiques dudit champ magnétique ou électrostatique sont alternées entre ladite première demi-course (PDC) et ladite deuxième demi-course (DDC) avec un déphasage d'une moitié de ladite période de défilement (PD) de ladite piste (50) par rapport à ladite masse polaire (3).
  8. Mécanisme d'échappement (10) selon l'une des revendications 4 à 7, caractérisé en ce que au moins l'un des deux composants antagonistes, constitués par ladite masse polaire (3) et ladite piste (50) porteuse de ladite surface (4) qui lui fait face au niveau dudit entrefer (5) au moins sur une partie de leur course relative, comporte des moyens actifs magnétiques, respectivement électrostatiques, qui sont agencés pour créer ledit champ magnétique, respectivement électrostatique, dont la composante selon une direction axiale (DA) qui est orthogonale à la fois à une direction transversale (DT) sensiblement parallèle à la trajectoire transversale (TT) de ladite masse polaire (3), et à une direction de défilement (DF) tangente à ladite trajectoire de défilement de ladite piste (50) au niveau d'une position médiane (PM) entre ladite première demi-course (PDC) et de ladite deuxième demi-course (DDC), est supérieure à sa composante dans un plan (PP) perpendiculaire à ladite direction axiale (DA), au niveau de leur interface dans un entrefer (5) entre ladite masse polaire (3) et ladite surface (4) qui lui fait face.
  9. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que chacun des deux composants antagonistes, constitués par ladite masse polaire (3) et ladite piste (50) porteuse de ladite surface (4) qui lui fait face au moins sur une partie de leur course relative, comporte des moyens actifs magnétiques, respectivement électrostatiques, qui sont agencés pour créer un champ magnétique, respectivement électrostatique, de direction sensiblement parallèle à ladite direction axiale (DA), au niveau de leur interface dans ledit entrefer (5) entre ladite masse polaire (3) et ladite surface (4) qui lui fait face.
  10. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit échappement (10) accumule de l'énergie potentielle reçue dudit mobile (40) pendant chaque moitié de ladite période (PD), et la restitue audit résonateur (20) entre lesdites moitiés de période lors dudit mouvement transversal dudit arrêtoir (30) commandé par l'action périodique dudit résonateur (20), où ladite masse polaire (3) passe d'une première demi-course (PDC) transversale relative de ladite masse polaire (3) par rapport audit mobile d'échappement (40) à une deuxième demi-course (DDC) transversale relative de ladite masse polaire (3) par rapport audit mobile d'échappement (40), ou inversement, et en ce que ledit champ magnétique, respectivement électrostatique, est d'intensité variable et non nulle dans à la fois dans ladite première demi-course (PDC) et ladite deuxième demi-course (DDC).
  11. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit échappement (10) accumule de l'énergie potentielle reçue dudit mobile (40) pendant chaque moitié de ladite période (PD), et la restitue audit résonateur (20) entre lesdites moitiés de période lors dudit mouvement transversal dudit arrêtoir (30) commandé par l'action périodique dudit résonateur (20), où ladite masse polaire (3) passe d'une première demi-course (PDC) transversale relative de ladite masse polaire (3) par rapport audit mobile d'échappement (40) à une deuxième demi-course (DDC) transversale relative de ladite masse polaire (3) par rapport audit mobile d'échappement (40), ou inversement, et caractérisé en ce que la composante dudit champ magnétique, respectivement électrostatique, selon une direction axiale (DA) qui est orthogonale à la fois à une direction transversale (DT) sensiblement parallèle à la trajectoire transversale (TT) de ladite masse polaire (3), et à une direction de défilement (DF) de ladite piste (50), est de même sens sur ladite première demi-course (PDC) et sur ladite deuxième demi-course (DDC).
  12. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que chaque dite masse polaire (3) que porte ledit arrêtoir (30) est magnétisée, respectivement électrisée, de façon permanente, et génère un champ magnétique, respectivement électrostatique, constant, et en ce que chaque dite surface (4) coopérant avec chaque dite masse polaire (3) définit avec la dite masse polaire (3) concernée un entrefer (5) dans lequel le champ magnétique, respectivement électrostatique, est variable selon l'avance dudit mobile d'échappement (40) sur sa trajectoire et est variable selon la position angulaire relative de ladite masse polaire (3) concernée par rapport audit mobile d'échappement (40) et qui est liée au débattement angulaire dudit arrêtoir (30).
  13. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que chaque dite masse polaire (3) que porte ledit arrêtoir (30) est ferromagnétique, respectivement conductrice électrostatiquement, de façon permanente, et en ce que chaque dite surface (4) coopérant avec chaque dite masse polaire (3) définit avec la dite masse polaire (3) concernée un entrefer (5) dans lequel le champ magnétique, respectivement électrostatique, est variable selon l'avance dudit mobile d'échappement (40) sur sa trajectoire et est variable selon la position angulaire relative de ladite masse polaire (3) concernée par rapport audit mobile d'échappement (40) et qui est liée au débattement angulaire dudit arrêtoir (30).
  14. Mécanisme d'échappement (10) selon la revendication 12 ou 13, caractérisé en ce que chaque dite piste (50) porteuse de ladite surface (4) est magnétisée, respectivement électrisée, de façon permanente et uniforme, et génère un champ magnétique, respectivement électrostatique, constant à sa surface tournée vers ladite masse polaire (3) concernée, et comporte un relief agencé pour générer une hauteur d'entrefer variable dans ledit entrefer (5), laquelle hauteur varie selon l'avance dudit mobile d'échappement (40) sur sa trajectoire, et varie selon la position angulaire relative de ladite masse polaire (3) concernée par rapport audit mobile d'échappement (40).
  15. Mécanisme d'échappement (10) selon la revendication 12, caractérisé en ce que chaque dite piste (50) porteuse de ladite surface (4) est ferromagnétique, respectivement conductrice électrostatiquement, de façon permanente, et comporte un relief agencé pour générer une hauteur d'entrefer dans ledit entrefer (5), laquelle hauteur d'entrefer est variable selon l'avance dudit mobile d'échappement (40) sur sa trajectoire, et est variable selon la position angulaire relative de ladite masse polaire (3) concernée par rapport audit mobile d'échappement (40).
  16. Mécanisme d'échappement (10) selon la revendication 12 ou 13, caractérisé en ce que chaque dite piste (50) porteuse de ladite surface (4) est magnétisée, respectivement électrisée, de façon permanente et variable selon la position angulaire par rapport une direction transversale (DT) sensiblement parallèle à ladite trajectoire transversale (TT), sur ledit mobile d'échappement (40), et génère un champ magnétique, respectivement électrostatique, qui est variable selon l'avance dudit mobile d'échappement (40) sur sa trajectoire, et est variable selon la position angulaire relative de ladite masse polaire (3) concernée par rapport audit mobile d'échappement (40), au niveau de sa surface tournée vers ladite masse polaire (3) concernée.
  17. Mécanisme d'échappement (10) selon la revendication 12, caractérisé en ce que chaque dite piste (50) porteuse de ladite surface (4) est ferromagnétique, respectivement conductrice électrostatiquement, de façon permanente et variable selon la position angulaire par rapport à une direction transversale (DT) sensiblement parallèle à ladite trajectoire transversale (TT), sur ledit mobile d'échappement (40), de façon à faire varier la force magnétique, respectivement électrostatique, exercée entre ledit arrêtoir (3) et ledit mobile d'échappement (40) sous l'effet de leur mouvement relatif, laquelle force est variable selon l'avance dudit mobile d'échappement (40) sur sa trajectoire et est variable selon la position angulaire relative de ladite masse polaire (3) concernée par rapport audit mobile d'échappement (40), au niveau de sa surface tournée vers ladite masse polaire (3) concernée.
  18. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que chaque dite masse polaire (3) circule entre deux dites surfaces (4) dudit mobile d'échappement (40), et en ce qu'un dit champ magnétique, respectivement électrostatique, s'exerce sur chaque côté de ladite masse polaire (3) selon une direction axiale (DA) qui est orthogonale à la fois à une direction transversale (DT) sensiblement parallèle à la trajectoire transversale (TT) de ladite masse polaire (3), et à une direction de défilement (DF) de ladite piste (50), de façon symétrique de part et d'autre de ladite masse polaire (3) de façon à exercer des efforts égaux et opposés sur ladite masse polaire (3) dans ladite direction axiale (DA).
  19. Mécanisme d'échappement (10) selon l'une des revendications 1 à 17, caractérisé en ce que chaque dite surface (4) dudit mobile d'échappement (40) circule entre deux surfaces (31 ; 32) de chaque dite masse polaire (3), et en ce qu'un dit champ magnétique, respectivement électrostatique, s'exerce sur chaque côté de ladite surface (4) selon une direction axiale (DA) qui est orthogonale à la fois à une direction transversale (DT) sensiblement parallèle à la trajectoire transversale (TT) de ladite masse polaire (3), et à une direction de défilement (DF) de ladite piste (50),de façon symétrique de part et d'autre de ladite surface (4) de façon à exercer des efforts égaux et opposés sur ladite surface (4) dans ladite direction axiale (DA).
  20. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit mobile d'échappement (40) comporte, sur l'une de ses deux surfaces latérales (41, 42), une pluralité de pistes secondaires (43) concentriques les unes aux autres par rapport à une direction axiale (DA) qui est orthogonale à la fois à une direction transversale (DT) sensiblement parallèle à la trajectoire transversale (TT) de ladite masse polaire (3), et à une direction de défilement (DF) de ladite piste (50), chaque dite piste secondaire (43) comportant une succession angulaire de zones primaires élémentaires (44), chaque dite zone primaire (44) présentant un comportement magnétique, respectivement électrostatique, qui est différent, d'une part de celui de chaque autre zone primaire (44) adjacente sur la dite piste secondaire (43) à laquelle elle appartient, et d'autre part de celui de chaque autre zone primaire (44) qui lui est adjacente et qui est située sur une autre dite piste secondaire (43) adjacente à la sienne.
  21. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que ladite succession desdites zones primaires (44) sur chaque dite piste secondaire (43) donnée est périodique selon une période spatiale (T) constituant un sous-multiple entier d'une révolution dudit mobile d'échappement (40).
  22. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que chaque dite piste secondaire (43) comporte, sur chaque dite période spatiale, une rampe (45) comportant une succession monotone de dites zones primaires (44) interagissant de façon croissante avec une dite masse polaire (3) avec un champ magnétique, respectivement électrostatique, dont l'intensité varie de façon à produire une énergie potentielle croissante depuis une zone d'interaction minimale (4MIN) vers une zone d'interaction maximale (4MAX), ladite rampe (45) prélevant de l'énergie audit mobile d'échappement (40).
  23. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que ledit mobile d'échappement (40) comporte, entre deux dites rampes (45) successives, une dite barrière (46) de potentiel de champ magnétique, respectivement électrostatique, pour déclencher un arrêt momentané dudit mobile d'échappement (40) préalable à un basculement dudit arrêtoir (30) sous l'action périodique dudit oscillateur (20).
  24. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que chaque dite barrière (46) de potentiel est plus raide que chaque dite rampe (45).
  25. Mécanisme d'échappement (10) selon la revendication 23 ou 24, caractérisé en ce que ledit mobile d'échappement (40) comporte, en fin de chaque dite rampe (45) et juste avant chaque dite barrière (46), une variation radiale de répartition de champ magnétique ou électrostatique quand ladite surface (4) est magnétisée, respectivement électrisée, ou une variation de profil quand ladite surface (4) est ferromagnétique, respectivement conductrice électrostatiquement, de façon à provoquer un tirage sur ladite masse polaire (3).
  26. Mécanisme d'échappement (10) selon l'une des revendications 23 à 25, caractérisé en ce que ledit mobile d'échappement (40) comporte, après chaque dite barrière (46) de potentiel de champ magnétique ou électrostatique, une butée mécanique anti-choc.
  27. Mécanisme d'échappement (10) selon l'une des revendications 20 à 25, caractérisé en ce que deux dites pistes secondaires (43) adjacentes comportent l'une avec l'autre une alternance de dites zones d'interaction minimale (4MIN) et de dites zones d'interaction maximale (4MAX) avec un déphasage angulaire correspondant à la moitié de ladite période spatiale (T).
  28. Mécanisme d'échappement (10) selon l'une des revendications 22 à 27, caractérisé en ce que ledit arrêtoir (30) comporte une pluralité de dites masses polaires (3) agencées pour coopérer simultanément avec des dites pistes secondaires (43) distinctes.
  29. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que ledit arrêtoir (30) comporte un peigne s'étendant parallèlement à ladite surface (4) dudit mobile d'échappement (40) et comportant des dites masses polaires (3) disposées côte à côte.
  30. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit arrêtoir (30) est pivotant autour d'un pivot (35) réel ou virtuel et comporte une dite masse polaire (3) unique agencée pour coopérer avec des zones primaires (44) que comportent des dites surfaces (4) situées sur des diamètres différents dudit mobile d'échappement (40) avec lesquelles ladite masse polaire (3) a une interaction variable lors de la révolution dudit mobile d'échappement (40), lesdites zones primaires (44) étant disposées en alternance sur la périphérie dudit mobile d'échappement (40) pour contraindre ladite masse polaire (3) à un mouvement radial, par rapport à une direction axiale (DA) qui est orthogonale à la fois à une direction transversale (DT) sensiblement parallèle à la trajectoire transversale (TT) de ladite masse polaire (3), et à une direction de défilement (DF) de ladite piste (50), dudit mobile d'échappement (40) lors de la recherche de position d'équilibre de ladite masse polaire (3).
  31. Mécanisme d'échappement (10) selon l'une des revendications 1 à 29, caractérisé en ce que ledit arrêtoir (30) est pivotant autour d'un pivot (35) réel ou virtuel et comporte une pluralité de dites masses polaires (3) agencées pour coopérer chacune avec des zones primaires (44) que comporte au moins une dite surfaces (4) située sur une plage dudit mobile d'échappement (40) avec lesquelles chaque dite masse polaire (3) a une interaction variable lors de la révolution dudit mobile d'échappement (40), lesdites zones primaires (44) étant disposées en alternance sur la périphérie dudit mobile d'échappement (40) pour contraindre ladite masse polaire (3) à un mouvement radial par rapport à une direction axiale (DA) qui est orthogonale à la fois à une direction transversale (DT) sensiblement parallèle à la trajectoire transversale (TT) de ladite masse polaire (3), et à une direction de défilement (DF) de ladite piste (50), lors de la recherche de position d'équilibre de ladite masse polaire (3).
  32. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que à chaque instant au moins une dite masse polaire (3) est en interaction avec au moins une dite surface (4) dudit mobile d'échappement (40).
  33. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que au moins une dite masse polaire (3) est légèrement décalée selon une direction transversale (DT) par rapport à l'axe de la dite piste (50) face à laquelle elle évolue, de façon à ce que l'interaction entre ledit mobile (40) et ladite masse polaire (3) produise en permanence une petite composante transverse de force, qui maintient ledit arrêtoir (30) en position., la valeur du décalage étant ajustée pour que la force produite maintienne de façon stable ladite masse polaire (3) dans chacune de ses positions extrêmes.
  34. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit mobile d'échappement (40) est une roue d'échappement (400).
  35. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit arrêtoir (30) coopère, de part et d'autre, avec un dit mobile d'échappement (40) constitué, d'une part par une première roue d'échappement (401) et d'autre part par une deuxième roue d'échappement (402).
  36. Mécanisme d'échappement (10) selon la revendication précédente, caractérisé en ce que lesdites première (401) et deuxième (402) roues d'échappement pivotent de façon solidaire.
  37. Mécanisme d'échappement (10) selon la revendication 35, caractérisé en ce que lesdites première (401) et deuxième (402) roues d'échappement pivotent indépendamment l'une de l'autre.
  38. Mécanisme d'échappement (10) selon l'une des revendications 35 à 37, caractérisé en ce que lesdites première (401) et deuxième (402) roues d'échappement sont coaxiales.
  39. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit mobile d'échappement (40) comporte au moins une surface cylindrique dont l'axe de pivotement (D) est parallèle à une direction transversale (DT) sensiblement parallèle à ladite trajectoire transversale (TT), et en ce que ladite au moins une masse polaire (3) dudit arrêtoir (30) est mobile parallèlement audit axe de pivotement (D).
  40. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ladite surface (4) comporte une couche magnétisée d'épaisseur variable, ou respectivement une couche électrisée d'épaisseur variable, ou une couche magnétisée d'épaisseur constante mais de magnétisation variable, ou respectivement une couche électrisée d'épaisseur constante mais d'électrisation variable, ou une densité surfacique variable de micro-aimants, ou respectivement une densité surfacique variable d'électrets, ou une couche ferromagnétique d'épaisseur variable, ou une respectivement une couche conductrice électrostatiquement d'épaisseur variable, ou une couche ferromagnétique de forme variable, ou respectivement une couche conductrice électrostatiquement de forme variable, ou une couche ferromagnétique avec une densité surfacique de trous variable, ou respectivement une couche conductrice électrostatiquement avec une densité surfacique de trous variable.
  41. Mécanisme d'échappement (10) selon l'une des revendications précédentes, caractérisé en ce que ledit arrêtoir (30) est une ancre.
  42. Mouvement d'horlogerie (100) comportant au moins un mécanisme d'échappement (10) selon l'une des revendications précédentes.
  43. Pièce d'horlogerie (200) comportant au moins un mouvement (100) selon la revendication précédente ou/et comportant au moins un mécanisme d'échappement (10) selon l'une des revendications 1 à 41.
EP13199427.9A 2013-12-23 2013-12-23 Echappement optimisé Active EP2887157B1 (fr)

Priority Applications (54)

Application Number Priority Date Filing Date Title
EP13199427.9A EP2887157B1 (fr) 2013-12-23 2013-12-23 Echappement optimisé
CH01290/14A CH710025B1 (fr) 2013-12-23 2014-08-27 Mouvement horloger mécanique à échappement magnétique.
EP14182532.3A EP2990885B1 (fr) 2013-12-23 2014-08-27 Mouvement horloger mécanique à échappement magnétique
EP17174621.7A EP3299907A1 (fr) 2013-12-23 2014-08-27 Mouvement horloger mécanique à échappement magnétique
CH01365/14A CH709056A2 (fr) 2013-12-23 2014-09-09 Mécanisme de synchronisation d'horlogerie.
EP14184158.5A EP2889701B1 (fr) 2013-12-23 2014-09-09 Mécanisme de synchronisation d'horlogerie
CH01444/14A CH709058A2 (fr) 2013-12-23 2014-09-24 Mécanisme d'échappement à cylindre d'horlogerie sans contact.
EP14186261.5A EP2889704B1 (fr) 2013-12-23 2014-09-24 Mécanisme d'échappement à cylindre d'horlogerie sans contact
CH01445/14A CH709057B1 (fr) 2013-12-23 2014-09-24 Echappement magnétique ou électrostatique avec sécurité.
EP14186262.3A EP2894522B1 (fr) 2013-12-23 2014-09-24 Echappement optimisé avec sécurité
CH01449/14A CH709059B1 (fr) 2013-12-23 2014-09-25 Mécanisme d'horlogerie comportant une interaction entre deux composants par des moyens d'actionnement exerçant un effort sans contact.
CH01450/14A CH709061A2 (fr) 2013-12-23 2014-09-25 Mécanisme d'échappement naturel.
EP14186296.1A EP2911014A3 (fr) 2013-12-23 2014-09-25 Interaction entre deux composants d'horlogerie
EP14186297.9A EP2911015B1 (fr) 2013-12-23 2014-09-25 Echappement naturel
EP14186652.5A EP2891929B1 (fr) 2013-12-23 2014-09-26 Résonateur magnétique ou électrostatique
US14/560,433 US9292002B2 (en) 2013-12-23 2014-12-04 Optimized escapement
US15/106,433 US9746829B2 (en) 2013-12-23 2014-12-08 Contactless cylinder escapement mechanism for timepieces
RU2016130283A RU2629168C1 (ru) 2013-12-23 2014-12-08 Механизм синхронизации часов
JP2016542197A JP6236164B2 (ja) 2013-12-23 2014-12-08 タイムピース用の非接触シリンダー脱進機構
RU2016130266A RU2666451C2 (ru) 2013-12-23 2014-12-08 Бесконтактный цилиндрический спусковой механизм для часов
JP2016540025A JP6196736B2 (ja) 2013-12-23 2014-12-08 計時器用同期機構
CN201480070607.5A CN105849651B (zh) 2013-12-23 2014-12-08 钟表同步机构
PCT/EP2014/076936 WO2015096974A2 (fr) 2013-12-23 2014-12-08 Mecanisme de synchronisation d'horlogerie
US15/104,135 US9772604B2 (en) 2013-12-23 2014-12-08 Timepiece synchronization mechanism
PCT/EP2014/076930 WO2015096973A2 (fr) 2013-12-23 2014-12-08 Mecanisme d'echappement a cylindre d'horlogerie sans contact
CN201480070342.9A CN105849650B (zh) 2013-12-23 2014-12-08 用于钟表的非接触式圆柱擒纵机构
US15/028,599 US9927773B2 (en) 2013-12-23 2014-12-09 Natural escapement
JP2016533632A JP6130603B2 (ja) 2013-12-23 2014-12-09 自然脱進機
RU2016130276A RU2660530C2 (ru) 2013-12-23 2014-12-09 Естественный спусковой механизм
US15/106,946 US9665067B2 (en) 2013-12-23 2014-12-09 Optimised escapement with security means
JP2016541562A JP6196738B2 (ja) 2013-12-23 2014-12-09 安全手段を有する最適化された脱進機
PCT/EP2014/076958 WO2015096975A2 (fr) 2013-12-23 2014-12-09 Echappement optimise avec securite
JP2016541686A JP6166847B2 (ja) 2013-12-23 2014-12-09 磁気的及び/又は静電気的な共振器
PCT/EP2014/076991 WO2015096976A2 (fr) 2013-12-23 2014-12-09 Resonateur magnetique ou electrostatique
PCT/EP2014/077039 WO2015096979A2 (fr) 2013-12-23 2014-12-09 Echappement naturel
CN201480070592.2A CN105849653B (zh) 2013-12-23 2014-12-09 磁性和/或静电谐振器
US15/102,389 US9651920B2 (en) 2013-12-23 2014-12-09 Magnetic and/or electrostatic resonator
CN201480070616.4A CN105849652B (zh) 2013-12-23 2014-12-09 自然式擒纵机构
CN201480070489.8A CN106062643B (zh) 2013-12-23 2014-12-09 具有安全装置的优化擒纵机构
RU2016130281A RU2624713C1 (ru) 2013-12-23 2014-12-09 Магнитный и/или электростатический резонатор
PCT/EP2014/078518 WO2015097066A2 (fr) 2013-12-23 2014-12-18 Mouvement horloger mecanique a echappement magnetique
CN201480076238.0A CN106062644B (zh) 2013-12-23 2014-12-18 具有磁性擒纵机构的机械钟表机芯
RU2016130289A RU2648305C2 (ru) 2013-12-23 2014-12-18 Механический часовой механизм с магнитным спуском
JP2016542195A JP6285556B2 (ja) 2013-12-23 2014-12-18 磁気脱進機を有する機械式時計ムーブメント
US15/107,721 US9804570B2 (en) 2013-12-23 2014-12-18 Mechanical clock movement with magnetic escapement
JP2014257425A JP6027602B2 (ja) 2013-12-23 2014-12-19 最適化された脱進機
US15/109,066 US9715217B2 (en) 2013-12-23 2014-12-22 Device intended to control the angular speed of a train in a timepiece movement and including a magnetic escapement
EP14821180.8A EP3087435B1 (fr) 2013-12-23 2014-12-22 Dispositif regulateur de la vitesse angulaire d'un mobile dans un mouvement horloger comprenant un echappement magnetique
PCT/EP2014/079036 WO2015097172A2 (fr) 2013-12-23 2014-12-22 Dispositif regulateur de la vitesse angulaire d'un mobile dans un mouvement horloger comprenant un echappement magnetique
RU2014152039A RU2665845C2 (ru) 2013-12-23 2014-12-22 Оптимизированный спусковой механизм
CN201480076123.1A CN106030422B (zh) 2013-12-23 2014-12-22 用于调整包括磁性擒纵器的钟表机芯中的运动件的角频率的装置
CN201410815924.7A CN104730897B (zh) 2013-12-23 2014-12-23 优化的擒纵机构
HK15110061.6A HK1209495A1 (en) 2013-12-23 2015-10-14 Optimized escapement
US14/994,887 US20160209811A1 (en) 2013-12-23 2016-01-13 Optimized escapement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13199427.9A EP2887157B1 (fr) 2013-12-23 2013-12-23 Echappement optimisé

Publications (2)

Publication Number Publication Date
EP2887157A1 true EP2887157A1 (fr) 2015-06-24
EP2887157B1 EP2887157B1 (fr) 2018-02-07

Family

ID=49911314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13199427.9A Active EP2887157B1 (fr) 2013-12-23 2013-12-23 Echappement optimisé

Country Status (6)

Country Link
US (2) US9292002B2 (fr)
EP (1) EP2887157B1 (fr)
JP (1) JP6027602B2 (fr)
CN (1) CN104730897B (fr)
HK (1) HK1209495A1 (fr)
RU (1) RU2665845C2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128379A1 (fr) 2015-08-04 2017-02-08 The Swatch Group Research and Development Ltd. Echappement avec roue d'echappement avec rampes de champ et dispositif anti-retour
EP3182225A1 (fr) * 2015-12-18 2017-06-21 Montres Breguet S.A. Mécanisme séquenceur d'horlogerie à roue de passage à frottement réduit
EP3208667A1 (fr) 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Mobile d'echappement magnetique d'horlogerie
CN111290231A (zh) * 2018-12-07 2020-06-16 蒙特雷布勒盖股份有限公司 包括具有固定磁性轮的陀飞轮的钟表机芯
EP3757682A1 (fr) 2019-06-26 2020-12-30 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un echappement magnetique
EP3767397A1 (fr) 2019-07-19 2021-01-20 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un element tournant muni d'une structure aimantee ayant une configuration periodique
EP3757684B1 (fr) * 2019-06-26 2024-10-16 The Swatch Group Research and Development Ltd Mobile inertiel pour resonateur d'horlogerie avec dispositif d'interaction magnetique insensible au champ magnetique externe

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998801A1 (fr) * 2014-09-19 2016-03-23 The Swatch Group Research and Development Ltd. Echappement magnétique horloger et dispositif régulateur de la marche d'un mouvement horloger
CH710025B1 (fr) * 2013-12-23 2018-06-29 Eta Sa Mft Horlogere Suisse Mouvement horloger mécanique à échappement magnétique.
EP3198344B1 (fr) * 2014-09-25 2019-04-24 The Swatch Group Research and Development Ltd Interaction entre deux composants d'horlogerie
EP3179316B1 (fr) 2015-12-10 2021-09-15 Nivarox-FAR S.A. Echappement a cylindre sans contact
EP3182224B1 (fr) * 2015-12-18 2019-05-22 Montres Breguet S.A. Regulation de securite pour echappement d'horlogerie
EP3185083B1 (fr) * 2015-12-23 2018-11-14 Montres Breguet S.A. Mecanisme horloger mecanique avec un echappement a ancre
EP3217227B1 (fr) * 2016-03-11 2019-02-27 The Swatch Group Research and Development Ltd. Mecanisme regulateur d'horlogerie a echappement magnetique optimise
EP3579058B1 (fr) * 2018-06-07 2021-09-15 Montres Breguet S.A. Piece d'horlogerie comprenant un tourbillon
EP3882713B1 (fr) * 2020-03-18 2022-09-21 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un echappement muni d'un systeme magnetique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183426A (en) * 1962-02-14 1965-05-11 Cons Electronics Ind Magnetically coupled constant speed system
DE1935486U (de) * 1965-08-23 1966-03-24 Junghans Geb Ag Vorrichtung zur umwandlung der hin- und herbewegung eines biegeschwingers fuer zeithaltende geraete.
US3518464A (en) * 1967-12-30 1970-06-30 Hattori Tokeiten Kk Electromagnetic driving mechanism

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH444761A (fr) * 1965-12-10 1968-02-29 Ebauches Sa Dispositif magnétique d'entraînement pour l'horlogerie
CH538070A (de) * 1970-10-22 1973-07-31 Siemens Ag Anordnung zur Umwandlung einer hin- und hergehenden Bewegung eines ersten Apparateteiles in eine schrittweise Drehbewegung bestimmter Drehrichtung eines zweiten Apparateteiles
EP1517198A1 (fr) * 2003-09-22 2005-03-23 Eterna SA Roue d'échappement
EP1770452A1 (fr) * 2005-09-30 2007-04-04 Peter Baumberger Echappement à detente pour pièce d'horlogerie
EP2450756B1 (fr) * 2010-11-04 2015-01-07 Nivarox-FAR S.A. Dispositif anti-galop pour mécanisme d'échappement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183426A (en) * 1962-02-14 1965-05-11 Cons Electronics Ind Magnetically coupled constant speed system
DE1935486U (de) * 1965-08-23 1966-03-24 Junghans Geb Ag Vorrichtung zur umwandlung der hin- und herbewegung eines biegeschwingers fuer zeithaltende geraete.
US3518464A (en) * 1967-12-30 1970-06-30 Hattori Tokeiten Kk Electromagnetic driving mechanism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128379A1 (fr) 2015-08-04 2017-02-08 The Swatch Group Research and Development Ltd. Echappement avec roue d'echappement avec rampes de champ et dispositif anti-retour
US10054908B2 (en) 2015-08-04 2018-08-21 The Swatch Group Research And Development Ltd Escapement with escape wheel with field ramps and non-return
EP3182225A1 (fr) * 2015-12-18 2017-06-21 Montres Breguet S.A. Mécanisme séquenceur d'horlogerie à roue de passage à frottement réduit
US10558170B2 (en) 2015-12-18 2020-02-11 Montres Breguet S.A. Wheel with reduced mechanical friction for timepieces
EP3208667A1 (fr) 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Mobile d'echappement magnetique d'horlogerie
US10095187B2 (en) 2016-02-18 2018-10-09 The Swatch Group Research And Development Ltd Magnetic escape wheel set for timepieces
CN111290231A (zh) * 2018-12-07 2020-06-16 蒙特雷布勒盖股份有限公司 包括具有固定磁性轮的陀飞轮的钟表机芯
CN111290231B (zh) * 2018-12-07 2021-09-07 蒙特雷布勒盖股份有限公司 包括具有固定磁性轮的陀飞轮的钟表机芯
US11507022B2 (en) 2018-12-07 2022-11-22 Montres Breguet Sa Timepiece movement comprising a tourbillon with a fixed magnetic wheel
EP3757682A1 (fr) 2019-06-26 2020-12-30 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un echappement magnetique
EP3757684B1 (fr) * 2019-06-26 2024-10-16 The Swatch Group Research and Development Ltd Mobile inertiel pour resonateur d'horlogerie avec dispositif d'interaction magnetique insensible au champ magnetique externe
EP3767397A1 (fr) 2019-07-19 2021-01-20 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un element tournant muni d'une structure aimantee ayant une configuration periodique

Also Published As

Publication number Publication date
RU2014152039A (ru) 2016-07-10
RU2665845C2 (ru) 2018-09-10
RU2014152039A3 (fr) 2018-08-07
CN104730897A (zh) 2015-06-24
HK1209495A1 (en) 2016-04-01
US9292002B2 (en) 2016-03-22
US20160209811A1 (en) 2016-07-21
EP2887157B1 (fr) 2018-02-07
JP6027602B2 (ja) 2016-11-16
CN104730897B (zh) 2017-06-30
US20150177690A1 (en) 2015-06-25
JP2015121538A (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
EP2887157B1 (fr) Echappement optimisé
EP2911015B1 (fr) Echappement naturel
EP2282240B1 (fr) Module chronograph pour montre bracelet
US9927773B2 (en) Natural escapement
EP2487547B1 (fr) Régulateur de mobile horloger ou de mobile de sonnerie
EP3130966B1 (fr) Mouvement d'horlogerie mecanique muni d'un systeme de retroaction du mouvement
EP3087435B1 (fr) Dispositif regulateur de la vitesse angulaire d'un mobile dans un mouvement horloger comprenant un echappement magnetique
EP3191899B1 (fr) Echappement magnetique horloger et dispositif regulateur de la marche d'un mouvement horloger
EP2450759A1 (fr) Antichoc magnétique
CH705814B1 (fr) Echappement à ancre pour mouvement d'horlogerie.
EP3037894B1 (fr) Mécanisme et procédé de réglage d une vitesse dans un mouvement horloger
EP2889704B1 (fr) Mécanisme d'échappement à cylindre d'horlogerie sans contact
EP3185083B1 (fr) Mecanisme horloger mecanique avec un echappement a ancre
CH709019A2 (fr) Mécanisme d'échappement magnétique ou électrostatique.
WO2016041772A1 (fr) Crantage sans contact
WO2015004336A2 (fr) Echappement pour pièce d'horlogerie avec tourbillon sans cage
CH711965A2 (fr) Mouvement horloger mécanique avec un échappement à ancre.
CH707990A1 (fr) Mouvement de montre mécanique.
EP3757684B1 (fr) Mobile inertiel pour resonateur d'horlogerie avec dispositif d'interaction magnetique insensible au champ magnetique externe
CH710128A2 (fr) Mécanisme d'horlogerie comportant un crantage sans contact entre deux composants.
EP3882711A1 (fr) Mouvement horloger comprenant un echappement muni d'un systeme magnetique
CH717941A2 (fr) Micro-actionneur à solénoïde à rétraction magnétique.
CH710132A2 (fr) Echappement magnétique horloger et dispositif régulateur de la marche d'un mouvement horloger.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20160104

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170410

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170929

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DI, DOMENICO

Inventor name: FAVRE, JEROME

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 969027

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013032927

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 969027

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180507

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180507

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180508

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013032927

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131223

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 11

Ref country code: DE

Payment date: 20231121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 11