EP2884005B1 - Bodenverdichter mit Direktantrieb - Google Patents

Bodenverdichter mit Direktantrieb Download PDF

Info

Publication number
EP2884005B1
EP2884005B1 EP14003744.1A EP14003744A EP2884005B1 EP 2884005 B1 EP2884005 B1 EP 2884005B1 EP 14003744 A EP14003744 A EP 14003744A EP 2884005 B1 EP2884005 B1 EP 2884005B1
Authority
EP
European Patent Office
Prior art keywords
ground
electric motor
drive
motor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14003744.1A
Other languages
English (en)
French (fr)
Other versions
EP2884005A1 (de
Inventor
Michael Steffen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Neuson Produktion GmbH and Co KG
Original Assignee
Wacker Neuson Produktion GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Neuson Produktion GmbH and Co KG filed Critical Wacker Neuson Produktion GmbH and Co KG
Publication of EP2884005A1 publication Critical patent/EP2884005A1/de
Application granted granted Critical
Publication of EP2884005B1 publication Critical patent/EP2884005B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/30Tamping or vibrating apparatus other than rollers ; Devices for ramming individual paving elements
    • E01C19/34Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight
    • E01C19/35Hand-held or hand-guided tools
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/30Tamping or vibrating apparatus other than rollers ; Devices for ramming individual paving elements
    • E01C19/34Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight
    • E01C19/38Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight with means specifically for generating vibrations, e.g. vibrating plate compactors, immersion vibrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating
    • Y10T74/18208Crank, pitman, and slide

Definitions

  • the invention relates to a soil compacting device and a method for operating a soil compacting device.
  • the invention can be used for tools for soil compaction, such as rammers or vibratory plates.
  • Soil compacting machines are typically powered by combustion and / or electric motors. While internal combustion engines allow a largely independent operation of the soil compaction device by storing the fuel (fuel) in a tank on the machine, the use of electric motors, a burden on the environment and an operator operating the soil compaction machine can be avoided.
  • the supply of the electric motor is generally via an external connection to the public power grid or, for example, in smaller soil compaction machines, by an electric accumulator.
  • the rotational frequency of the electric motors necessary for generating the motor power is much higher than the operating frequency of the compressor, i. So the tamping or vibration frequency. Consequently, reduction gears are provided between the drive motor and the ramming or vibration system, which reduce the rotational frequency of the drive movement generated by the electric motor and increase the drive torque.
  • Such reduction gears include complex assemblies that require a suitable space, have a high weight and lead to high costs in the production. In working mode, they are exposed to heavy loads, have high wear and thus lead to a limited reliability of the overall system.
  • rammers are adapted to the conditions of non-compacted standard floors in such a way that the best possible compaction effect of the machine is achieved, even if the properties of the floors coincide with the floors considered in the dimensioning of the ramming system. When compacting different types of soils, the ramming effect can therefore be lower.
  • a rammer for soil compaction is known in which a working movement of the ground contact element is generated by an electric motor via a crank mechanism.
  • a motor shaft is rotated, which is connected via a coupling with the crank mechanism.
  • the invention has for its object to provide a soil compaction device that allows reliable operation while maintaining high efficiency of the overall system and low production costs. Furthermore, the invention has for its object to provide a method for operating such a soil compaction device.
  • a soil compacting device has an upper mass and a lower mass coupled to the upper mass by a spring device with a ground contact element. Furthermore, a drive for generating a working movement of the ground contact element is provided.
  • the drive has an electric motor, and a drive frequency of a drive motion generated by the electric motor is equal to a frequency of the working movement of the ground contact element.
  • the equality of the drive frequency of the electric motor and the frequency of the working movement are achieved in the soil compacting device by a synchronization of the electric motor with the frequency of the working movement.
  • the drive movement is thus transmitted to the ground contact element without changing the frequency.
  • the rotational frequency of the electric motor for example the rotational frequency of a drive element or a drive shaft of the electric motor
  • a frequency of the working movement of the ground contact element for example, a ground contact plate
  • a rotation of the drive element of the electric motor exactly corresponds to a working or ramming cycle or the stamping frequency of the ground contact plate.
  • the synchronization of the electric motor with the working frequency makes it possible to generate the working movement directly by the electric motor.
  • the drive movement of the drive element can be transmitted directly and without converting their frequency to the ground contact element. Consequently, it is not necessary, for example, to provide transmission devices or other transmission elements for converting, for example reducing, the drive frequency. This is referred to below as a direct drive.
  • the synchronization of the electric motor with the working frequency thus allows a direct connection of the electric motor with the ramming system on the lower mass, or with a connecting rod of the ramming system.
  • the position of the ramming system (ram) and the rotation angle of the drive shaft of the electric motor or the rotor shaft to each other are always exactly defined by the lack of coupling, so that with the knowledge of one can always be closed on the other and vice versa.
  • the direct drive makes it possible to provide a soil compaction device which is substantially smaller and lighter than, for example, a conventional rammer or a conventional vibration plate with gear device.
  • a lower weight of the upper mass can be achieved, resulting in a lower center of gravity and thus better leadership properties. Due to the lower mechanical complexity of the overall system lower production costs are achieved.
  • the direct drive and in particular the direct connection of the electric motor with the ramming system allows an effective, accurate and low-noise transmission of the drive movement to the ground contact element.
  • a low-noise and low-maintenance operation with high efficiency of the overall system is possible in which little wear occurs.
  • the electric motor has a DC motor, AC motor or AC motor with a high number of pole pairs.
  • the DC, rotary or AC motor can be at least two, three, four, five, have eight or ten pairs of poles each consisting of a north and a south pole.
  • the DC, rotary or AC motor may have at least 8 poles or a pole pair number of at least 8 pole pairs.
  • an electric motor with a low, for example, the operating frequency of the soil compacting device adapted speed.
  • the torque of the electric motor increases, essentially in proportion to the number of pole pairs.
  • a high drive torque is simultaneously achieved, which is suitable for driving the ground contact element in the working movement. Consequently, a high pole-pair rotating or alternating current motor is suitable for enabling direct drive of the soil compaction device.
  • the electric motor has a torque motor.
  • a torque motor is a high-torque magnetic motor or switched reluctance motor or a slow-speed electric motor such. an electric asynchronous motor with a high number of pole pairs.
  • torque motors have high torques at low speeds. This can be used in the manner described above for the direct drive of the soil compacting device.
  • Torque motors can be designed as brushless DC motors and can be designed as external rotor with internal stator and external rotor and as internal rotor with internal rotor and external stator. Their large drive torque can cause high accelerations and leads to a high dynamics of the working behavior of the soil compacting device.
  • the high starting torque already present at the start makes it possible to start the soil compacting device solely by the torque motor.
  • the high drive stiffness of the torque motors allows essentially no play, which is why torque motors have good control properties, which make it possible to accurately implement the work requirements of the soil compacting device.
  • the torque motor may be preceded by an electronic frequency converter, which provides a supply current with a suitable frequency for operating the torque motor.
  • the overall system of the soil compacting device can be designed inexpensively, since additional costs, for example, for gearboxes and other transmission elements can be omitted.
  • the electric motor has an asynchronous motor with a high number of pole pairs and / or a squirrel cage drive motor with a high number of pole pairs.
  • the asynchronous motor or the squirrel-cage drive motor 2, 3, 4, 5, 8, 10 or more pole pairs have.
  • the asynchronous motor or the squirrel cage drive motor may have at least 8 poles or a pole pair number of at least 8 pole pairs.
  • asynchronous motors or squirrel-cage drive motors enables a cost-effective design of the soil compacting device.
  • the provision of a high number of pole pairs makes it possible to provide a high-torque drive with a low speed, which allows a direct drive of the ground contact element of the soil compacting device.
  • the asynchronous motor or squirrel-cage drive motor can be designed, for example, such that when operated at the mains frequency, for example of the public power grid, a direct drive of the ground contact element with a suitable stamping frequency is possible.
  • a frequency converter for converting the mains frequency may be provided to allow operation of the soil compacting device with a suitable working movement of the ground contact element, for example when feeding the electric motor from the public power grid or from a battery with DC-AC conversion.
  • the electric motor may comprise or be configured as a sensor-commutated brushless magnet motor with an electronic control device.
  • a sensor-commutated, brushless magnetic motor with electronic control has sensors for determining the position of a rotor of the electric motor relative to the stator field.
  • the stator coils can be energized depending on the current rotor position and according to a movement request.
  • Hall sensors for detecting the magnetic flux of the rotor or optical sensors in the region of the stator can be used as sensors, for example.
  • the signals of the sensors via an incremental encoder, for example, with zero setting at a given rotor position, output.
  • the control device can determine the position of the rotor and thus, in the case of a direct-acting drive, also the position of the ground contact element, i. of the padfoot, relative to the soil compactor and thus determine relative to the ground. Based on this position information, the electronic control device can suitably control or energize the windings, which generate a torque in the rotor, via suitable power drivers. This control can be made depending on a movement request of the rammer and / or depending on the position of the rotor or position of the padfoot. This is referred to below as sensor-controlled commutation.
  • the sensor-controlled commutation a needs-based control of the working frequency of the soil compaction device can be achieved and a working movement of the soil contact element can be directly influenced.
  • the sensor-controlled commutation works even at very low speeds or in the state. Usually, not all phases are energized at the same time, especially in three or more phases, so that at any time at least one phase can be de-energized.
  • a drive movement of the electric motor can be transmitted to the ground contact plate via a crank drive.
  • a connecting rod of the crank mechanism can be eccentrically coupled to a rotor device of the electric motor.
  • the coupling can be achieved for example by means of a crank pin, which is arranged eccentrically on the rotor device of the electric motor.
  • the electric motor may have a rotatably arranged stator device and a rotor device rotatable relative to the stator device, wherein the rotor device is rotatable or rotatable with respect to the stator device by the action of the supplied rotary or alternating current.
  • the connecting rod of the crank mechanism may be coupled to the rotor device, for example by means of the eccentrically arranged on the rotor device crank pin. This can form a robust connection between the rotor device and the connecting rod.
  • the connecting rod Due to the direct connection of the connecting rod with the rotor device, a direct transmission of the drive torque of the electric motor to the connecting rod and via the connecting rod to the ground contact element is achieved without requiring gear devices or further transmission elements. As a result, the drive movement can be effectively and smoothly transmitted to the ground contact element. Furthermore, the connecting rod can be suitably guided through the rotor in an operation of the soil compacting device. As a result, interference from the working operation of the soil compacting device, for example reflections of the soil contact element of working soil, can be absorbed and contained.
  • the electric motor and the crank drive can be structurally integrated.
  • the rotor device of the electric motor may have an eccentric, for example an eccentric disk, to which the connecting rod is fastened, for example, by means of the crank pin.
  • an electrical energy store and / or a connection device can be provided for connection to a current source.
  • the electric motor can be supplied with electrical energy from the electrical energy store and / or from the current source.
  • the power source may be provided, for example, by a public power grid and / or a generator.
  • a power source arranged externally, for example, outside the soil compacting device makes it possible to operate the soil compaction device with low emissions and low noise and thus gentle on the operator and the environment after connection to the power source.
  • the use of an internal electrical energy store which is thus arranged on the ground device and which can be loadable by connection to an external electrical current source furthermore makes it possible to operate the ground compacting device independently of the cable independently of access to the current source.
  • a frequency converter for generating a rotary or alternating current for the electric motor may be provided at a predetermined or selectable by the operator frequency.
  • the frequency converter can be structurally integrated with the electric motor, which allows a simple construction of the soil compacting device with a small installation space. It is also possible to provide the frequency converter separate from the electric motor, or to provide an external frequency converter for providing a supply current with the frequency required by the electric motor. For example, the frequency of the feed stream may be controllable with respect to work demands on the soil compacting device.
  • the drive can have a further motor, and the further motor can be operated alternatively or in addition to the electric motor.
  • the further engine may be another electric motor or an internal combustion engine.
  • the electric motor and the further motor can alternatively or simultaneously drive the working movement of the ground contact element, for example by alternative or simultaneous action on the connecting rod.
  • a cranked shaft with a plurality of crankpins may be provided for driving by a plurality of motors.
  • an internal combustion engine in addition to the electric motor enables a hybrid drive of the soil compacting device, for example, depending on whether an electrical energy store is charged, an external power source available and / or if a tank container of the internal combustion engine is refueled. This achieves the greatest possible independence from the availability of the energy sources and thus a high availability of the soil compacting device in different application scenarios.
  • the soil compaction device has an upper mass, a lower mass coupled to the upper mass by a spring device with a ground contact element and a drive for generating a drive movement of the ground contact element.
  • the drive has an electric motor, and a drive frequency of a drive motion generated by the electric motor is equal to a frequency of the working movement of the ground contact element.
  • the soil compacting device may correspond to any of the embodiments and variants discussed above.
  • the method comprises injecting a rotary or alternating current into the electric motor and transmitting the drive movement of the Electric motor in a working movement of the ground contact element with the same frequency.
  • the method thus enables the operation of a ground compaction device with a direct drive, in which a rotational frequency of a drive element of the electric motor corresponds to a frequency of the working movement of the ground contact plate.
  • the electric motor may be driven to produce at least one further driving movement of a drive shaft of the electric motor.
  • the further drive movement may be configured to generate at least one further impact of the ground contact plate (e.g., the soil to be compacted), the further drive motion having a higher drive frequency than a drive frequency of the drive shaft at the moment of impact.
  • the higher drive frequency of the further drive movement can be significantly and significantly higher than the drive frequency at the moment of the power surge.
  • the higher drive frequency may be at least 30% higher than the drive frequency at the moment of the power surge.
  • This embodiment enables the setting of a multiple impact of the soil compacting device as well as a lookup.
  • further power surges can be generated immediately after the impulse, which the padfoot exerts on the ground.
  • This is achieved by suitable moderation of the drive after placing the padfoot on the ground, in particular by a suitable electromagnetic excitation of the drive motor. Since the drive movement of the drive motor with the same frequency or rigidly transmitted to the padfoot, an exact control of the multiple impact or Nahbans is possible.
  • the drive motor can be controlled such that a series of rapidly successive rotational pulses of the drive shaft / rotor shaft is generated at a very high drive frequency and transmitted to the padfoot.
  • the further drive movement can be at least one partial movement having a direction of rotation of the drive shaft opposite to a direction of rotation of the drive shaft at the moment of impact.
  • the soil to be compacted is repeatedly compressed by the padfoot / soil contact element and with rapidly successive shock pulses, which leads to additional compaction of the soil.
  • the fact that there is no or only a minimal reflection of the force pulse due to the already made contact of the padfoot to the ground, a very effective compaction of the soil can be achieved.
  • the figure shows schematically in a lateral sectional view serving as a soil compacting rammer 1, in which a housing 2, an electric motor 3 is provided.
  • the electric motor 3 has a stator 4 and a rotor 5 rotatable relative to the stator 4 and is fed from an electrical energy store 6 arranged on the rammer 1.
  • an eccentric disk 7 Structurally integrated with the rotor 5 is an eccentric disk 7, on which eccentrically a crank pin 8 is arranged.
  • a connecting rod 9 Connected to the crank pin 8 is a connecting rod 9 for converting the rotary drive movement of the rotor 5 in a translational and oscillatory up and down movement, and for transmitting the up and down movement on a coupled to the connecting rod 9 via spring packs 10 and 11 padfoot 12, on which a ground contact plate 13 is arranged as the ground contact element.
  • the alternating or three-phase current is supplied as a supply current to the stator 4 of the electric motor 3.
  • alternating magnetic fields in the region of the rotor 5 are generated and the rotor 5 is set in a known manner in a rotational movement, the drive movement of the electric motor.
  • a rotational frequency of the rotor 5 or drive frequency of the drive movement is caused directly by a frequency of the stator 4 supplied alternating or three-phase current.
  • the drive or rotational movement of the rotor 5, which is structurally integrated with the crank mechanism formed by the eccentric disc 7, the crank pin 8 and the connecting rod 9, is concurrently, ie with the same frequency in a working movement of the padfoot 12 and the ground contact plate 13 arranged thereon implemented.
  • a direct drive of the ground contact plate 13 is achieved by the electric motor 3 with synchronous frequency.
  • the direct drive makes it possible to design the tamper 1 without further transmission devices or without further frequency-converting transmission elements. As a result, a lower complexity of the overall system is achieved, which leads to low production costs, low maintenance costs, a high overall efficiency and a high reliability of the stampers 1.
  • the construction is low in noise and wear and also has a low center of gravity compared to conventionally driven rammers and thus improved leadership.
  • the electric motor 3 may have, for example, a rotary or alternating current motor with a high number of pole pairs, a torque motor, an asynchronous motor with a high pole pair number and / or a squirrel cage drive motor with a high number of pole pairs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Road Paving Machines (AREA)
  • Soil Working Implements (AREA)

Description

  • Die Erfindung betrifft eine Bodenverdichtungsvorrichtung und ein Verfahren zum Betreiben einer Bodenverdichtungsvorrichtung. Die Erfindung ist für Arbeitsgeräte zur Bodenverdichtung einsetzbar, wie beispielsweise Stampfer oder Vibrationsplatten.
  • Bodenverdichtungsmaschinen werden typischerweise von Verbrennungs- und/ oder Elektromotoren angetrieben. Während Verbrennungsmotoren einen weitgehend unabhängigen Betrieb der Bodenverdichtungsvorrichtung durch Bevorratung des Energieträgers (Kraftstoff) in einem Tank an der Maschine ermöglichen, kann durch den Einsatz von Elektromotoren eine Belastung der Umwelt und eines die Bodenverdichtungsmaschine bedienenden Bedieners vermieden werden. Die Versorgung des Elektromotors erfolgt im Allgemeinen über einen externen Anschluss zum öffentlichen Stromversorgungsnetz oder, beispielsweise bei kleineren Bodenverdichtungsmaschinen, durch einen elektrischen Akkumulator.
  • Bei der Verwendung von Elektromotoren liegt die zur Erzeugung der Motorleistung notwendige Rotationsfrequenz der Elektromotoren wesentlich höher als die Arbeitsfrequenz des Verdichters, d.h. also die Stampf- oder Vibrationsfrequenz. Folglich werden Reduktionsgetriebe zwischen dem Antriebsmotor und dem Stampf- bzw. Vibrationssystem vorgesehen, die die Rotationsfrequenz der vom Elektromotor erzeugten Antriebsbewegung herabsetzen und das Antriebsmoment erhöhen.
  • Derartige Reduktionsgetriebe beinhalten komplexe Baugruppen, welche einen geeigneten Bauraum benötigen, ein hohes Gewicht haben und zu hohen Kosten bei der Herstellung führen. Im Arbeitsbetrieb sind sie starken Belastungen ausgesetzt, weisen einen hohen Verschleiß auf und führen so zu einer eingeschränkten Zuverlässigkeit des Gesamtsystems.
  • Schnelldrehende Elektromotoren wirken folglich beim Antrieb von Bodenverdichtern über Untersetzungsgetriebe und Federpakete auf das Bodenkontaktelement. Somit kann konstruktionsbedingt nicht aus dem Drehwinkel des Antriebmotors auf die Position des Stampffußes und dessen Lastfall zurückgeschlossen werden. Vielmehr hängen die Stampffrequenz, eine Anstoßgeschwindigkeit sowie der zeitliche Ablauf des Stoßvorganges von den Systemgrößen der Bodenverdichtungsvorrichtung sowie von einer Beschaffenheit (Steifigkeit) des zu verdichtenden Bodens ab.
  • Bei der Konzipierung und Auslegung werden Stampfer an die Bedingungen unverdichteter Standardböden derart angepasst, dass es zu einer bestmöglichen Verdichtungswirkung der Maschine genau dann kommt, wenn auch die Eigenschaften der Böden mit den bei der Dimensionierung das Stampfsystems berücksichtigten Böden übereinstimmen. Bei der Verdichtung anders gearteter Böden kann die Stampfwirkung daher geringer sein.
  • Aus der WO 2012/084074 A1 ist ein Stampfer zur Bodenverdichtung bekannt, bei dem eine Arbeitsbewegung des Bodenkontaktelements durch einen Elektromotor über einen Kurbeltrieb erzeugt wird. Durch den Elektromotor wird eine Motorwelle in Rotation versetzt, die über eine Kupplung mit dem Kurbeltrieb verbunden ist.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Bodenverdichtungsvorrichtung anzugeben, die einen zuverlässigen Betrieb bei gleichzeitig hohem Wirkungsgrad des Gesamtsystems und geringen Herstellkosten ermöglicht. Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Betrieb einer solchen Bodenverdichtungsvorrichtung anzugeben.
  • Diese Aufgaben werden durch eine Bodenverdichtungsvorrichtung gemäß Patentanspruch 1 und durch ein Verfahren zum Betreiben einer Bodenverdichtungsvorrichtung gemäß dem nebengeordneten Patentanspruch gelöst. Weiterentwicklungen sind den abhängigen Ansprüchen zu entnehmen.
  • Eine Bodenverdichtungsvorrichtung weist eine Obermasse und eine mit der Obermasse durch eine Federeinrichtung gekoppelte Untermasse mit einem Bodenkontaktelement auf. Weiterhin ist ein Antrieb zum Erzeugen einer Arbeitsbewegung des Bodenkontaktelements vorgesehen. Der Antrieb weist einen Elektromotor auf, und eine Antriebsfrequenz einer von dem Elektromotor erzeugten Antriebsbewegung ist gleich einer Frequenz der Arbeitsbewegung des Bodenkontaktelements.
  • Die Gleichheit der Antriebsfrequenz des Elektromotors und der Frequenz der Arbeitsbewegung werden in der Bodenverdichtungsvorrichtung durch ein Gleichlaufen des Elektromotors mit der Frequenz der Arbeitsbewegung erreicht. Die Antriebsbewegung wird folglich ohne Änderung der Frequenz auf das Bodenkontaktelement übertragen. Dies bedeutet insbesondere, dass die Drehfrequenz des Elektromotors, beispielsweise die Drehfrequenz eines Antriebselements bzw. einer Antriebswelle des Elektromotors, einer Frequenz der Arbeitsbewegung des Bodenkontaktelements, z.B. einer Bodenkontaktplatte, entspricht. Demzufolge entspricht eine Drehung des Antriebselements des Elektromotors genau einem Arbeits- bzw. Stampfzyklus bzw. der Stampffrequenz der Bodenkontaktplatte.
  • Das Gleichlaufen des Elektromotors mit der Arbeitsfrequenz ermöglicht es, die Arbeitsbewegung durch den Elektromotor direkt erzeugen zu lassen. Insbesondere kann die Antriebsbewegung des Antriebselements direkt und ohne Umsetzen ihrer Frequenz auf das Bodenkontaktelement übertragen werden. Demzufolge ist es nicht notwendig, beispielsweise Getriebevorrichtungen oder weitere Übertragungsglieder zum Umsetzen, beispielsweise Reduzieren, der Antriebsfrequenz vorzusehen. Dies wird im Folgenden als Direktantrieb bezeichnet.
  • Das Gleichlaufen des Elektromotors mit der Arbeitsfrequenz ermöglicht somit eine direkte Verbindung des Elektromotors mit dem Stampfsystem an der Untermasse, bzw. mit einem Pleuel des Stampfsystems. Dies führt zu einer phasendefinierten Verbindung zwischen Elektromotor und Stampfsystem. Insbesondere sind durch die fehlende Kupplung die Position des Stampfsystems (Stampfpleuels) und der Drehwinkel der Antriebswelle des Elektromotors bzw. der Rotorwelle zueinander immer exakt definiert, so dass mit der Kenntnis des einen immer auf den anderen geschlossenen werden kann und umgekehrt.
  • Durch den Direktantrieb des Bodenkontaktelements durch den Elektromotor wird eine besonders einfache Konstruktion der Bodenverdichtungsvorrichtung möglich, da auf die Getriebevorrichtungen oder die weitere Übertragungsglieder zum Umsetzen der Frequenz verzichtet werden kann.
  • Der Direktantrieb ermöglicht es, eine Bodenverdichtungsvorrichtung anzugeben, die wesentlich kleiner und leichter ist als beispielsweise ein konventioneller Stampfer bzw. eine konventionelle Vibrationsplatte mit Getriebevorrichtung. Insbesondere kann ein geringeres Gewicht der Obermasse erreicht werden, wodurch sich ein niedriger Schwerpunkt und damit bessere Führungseigenschaften ergeben. Durch die geringere mechanische Komplexität des Gesamtsystems werden geringere Herstellkosten erreicht.
  • Im Arbeitsbetrieb ermöglicht der Direktantrieb und insbesondere die direkte Verbindung des Elektromotors mit dem Stampfsystem eine effektive, genaue und geräuscharme Übertragung der Antriebsbewegung auf das Bodenkontaktelement. Hierdurch wird ein geräusch- und wartungsarmer Betrieb mit hohem Wirkungsgrad des Gesamtsystems möglich, in dem wenig Verschleiß auftritt.
  • In einer Ausführungsform weist der Elektromotor einen Gleichstrommotor, Drehstrommotor oder Wechselstrommotor mit hoher Polpaarzahl auf. Beispielsweise kann der Gleich-, Dreh- oder Wechselstrommotor wenigstens zwei, drei, vier, fünf, acht oder zehn Polpaare bestehend aus jeweils einem Nord- und einem Südpol aufweisen. Beispielsweise kann der Gleich-, Dreh- oder Wechselstrommotor mindestens 8 Pole oder eine Polpaarzahl von wenigstens 8 Polpaaren aufweisen.
  • Insbesondere kann durch eine große Anzahl von Polpaaren ein Elektromotor mit einer niedrigen, beispielsweise der Arbeitsfrequenz der Bodenverdichtungsvorrichtung angepassten Drehzahl erreicht werden. Gleichzeitig erhöht sich das Drehmoment des Elektromotors, und zwar im Wesentlichen proportional zur Polpaaranzahl. Demzufolge wird gleichzeitig ein hohes Antriebsmoment erreicht, das zum Antreiben des Bodenkontaktelements in die Arbeitsbewegung geeignet ist. Folglich ist ein Dreh- oder Wechselstrommotor mit hoher Polpaarzahl geeignet, um einen Direktantrieb der Bodenverdichtungsvorrichtung zu ermöglichen.
  • In einer weiteren Ausführungsform weist der Elektromotor einen Torquemotor auf.
  • Ein Torquemotor ist ein drehmomentstarker Magnetmotor oder geschalteter Reluktanzmotor bzw. ein langsam laufender Elektromotor wie z.B. ein Elektro-Asynchronmotor mit hoher Polpaaranzahl. Entsprechend den obigen Überlegungen weisen Torquemotoren hohe Drehmomente bei kleinen Drehzahlen auf. Dies kann in der oben beschriebenen Weise für den Direktantrieb der Bodenverdichtungsvorrichtung genutzt werden.
  • Torquemotoren können als bürstenlose Gleichstrommotoren ausgeführt sein und können als Außenläufer mit innenliegendem Stator und außenliegendem Rotor sowie als Innenläufer mit innenliegendem Rotor und außenliegendem Stator gestaltet sein. Ihr großes Antriebsmoment kann hohe Beschleunigungen bewirken und führt zu einer hohen Dynamik des Arbeitsverhaltens der Bodenverdichtungsvorrichtung. Das bereits beim Start vorliegende hohe Anlaufmoment ermöglicht es, die Bodenverdichtungsvorrichtung allein durch den Torquemotor zu starten. Die hohe Antriebssteifigkeit der Torquemotoren lässt im Wesentlichen kein Spiel zu, weswegen Torquemotoren gute Regeleigenschaften aufweisen, die es ermöglichen, die Arbeitsanforderungen an die Bodenverdichtungsvorrichtung genau umzusetzen.
  • Dem Torquemotor kann ein elektronischer Frequenzumformer vorgelagert sein, der einen Speisestrom mit einer geeigneten Frequenz zum Betreiben des Torquemotors bereitstellt.
  • Trotz der vergleichsweise hohen Anschaffungskosten für Torquemotoren kann das Gesamtsystem der Bodenverdichtungsvorrichtung preisgünstig gestaltet werden, da zusätzliche Kosten beispielsweise für Getriebe und weitere Übertragungsglieder entfallen können.
  • In einer weiteren Ausführungsform weist der Elektromotor einen Asynchronmotor mit hoher Polpaarzahl und/oder einen Kurzschlussläufer-Antriebsmotor mit hoher Polpaarzahl auf. Beispielsweise können der Asynchronmotor bzw. der Kurzschlussläufer-Antriebsmotor 2, 3, 4, 5,8, 10 oder mehr Polpaare aufweisen. Insbesondere kann der Asynchronmotor bzw. der Kurzschlussläufer-Antriebsmotor mindestens 8 Pole oder eine Polpaarzahl von wenigstens 8 Polpaaren aufweisen.
  • Die Verwendung von Asynchronmotoren bzw. Kurzschlussläufer-Antriebsmotoren ermöglicht eine kostengünstige Gestaltung der Bodenverdichtungsvorrichtung. Das Vorsehen einer hohen Polpaarzahl ermöglicht es, einen drehmomentstarken Antrieb mit einer niedrigen Drehzahl anzugeben, der einen Direktantrieb des Bodenkontaktelements der Bodenverdichtungsvorrichtung ermöglicht. Der Asynchronmotor bzw. Kurzschlussläufer-Antriebsmotor kann beispielsweise derart gestaltet sein, dass bei einem Betrieb mit der Netzfrequenz beispielsweise des öffentlichen Stromnetzes ein Direktantrieb des Bodenkontaktelements mit einer geeigneten Stampffrequenz möglich ist. Alternativ kann auch ein Frequenzumformer zum Umwandeln der Netzfrequenz vorgesehen sein, um einen Betrieb der Bodenverdichtungsvorrichtung mit einer geeigneten Arbeitsbewegung des Bodenkontaktelements zu ermöglichen, beispielsweise bei Speisung des Elektromotors aus dem öffentlichen Stromnetz oder aus einem Akkumulator mit Gleichstrom-Wechselstromwandlung.
  • In einer weiteren Ausführungsform kann der Elektromotor einen sensorkommutierten bürstenlosen Magnetmotor mit einer elektronischen Steuervorrichtung aufweisen bzw. als solcher ausgebildet sein.
  • Ein sensorkommutierter, bürstenloser Magnetmotor mit elektronischer Ansteuerung besitzt Sensoren zur Bestimmung der Lage eines Rotors des Elektromotors relativ zum Statorfeld. Dadurch können die Statorspulen abhängig von der aktuellen Rotorstellung und gemäß einer Bewegungsanforderung bestromt werden.
  • Als Sensoren können beispielsweise Hall-Sensoren zur Erfassung des magnetischen Flusses des Rotors oder optische Sensoren im Bereich des Stators verwendet werden. Beispielsweise können die Signale der Sensoren über einen Inkremetalgeber, beispielsweise mit Nullsetzen bei vorgegebener Rotorstellung, ausgegeben werden.
  • Aus den Sensorsignalen kann die Steuerungsvorrichtung die Lage des Rotors und damit bei einem direkt wirkenden Antrieb auch die Stellung des Bodenkontaktelements, d.h. des Stampffußes, relativ zum Bodenverdichter und damit auch relativ zum Boden bestimmen. Auf Basis dieser Stellungsinformation kann die elektronische Steuervorrichtung über geeignete Leistungstreiber die Wicklungen geeignet ansteuern bzw. bestromen, die im Rotor ein Drehmoment erzeugen. Diese Ansteuerung kann abhängig von einer Bewegungsanforderung des Stampfers und/oder abhängig von Lage des Rotors bzw. Stellung des Stampffußes vorgenommen werden. Dies wird im Folgenden als sensorgesteuerte Kommutierung bezeichnet.
  • Durch die sensorgesteuerte Kommutierung kann eine bedarfsgerechte Steuerung der Arbeitsfrequenz der Bodenverdichtungsvorrichtung erreicht werden und eine Arbeitsbewegung des Bodenkontaktelements direkt beeinflusst werden. Die sensorgesteuerte Kommutierung funktioniert auch bei sehr geringen Drehzahlen bzw. im Stand. Gewöhnlich werden dabei, insbesondere bei drei oder mehr Phasen, nicht alle Phasen zugleich bestromt, so dass zu jedem Zeitpunkt zumindest eine Phase stromlos sein kann.
  • In einer weiteren Ausführungsform kann eine Antriebsbewegung des Elektromotors über einen Kurbeltrieb auf die Bodenkontaktplatte übertragbar sein. Insbesondere kann ein Pleuel des Kurbeltriebs exzentrisch an einer Rotorvorrichtung des Elektromotors angekoppelt sein. Das Ankoppeln kann beispielsweise mittels eines Kurbelzapfens erreicht werden, welcher exzentrisch an der Rotorvorrichtung des Elektromotors angeordnet ist.
  • Insbesondere kann der Elektromotor eine drehfest angeordnete Statorvorrichtung und eine relativ zur Statorvorrichtung drehbare Rotorvorrichtung aufweisen, wobei die Rotorvorrichtung bezüglich der Statorvorrichtung durch Einwirkung des eingespeisten Dreh- oder Wechselstroms dreh- bzw. rotorierbar ist. Das Pleuel des Kurbeltriebs kann an der Rotorvorrichtung angekoppelt sein, beispielsweise mittels des exzentrisch an der Rotorvorrichtung angeordneten Kurbelzapfens. Dieser kann eine robuste Verbindung zwischen der Rotorvorrichtung und dem Pleuel bilden.
  • Durch die direkte Verbindung des Pleuels mit der Rotorvorrichtung wird eine direkte Übertragung des Antriebsmoments des Elektromotors auf das Pleuel und über das Pleuel auf das Bodenkontaktelement erreicht, ohne dass Getriebevorrichtungen oder weitere Übertragungsglieder benötigt werden. Hierdurch kann die Antriebsbewegung effektiv und störungsfrei auf das Bodenkontaktelement übertragen werden. Weiterhin kann das Pleuel in einem Betrieb der Bodenverdichtungsvorrichtung geeignet durch den Rotor geführt werden. Hierdurch können Störeinflüsse aus dem Arbeitsbetrieb der Bodenverdichtungsvorrichtung, beispielsweise Reflexionen des Bodenkontaktelements von bearbeitendem Erdreich, aufgefangen und eingedämmt werden.
  • In einer weiteren Ausführungsform können der Elektromotor und der Kurbeltrieb baulich integriert sein.
  • Beispielsweise kann die Rotorvorrichtung des Elektromotors einen Exzenter, zum Beispiel eine Exzenterscheibe, aufweisen, an der das Pleuel beispielsweise mittels des Kurbelzapfens befestigt ist. Dies ermöglicht eine besonders kompakte und robuste, kostengünstige und verschleißarme Konstruktion der Bodenverdichtungsvorrichtung.
  • In einer weiteren Variante kann ein elektrischer Energiespeicher und/oder eine Anschlusseinrichtung zum Anschließen an eine Stromquelle vorgesehen sein. Der Elektromotor kann aus dem elektrischen Energiespeicher und/oder aus der Stromquelle mit elektrischer Energie versorgbar sein.
  • Die Stromquelle kann beispielsweise durch ein öffentliches Energieversorgungsnetz und/oder einen Generator bereitgestellt sein. Die Nutzung einer beispielsweise extern außerhalb der Bodenverdichtungsvorrichtung angeordneten Stromquelle ermöglicht es, die Bodenverdichtungsvorrichtung nach Verbindung mit der Stromquelle abgas- und geräuscharm und somit schonend für den Bediener und die Umwelt zu betreiben. Die Verwendung eines internen, also an der Bodenvorrichtung angeordneten elektrischen Energiespeichers, der durch Verbindung mit einer externen elektrischen Stromquelle ladbar sein kann, ermöglicht darüber hinaus den kabellosen Betrieb der Bodenverdichtungsvorrichtung unabhängig von einem Zugang zur Stromquelle.
  • In einer Variante dieser Ausführungsform kann ein Frequenzumformer zum Erzeugen eines Dreh- oder Wechselstroms für den Elektromotor mit einer vorbestimmten oder durch den Bediener wählbaren Frequenz vorgesehen sein.
  • Beispielsweise kann der Frequenzumformer mit dem Elektromotor baulich integriert sein, was einen einfachen Aufbau der Bodenverdichtungsvorrichtung mit geringem Bauraum ermöglicht. Ebenso ist es möglich, den Frequenzumformer getrennt vom Elektromotor vorzusehen, oder einen externen Frequenzumformer zum Bereitstellen eines Speisestroms mit der vom Elektromotor benötigten Frequenz vorzusehen. Die Frequenz des Speisestroms kann beispielsweise steuerbar in Bezug auf Arbeitsanforderungen an die Bodenverdichtungsvorrichtung sein.
  • In einer weiteren Ausführungsform kann der Antrieb einen weiteren Motor aufweisen, und der weitere Motor alternativ oder zusätzlich zum Elektromotor betreibbar sein. Der weitere Motor kann ein weiterer Elektromotor oder ein Verbrennungsmotor sein.
  • Die Verwendung des weiteren Motors ermöglicht es, die Bodenverdichtungsvorrichtung bedarfsgerecht anzutreiben. Beispielsweise können der Elektromotor und der weitere Motor alternativ oder gleichzeitig die Arbeitsbewegung des Bodenkontaktelements antreiben, beispielsweise durch alternatives oder gleichzeitiges Einwirken auf das Pleuel. Hierfür kann beispielsweise eine gekröpfte Welle mit mehreren Kurbelzapfen zum Antrieb durch mehrere Motoren vorgesehen sein.
  • Das Vorsehen eines Verbrennungsmotors zusätzlich zum Elektromotor ermöglicht einen Hybridantrieb der Bodenverdichtungsvorrichtung beispielsweise in Abhängigkeit davon, ob ein elektrischer Energiespeicher geladen, eine externe Stromquelle verfügbar und/oder ob ein Tankbehälter des Verbrennungsmotors betankt ist. Hierdurch wird eine größtmögliche Unabhängigkeit von der Verfügbarkeit der Energiequellen und damit eine hohe Verfügbarkeit der Bodenverdichtungsvorrichtung in unterschiedlichen Anwendungsszenarien erreicht.
  • In einem Verfahren zum Betreiben einer Bodenverdichtungsvorrichtung weist die Bodenverdichtungsvorrichtung eine Obermasse, eine mit der Obermasse durch eine Federeinrichtung gekoppelte Untermasse mit einem Bodenkontaktelement und einem Antrieb zum Erzeugen einer Antriebsbewegung des Bodenkontaktelements auf. Der Antrieb weist einen Elektromotor auf, und eine Antriebsfrequenz einer von dem Elektromotor erzeugten Antriebsbewegung ist gleich einer Frequenz der Arbeitsbewegung des Bodenkontaktelements. Beispielsweise kann die Bodenverdichtungsvorrichtung jeder der oben diskutierten Ausführungsformen und Varianten entsprechen. Das Verfahren weist ein Einspeisen eines Dreh- oder Wechselstroms in den Elektromotor und ein Übertragen der Antriebsbewegung des Elektromotors in eine Arbeitsbewegung des Bodenkontaktelements mit gleicher Frequenz auf.
  • Das Verfahren ermöglicht somit den Betrieb einer Bodenverdichtungsvorrichtung mit einem Direktantrieb, bei dem eine Drehfrequenz eines Antriebselements des Elektromotors einer Frequenz der Arbeitsbewegung der Bodenkontaktplatte entspricht.
  • In einer Ausführungsform des Verfahrens zum Betreiben der Bodenverdichtungsvorrichtung kann nach einem Kraftstoß der Bodenkontaktplatte (z.B. auf einen zu verdichtenden Boden) ein Ansteuern des Elektromotors zum Erzeugen von wenigstens einer weiteren Antriebsbewegung einer Antriebswelle des Elektromotors vorgesehen sein. Die weitere Antriebsbewegung kann dazu ausgelegt sein, wenigstens einen weiteren Kraftstoß der Bodenkontaktplatte (z.B. auf den zu verdichtenden Boden) zu erzeugen, wobei die weitere Antriebsbewegung eine höhere Antriebsfrequenz aufweist als eine Antriebsfrequenz der Antriebswelle im Moment des Kraftstoßes.
  • Die höhere Antriebsfrequenz der weiteren Antriebsbewegung kann deutlich und wesentlich höher sein als die Antriebsfrequenz im Moment des Kraftstoßes. Beispielsweise kann die höhere Antriebsfrequenz um wenigstens 30% höher sein als die Antriebsfrequenz im Moment des Kraftstoßes.
  • Diese Ausführungsform ermöglicht das Setzen eines Mehrfach-Stoßes der Bodenverdichtungsvorrichtung sowie ein Nachschlagen. Dabei können unmittelbar nach dem Kraftstoß, den der Stampffuß auf den Boden ausübt, weitere Kraftstöße erzeugt werden. Dies wird durch geeignete Moderation des Antriebs nach dem Aufsetzen des Stampffußes auf dem Boden, und zwar insbesondere durch eine geeignete elektromagnetische Anregung des Antriebsmotors erreicht. Da die Antriebsbewegung des Antriebsmotors mit gleicher Frequenz bzw. starr auf den Stampffuß übertragen wird, ist eine exakte Steuerung des Mehrfach-Stoßes bzw. Nahschlagens möglich. Beispielsweise kann der Antriebsmotor derart angesteuert werden, dass eine Folge rasch aufeinander folgender Drehimpulse der Antriebswelle/Rotorwelle mit sehr hoher Antriebsfrequenz erzeugt und auf den Stampffuß übertragen wird.
  • In einer weiteren Ausführungsform des Verfahrens zum Betreiben der Bodenverdichtungsvorrichtung kann die weitere Antriebsbewegung wenigstens eine Teilbewegung mit einer Drehrichtung der Antriebswelle entgegengesetzt zu einer Drehrichtung der Antriebswelle im Moment des Kraftstoßes aufweisen.
  • Dies ermöglicht es, bei der genannten Folge rasch aufeinander folgender Drehimpulse mit hoher Antriebsfrequenz auch Drehbewegungen der Antriebswelle/Rotorwelle mit gegenläufiger Drehrichtung auszuführen. Dies ermöglicht ein sehr schnelles Nachschlagen, da der Drehzyklus vor dem Nachschlagen nicht abgeschlossen werden muss, sondern kurzfristig, auch mehrfach, umgekehrt werden kann. Dies ermöglicht es, beispielsweise gemäß einer Bedieneranforderung eine sehr schnelle Folge kurzer Stampfbewegungen zu erzeugen.
  • Dadurch wird der zu verdichtende Boden durch den Stampffuß/ das Bodenkontaktelement mehrfach und mit schnell aufeinanderfolgenden Stoßimpulsen zusammengedrückt, was zu einer zusätzlichen Verdichtung des Erdreichs führt. Besonders die Tatsache, dass dabei durch den bereits erfolgten Kontakt des Stampffußes zum Erdboden keine bzw. nur noch eine minimale Reflexion des Kraftimpulses auftritt, kann eine sehr effektive Verdichtung des Erdbodens erreicht werden.
  • Diese und weitere Merkmale der Erfindung werden nachfolgend anhand von Beispielen unter Zuhilfenahme der begleitenden Figur näher erläutert. Die
  • Figur
    zeigt eine Bodenverdichtungsvorrichtung, wobei eine Arbeitsbewegung einer Bodenkontaktplatte der Bodenverdichtungsvorrichtung durch einen mit einer Frequenz der Arbeitsbewegung gleichlaufenden Elektromotor erzeugt wird.
  • Die Figur zeigt schematisch in einer seitlichen Schnittansicht einen als Bodenverdichtungsvorrichtung dienenden Stampfer 1, bei welchem in einem Gehäuse 2 ein Elektromotor 3 vorgesehen ist. Der Elektromotor 3 weist einen Stator 4 und einen relativ zum Stator 4 drehbaren Rotor 5 auf und wird aus einem am Stampfer 1 angeordneten elektrischen Energiespeicher 6 gespeist.
  • Mit dem Rotor 5 baulich integriert ist eine Exzenterscheibe 7, an der exzentrisch ein Kurbelzapfen 8 angeordnet ist. Mit dem Kurbelzapfen 8 verbunden ist ein Pleuel 9 zum Umsetzen der rotatorischen Antriebsbewegung des Rotors 5 in eine translatorische und oszillatorische Auf- und Abbewegung, und zum Übertragen der Auf- und Abbewegung auf einen mit dem Pleuel 9 über Federpakete 10 und 11 gekoppelten Stampffuß 12, an dem als Bodenkontaktelement eine Bodenkontaktplatte 13 angeordnet ist.
  • In einem Arbeitsbetrieb des Stampfers 1 wird eine vorab in dem an einem Führungsbügel 14 des Stampfers 1 angeordneten elektrischen Energiespeicher 6 gespeicherte elektrische Energie zur Erzeugung eines Wechsel- oder Drehstroms beispielsweise mit Hilfe eines Frequenzumformers genutzt. Der Wechsel- oder Drehstrom wird als Speisestrom dem Stator 4 des Elektromotors 3 zugeführt. Hierdurch werden wechselnde Magnetfelder im Bereich des Rotors 5 erzeugt und der Rotor 5 in bekannter Weise in eine Drehbewegung versetzt, die Antriebsbewegung des Elektromotors 3.
  • Eine Drehfrequenz des Rotors 5 bzw. Antriebsfrequenz der Antriebsbewegung wird dabei direkt durch eine Frequenz des dem Stator 4 zugeführten Wechsel- oder Drehstroms bedingt. Die Antriebs- bzw. Drehbewegung des Rotors 5, welcher baulich mit dem durch die Exzenterscheibe 7, den Kurbelzapfen 8 und das Pleuel 9 gebildeten Kurbelbetrieb integriert ist, wird gleichlaufend, also mit gleicher Frequenz in eine Arbeitsbewegung des Stampffußes 12 und der daran angeordneten Bodenkontaktplatte 13 umgesetzt. Hierdurch wird ein Direktantrieb der Bodenkontaktplatte 13 durch den Elektromotor 3 mit gleichlaufender Frequenz erreicht.
  • Der Direktantrieb ermöglicht es, den Stampfer 1 ohne weitere Getriebevorrichtungen bzw. ohne weitere frequenzumsetzende Übertragungsglieder zu gestalten. Hierdurch wird eine geringere Komplexität des Gesamtsystems erreicht, welche zu geringen Herstellkosten, geringen Wartungsaufwänden, einem hohen Gesamtwirkungsgrad und einer hohen Zuverlässigkeit des Stampers 1 führt. Die Konstruktion ist geräusch- und verschleißarm und weist weiterhin einen im Vergleich zu herkömmlich angetriebenen Stampfern niedrigen Schwerpunkt und damit ein verbessertes Führungsverhalten auf.
  • Der Elektromotor 3 kann beispielsweise einen Dreh- oder Wechselstrommotor mit hoher Polpaarzahl, einen Torquemotor, einen Asynchronmotor mit hoher Polpaarzahl und/oder einen Kurzschlussläufer-Antriebsmotors mit hoher Polpaarzahl aufweisen.

Claims (12)

  1. Bodenverdichtungsvorrichtung (1) mit
    - einer Obermasse (2, 3, 4, 5, 6, 7, 8, 9) und einer mit der Obermasse (2, 3, 4, 5, 6, 7, 8, 9) durch eine Federeinrichtung (10, 11) gekoppelten Untermasse (12, 13) mit einem Bodenkontaktelement (13), und
    - einem Antrieb (3, 4, 5) zum Erzeugen einer Arbeitsbewegung des Bodenkontaktelements (13), wobei
    - der Antrieb einen Elektromotor (3, 4, 5) aufweist,
    - eine Antriebsfrequenz einer von dem Elektromotor (3, 4, 5) erzeugten Antriebsbewegung gleich einer Frequenz der Arbeitsbewegung des Bodenkontaktelements (13) ist,
    - die Antriebsbewegung des Elektromotors (3, 4, 5) über einen Kurbeltrieb (7, 8, 9) auf das Bodenkontaktelement (13) übertragbar ist, und wobei
    - ein Pleuel (9) des Kurbeltriebs exzentrisch direkt an einer Rotorvorrichtung (5) des Elektromotors (3, 4, 5) angekoppelt ist.
  2. Bodenverdichtungsvorrichtung (1) nach Anspruch 1, wobei
    - der Elektromotor (3, 4, 5) einen Gleichstrommotor, Drehstrommotor oder Wechselstrommotor mit hoher Polpaarzahl aufweist.
  3. Bodenverdichtungsvorrichtung (1) nach einem der vorstehenden Ansprüche, wobei
    - der Elektromotor (3, 4, 5) einen Torquemotor aufweist.
  4. Bodenverdichtungsvorrichtung (1) nach einem der vorstehenden Ansprüche, wobei
    - der Elektromotor (3, 4, 5) einen Asynchronmotor mit hoher Polpaarzahl und/oder einen Kurzschlussläufer-Antriebsmotor mit hoher Polpaarzahl aufweist.
  5. Bodenverdichtungsvorrichtung (1) nach einem der vorstehenden Ansprüche, wobei
    - der Elektromotor (3, 4, 5) einen sensorkommutierten bürstenlosen Magnetmotor mit einer elektronischen Steuervorrichtung aufweist.
  6. Bodenverdichtungsvorrichtung (1) nach einem der vorstehenden Ansprüche, wobei
    - der Elektromotor (3, 4, 5) und der Kurbeltrieb (7, 8, 9) baulich integriert sind.
  7. Bodenverdichtungsvorrichtung (1) nach einem der vorstehenden Ansprüche, wobei
    - ein elektrischer Energiespeicher und/oder eine Anschlusseinrichtung zum Anschließen an eine Stromquelle vorgesehen ist, und
    - der Elektromotor (3, 4, 5) aus dem elektrischen Energiespeicher (6) und/oder aus der Stromquelle mit elektrischer Energie versorgbar ist.
  8. Bodenverdichtungsvorrichtung (1) nach einem der vorstehenden Ansprüche, mit
    - einem Frequenzumformer zum Erzeugen eines Dreh- oder Wechselstroms für den Elektromotor (3, 4, 5) mit einer vorbestimmten Frequenz.
  9. Bodenverdichtungsvorrichtung (1) nach einem der vorstehenden Ansprüche, wobei
    - der Antrieb einen weiteren Motor aufweist, und der weitere Motor alternativ oder zusätzlich zum Elektromotor (3, 4, 5) betreibbar sind, und wobei
    - der weitere Motor ein weiterer Elektromotor oder ein Verbrennungsmotor ist.
  10. Verfahren zum Betreiben einer Bodenverdichtungsvorrichtung (1) gemäss einem der Ansprüche 1 bis 9 wobei die Bodenverdichtungsvorrichtung eine Obermasse (2, 3, 4, 5, 6, 7, 8, 9), eine mit der Obermasse (2, 3, 4, 5, 6, 7, 8, 9) durch eine Federeinrichtung gekoppelte Untermasse (12, 13) mit einem Bodenkontaktelement (13) und einen Antrieb (3, 4, 5) zum Erzeugen einer Arbeitsbewegung des Bodenkontaktelements (13) aufweist, wobei der Antrieb einen Elektromotor (3, 4, 5) aufweist, und wobei eine Antriebsfrequenz einer von dem Elektromotor (3, 4, 5) erzeugten Antriebsbewegung gleich einer Frequenz der Arbeitsbewegung des Bodenkontaktelements (13) ist, mit
    - Einspeisen eines Dreh- oder Wechselstroms in den Elektromotor (3, 4, 5);
    - Übertragen der Antriebsbewegung des Elektromotors (3, 4, 5) in eine Arbeitsbewegung des Bodenkontaktelements (13) mit gleicher Frequenz.
  11. Verfahren zum Betreiben einer Bodenverdichtungsvorrichtung (1) nach Anspruch 10, mit
    - nach einem Kraftstoß der Bodenkontaktplatte, Ansteuern des Elektromotors zum Erzeugen von wenigstens einer weiteren Antriebsbewegung einer Antriebswelle des Elektromotors, wobei die weitere Antriebsbewegung dazu ausgelegt ist, wenigstens einen weiteren Kraftstoß der Bodenkontaktplatte zu erzeugen, und wobei die weitere Antriebsbewegung eine höhere Antriebsfrequenz aufweist als die Antriebsfrequenz der Antriebswelle im Moment des Kraftstoßes.
  12. Verfahren zum Betreiben einer Bodenverdichtungsvorrichtung (1) nach Anspruch 10 oder 11, wobei
    - die weitere Antriebsbewegung wenigstens eine Teilbewegung mit einer Drehrichtung der Antriebswelle entgegengesetzt zu einer Drehrichtung der Antriebswelle im Moment des Kraftstoßes aufweist.
EP14003744.1A 2013-12-12 2014-11-06 Bodenverdichter mit Direktantrieb Active EP2884005B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013020857.2A DE102013020857A1 (de) 2013-12-12 2013-12-12 Bodenverdichter mit Direktantrieb

Publications (2)

Publication Number Publication Date
EP2884005A1 EP2884005A1 (de) 2015-06-17
EP2884005B1 true EP2884005B1 (de) 2016-10-26

Family

ID=51865971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14003744.1A Active EP2884005B1 (de) 2013-12-12 2014-11-06 Bodenverdichter mit Direktantrieb

Country Status (4)

Country Link
US (1) US9175447B2 (de)
EP (1) EP2884005B1 (de)
CN (1) CN104711920B (de)
DE (1) DE102013020857A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE538758C2 (sv) 2015-02-06 2016-11-08 Dynapac Compaction Equipment Ab Vibrationsanordning för kompakteringsmaskin
JP6839110B2 (ja) * 2018-01-29 2021-03-03 酒井重工業株式会社 締固め機
WO2022010999A1 (en) 2020-07-07 2022-01-13 Milwaukee Electric Tool Corporation Plate compactor
GB2604350A (en) * 2021-03-01 2022-09-07 Black & Decker Inc A compacting power tool
DE102021129422A1 (de) * 2021-11-11 2023-05-11 Wacker Neuson Produktion GmbH & Co. KG Bodenverdichtungsvorrichtung mit Elektroantrieb
CN117802966B (zh) * 2024-03-01 2024-05-07 山东高速德建集团有限公司 一种土建可调夯实机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE629006C (de) * 1933-12-19 1936-04-21 Hans Moritz Dempwolff Dr Ing Tragbares Handgeraet zum Verdichten von Schuettmassen, insbesondere der Bettung unter Bahnschwellen
GB1407131A (en) * 1973-03-14 1975-09-24 Vibranetics Adjustable drive vibratory device
US4488076A (en) * 1982-09-30 1984-12-11 Applied Motion Products, Inc. Tachometer assembly for magnetic motors
CN87209876U (zh) * 1987-07-08 1988-06-01 马炳林 一种液压打夯机
US20060165488A1 (en) * 2005-01-27 2006-07-27 Keith Morris Hand held tamping device
DE102005029432A1 (de) * 2005-06-24 2006-12-28 Wacker Construction Equipment Ag Bodenverdichtungsvorrichtung mit automatischer oder bedienerintuitiver Verstellung des Vorschubvektors
US20100296869A1 (en) * 2008-01-24 2010-11-25 Catanzarite David M Powered construction ground compactor and method of making
US7682102B1 (en) * 2009-04-23 2010-03-23 Gary Burke Asphalt tamper
CN201546220U (zh) * 2009-10-16 2010-08-11 长葛市新世纪机电有限公司 一种冲击夯
US8640809B2 (en) * 2010-01-05 2014-02-04 Honda Motor Company, Ltd. Flywheel assemblies and vehicles including same
DE102010015950B4 (de) * 2010-03-12 2012-12-13 RAVI Baugeräte GmbH Handrüttelgerät zur Verdichtung von Materialien im Straßen-, Gleis- und Erdbau
DE102010055632A1 (de) * 2010-12-22 2012-06-28 Wacker Neuson Produktion GmbH & Co. KG Bodenverdichtungsvorrichtung mit luftgekühlten Akku
DE102011105899A1 (de) * 2011-06-28 2013-01-03 Bomag Gmbh Vorrichtung zur Bodenverdichtung, insbesondere handgeführt, mit elektrischem Antrieb und Verfahren zum Betrieb einer solchen Vorrichtung
CN202500129U (zh) * 2012-04-19 2012-10-24 宁波市鄞州波普工程机械制造有限公司 平板夯

Also Published As

Publication number Publication date
US9175447B2 (en) 2015-11-03
CN104711920A (zh) 2015-06-17
DE102013020857A1 (de) 2015-06-18
US20150167259A1 (en) 2015-06-18
CN104711920B (zh) 2019-04-09
EP2884005A1 (de) 2015-06-17

Similar Documents

Publication Publication Date Title
EP2884005B1 (de) Bodenverdichter mit Direktantrieb
DE3048972C2 (de) Antriebseinheit
DE102018133578A1 (de) Elektrische maschine mit einem permanentmagneten und variabler magnetausrichtung
EP1685642B1 (de) Stufenlos schaltbares, magnetodynamisches getriebe
EP2376713B1 (de) Bodenverdichtungsvorrichtung
DE102010032335A1 (de) Handwerkzeug
DE102010028872A1 (de) Antriebsvorrichtung für Dreh- und Linearbewegungen mit entkoppelten Trägheiten
DE102008001408A1 (de) Offsetwinkelbestimmung bei Synchronmaschinen
EP2844508A2 (de) Radantriebseinheit für ein rad eines elektrisch angetriebenen fahrzeugs, fahrzeug und verfahren zum betreiben einer radantriebseinheit eines fahrzeugs
DE102006042810A1 (de) Hydrostatische Energieerzeugungseinheit
EP1480321A1 (de) Elektrisches Antriebsaggregat
DE202007008897U1 (de) Antriebseinrichtung für einen Press-, Stanz- oder Umformautomaten
DE1463076A1 (de) Motorverdichter,insbesondere fuer Kleinkaeltemaschinen
DE112007000140T5 (de) Antriebssystem
DE102018203566A1 (de) Elektromechanischer Energiewandler mit einem inneren und einem äußeren Energiewandler
DE3625994C2 (de)
DE19850314A1 (de) Elektromagnetisch betriebener Motor
DE102016218192B3 (de) Nockenwellenversteller
DE19829442C2 (de) Motor zur Verwendung als Starter und Generator in einem Kraftfahrzeug
WO2010052047A1 (de) Starteranordnung mit nebenaggregateantrieb
DE19923315A1 (de) Antriebssystem für ein Kraftfahrzeug
DE102011087790B4 (de) Vorrichtung und Verfahren zur Stromerzeugung
DE102010003278A1 (de) Antriebseinheit für ein Wischersystem mit einer bürstenlosen Gleichstrommaschine
DE202012002207U1 (de) Vorrichtung mit mindestens einer Rotor-Stator-Anordnung eines Energiewandlers
AT512851B1 (de) Range-Extender für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151216

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 3/046 20060101AFI20160506BHEP

INTG Intention to grant announced

Effective date: 20160530

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 840141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001769

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014001769

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

26N No opposition filed

Effective date: 20170727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 840141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201124

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 10

Ref country code: DE

Payment date: 20231120

Year of fee payment: 10