EP2886258A1 - Appareil d'enfoncement - Google Patents
Appareil d'enfoncement Download PDFInfo
- Publication number
- EP2886258A1 EP2886258A1 EP13198044.3A EP13198044A EP2886258A1 EP 2886258 A1 EP2886258 A1 EP 2886258A1 EP 13198044 A EP13198044 A EP 13198044A EP 2886258 A1 EP2886258 A1 EP 2886258A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slide
- combustion chamber
- tacker
- piston member
- propellant charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25C—HAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
- B25C1/00—Hand-held nailing tools; Nail feeding devices
- B25C1/08—Hand-held nailing tools; Nail feeding devices operated by combustion pressure
- B25C1/10—Hand-held nailing tools; Nail feeding devices operated by combustion pressure generated by detonation of a cartridge
- B25C1/14—Hand-held nailing tools; Nail feeding devices operated by combustion pressure generated by detonation of a cartridge acting on an intermediate plunger or anvil
- B25C1/143—Hand-held nailing tools; Nail feeding devices operated by combustion pressure generated by detonation of a cartridge acting on an intermediate plunger or anvil trigger operated
Definitions
- the invention relates to a tacker according to the preamble of claim 1 and to a system for driving a fastener into a workpiece according to the features of claim 10.
- Hand-held driving devices with propellant charge are known from the prior art, in which after ignition of a pyrotechnic charge, the resulting fuel gases expand in a combustion chamber. As a result, a piston is accelerated as energy transfer means and drives a fastener into a workpiece. Basically, the most optimized, residue-free and reproducible burning of the charge is desired. It should be noted that the charge usually includes particles such as powder grains, fibers or the like, which are initially driven after ignition in front of a flame front ago.
- US 6,321,968 B1 describes a tacker with a propellant charge, in which the combustion chamber is separated by means of a perforated disc in an upper part of the chamber and a lower sub-chamber. Powder grains of the propellant charge are larger than the holes of the disc. Thus, the powder grains are first accelerated in a central discharge area on the perforated portions of the cutting wheel, where they are retained due to the dimensioning of the holes of the cutting wheel, so that a combustion of the powder grains takes place predominantly in the upper part of the chamber.
- Fig. 10 a modification is shown in which a propellant charge without a cartridge is used.
- no design including the central axis enclosing discharge area in the upper part of the chamber is provided, which extends between the propellant charge and a central region of the cutting disc.
- the ejection area in the example of Fig. 10 therefore, does not include the central axis of the combustion chamber, but is annularly arranged around a central plunger of the combustion chamber. The ignition of the cartridge-free charge takes place at an upper end of the central punch.
- the US 6,321,968 B1 shows an adjustability of a dead space volume in order to adjustably change the driving energy of the device.
- a valve-like slide can be adjusted in a direction perpendicular to a driving axis.
- the combustion chamber in the closed position of the slide on a dead space which is formed as a recess in a side wall of the combustion chamber.
- a driving energy is understood to mean the kinetic energy of the piston member impinging on a given fastening means for a given propellant charge. Given these boundary conditions, it is possible by the actuator to adjust the resulting driving energy for the fastener adjustably.
- a piston member according to the invention is any means which is acted upon by the ignition of the charge with kinetic energy, wherein the kinetic energy is ultimately transferred to the fastening means.
- the piston member is designed as a particular cylindrical piston.
- recesses or other structures may be provided which further promote turbulence and uniform expansion of the fuel gases.
- any retractable anchoring such as nail, bolt or screw understood.
- a central axis in the sense of the invention is an axis at least parallel to the movement of the fastening element, which runs in particular through a center of the combustion chamber.
- the slider is movable parallel to the axis, whereby a simple and effective mechanical realization is possible.
- the slider is movable transversely to the axis, preferably perpendicular to the axis.
- an outlet cross-section of a blow-off channel is variably adjustable depending on the position of the slide.
- a blow-off channel in the sense of the invention is understood to mean a duct by means of which the combustion gases of the propellant charge are discharged into the environment or into another large volume, for example a gas reservoir for a piston return.
- An additional volume of the combustion chamber is understood to mean a closed volume that is provided in addition to a minimum volume of the combustion chamber.
- An additional volume in the narrower sense of the invention is a volume added to the combustion chamber, which is generated by an idea of the piston member relative to a rearmost position.
- the piston member is already presented at the beginning of an adjustment of the slide from a closed position and on the other hand released a partial cross section of the Abblaskanals.
- an adjustment of the slide starting from a closed position, initially an increasing additional volume of the combustion chamber is set, and that upon further adjustment of the slide, the blow-off channel is released.
- a particularly favorable control characteristic can be achieved with a particularly large width of the energy adjustment.
- an at least approximately linear relationship between an adjustment path of the slide and the reduction of the drive-in energy can be achieved even for large areas of an energy adjustment.
- the Abblaskanal and released on further adjustment of the slide an increasing additional volume of the combustion chamber.
- the combustion chamber is subdivided into a first partial chamber adjoining the propellant and at least one second partial chamber adjoining the piston member by means of a divider having a plurality of openings, wherein an ejection area for the propellant charge is provided in the first sub-chamber, which extends between the propellant charge and a central region of the separator.
- the ejection area preferably includes the central axis, that is, the central axis passes through the ejection area.
- the discharge area at the central area of the separating member is particularly preferably limited by a closed surface of the separating member.
- An ejection region in the sense of the invention is a prismatic, mostly cylindrical spatial region whose cross-section is defined by a surface of the igniting charge directed into the combustion chamber and which extends perpendicular to the surface.
- the surface of the charge is defined herein as the exit surface of the opened cartridge.
- the discharge area is substantially cylindrically shaped. Its diameter corresponds to the inner diameter of the cartridge bearing at its output towards the piston member.
- the central axis according to the invention runs as a center of gravity line through the ejection area. Regularly, but not necessarily, the central axis coincides with a movement axis of the piston member.
- An isolator in the context of the invention is any structure by which the combustion chamber is divided into two sub-chambers.
- the separating member extends transversely to the central axis. It can be designed, for example, as a multi-perforated disc.
- the central region of the separating member is preferably not pierced, so that at least a significant portion of the initially ejected particles moves within the ejection region through the first combustion chamber against the central region, without first entering through the separating member in the second sub-chamber.
- the closed surface of the central area is larger than a sectional area of the partition member with the ejection area.
- the central portion of the partition member has a recess. Through this depression, a particularly good backscattering of the deflected particles and turbulence of combustion gases in the first sub-chamber can take place.
- the depression is formed as a cup-shaped recess in the separating member. This favors a scattering and turbulence in particular.
- an upstanding projection is formed in a central bottom portion of the recess.
- the projection may be conical, for example.
- the recess has a downwardly decreasing diameter, which also causes a good distribution of powder grains and fuel gases.
- a maximum diameter of the depression which is perpendicular to the central axis, is not less than 80% of a maximum, perpendicular to the Axis extending diameter of an opening of the propellant charge is.
- the diameter of the recess is greater than the diameter of the opening of the propellant charge.
- a maximum depth of the recess measured in the direction of the axis is not less than 30%, more preferably not less than 50% of a maximum diameter of the recess measured perpendicular to the axis is.
- a web is provided in each case between two adjacent apertures, fuel gases of the propellant charge first of all flowing radially outward from the ejection region between the webs, before they flow through the apertures in the axial direction after a deflection.
- the deflection and turbulence of the fuel gases is further optimized, and undesired entry of large grains of powder into the openings is further reduced.
- the openings of the separating member have a cross section which is greater than a maximum cross section of particles of the propellant charge. This prevents clogging of the breakthrough with combustion residues. Due to the further features of the invention, an entry of large powder grains in the second sub-chamber is largely avoided despite relatively large openings.
- the partition member is preferably screwed by means of an external thread formed in it in the combustion chamber.
- a maximum driving energy which can be set by means of the actuator corresponds to at least twice a minimum driving energy which can be set by means of the actuator.
- the maximum driving energy is at least 2.5 times the minimum driving energy.
- the minimum driving energy is not more than 150 joules and the maximum driving energy is not less than 250 joules.
- an at least partially automatic adjustment of the drive-in energy can take place by means of electronic device control.
- necessary specifications for example on the nature and dimensions of the workpiece, can be made by an operator.
- sensory information for example about the type of fastener inserted, can be used.
- a driving tool according to the invention makes it possible to cover a large range of driving forces with only one propellant charge. Accordingly, it can be dispensed with the offer of other propellant charges for the operation of the device.
- a drive-in device comprises a hand-guided housing in which a piston member in the form of a piston 2 is accommodated.
- a surface 2a of the piston 2 defines a combustion chamber 3 in which the combustion gases of a pyrotechnic charge expand to accelerate the piston 2.
- the pyrotechnic charge is solid, preferably in powder form. In non-illustrated embodiments, the pyrotechnic charge is liquid or gaseous.
- the charge is presently received in a cartridge made of sheet metal.
- the cartridge has an impact fuze and is inserted into a cartridge bearing 4 before ignition via a corresponding loading mechanism.
- Cartridge and cartridge bearings are preferably formed rotationally symmetrical about a central axis A.
- the central axis A is at the same time a center axis of the combustion chamber 3 and the piston 2 in the present examples.
- the combustion chamber 3 is arranged between a circular opening 4a of the cartridge bearing 4 and the surface 2a of the piston 2.
- an annular recess 2b is formed in the piston 2, which contributes to a better turbulence of the combustion gases and forms part of the combustion chamber 3.
- the combustion chamber 3 in the present case has a side wall 101, which is designed as a rotation surface of a parallel about the central axis A, that is, as an inner cylinder.
- the combustion chamber 3 has a bottom surface 102 which is substantially perpendicular to the axis A extends.
- an actuator 104 is provided for adjustable change of a recorded by the piston member 2 at a given propellant charge of kinetic energy, and thus adjustable for changing change of a driving energy of the fastener.
- the actuator 104 includes a parallel to the combustion chamber recess 103 in which a slider 105 is guided.
- the actuator 104 also includes a mechanism for adjustment a position of the slider 105 (not shown).
- the slider is in Fig. 1 to Fig. 2 provided with a hatching for a better overview.
- the slider 105 is received in the recess 103 in a housing enclosing the combustion chamber.
- the slider 103 is parallel to the central axis A in position adjustable.
- an external thread may be formed at a rear end of the slider 105 (not shown).
- the external thread can then run in an internal thread of an axially supported, rotatably mounted gear.
- the slider 105 can be adjusted by the thread rotation in the axial direction.
- the execution of the slider 105 adjusting mechanism is arbitrary.
- the adjustment of the slide can be done manually depending on requirements, for example via a not shown adjusting wheel. But it can also be an adjustment by means of an electric actuator. In this case, an at least partially automatic adjustment of the driving energy can take place by means of an electronic device control. For this purpose necessary specifications, for example on the nature and dimensions of the workpiece, can be made by an operator. Alternatively or additionally, sensory information, for example about the type of fastener inserted, can be used.
- the recess 103 is connected via an opening 106 with the combustion chamber 3.
- a channel 107 leads parallel to the combustion chamber to the front.
- the slider 105 fills the recess 103 and protrudes with a perpendicular to the axis A projecting pin 108 through the opening 106 into the combustion chamber 3 into it.
- the pin 108 also projects beyond an edge of a bottom 2a of the piston member 2, so that the piston member 2 abuts against the pin 108 of the slider 105 in a movement counter to the driving direction.
- a rear position or starting position of the piston member 2 before the driving operation by the position of the slider 105 is defined with the pin 108.
- the slider also has a forwardly open, axially extending bore 109 with a lateral opening 110 which is oriented in the direction of the opening 106.
- the lateral opening 110 does not cover at all, partially or maximally with the opening 106.
- the volume of the combustion chamber 3 can be connected to the bore 109 and the passage 107 via an adjustably variable cross section.
- the opening 110, the bore 109 and the channel 107 therefore form a total of a blow-off 111 at a corresponding position of the slide.
- the expanding gases can partially escape into the Abbaslkanal depending on its opening state. As a result, the kinetic energy ultimately absorbed by the piston member 2 or the driving energy is reduced.
- the Abblaskanal 111 opens in this case in a gas duct, not shown, on one of the combustion chamber 3 upstream guide of the piston member 2. This ends in a known manner in a storage space (not shown). By means of the combustion gases collected in the storage space, the piston member 2 is moved back to the starting position in a known manner at the end of the driving operation.
- the blow-off channel 111 can also open directly into the atmosphere.
- the slider 105 first opens the blow-off channel and causes a piston conception only in the further course. This can be realized by a corresponding free travel of the pin 108 before reaching the maximum reset piston member 2.
- the combustion chamber 3 is divided transversely to the central axis A by a partition member 5.
- a first sub-chamber 3a of the combustion chamber On the side of the cartridge bearing 4 there is a first sub-chamber 3a of the combustion chamber, and on the side of the piston 2 is a second sub-chamber 3b of the combustion chamber 3rd
- the separating member 5 is presently designed as a screwed by means of an external thread 7 in the combustion chamber 3 component.
- the isolator can also be formed integrally with the rest of the combustion chamber or be connected in any other way as a separate component with the combustion chamber.
- the partition member 5 has a plurality of apertures 6, which are in the present case designed as bores which extend parallel to the axis A.
- the perforations 6 are arranged around a central region 8 of the separating member 5, which has a closed and non-perforated surface.
- the smallest diameter of the central, unbroken portion 8 in a plane perpendicular to the axis A is about 35% larger than a diameter of the open after ignition cartridge. In the present case, this corresponds approximately to the diameter of a combustion chamber-side opening of the cartridge bearing or of a surface of the pyrotechnic charge directed into the combustion chamber.
- the fuel gases and powder grains, charge particles or the like ejected with them first enter the combustion chamber parallel to the central axis. Therefore, at least immediately after ignition and over a certain length, the expanding charge moves predominantly in a prismatic discharge region along the central axis, the circumference of which is defined by the contour of the surface of the charge.
- all of the apertures 6 of the partition member are located outside a sectional area of the ejection area with the surface of the partition member.
- the discharge area is designed as a cylinder corresponding to the circular cartridge opening.
- a recess 9 is further formed in the central region 8 of the separating member 5.
- the recess 9 extends rotationally symmetrical about the central axis A. It is formed cup-shaped and has a flat bottom 9a.
- a diameter of the recess 9 tapers from a largest diameter d at its upper edge to a smallest diameter at the level of the bottom 9a.
- the walls of the recess 9 have both inclined and straight sections.
- the maximum depth of the recess 9 is presently about 60% of the largest diameter d.
- the closed surface of the central region 8 extends to a step 10.
- the step 10 increases from the surface of the central region 8 in the axial direction up to a roof of 3.
- the partition member 5 is presently pressed with the gradation 10 against the roof. This is achieved by appropriate screwing of the separator 5 in the combustion chamber 3.
- the gradation 10 forms between adjacent apertures 6 each webs 11, which are directed radially inward. Accordingly, radially directed channels 12 remain between the webs 11, through which the fuel gases and charge particles initially flow radially outward from the central region 8 and are then deflected into the openings 6.
- the particles of the charge When passing through the openings 6, the particles of the charge are already predominantly burned, so that there are no larger unburned charge residues either in the openings or in the following, second partial chamber 3b. This prevents unfavorable deposits and / or clogging of the apertures 6. At the same time a controlled and uniform expansion of the fuel gases in the second sub-chamber is favored, so that an optimal acceleration of the piston 2 takes place.
- the second embodiment of a separator a different shape of the recess 9 is provided.
- the recess is formed as a cup-shaped recess, but the walls of the recess are stronger and continuously inclined.
- a separating member is the shape of the recess 9 predominantly as in the example Fig. 6 .
- the Well an upstanding cone-shaped projection 13 is formed above the ground.
- the conical projection 13 there is a strong scattering and turbulence of the fuel gases.
- the recess 9 has no flat bottom, but has an overall approximately parabolic cross-section. Such a shape is particularly well suited for the prevention of deposits.
- a system for driving a fastener into a workpiece is provided by a tacker described above in conjunction with a propellant charge and a selection of fasteners.
- the system comprises a plurality of different attachment means, wherein only one type of propellant charge is required to cover a full range of drive-in energies.
- the driving energy transmitted to the piston member ranges from a minimum driving energy of 90 joules to a maximum driving energy of 325 joules.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Portable Nailing Machines And Staplers (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13198044.3A EP2886258A1 (fr) | 2013-12-18 | 2013-12-18 | Appareil d'enfoncement |
US15/104,360 US20160311098A1 (en) | 2013-12-18 | 2014-12-09 | Driving-in tool |
CN201480074464.5A CN105939818B (zh) | 2013-12-18 | 2014-12-09 | 驱入仪器 |
PCT/EP2014/077070 WO2015091113A1 (fr) | 2013-12-18 | 2014-12-09 | Outil d'enfoncement |
AU2014365251A AU2014365251B2 (en) | 2013-12-18 | 2014-12-09 | Driving-in tool |
RU2016129038A RU2016129038A (ru) | 2013-12-18 | 2014-12-09 | Забивающее устройство |
EP14818910.3A EP3083154B1 (fr) | 2013-12-18 | 2014-12-09 | Appareil d'enfoncement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13198044.3A EP2886258A1 (fr) | 2013-12-18 | 2013-12-18 | Appareil d'enfoncement |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2886258A1 true EP2886258A1 (fr) | 2015-06-24 |
Family
ID=49816873
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13198044.3A Withdrawn EP2886258A1 (fr) | 2013-12-18 | 2013-12-18 | Appareil d'enfoncement |
EP14818910.3A Active EP3083154B1 (fr) | 2013-12-18 | 2014-12-09 | Appareil d'enfoncement |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14818910.3A Active EP3083154B1 (fr) | 2013-12-18 | 2014-12-09 | Appareil d'enfoncement |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160311098A1 (fr) |
EP (2) | EP2886258A1 (fr) |
CN (1) | CN105939818B (fr) |
AU (1) | AU2014365251B2 (fr) |
RU (1) | RU2016129038A (fr) |
WO (1) | WO2015091113A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2875903A1 (fr) * | 2013-11-26 | 2015-05-27 | HILTI Aktiengesellschaft | Cloueur à poudre |
EP2886257A1 (fr) | 2013-12-18 | 2015-06-24 | HILTI Aktiengesellschaft | Appareil d'enfoncement |
EP2923797A1 (fr) * | 2014-03-28 | 2015-09-30 | HILTI Aktiengesellschaft | Cloueur à poudre |
TWM526944U (zh) * | 2016-03-18 | 2016-08-11 | Chung-Yi Lee | 可調整擊釘力量的火藥擊釘器 |
GB201804079D0 (en) | 2018-01-10 | 2018-04-25 | Univ Oxford Innovation Ltd | Determining the location of a mobile device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0330950A2 (fr) * | 1988-03-03 | 1989-09-06 | HILTI Aktiengesellschaft | Outil d'enfoncement actionné par poudre |
DE19508699A1 (de) * | 1994-03-02 | 1995-09-07 | Iagodzinska Bogusiawa | Setzpistole zur Einsetzung von zu befestigenden Elementen durch Explosivkraft mit einer Regeleinrichtung |
US6321968B1 (en) | 1998-09-10 | 2001-11-27 | Senco Products, Inc. | Combustion chamber design for propellant charges and power adjustment means |
DE10161355A1 (de) * | 2001-12-13 | 2003-06-26 | Hilti Ag | Setzgerät mit Energieregelung |
US20100258609A1 (en) * | 2009-04-09 | 2010-10-14 | Lee Cheng-Ho | Powder-actuated fastener-driving device capable of power adjustment |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3204400A (en) * | 1963-11-26 | 1965-09-07 | United Shoe Machinery Corp | Explosively-actuated stud-driving tool |
US3652003A (en) * | 1970-04-06 | 1972-03-28 | Gen Cable Corp | Powder actuated tool |
US3659768A (en) * | 1970-06-12 | 1972-05-02 | Olin Corp | Fastener driving tool |
US3690536A (en) * | 1970-12-07 | 1972-09-12 | Olin Corp | Powder-actuated tool |
US3746235A (en) * | 1972-01-12 | 1973-07-17 | Olin Corp | Power control for powder-actuated tool |
CH562665A5 (fr) * | 1972-08-07 | 1975-06-13 | Olin Authier Sa | |
DE2420089A1 (de) * | 1974-04-25 | 1975-11-13 | Hilti Ag | Pulverkraftbetriebenes setzgeraet |
US3910477A (en) * | 1974-05-06 | 1975-10-07 | Olin Corp | Powder-actuated tool |
US4119257A (en) * | 1975-07-02 | 1978-10-10 | Societe De Prospection Et D'inventions Techniques Spit | Power actuated tools |
DE2548014C2 (de) * | 1975-10-27 | 1984-01-12 | Hilti AG, 9494 Schaan | Pulverkraftbetriebenes Setzgerät mit Leistungsregulierung |
US4113163A (en) * | 1976-09-16 | 1978-09-12 | Marc Combette | Fastening tool using caseless munition |
DE2709065C2 (de) * | 1977-03-02 | 1986-02-20 | Hilti Ag, Schaan | Bolzensetzgerät |
GB2045673B (en) * | 1979-04-10 | 1983-03-23 | Prospection & Inventions | Powder actuated piston tool with power adjustment |
DE3016280A1 (de) * | 1980-04-28 | 1981-11-12 | Hilti AG, 9494 Schaan | Pulverkraftbetriebenes setzgeraet |
US4358041A (en) * | 1980-06-12 | 1982-11-09 | Olin Corporation | Powder-actuated tool with power adjustment and angle-fire control |
DE3418238A1 (de) * | 1984-05-16 | 1985-11-21 | Hilti Ag, Schaan | Pulverkraftbetriebenes setzgeraet |
DE3427616A1 (de) * | 1984-07-26 | 1986-01-30 | Hilti Ag, Schaan | Pulverkraftbetriebenes bolzensetzgeraet |
DE4312567A1 (de) * | 1993-04-17 | 1994-10-20 | Hilti Ag | Pulverkraftbetriebenes Setzgerät |
DE19500320A1 (de) * | 1995-01-07 | 1996-07-11 | Hilti Ag | Pulverkraftbetriebenes Bolzensetzgerät |
DE19532411A1 (de) * | 1995-09-01 | 1997-03-06 | Hilti Ag | Pulverkraftbetriebenes Setzgerät |
US5722578A (en) * | 1995-09-29 | 1998-03-03 | Illinois Tool Works Inc. | High velocity, combustion-powered, fastener-driving tool |
AUPN585495A0 (en) * | 1995-10-09 | 1995-11-02 | Ramset Fasteners (Aust.) Pty. Limited | Power actuated tools with power adjustment means |
DE19544104A1 (de) * | 1995-11-27 | 1997-05-28 | Hilti Ag | Pulverkraftbetriebenes Setzgerät |
US5799855A (en) * | 1996-02-09 | 1998-09-01 | Illinois Tool Works Inc. | Velocity control and nosepiece stabilizer system for combustion powered tools |
US5699948A (en) * | 1996-12-16 | 1997-12-23 | Lee; Cheng-Ho | Adjusting means for use in a staple gun |
DE50109817D1 (de) * | 2001-07-19 | 2006-06-22 | Hilti Ag | Bolzensetzgerät mit Setztiefenregelung |
AUPR857501A0 (en) * | 2001-10-30 | 2001-11-29 | Cetram Pty Limited | Fastener driving tools |
US6581585B2 (en) * | 2001-11-16 | 2003-06-24 | Alfred F. Nibecker, Jr. | Air gun |
DE10226878A1 (de) * | 2002-06-17 | 2003-12-24 | Hilti Ag | Gasbetriebenes Setzgerät |
JP4135069B2 (ja) * | 2002-08-09 | 2008-08-20 | 日立工機株式会社 | 燃焼式打込み工具 |
DE102005000032A1 (de) * | 2005-04-12 | 2006-10-19 | Hilti Ag | Brennkraftbetriebenes Setzgerät |
DE102010044011A1 (de) * | 2010-11-16 | 2012-05-16 | Hilti Aktiengesellschaft | Handwerkzeugmaschine |
DE102010063177A1 (de) * | 2010-12-15 | 2012-06-21 | Hilti Aktiengesellschaft | Bolzensetzgerät und Verfahren zum Betreiben eines Bolzensetzgerätes |
US8256406B1 (en) * | 2011-06-01 | 2012-09-04 | Kevin Kirkpatrick | Systems and methods for regulating pneumatic gas propulsion |
DE102012206108A1 (de) * | 2012-04-13 | 2013-10-17 | Hilti Aktiengesellschaft | Eintreibgerät |
EP2851158A1 (fr) * | 2013-09-19 | 2015-03-25 | HILTI Aktiengesellschaft | Dispositif d'entraînement avec accumulateur pneumatique chauffé |
EP2886257A1 (fr) * | 2013-12-18 | 2015-06-24 | HILTI Aktiengesellschaft | Appareil d'enfoncement |
EP3034238A1 (fr) * | 2014-12-19 | 2016-06-22 | HILTI Aktiengesellschaft | Appareil d'enfoncement doté de chambre de combustion réglable |
EP3034239A1 (fr) * | 2014-12-19 | 2016-06-22 | HILTI Aktiengesellschaft | Appareil d'enfoncement doté de chambre de combustion réglable |
TWM526944U (zh) * | 2016-03-18 | 2016-08-11 | Chung-Yi Lee | 可調整擊釘力量的火藥擊釘器 |
-
2013
- 2013-12-18 EP EP13198044.3A patent/EP2886258A1/fr not_active Withdrawn
-
2014
- 2014-12-09 CN CN201480074464.5A patent/CN105939818B/zh active Active
- 2014-12-09 RU RU2016129038A patent/RU2016129038A/ru unknown
- 2014-12-09 WO PCT/EP2014/077070 patent/WO2015091113A1/fr active Application Filing
- 2014-12-09 AU AU2014365251A patent/AU2014365251B2/en active Active
- 2014-12-09 EP EP14818910.3A patent/EP3083154B1/fr active Active
- 2014-12-09 US US15/104,360 patent/US20160311098A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0330950A2 (fr) * | 1988-03-03 | 1989-09-06 | HILTI Aktiengesellschaft | Outil d'enfoncement actionné par poudre |
DE19508699A1 (de) * | 1994-03-02 | 1995-09-07 | Iagodzinska Bogusiawa | Setzpistole zur Einsetzung von zu befestigenden Elementen durch Explosivkraft mit einer Regeleinrichtung |
US6321968B1 (en) | 1998-09-10 | 2001-11-27 | Senco Products, Inc. | Combustion chamber design for propellant charges and power adjustment means |
DE10161355A1 (de) * | 2001-12-13 | 2003-06-26 | Hilti Ag | Setzgerät mit Energieregelung |
US20100258609A1 (en) * | 2009-04-09 | 2010-10-14 | Lee Cheng-Ho | Powder-actuated fastener-driving device capable of power adjustment |
Also Published As
Publication number | Publication date |
---|---|
US20160311098A1 (en) | 2016-10-27 |
AU2014365251A1 (en) | 2016-06-30 |
EP3083154A1 (fr) | 2016-10-26 |
EP3083154B1 (fr) | 2018-10-10 |
RU2016129038A (ru) | 2018-01-23 |
CN105939818B (zh) | 2018-03-30 |
AU2014365251B2 (en) | 2017-08-31 |
WO2015091113A1 (fr) | 2015-06-25 |
CN105939818A (zh) | 2016-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3083154B1 (fr) | Appareil d'enfoncement | |
EP3083152B1 (fr) | Appareil d'enfoncement | |
EP3074186B1 (fr) | Cloueur à poudre | |
EP3083151B1 (fr) | Appareil d'enfoncement | |
EP0806623B1 (fr) | Projectile porteur stabilisé en rotation | |
DE69703042T2 (de) | Nichtletales geschoss | |
EP1847797B1 (fr) | Charge réglable | |
EP1712334A1 (fr) | Appareil de scellement à combustion | |
DE112014002455B4 (de) | Pyrotechnischer Gasgenerator | |
DE4312567A1 (de) | Pulverkraftbetriebenes Setzgerät | |
DE102006025330A1 (de) | Geschoss, Wirkkörper oder Gefechtskopf zur Bekämpfung massiver, strukturierter und flächenhafter Ziele | |
DE3937032C2 (de) | Gasgenerator | |
DE4447470A1 (de) | Infrarotköderpatrone | |
DE2424774C3 (de) | Zündvorrichtung, insbesondere für einen Brennkraftbolzensetzer | |
DE102009037396B4 (de) | Pyrotechnisch betätigte Schneidvorrichtung | |
WO2018095783A1 (fr) | Corps actif pyrotechnique | |
DE102007050972A1 (de) | Gasbetriebener Lamellenmotor | |
EP3782733B1 (fr) | Bande de cisaillement pour dispositif de broyage des grains en vrac | |
EP3457076B1 (fr) | Corps actif à couvercle de freinage | |
EP4067001A1 (fr) | Appareil d'enfoncement pyrotechnique | |
EP4067002A1 (fr) | Appareil d'enfoncement pyrotechnique | |
WO2016096953A1 (fr) | Appareil d'enfoncement muni d'un passage dans une chambre de combustion | |
DE102013007784A1 (de) | Wurfkörper, insbesondere Handwurfkörper | |
EP2886255A1 (fr) | Appareil d'enfoncement | |
EP3483550A1 (fr) | Grenade fumigène |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131218 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160105 |