EP2873862A1 - Eccentric screw pump, and use of an eccentric screw pump - Google Patents

Eccentric screw pump, and use of an eccentric screw pump Download PDF

Info

Publication number
EP2873862A1
EP2873862A1 EP20140003567 EP14003567A EP2873862A1 EP 2873862 A1 EP2873862 A1 EP 2873862A1 EP 20140003567 EP20140003567 EP 20140003567 EP 14003567 A EP14003567 A EP 14003567A EP 2873862 A1 EP2873862 A1 EP 2873862A1
Authority
EP
European Patent Office
Prior art keywords
eccentric screw
stator
screw pump
pump
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20140003567
Other languages
German (de)
French (fr)
Inventor
Elimar Volkmann
Lorenz Lessmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Pumpen and Systeme GmbH
Original Assignee
Netzsch Pumpen and Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Pumpen and Systeme GmbH filed Critical Netzsch Pumpen and Systeme GmbH
Publication of EP2873862A1 publication Critical patent/EP2873862A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member

Definitions

  • the present invention relates to an eccentric screw pump for conveying liquid and / or granular media and the use of such an eccentric screw pump according to the features of the preambles of claims 1 and 13.
  • Eccentric screw pumps are pumps for pumping a large number of media, in particular viscous, highly viscous and abrasive media such as sludges, liquid manure, crude oil and fats.
  • Progressing cavity pumps known from the prior art are formed from a rotor and a stator, the rotor being accommodated in the stator and moving eccentrically in the stator.
  • the stator is formed by a housing with a spiral-shaped inside. From the movement of the rotor and mutual conditioning between the stator and rotor moving conveyor chambers are formed, by means of which liquid media can be transported along the stator.
  • the rotor performs an eccentric rotational movement about the stator axis or about the longitudinal axis of the eccentric screw pump.
  • the outer screw i.
  • the stator has the form of a double thread, while the rotor screw is only catchy.
  • progressing cavity pumps are suitable for conveying water, petroleum and a large number of other liquids.
  • the shape of the delivery chambers is constant during the movement of the rotor within the stator, so that the pumped medium is not crushed.
  • not only fluids but also solids can be conveyed with progressing cavity pumps.
  • the eccentric screw pumps require at least one safety device against overpressure.
  • a connecting line between the inlet flange of the suction side of the Pump body and the outlet flange of the pressure side is arranged.
  • the connecting pipe is an external pipe and / or hose line in which an overflow or safety valve is integrated.
  • the object of the invention is therefore to provide an eccentric screw pump with at least one safety device against overpressure, which is characterized by a simple and uncomplicated structure and in particular does not have the disadvantages of the prior art mentioned.
  • the invention relates to an eccentric screw pump for conveying fluid and / or granular media, in particular of viscous, highly viscous and abrasive media.
  • An eccentric screw pump consists of a pump body and a drive unit. The pump body is divided into an inlet region with an inlet nozzle, a pumping unit and an outlet region with an outlet nozzle. The inlet port and the outlet port have normalized flanges for connection to other pipe sections for delivery of the pumped medium.
  • the pump unit is formed of a rotor and a stator.
  • the stator is formed by a housing with a spiral-shaped inside.
  • the rotor is designed as a kind of round-threaded screw and moves eccentrically in the interior of the stator, whereby the delivery chambers formed between the rotor and stator are movable in the conveying direction.
  • the inlet region of the eccentric screw pump forms the suction side and the outlet region of the eccentric screw pump forms the pressure side.
  • a bypass connection with at least one safety valve is arranged between the pressure side and the suction side. This serves for receiving and returning back-flowing medium between the pressure side and the suction side of the eccentric screw pump in order to prevent an uncontrolled overpressure from building up within the eccentric screw pump. Overpressure must be reduced in a controlled manner in order to prevent or avoid damage to the eccentric screw pump.
  • bypass connection and the safety valve are integrated in the pump body of the eccentric screw pump.
  • bypass connection and the safety valve are integrated in the pump unit in the pump body of the eccentric screw pump.
  • the stator has an additional jacket.
  • the stator is arranged in a jacket tube, wherein the stator has an outer circumference which is smaller than the inner circumference of the jacket tube, so that a gap is formed between the stator and the jacket tube. This is in fluid communication with the respective interior spaces of the inlet area and the outlet area and forms the bypass connection. Furthermore, the gap is assigned at least one safety valve.
  • the stator is arranged in a stator sleeve.
  • the inner periphery of the stator sleeve largely corresponds to the outer circumference of the stator, so that the stator sleeve rests with its inner circumference largely flat on the outer circumference of the stator.
  • Between the stator and the Stator sleeve is formed at least one connecting line parallel to the longitudinal axis of the eccentric screw pump.
  • the connection line is fluidly connected to the respective inner spaces of the inlet area and the outlet area via first and second connections and forms the bypass connection.
  • the first and second connections are, in particular, bores in the housing of the pump body, in particular in the areas in which the outlet and inlet areas respectively adjoin the pump unit.
  • At least one safety valve is assigned to the at least one connecting line.
  • the at least one connecting line between the stator and stator sleeve is formed for example by a continuous recess in the outer circumferential surface of the stator parallel to the longitudinal axis of the eccentric screw pump.
  • a continuous groove is formed on the outer circumferential surface. The recess extends along a length of the stator, in particular along the entire length of the stator.
  • the rotor comprises a cavity along its rotor longitudinal axis.
  • the cavity may for example be a through-hole through the rotor along the rotor longitudinal axis.
  • the cavity can already be integrated into the rotor during manufacture by already hollow-casting it or hollow molding it by means of another suitable method.
  • the cavity of the rotor is in fluid communication with the respective interior spaces of the inlet region and the outlet region and forms the bypass connection.
  • the cavity is associated with at least one safety valve.
  • the eccentric screw pump has a stator with at least one return flow channel.
  • the return flow channel is formed parallel to the longitudinal axis of the eccentric screw pump along the stator length.
  • the at least one return flow channel is in fluid communication with the respective interior spaces of the inlet region and the outlet region and forms the bypass connection.
  • the return flow channel is formed in particular in a region between an internal thread of the stator and the outer circumferential surface of the stator.
  • the return flow channel has no open connection to the internal thread of the stator and / or the outer circumferential surface of the stator. That is, the return flow channel is formed in the stator material.
  • the return flow channel is assigned at least one safety valve.
  • a portion of the pumped medium is passed as a return flow via the at least one return flow channel of the stator back into the inlet region of the pump body.
  • the at least one return flow channel is cast during manufacture in the stator.
  • the at least one return flow channel can be subsequently formed even after the stator has been manufactured.
  • the safety valve is arranged within the return flow channel, preferably in a region between the inlet region and the pumping unit.
  • the safety valve is integrated in the outlet region of the pump body. It is provided that an outlet opening of the safety valve opens via a first connection in a return flow channel. Also in this embodiment, multiple return ducts and a plurality of appropriately arranged safety valves can be used. When an overpressure builds up on the pressure side of the eccentric screw pump, a portion of the pumped medium is passed as a return flow via the at least one return flow channel of the stator back into the inlet region of the pump body.
  • the safety valve for preventing an impermissible increase in pressure within the eccentric screw pump can be a spring-loaded safety valve, a weight-loaded safety valve or a medium-loaded safety valve.
  • the safety valve is an overflow valve for relieving the interior of the eccentric screw pump in the event of inadmissible overpressure within the closed system.
  • a previously described eccentric screw pump according to the invention can be used in particular for conveying fluid and / or granular media in a borehole.
  • Such an eccentric screw pump can generally be used whenever, for example, due to the medium to be pumped, the development of overpressure is to be expected.
  • the integrated return circuit By integrating the return circuit with safety or overflow valve in the pump body of the eccentric screw pump whose structure remains compact.
  • the integrated return circuit generally does not increase the pump body of the eccentric screw pump.
  • a return circuit is not only possible for progressing cavity pumps with a stator formed of an elastomer.
  • a return circuit into a so-called stepwise vortex pump in a comparable manner.
  • a stepwise vortex pump for example, in the US 2008/0050249 A1 described.
  • this pump has no stator made of a rubber, which is attacked, for example, when pumping petroleum or the like from the pumped medium.
  • the pump is built in stages, contains only corrosion-resistant metal components and works centralized. This can eliminate vibrations in the system, and the pump can operate at elevated temperatures and be made smaller.
  • FIG. 1 shows an eccentric screw pump 1 with conventionally known external bypass line 2 according to the prior art.
  • the eccentric screw pump 1 comprises a pump body 3 with an inlet region 4, a pumping unit 5 and an outlet region 6.
  • the inlet region 4 forms the suction side S of the eccentric screw pump 1 and the outlet region 6 forms the pressure side D of the eccentric screw pump 1.
  • the pumping unit 5 consists of an eccentric screw conveyor , the so-called rotor 8, which rotates in a stator 7 with a spiral-shaped inner side, forming traveling conveying chambers 14.
  • the rotor 8 is connected to the drive unit 12, which connects the rotor 8 with a drive shaft 13 by means of a coupling rod 9 arranged in the inlet region of the pump body 3. In between are joints 10, 11 for the connection of and power transmission between the drive unit 12 and the rotor. 8
  • the medium M to be delivered passes into the eccentric screw pump 1, is transported through the traveling delivery chambers 14 in the conveying direction Fr by the pumping unit and pumped out of the eccentric screw pump 1 via the outlet flange 16 of the outlet region 6.
  • the bypass line 2 is arranged with a safety valve 20, for example with an overflow valve 21, via suitable connecting means 17, 18.
  • the overflow valve 21 is arranged directly on a connecting means 17 which is assigned to the outlet flange 16.
  • the bypass line 2 extends between the spill valve 21 and the connecting means 18, which is associated with the inlet flange 15, parallel to the pump body third
  • FIG. 2 shows an eccentric screw pump 30-1 according to the invention.
  • the stator 7 is surrounded by a jacket tube 45.
  • the housing of the pump body 3 has a first connection 46 to the jacket tube 45, so that the interior of the outlet region 5 is fluidically connected to a cavity 43 formed between jacket tube 45 and stator 7.
  • the housing of the pump body 3 in the inlet region 4 has a second connection 47 to the jacket tube 45, so that the interior of the inlet region 4 is fluidly connected to the cavity 43 formed between the jacket tube 45 and the stator 7.
  • a return flow channel 44 is formed between the jacket tube 45 and the outer jacket surface of the stator 7, through which a portion of the medium M R can flow from the pressure side D back to the suction side S of the eccentric screw pump 30-1 when an overpressure arises within the eccentric screw pump 30-1.
  • the backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then conveyed again in the conveying direction FR by the eccentric screw pump 30-1.
  • one or more overflow valves 40 for limiting the delivery pressure of the eccentric screw pump 30-1 are arranged, whose outlet opens into the interior of the pump body 3 in the inlet region 4 ,
  • the arrangement of an overflow valve 40 in the cavity 43 is in FIG. 3 shown in detail.
  • FIG. 4 shows an eccentric screw pump 30-2 according to the invention.
  • the stator 7-2 is surrounded by a stator sleeve 50.
  • a connecting line 52 is at least partially formed parallel to the longitudinal axis L of the eccentric screw pump 30-2.
  • the connecting line 52 has at the pressure-side end of the eccentric screw pump 30-2 a first connection 55 to the interior of the eccentric screw pump 30-2 in the outlet region 6.
  • the connecting line 52 at the suction end of Eccentric screw pump 30-2 a second connection 56 to the interior of the eccentric screw pump 30-2 in the inlet region 4.
  • the first connection 55, the connection line 52 and the second connection 56 form a return flow passage, through which a portion of the medium M R can flow from the pressure side D back to the suction side S of the eccentric screw pump 30-2 when an overpressure arises within the eccentric screw pump 30-2 ,
  • the backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then conveyed again in the conveying direction FR by the eccentric screw pump 30-2.
  • one or more overflow valves 40 for limiting the delivery pressure are arranged.
  • FIG. 5 shows a third embodiment of an eccentric screw pump 30-3 according to the invention.
  • an at least partially hollow rotor 8-3 is used.
  • the rotor 8-3 comprises a cavity 60 which extends along the rotor longitudinal axis L R.
  • the rotor 8-3 has at its drive end connecting bores 62 between the outer circumferential surface of the rotor 8-3 and the cavity bore 60, for establishing a fluid connection between the cavity 60 and the interior of the pump body 3 in the inlet region 5 of the eccentric screw pump 30-3.
  • an overflow valve 40 is additionally integrated.
  • the cavity 60 of the rotor 8-3 and the connecting bores 62 form a return flow passage, through which a portion of the medium M R can flow from the pressure side D back to the suction side S of the eccentric screw pump 30-3 when an overpressure within the eccentric screw pump 30-3 arises.
  • the backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then conveyed again in the conveying direction FR by the eccentric screw pump 30-3.
  • FIG. 6 shows a fourth embodiment of an eccentric screw pump 30-4 according to the invention.
  • the used stator 7-4 cast-in return flow channels 65 parallel to the rotor longitudinal axis LR, which form a fluid connection with the interior of the pump body 3 in the outlet region 6 and with the interior of the pump body 3 in the inlet region 4.
  • the return flow channels 65 in which in each case at least one overflow valve 40 can be arranged, a portion of the medium M R flows when an overpressure arises within the Eccentric screw pump 30-4 from the pressure side D back to the suction side S of the eccentric screw pump 30-4.
  • the backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then again conveyed in the conveying direction FR by the eccentric screw pump 30-4.
  • the overflow valve 40 can also be integrated and arranged in the pump body such that the medium M R flowing back through the return flow passages 65 of the stator 7 4 flows through the overflow valve 40 before it opens into the inlet region 4 of the pump body 3.
  • FIG. 7 shows a fifth embodiment of an eccentric screw pump 30-5 according to the invention.
  • the stator 7-5 also cast-in return flow channels 65. These are in fluid communication with the interior of the pump body 3 in the outlet region 6 and with the interior of the pump body 3 in the inlet region 4 via first and second connections 66, 67.
  • the overflow valve 40 * is integrated around the discharge nozzle into the outlet region 6 of the pump body 3. The outlet opening of the overflow valve 40 * opens into one or more first connections 66 and thus into one or more of the cast-in return flow passages 65.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

Die Erfindung betrifft eine Exzenterschneckenpumpe (1,30) zur Förderung von Fluiden und / oder körnigen Medien (M). Der Pumpenkörper (3) der Exzenterschneckenpumpe (1,30) umfasst einen Einlassbereich (4), eine Pumpeinheit (5) und einen Auslassbereich (6). Dem Einlassbereich (4) ist eine Antriebseinheit (12) zugeordnet. Die Pumpeinheit (5) besteht aus einem Rotor (8) und einem Stator (7), wobei sich der Rotor (8) exzentrisch im Stator (7) bewegt. Der Einlassbereich (4) bildet die Saugseite (S) und der Auslassbereich (6) die Druckseite (D) der Exzenterschneckenpumpe (1,30). Der Exzenterschneckenpumpe (1,30) ist eine Bypass-Verbindung (2) mit mindestens einem Sicherheitsventil (20,40) zugeordnet, zur Aufnahme und Rückleitung von rückströmendem Medium zwischen der Druckseite (D) und der Saugseite (S) der Exzenterschneckenpumpe (1,30). Erfindungsgemäß sind die Bypass-Verbindung (2) und das Sicherheitsventil (20,40) in den Pumpenkörper (3) der Exzenterschneckenpumpe (1,30) integriert.The invention relates to an eccentric screw pump (1,30) for conveying fluids and / or granular media (M). The pump body (3) of the eccentric screw pump (1,30) comprises an inlet region (4), a pumping unit (5) and an outlet region (6). The inlet region (4) is associated with a drive unit (12). The pump unit (5) consists of a rotor (8) and a stator (7), wherein the rotor (8) moves eccentrically in the stator (7). The inlet region (4) forms the suction side (S) and the outlet region (6) the pressure side (D) of the eccentric screw pump (1,30). The eccentric screw pump (1, 30) is assigned a bypass connection (2) with at least one safety valve (20, 40) for receiving and returning backflowing medium between the pressure side (D) and the suction side (S) of the eccentric screw pump (1, 30). According to the invention, the bypass connection (2) and the safety valve (20, 40) are integrated into the pump body (3) of the eccentric screw pump (1, 30).

Description

Die vorliegende Erfindung betrifft eine Exzenterschneckenpumpe zur Förderung flüssiger und/oder körniger Medien und die Verwendung einer solchen Exzenterschneckenpumpe gemäß den Merkmalen der Oberbegriffe der Ansprüche 1 und 13.The present invention relates to an eccentric screw pump for conveying liquid and / or granular media and the use of such an eccentric screw pump according to the features of the preambles of claims 1 and 13.

Stand der TechnikState of the art

Exzenterschneckenpumpen sind Pumpen zur Förderung einer Vielzahl von Medien, insbesondere von dickflüssigen, hochviskosen und abrasiven Medien wie zum Beispiel Schlämmen, Gülle, Erdöl und Fetten. Aus dem Stand der Technik bekannte Exzenterschneckenpumpen sind aus einem Rotor und einem Stator gebildet, wobei der Rotor im Stator aufgenommen ist und sich im Stator exzentrisch bewegt. Der Stator wird durch ein Gehäuse mit einer schneckenförmig gewendelten Innenseite gebildet. Aus der Bewegung des Rotors und gegenseitiger Anlage werden zwischen Stator und Rotor wandernde Förderräume gebildet, vermittels welchen flüssige Medien entlang des Stators transportiert werden können. Der Rotor vollführt dabei eine exzentrische Drehbewegung um die Statorachse beziehungsweise um die Längsachse der Exzenterschneckenpumpe. Die äußere Schnecke, d.h. der Stator, hat die Form eines zweigängigen Gewindes, während die Rotorschnecke nur eingängig ist. Beispielsweise eignen sich Exzenterschneckenpumpen zum Fördern von Wasser, Erdölen und einer Vielzahl weiterer Flüssigkeiten. Die Form der Förderräume ist bei der Bewegung des Rotors innerhalb des Stators konstant, so dass das Fördermedium nicht gequetscht wird. Bei passender Auslegung können mit Exzenterschneckenpumpen nicht nur Fluide, sondern auch Festkörper gefördert werden.Eccentric screw pumps are pumps for pumping a large number of media, in particular viscous, highly viscous and abrasive media such as sludges, liquid manure, crude oil and fats. Progressing cavity pumps known from the prior art are formed from a rotor and a stator, the rotor being accommodated in the stator and moving eccentrically in the stator. The stator is formed by a housing with a spiral-shaped inside. From the movement of the rotor and mutual conditioning between the stator and rotor moving conveyor chambers are formed, by means of which liquid media can be transported along the stator. The rotor performs an eccentric rotational movement about the stator axis or about the longitudinal axis of the eccentric screw pump. The outer screw, i. the stator has the form of a double thread, while the rotor screw is only catchy. For example, progressing cavity pumps are suitable for conveying water, petroleum and a large number of other liquids. The shape of the delivery chambers is constant during the movement of the rotor within the stator, so that the pumped medium is not crushed. With a suitable design, not only fluids but also solids can be conveyed with progressing cavity pumps.

Bei der Förderung bestimmter Medien kann in der Exzenterschneckenpumpe ein Überdruck entstehen. Für diese Anwendung benötigen die Exzenterschneckenpumpen mindestens eine Sicherheitseinrichtung gegen Überdruck. Im Stand der Technik wird dies gelöst, indem eine Verbindungsleitung zwischen dem Einlassflansch der Saugseite des Pumpenkörpers und dem Ablaufflansch der Druckseite angeordnet wird. Die Verbindungsleitung ist eine externe Rohrleitung und/ oder Schlauchleitung in die ein Überström- oder Sicherheitsventil integriert ist.When pumping certain media, overpressure can occur in the progressing cavity pump. For this application, the eccentric screw pumps require at least one safety device against overpressure. In the prior art this is solved by a connecting line between the inlet flange of the suction side of the Pump body and the outlet flange of the pressure side is arranged. The connecting pipe is an external pipe and / or hose line in which an overflow or safety valve is integrated.

Nachteilig an dem beschriebenen Stand der Technik ist, dass die Verbindungsleitung einen externen Anbau an die Exzenterschneckenpumpe darstellt. Aufgrund der notwendigen Bauhöhe ist somit der Platzbedarf derA disadvantage of the described prior art is that the connecting line represents an external attachment to the eccentric screw pump. Due to the necessary height thus the space requirement of

Exzenterschneckenpumpe erhöht. Zudem besteht ein erhöhtes Risiko, dass externe Anbauten durch bewegliche Lasten beschädigt werden. Die Notwendigkeit von Sicherheitseinrichtungen gegen Überdruck verhindert bisher die Verwendung von Exzenterschneckenpumpen in bestimmten Anwendungsbereichen. Beispielsweise könnte der Einsatz von Exzenterschneckenpumpen in Bohrlöchern vorteilhaft sein. Allerdings ist hierbei der Platz durch den Durchmesser des Bohrlochs begrenzt. Zudem besteht die Gefahr, dass eine externe Rohrleitung an der Exzenterschneckenpumpe beim Einsetzen der Exzenterschneckenpumpe in das Bohrloch beschädigt würde.Progressing cavity pump increased. There is also an increased risk of external attachments being damaged by moving loads. The need for safety devices against overpressure has hitherto prevented the use of progressing cavity pumps in certain applications. For example, the use of progressing cavity pumps in boreholes could be advantageous. However, here the space is limited by the diameter of the borehole. In addition, there is a risk that an external pipeline would be damaged on the eccentric screw pump when inserting the eccentric screw pump into the wellbore.

Aufgabe der Erfindung ist daher eine Exzenterschneckenpumpe mit mindestens einer Sicherheitseinrichtung gegen Überdruck bereitzustellen, die sich durch einen einfachen und unkomplizierten Aufbau auszeichnet und insbesondere die genannten Nachteile des Stands der Technik nicht aufweist.The object of the invention is therefore to provide an eccentric screw pump with at least one safety device against overpressure, which is characterized by a simple and uncomplicated structure and in particular does not have the disadvantages of the prior art mentioned.

Die obige Aufgabe wird durch eine Exzenterschneckenpumpe mit den Merkmalen im unabhängigen Anspruchs 1 gelöst. Weitere vorteilhafte Ausführungsformen werden durch die Unteransprüche beschrieben.The above object is achieved by an eccentric screw pump with the features in the independent claim 1. Further advantageous embodiments are described by the subclaims.

Beschreibungdescription

Die Erfindung betrifft eine Exzenterschneckenpumpe zur Förderung von fluiden und / oder körnigen Medien, insbesondere von dickflüssigen, hochviskosen und abrasiven Medien. Eine Exzenterschneckenpumpe besteht aus einem Pumpenkörper und einer Antriebseinheit. Der Pumpenkörper ist aufgeteilt in einen Einlassbereich mit einem Einlassstutzen, eine Pumpeinheit und einen Auslassbereich mit einem Auslassstutzen. Der Einlassstutzen und der Auslassstutzen weisen normierte Flansche auf, zur Verbindung mit weiteren Rohrabschnitten zur Förderung des gepumpten Mediums.The invention relates to an eccentric screw pump for conveying fluid and / or granular media, in particular of viscous, highly viscous and abrasive media. An eccentric screw pump consists of a pump body and a drive unit. The pump body is divided into an inlet region with an inlet nozzle, a pumping unit and an outlet region with an outlet nozzle. The inlet port and the outlet port have normalized flanges for connection to other pipe sections for delivery of the pumped medium.

Die Pumpeinheit ist aus einem Rotor und einem Stator gebildet. Der Stator wird durch ein Gehäuse mit einer schneckenförmig gewendelten Innenseite gebildet. Der Rotor ist als eine Art Rundgewindeschraube ausgebildet und bewegt sich exzentrisch im Innenraum des Stators, wodurch die zwischen Rotor und Stator ausgebildeten Förderkammern in Förderrichtung beweglich sind.The pump unit is formed of a rotor and a stator. The stator is formed by a housing with a spiral-shaped inside. The rotor is designed as a kind of round-threaded screw and moves eccentrically in the interior of the stator, whereby the delivery chambers formed between the rotor and stator are movable in the conveying direction.

Der Einlassbereich der Exzenterschneckenpumpe bildet die Saugseite und der Auslassbereich der Exzenterschneckenpumpe bildet die Druckseite. Zwischen der Druckseite und der Saugseite ist eine Bypass- Verbindung mit mindestens einem Sicherheitsventil angeordnet. Diese dient der Aufnahme und Rückleitung von rückströmendem Medium zwischen der Druckseite und der Saugseite der Exzenterschneckenpumpe, um zu verhindern, dass sich innerhalb der Exzenterschneckenpumpe ein unkontrollierter Überdruck aufbauen kann. Ein Überdruck muss kontrolliert abgebaut werden, um Beschädigungen an der Exzenterschneckenpumpe zu verhindern beziehungsweise zu vermeiden.The inlet region of the eccentric screw pump forms the suction side and the outlet region of the eccentric screw pump forms the pressure side. Between the pressure side and the suction side, a bypass connection with at least one safety valve is arranged. This serves for receiving and returning back-flowing medium between the pressure side and the suction side of the eccentric screw pump in order to prevent an uncontrolled overpressure from building up within the eccentric screw pump. Overpressure must be reduced in a controlled manner in order to prevent or avoid damage to the eccentric screw pump.

Erfindungsgemäß sind die Bypass- Verbindung und das Sicherheitsventil in den Pumpenkörper der Exzenterschneckenpumpe integriert. Insbesondere sind die Bypass-Verbindung und das Sicherheitsventil im Bereich der Pumpeinheit in den Pumpenkörper der Exzenterschneckenpumpe integriert.According to the bypass connection and the safety valve are integrated in the pump body of the eccentric screw pump. In particular, the bypass connection and the safety valve are integrated in the pump unit in the pump body of the eccentric screw pump.

Gemäß einer ersten bevorzugten Ausführungsform der Erfindung weist der Stator eine zusätzliche Ummantelung auf. Insbesondere ist der Stator in einem Mantelrohr angeordnet, wobei der Stator einen Außenumfang aufweist, der kleiner ist als der Innenumfang des Mantelrohrs, so dass zwischen dem Stator und dem Mantelrohr ein Zwischenraum ausgebildet ist. Dieser steht mit den jeweiligen Innenräumen des Einlassbereiches und des Auslassbereiches in fluider Verbindung und bildet die Bypass-Verbindung aus. Weiterhin ist dem Zwischenraum mindestens ein Sicherheitsventil zugeordnet. Bei Aufbau eines Überdrucks auf der Druckseite der Exzenterschneckenpumpe wird ein Teil des geförderten Mediums als Rückstrom über den Zwischenraum zurück in den Einlassbereich des Pumpenkörpers geleitet und somit der Überdruck abgebaut.According to a first preferred embodiment of the invention, the stator has an additional jacket. In particular, the stator is arranged in a jacket tube, wherein the stator has an outer circumference which is smaller than the inner circumference of the jacket tube, so that a gap is formed between the stator and the jacket tube. This is in fluid communication with the respective interior spaces of the inlet area and the outlet area and forms the bypass connection. Furthermore, the gap is assigned at least one safety valve. When an overpressure builds up on the pressure side of the eccentric screw pump, a portion of the pumped medium is passed as a return flow via the intermediate space back into the inlet region of the pump body and thus the overpressure is reduced.

Gemäß einer zweiten bevorzugten Ausführungsform der Erfindung ist der Stator in einer Statorhülse angeordnet. Der Innenumfang der Statorhülse entspricht weitgehend dem Außenumfang des Stators, so dass die Statorhülse mit ihrem Innenumfang weitgehend flächige am Außenumfang des Stators anliegt. Zwischen dem Stator und der Statorhülse ist mindestens eine Verbindungsleitung parallel zur Längsachse der Exzenterschneckenpumpe ausgebildet. Die Verbindungsleitung steht über erste und zweite Verbindungen mit den jeweiligen Innenräumen des Einlassbereiches und des Auslassbereiches in fluider Verbindung und bildet die Bypass- Verbindung. Die ersten und zweiten Verbindungen sind insbesondere Bohrungen im Gehäuse des Pumpenkörpers, insbesondere in den Bereichen, in denen Auslass- und Einlassbereich jeweils an die Pumpeinheit grenzen. Weiterhin ist der mindestens einen Verbindungsleitung mindestens ein Sicherheitsventil zugeordnet. Bei Aufbau eines Überdrucks auf der Druckseite der Exzenterschneckenpumpe wird ein Teil des geförderten Mediums als Rückstrom über die mindestens eine Verbindungsleitung zurück in den Einlassbereich des Pumpenkörpers geleitet.According to a second preferred embodiment of the invention, the stator is arranged in a stator sleeve. The inner periphery of the stator sleeve largely corresponds to the outer circumference of the stator, so that the stator sleeve rests with its inner circumference largely flat on the outer circumference of the stator. Between the stator and the Stator sleeve is formed at least one connecting line parallel to the longitudinal axis of the eccentric screw pump. The connection line is fluidly connected to the respective inner spaces of the inlet area and the outlet area via first and second connections and forms the bypass connection. The first and second connections are, in particular, bores in the housing of the pump body, in particular in the areas in which the outlet and inlet areas respectively adjoin the pump unit. Furthermore, at least one safety valve is assigned to the at least one connecting line. When an overpressure builds up on the pressure side of the eccentric screw pump, a part of the pumped medium is conducted as backflow via the at least one connecting line back into the inlet region of the pump body.

Die mindestens eine Verbindungsleitung zwischen Stator und Statorhülse wird beispielsweise durch eine durchgängige Vertiefung in der Außenmantelfläche des Stators parallel zur Längsachse der Exzenterschneckenpumpe gebildet. Beispielsweise ist an der Außenmantelfläche eine durchlaufende Nut ausgebildet. Die Vertiefung erstreckt sich entlang einer Länge des Stators, insbesondere entlang der Gesamtlänge des Stators.The at least one connecting line between the stator and stator sleeve is formed for example by a continuous recess in the outer circumferential surface of the stator parallel to the longitudinal axis of the eccentric screw pump. For example, a continuous groove is formed on the outer circumferential surface. The recess extends along a length of the stator, in particular along the entire length of the stator.

Gemäß einer dritten bevorzugten Ausführungsform der Erfindung umfasst der Rotor einen Hohlraum entlang seiner Rotorlängsachse. Der Hohlraum kann beispielsweise eine Durchgangsbohrung durch den Rotor entlang der Rotorlängsachse sein. Alternativ kann der Hohlraum bereits bei der Fertigung in den Rotor integriert werden, indem dieser bereits entsprechend hohl gegossen oder mittels eines anderen geeigneten Verfahrens hohlgeformt wird. Der Hohlraum des Rotors steht mit den jeweiligen Innenräumen des Einlassbereiches und des Auslassbereiches in fluider Verbindung und die Bypass- Verbindung bildet. Dem Hohlraum ist mindestens ein Sicherheitsventil zugeordnet. Bei Aufbau eines Überdrucks auf der Druckseite der Exzenterschneckenpumpe wird ein Teil des geförderten Mediums als Rückstrom über den inneren Hohlraum des Rotors zurück in den Einlassbereich des Pumpenkörpers geleitet.According to a third preferred embodiment of the invention, the rotor comprises a cavity along its rotor longitudinal axis. The cavity may for example be a through-hole through the rotor along the rotor longitudinal axis. Alternatively, the cavity can already be integrated into the rotor during manufacture by already hollow-casting it or hollow molding it by means of another suitable method. The cavity of the rotor is in fluid communication with the respective interior spaces of the inlet region and the outlet region and forms the bypass connection. The cavity is associated with at least one safety valve. When an overpressure is established on the pressure side of the eccentric screw pump, a portion of the pumped medium is passed as a return flow via the inner cavity of the rotor back into the inlet region of the pump body.

Gemäß einer vierten bevorzugten Ausführungsform der Erfindung weist die Exzenterschneckenpumpe einen Stator mit mindestens einem Rückströmkanal auf. Der Rückströmkanal ist parallel zur Längsachse der Exzenterschneckenpumpe entlang der Statorlänge ausgebildet. Der mindestens eine Rückströmkanal steht mit den jeweiligen Innenräumen des Einlassbereiches und des Auslassbereiches in fluider Verbindung und die Bypass- Verbindung bildet.According to a fourth preferred embodiment of the invention, the eccentric screw pump has a stator with at least one return flow channel. The return flow channel is formed parallel to the longitudinal axis of the eccentric screw pump along the stator length. The at least one return flow channel is in fluid communication with the respective interior spaces of the inlet region and the outlet region and forms the bypass connection.

Der Rückströmkanal ist insbesondere in einem Bereich zwischen einem Innengewindegang des Stators und der Außenmantelfläche des Stators ausgebildet. Der Rückströmkanal weist keine offene Verbindung zu dem Innengewindegang des Stators und / oder der Außenmantelfläche des Stators auf. Das heißt der Rückströmkanal ist im Statormaterial ausgebildet.The return flow channel is formed in particular in a region between an internal thread of the stator and the outer circumferential surface of the stator. The return flow channel has no open connection to the internal thread of the stator and / or the outer circumferential surface of the stator. That is, the return flow channel is formed in the stator material.

Dem Rückströmkanal ist mindestens ein Sicherheitsventil zugeordnet. Bei Aufbau eines Überdrucks auf der Druckseite der Exzenterschneckenpumpe wird ein Teil des geförderten Mediums als Rückstrom über den mindestens einen Rückströmkanal des Stators zurück in den Einlassbereich des Pumpenkörpers geleitet. Vorzugsweise wird der mindestens eine Rückströmkanal bei der Fertigung in den Stator eingegossen. Alternativ kann der mindestens eine Rückströmkanal auch nach der Herstellung des Stators nachträglich ausgebildet werden.The return flow channel is assigned at least one safety valve. When an overpressure builds up on the pressure side of the eccentric screw pump, a portion of the pumped medium is passed as a return flow via the at least one return flow channel of the stator back into the inlet region of the pump body. Preferably, the at least one return flow channel is cast during manufacture in the stator. Alternatively, the at least one return flow channel can be subsequently formed even after the stator has been manufactured.

Gemäß einer Ausführungsform der Erfindung ist das Sicherheitsventil innerhalb des Rückströmkanals angeordnet, vorzugsweise in einem Bereich zwischen dem Einlassbereich und der Pumpeinheit. Gemäß einer alternativen Ausführungsform ist das Sicherheitsventil in den Auslassbereich des Pumpenkörpers integriert. Hierbei ist vorgesehen, dass eine Austrittsöffnung des Sicherheitsventils über eine erste Verbindung in einen Rückströmkanal mündet. Auch in dieser Ausführungsform können mehrere Rückführkanale und mehrere entsprechend angeordnete Sicherheitsventile Anwendung finden. Bei Aufbau eines Überdrucks auf der Druckseite der Exzenterschneckenpumpe wird ein Teil des geförderten Mediums als Rückstrom über den mindestens einen Rückströmkanal des Stators zurück in den Einlassbereich des Pumpenkörpers geleitet.According to one embodiment of the invention, the safety valve is arranged within the return flow channel, preferably in a region between the inlet region and the pumping unit. According to an alternative embodiment, the safety valve is integrated in the outlet region of the pump body. It is provided that an outlet opening of the safety valve opens via a first connection in a return flow channel. Also in this embodiment, multiple return ducts and a plurality of appropriately arranged safety valves can be used. When an overpressure builds up on the pressure side of the eccentric screw pump, a portion of the pumped medium is passed as a return flow via the at least one return flow channel of the stator back into the inlet region of the pump body.

Bei dem Sicherheitsventil zum Verhindern eines unzulässigen Druckanstiegs innerhalb der Exzenterschneckenpumpe kann es sich um ein federbelastetes Sicherheitsventil, ein gewichtsbelastetes Sicherheitsventil oder um ein mediumbelastetes Sicherheitsventil handeln. Vorzugsweise handelt es sich bei dem Sicherheitsventil um ein Überströmventil zum Entlasten des Innenraums der Exzenterschneckenpumpe beim Auftreten von unzulässigem Überdruck innerhalb des geschlossenen Systems.The safety valve for preventing an impermissible increase in pressure within the eccentric screw pump can be a spring-loaded safety valve, a weight-loaded safety valve or a medium-loaded safety valve. Preferably, the safety valve is an overflow valve for relieving the interior of the eccentric screw pump in the event of inadmissible overpressure within the closed system.

Eine vorbeschrieben erfindungsgemäße Exzenterschneckenpumpe kann insbesondere zur Förderung von fluiden und / oder körnigen Medien in einem Bohrloch verwendet werden. Eine solche Exzenterschneckenpumpe kann allgemein immer dann eingesetzt werden, wenn beispielsweise aufgrund des zu fördernden Mediums die Entwicklung von Überdruck zu erwarten ist.A previously described eccentric screw pump according to the invention can be used in particular for conveying fluid and / or granular media in a borehole. Such an eccentric screw pump can generally be used whenever, for example, due to the medium to be pumped, the development of overpressure is to be expected.

Durch die Integration des Rückströmkreislaufs mit Sicherheits- beziehungsweise Überströmventil in den Pumpenkörper der Exzenterschneckenpumpe bleibt deren Aufbau kompakt. Insbesondere führt der integrierte Rückströmkreislauf im Allgemeinen zu keiner Vergrößerung des Pumpenkörpers der Exzenterschneckenpumpe.By integrating the return circuit with safety or overflow valve in the pump body of the eccentric screw pump whose structure remains compact. In particular, the integrated return circuit generally does not increase the pump body of the eccentric screw pump.

Die Integration eines Rückströmkreislaufs ist nicht nur für Exzenterschneckenpumpen mit einem aus einem Elastomer gebildeten Stator möglich. Genauso ist es denkbar, auf vergleichbare Weise einen Rückströmkreislauf in eine so genannte stufenweise Vortex- Pumpe zu integrieren. Eine stufenweise Vortex- Pumpe wird beispielsweise in der US 2008/0050249 A1 beschrieben. Im Gegensatz zur Exzenterschneckenpumpe weist diese Pumpe keinen Stator aus einem Gummi auf, der beispielsweise beim Pumpen von Petroleum oder Ähnlichem vom geförderten Medium angegriffen wird. Stattdessen ist die Pumpe stufenweise aufgebaut, umfasst nur korrosionsbeständige Metallkomponenten und arbeitet zentralisiert. Dadurch können Vibrationen im System eliminiert werden, die Pumpe kann bei erhöhten Temperaturen arbeiten und kleiner ausgeführt werden.The integration of a return circuit is not only possible for progressing cavity pumps with a stator formed of an elastomer. Likewise, it is conceivable to integrate a return circuit into a so-called stepwise vortex pump in a comparable manner. A stepwise vortex pump, for example, in the US 2008/0050249 A1 described. In contrast to the eccentric screw pump, this pump has no stator made of a rubber, which is attacked, for example, when pumping petroleum or the like from the pumped medium. Instead, the pump is built in stages, contains only corrosion-resistant metal components and works centralized. This can eliminate vibrations in the system, and the pump can operate at elevated temperatures and be made smaller.

Figurenbeschreibungfigure description

Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander in den Figuren entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind.

  • Figur 1 zeigt eine Exzenterschneckenpumpe mit herkömmlich bekannter Bypass-Leitung gemäß dem Stand der Technik.
  • Figur 2 zeigt eine erfindungsgemäße Exzenterschneckenpumpe.
  • Figur 3 zeigt ein Detail einer erfindungsgemäßen Exzenterschneckenpumpe.
  • Figur 4 zeigt eine zweite Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe.
  • Figur 5 zeigt eine dritte Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe.
  • Figur 6 zeigt eine vierte Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe.
  • Figur 7 zeigt eine fünfte Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe.
In the following, embodiments of the invention and their advantages with reference to the accompanying figures will be explained in more detail. The proportions of the individual elements to one another in the figures do not always correspond to the actual size ratios, since some shapes are simplified and other shapes are shown enlarged in relation to other elements for better illustration.
  • FIG. 1 shows an eccentric screw pump with conventionally known bypass line according to the prior art.
  • FIG. 2 shows an eccentric screw pump according to the invention.
  • FIG. 3 shows a detail of an eccentric screw pump according to the invention.
  • FIG. 4 shows a second embodiment of an eccentric screw pump according to the invention.
  • FIG. 5 shows a third embodiment of an eccentric screw pump according to the invention.
  • FIG. 6 shows a fourth embodiment of an eccentric screw pump according to the invention.
  • FIG. 7 shows a fifth embodiment of an eccentric screw pump according to the invention.

Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäße Vorrichtung ausgestaltet sein kann und stellen keine abschließende Begrenzung dar.For identical or equivalent elements of the invention, identical reference numerals are used. Furthermore, for the sake of clarity, only reference symbols are shown in the individual figures, which are required for the description of the respective figure. The illustrated embodiments are only examples of how the device according to the invention can be designed and do not represent a final limitation.

Figur 1 zeigt eine Exzenterschneckenpumpe 1 mit herkömmlich bekannter externer Bypass- Leitung 2 gemäß dem Stand der Technik. Die Exzenterschneckenpumpe 1 umfasst einen Pumpenkörper 3 mit einem Einlassbereich 4, einer Pumpeinheit 5 und einem Auslassbereich 6. Der Einlassbereich 4 bildet die Saugseite S der Exzenterschneckenpumpe 1 und der Auslassbereich 6 bildet die Druckseite D der Exzenterschneckenpumpe 1. Die Pumpeinheit 5 besteht aus einer exzentrischen Förderschnecke, dem sogenannten Rotor 8, der sich in einem Stator 7 mit einer schneckenförmig gewendelten Innenseite unter Ausbildung von wandernden Förderräumen 14 dreht. Der Rotor 8 ist mit der Antriebseinheit 12 verbunden, die den Rotor 8 mittels einer im Einlaufbereich des Pumpenkörpers 3 angeordneten Kuppelstange 9 mit einer Antriebswelle 13 verbindet. Dazwischen befinden sich Gelenke 10, 11 zur Verbindung von und Kraftübertragung zwischen Antriebseinheit 12 und Rotor 8. FIG. 1 shows an eccentric screw pump 1 with conventionally known external bypass line 2 according to the prior art. The eccentric screw pump 1 comprises a pump body 3 with an inlet region 4, a pumping unit 5 and an outlet region 6. The inlet region 4 forms the suction side S of the eccentric screw pump 1 and the outlet region 6 forms the pressure side D of the eccentric screw pump 1. The pumping unit 5 consists of an eccentric screw conveyor , the so-called rotor 8, which rotates in a stator 7 with a spiral-shaped inner side, forming traveling conveying chambers 14. The rotor 8 is connected to the drive unit 12, which connects the rotor 8 with a drive shaft 13 by means of a coupling rod 9 arranged in the inlet region of the pump body 3. In between are joints 10, 11 for the connection of and power transmission between the drive unit 12 and the rotor. 8

Über den Einlassflansch 15 des Einlassbereichs 4 gelangt das zu fördernde Medium M in die Exzenterschneckenpumpe 1, wird durch die wandernden Förderräume 14 in Förderrichtung Fr durch die Pumpeinheit transportiert und über den Auslassflansch 16 des Auslassbereichs 6 aus der Exzenterschneckenpumpe 1 heraus gepumpt. Zwischen dem Auslassflansch 16 und dem Einlassflansch 15 ist über geeignete Verbindungsmittel 17, 18 die Bypass- Leitung 2 mit einem Sicherheitsventil 20, beispielsweise mit einem Überströmventil 21, angeordnet. Insbesondere ist das Überströmventil 21 direkt an einem Verbindungsmittel 17 angeordnet, das dem Auslassflansch 16 zugeordnet ist. Die Bypass- Leitung 2 erstreckt sich zwischen dem Überströmventil 21 und dem Verbindungsmittel 18, das dem Einlaufflansch 15 zugeordnet ist, parallel zum Pumpenkörper 3.Via the inlet flange 15 of the inlet region 4, the medium M to be delivered passes into the eccentric screw pump 1, is transported through the traveling delivery chambers 14 in the conveying direction Fr by the pumping unit and pumped out of the eccentric screw pump 1 via the outlet flange 16 of the outlet region 6. Between the outlet flange 16 and the inlet flange 15, the bypass line 2 is arranged with a safety valve 20, for example with an overflow valve 21, via suitable connecting means 17, 18. In particular, the overflow valve 21 is arranged directly on a connecting means 17 which is assigned to the outlet flange 16. The bypass line 2 extends between the spill valve 21 and the connecting means 18, which is associated with the inlet flange 15, parallel to the pump body third

Bei dem dargestellten Sicherheitskreislauf wird bei Aufbau eines Überdrucks auf der Druckseite D der Exzenterschneckenpumpe 1 ein Teil des geförderten Mediums M als Rückstrom MR zurück zum Einlassflansch 15 und weiter in den Einlassbereich 4 des Pumpenkörpers 3 geleitet.In the illustrated safety circuit, when a positive pressure builds up on the pressure side D of the eccentric screw pump 1, a portion of the pumped medium M is conducted as return flow M R back to the inlet flange 15 and further into the inlet region 4 of the pump body 3.

Figur 2 zeigt eine erfindungsgemäße Exzenterschneckenpumpe 30-1. Bei dieser ist mindestens ein Überströmventil 40 in den Pumpenkörper 3 integriert. Insbesondere ist der Stator 7 von einem Mantelrohr 45 umgeben. Das Gehäuse des Pumpenkörpers 3 weist im Auslassbereich 5 eine erste Verbindung 46 zum Mantelrohr 45 auf, so dass der Innenraum des Auslassbereichs 5 fluidisch mit einem zwischen Mantelrohr 45 und Stator 7 ausgebildeten Hohlraum 43 in Verbindung steht. Weiterhin weist das Gehäuse des Pumpenkörpers 3 im Einlassbereich 4 eine zweite Verbindung 47 zum Mantelrohr 45 auf, so dass der Innenraum des Einlassbereichs 4 fluidisch mit dem zwischen Mantelrohr 45 und Stator 7 ausgebildeten Hohlraum 43 in Verbindung steht. Dadurch ist ein Rückströmkanal 44 zwischen Mantelrohr 45 und Außenmantelfläche des Stators 7 ausgebildet, durch den ein Teil des Mediums MR beim Entstehen eines Überdrucks innerhalb der Exzenterschneckenpumpe 30-1 von der Druckseite D zurück zur Saugseite S der Exzenterschneckenpumpe 30-1 fließen kann. Das zurückströmende Medium MR mündet in den Einlassbereich 4 des Pumpenkörpers 3 und wird anschließend wieder in Förderrichtung FR durch die Exzenterschneckenpumpe 30-1 gefördert. FIG. 2 shows an eccentric screw pump 30-1 according to the invention. In this at least one overflow valve 40 is integrated in the pump body 3. In particular, the stator 7 is surrounded by a jacket tube 45. In the outlet region 5, the housing of the pump body 3 has a first connection 46 to the jacket tube 45, so that the interior of the outlet region 5 is fluidically connected to a cavity 43 formed between jacket tube 45 and stator 7. Furthermore, the housing of the pump body 3 in the inlet region 4 has a second connection 47 to the jacket tube 45, so that the interior of the inlet region 4 is fluidly connected to the cavity 43 formed between the jacket tube 45 and the stator 7. As a result, a return flow channel 44 is formed between the jacket tube 45 and the outer jacket surface of the stator 7, through which a portion of the medium M R can flow from the pressure side D back to the suction side S of the eccentric screw pump 30-1 when an overpressure arises within the eccentric screw pump 30-1. The backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then conveyed again in the conveying direction FR by the eccentric screw pump 30-1.

Im Hohlraum 43 beziehungsweise in den zweiten Verbindungen 47 zwischen Hohlraum 43 und Innenraum des Pumpenkörpers 3 im Einlassbereich 4 sind weiterhin ein oder mehrere Überströmventile 40 zur Begrenzung des Förderdrucks der Exzenterschneckenpumpe 30-1 angeordnet, deren Auslass in den Innenraum des Pumpenkörpers 3 im Einlassbereich 4 mündet. Die Anordnung eines Überströmventils 40 im Hohlraum 43 ist in Figur 3 detailliert dargestellt.In the cavity 43 or in the second connections 47 between the cavity 43 and the interior of the pump body 3 in the inlet region 4, one or more overflow valves 40 for limiting the delivery pressure of the eccentric screw pump 30-1 are arranged, whose outlet opens into the interior of the pump body 3 in the inlet region 4 , The arrangement of an overflow valve 40 in the cavity 43 is in FIG. 3 shown in detail.

Figur 4 zeigt eine erfindungsgemäße Exzenterschneckenpumpe 30-2. Bei dieser ist mindestens ein Überströmventil 40 in den Pumpenkörper 3 integriert. Insbesondere ist der Stator 7-2 von einer Statorhülse 50 umgeben. Zwischen dem Stator 7-2 und der Statorhülse 50 ist zumindest bereichsweise eine Verbindungsleitung 52 parallel zur Längsachse L der Exzenterschneckenpumpe 30-2 ausgebildet. Die Verbindungsleitung 52 weist am druckseitigen Ende der Exzenterschneckenpumpe 30-2 eine erste Verbindung 55 zu dem Innenraum der Exzenterschneckenpumpe 30-2 im Auslassbereich 6 auf. Weiterhin weist die Verbindungsleitung 52 am saugseitigen Ende der Exzenterschneckenpumpe 30-2 eine zweite Verbindung 56 zu dem Innenraum der Exzenterschneckenpumpe 30-2 im Einlassbereich 4 auf. Die erste Verbindung 55, die Verbindungsleitung 52 und die zweite Verbindung 56 bilden einen Rückströmkanal, durch den ein Teil des Mediums MR beim Entstehen eines Überdrucks innerhalb der Exzenterschneckenpumpe 30-2 von der Druckseite D zurück zur Saugseite S der Exzenterschneckenpumpe 30-2 fließen kann. Das zurückströmende Medium MR mündet in den Einlassbereich 4 des Pumpenkörpers 3 und wird anschließend wieder in Förderrichtung FR durch die Exzenterschneckenpumpe 30-2 gefördert. FIG. 4 shows an eccentric screw pump 30-2 according to the invention. In this at least one overflow valve 40 is integrated in the pump body 3. In particular, the stator 7-2 is surrounded by a stator sleeve 50. Between the stator 7-2 and the stator sleeve 50, a connecting line 52 is at least partially formed parallel to the longitudinal axis L of the eccentric screw pump 30-2. The connecting line 52 has at the pressure-side end of the eccentric screw pump 30-2 a first connection 55 to the interior of the eccentric screw pump 30-2 in the outlet region 6. Furthermore, the connecting line 52 at the suction end of Eccentric screw pump 30-2 a second connection 56 to the interior of the eccentric screw pump 30-2 in the inlet region 4. The first connection 55, the connection line 52 and the second connection 56 form a return flow passage, through which a portion of the medium M R can flow from the pressure side D back to the suction side S of the eccentric screw pump 30-2 when an overpressure arises within the eccentric screw pump 30-2 , The backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then conveyed again in the conveying direction FR by the eccentric screw pump 30-2.

Innerhalb der Verbindungsleitung 52 beziehungsweise zwischen der Verbindungsleitung 52 und der zweiten Verbindung 56 auf der Saugseite S der Exzenterschneckenpumpe 30-2 sind ein oder mehrere Überströmventile 40 zur Begrenzung des Förderdrucks angeordnet.Within the connecting line 52 or between the connecting line 52 and the second connection 56 on the suction side S of the eccentric screw pump 30-2, one or more overflow valves 40 for limiting the delivery pressure are arranged.

Figur 5 zeigt eine dritte Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe 30-3. Hierbei findet ein zumindest teilweise hohl ausgebildeter Rotor 8-3 Verwendung. Der Rotor 8-3 umfasst einen Hohlraum 60, der sich entlang der Rotorlängsachse LR erstreckt. Weiterhin weist der Rotor 8-3 an seinem Antriebsende Verbindungsbohrungen 62 zwischen der Außenmantelfläche des Rotors 8-3 und der Hohlraumbohrung 60 auf, zur Herstellung einer fluiden Verbindung zwischen dem Hohlraum 60 und dem Innenraum des Pumpenkörpers 3 im Einlassbereich 5 der Exzenterschneckenpumpe 30-3. In dem Hohlraum 60 ist zusätzlich ein Überströmventil 40 integriert. Der Hohlraum 60 des Rotors 8-3 und die Verbindungsbohrungen 62 bilden einen Rückströmkanal, durch den ein Teil des Mediums MR beim Entstehen eines Überdrucks innerhalb der Exzenterschneckenpumpe 30-3 von der Druckseite D zurück zur Saugseite S der Exzenterschneckenpumpe 30-3 fließen kann. Das zurückströmende Medium MR mündet in den Einlassbereich 4 des Pumpenkörpers 3 und wird anschließend wieder in Förderrichtung FR durch die Exzenterschneckenpumpe 30-3 gefördert. FIG. 5 shows a third embodiment of an eccentric screw pump 30-3 according to the invention. Here, an at least partially hollow rotor 8-3 is used. The rotor 8-3 comprises a cavity 60 which extends along the rotor longitudinal axis L R. Furthermore, the rotor 8-3 has at its drive end connecting bores 62 between the outer circumferential surface of the rotor 8-3 and the cavity bore 60, for establishing a fluid connection between the cavity 60 and the interior of the pump body 3 in the inlet region 5 of the eccentric screw pump 30-3. In the cavity 60, an overflow valve 40 is additionally integrated. The cavity 60 of the rotor 8-3 and the connecting bores 62 form a return flow passage, through which a portion of the medium M R can flow from the pressure side D back to the suction side S of the eccentric screw pump 30-3 when an overpressure within the eccentric screw pump 30-3 arises. The backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then conveyed again in the conveying direction FR by the eccentric screw pump 30-3.

Figur 6 zeigt eine vierte Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe 30-4. Hierbei weist der verwendete Stator 7-4 eingegossene Rückströmkanäle 65 parallel zur Rotorlängsachse LR auf, die mit dem Innenraum des Pumpenkörpers 3 im Auslassbereich 6 und mit dem Innenraum des Pumpenkörpers 3 im Einlassbereich 4 eine fluide Verbindung bilden. Durch die Rückströmkanäle 65, in denen weiterhin jeweils mindestens ein Überströmventil 40 angeordnet sein kann, fließt ein Teil des Mediums MR beim Entstehen eines Überdrucks innerhalb der Exzenterschneckenpumpe 30-4 von der Druckseite D zurück zur Saugseite S der Exzenterschneckenpumpe 30-4. Das zurückströmende Medium MR mündet in den Einlassbereich 4 des Pumpenkörpers 3 und wird anschließend wieder in Förderrichtung FR durch die Exzenterschneckenpumpe 30-4 gefördert. FIG. 6 shows a fourth embodiment of an eccentric screw pump 30-4 according to the invention. In this case, the used stator 7-4 cast-in return flow channels 65 parallel to the rotor longitudinal axis LR, which form a fluid connection with the interior of the pump body 3 in the outlet region 6 and with the interior of the pump body 3 in the inlet region 4. Through the return flow channels 65, in which in each case at least one overflow valve 40 can be arranged, a portion of the medium M R flows when an overpressure arises within the Eccentric screw pump 30-4 from the pressure side D back to the suction side S of the eccentric screw pump 30-4. The backflowing medium M R opens into the inlet region 4 of the pump body 3 and is then again conveyed in the conveying direction FR by the eccentric screw pump 30-4.

Das Überströmventil 40 kann auch so im Pumpenkörper integriert und angeordnet sein, dass das durch die Rückströmkanäle 65 des Stators 7-4 rückströmende Medium MR durch das Überströmventil 40 fließt bevor es in den Einlassbereich 4 des Pumpenkörpers 3 mündet.The overflow valve 40 can also be integrated and arranged in the pump body such that the medium M R flowing back through the return flow passages 65 of the stator 7 4 flows through the overflow valve 40 before it opens into the inlet region 4 of the pump body 3.

Figur 7 zeigt eine fünfte Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe 30-5. Hierbei weist der Stator 7-5 ebenfalls eingegossene Rückströmkanäle 65 auf. Diese stehen über erste und zweite Verbindungen 66, 67 jeweils mit dem Innenraum des Pumpenkörpers 3 im Auslassbereich 6 und mit dem Innenraum des Pumpenkörpers 3 im Einlassbereich 4 in fluider Verbindung. Das Überströmventil 40* ist bei dieser Ausführungsform um den Druckstutzen herum in den Auslassbereich 6 des Pumpenkörpers 3 integriert. Die Austrittsöffnung des Überströmventils 40* mündet in einen oder mehrere erste Verbindungen 66 und somit in einen oder mehrere der eingegossenen Rückströmkanäle 65. FIG. 7 shows a fifth embodiment of an eccentric screw pump 30-5 according to the invention. Here, the stator 7-5 also cast-in return flow channels 65. These are in fluid communication with the interior of the pump body 3 in the outlet region 6 and with the interior of the pump body 3 in the inlet region 4 via first and second connections 66, 67. In this embodiment, the overflow valve 40 * is integrated around the discharge nozzle into the outlet region 6 of the pump body 3. The outlet opening of the overflow valve 40 * opens into one or more first connections 66 and thus into one or more of the cast-in return flow passages 65.

Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.The invention has been described with reference to a preferred embodiment. However, it will be apparent to those skilled in the art that modifications or changes may be made to the invention without departing from the scope of the following claims.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
ExzenterschneckenpumpeCavity Pump
22
externe Bypass- Leitungexternal bypass line
33
Pumpenkörperpump body
44
Einlassbereichinlet area
55
Pumpeinheitpump unit
66
Auslassbereichoutlet
77
Statorstator
88th
Rotorrotor
99
Kuppelstangecoupling rod
1010
Gelenkjoint
1111
Gelenkjoint
1212
Antriebseinheitdrive unit
1313
Antriebswelledrive shaft
1414
Förderraumdelivery chamber
1515
Einlassflanschinlet flange
1616
Auslassflanschoutlet flange
2020
Sicherheitsventilsafety valve
2121
Überströmventiloverflow
3030
ExzenterschneckenpumpeCavity Pump
4040
Überströmventiloverflow
4343
Hohlraumcavity
4444
RückströmkreislaufRückströmkreislauf
4545
Mantelrohrcasing pipe
4646
erste Verbindungfirst connection
4747
zweite Verbindungsecond connection
5050
Statorhülsestator
5252
Verbindungsleitungconnecting line
5555
erste Verbindungfirst connection
5656
zweite Verbindungsecond connection
6060
Hohlraumcavity
6262
Verbindungsbohrungconnecting bore
6565
eingegossener Rückströmkanalcast-in return flow channel
6666
erste Verbindungfirst connection
6767
zweite Verbindungsecond connection
DD
Druckseitepressure side
FRFR
Förderrichtungconveying direction
LL
Längsachselongitudinal axis
MM
Mediummedium
MR M R
rückströmendes Mediumbackflowing medium
SS
Saugseitesuction

Claims (13)

Exzenterschneckenpumpe (1, 30) zur Förderung von fluiden und / oder körnigen Medien (M) mit einem Pumpenkörper (3), der Pumpenkörper (3) umfassend einen Einlassbereich (4), eine Pumpeinheit (5) und einem Auslassbereich (6), wobei die Pumpeinheit (5) aus einem Rotor (8) und einem Stator (7) gebildet ist und wobei der Rotor (8) exzentrisch im Stator (7) bewegbar ist, wobei der Einlassbereich (4) die Saugseite (S) und der Auslassbereich (6) die Druckseite (D) der Exzenterschneckenpumpe (1, 30) bildet, und wobei der Exzenterschneckenpumpe (1, 30) eine Bypass- Verbindung (2) mit mindestens einem Sicherheitsventil (20) zugeordnet ist, zur Aufnahme und Rückleitung von rückströmendem Medium (MR) zwischen der Druckseite (D) und der Saugseite (S) der Exzenterschneckenpumpe (1, 30), dadurch gekennzeichnet, dass die Bypass- Verbindung und das Sicherheitsventil (40) in den Pumpenkörper (3) der Exzenterschneckenpumpe (30) integriert sind.Eccentric screw pump (1, 30) for conveying fluid and / or granular media (M) with a pump body (3), the pump body (3) comprising an inlet region (4), a pumping unit (5) and an outlet region (6), wherein the pump unit (5) is formed from a rotor (8) and a stator (7) and wherein the rotor (8) is eccentrically movable in the stator (7), wherein the inlet region (4) the suction side (S) and the outlet region ( 6), the pressure side (D) of the eccentric screw pump (1, 30), and wherein the eccentric screw pump (1, 30) is associated with a bypass connection (2) with at least one safety valve (20) for receiving and returning of rückströmendem medium ( M R ) between the pressure side (D) and the suction side (S) of the eccentric screw pump (1, 30), characterized in that the bypass connection and the safety valve (40) in the pump body (3) of the eccentric screw pump (30) are integrated , Exzenterschneckenpumpe (30) nach Anspruch 1, wobei die Bypass- Verbindung und das Sicherheitsventil (40) im Bereich der Pumpeinheit (5) in den Pumpenkörper (3) der Exzenterschneckenpumpe (30) integriert sind.Eccentric screw pump (30) according to claim 1, wherein the bypass connection and the safety valve (40) in the pump unit (5) in the pump body (3) of the eccentric screw pump (30) are integrated. Exzenterschneckenpumpe (30) nach Anspruch 1 oder 2, wobei der Stator (7) in einem Mantelrohr (45) angeordnet ist und wobei zwischen Stator (7) und Mantelrohr (45) ein Zwischenraum (44) ausgebildet ist, der mit den jeweiligen Innenräumen des Einlassbereiches (4) und des Auslassbereiches (5) in fluider Verbindung steht und die Bypass- Verbindung ausbildet.Eccentric screw pump (30) according to claim 1 or 2, wherein the stator (7) is arranged in a jacket tube (45) and wherein between the stator (7) and jacket tube (45), a gap (44) is formed, which with the respective interior spaces of the Inlet area (4) and the outlet area (5) is in fluid communication and forms the bypass connection. Exzenterschneckenpumpe (30) nach Anspruch 1 oder 2, wobei der Stator (7-2) in einer Statorhülse (50) angeordnet ist wobei die Statorhülse (50) mit ihrem Innenumfang weitgehend flächige am Außenumfang des Stators (7-2) anliegt und wobei zwischen Stator (7-2) und Statorhülse (50) mindestens eine Verbindungsleitung (52) parallel zur Längsachse (L) der Exzenterschneckenpumpe (30) ausgebildet ist, die über erste und zweite Verbindungen (55, 56) mit den jeweiligen Innenräumen des Einlassbereiches (4) und des Auslassbereiches (5) in fluider Verbindung steht und die Bypass- Verbindung ausbildet.Eccentric screw pump (30) according to claim 1 or 2, wherein the stator (7-2) in a stator sleeve (50) is arranged wherein the stator sleeve (50) with its inner circumference largely flat against the outer periphery of the stator (7-2) and wherein between Stator (7-2) and stator sleeve (50) at least one connecting line (52) parallel to the longitudinal axis (L) of the eccentric screw pump (30) is formed via first and second connections (55, 56) with the respective interior spaces of the inlet region (4 ) and the outlet area (5) is in fluid communication and forms the bypass connection. Exzenterschneckenpumpe (30) nach Anspruch 4, wobei die mindestens eine Verbindungsleitung (52) insbesondere durch eine durchgängige Vertiefung in der Außenmantelfläche des Stators (7-2) parallel zur Längsachse (L) der Exzenterschneckenpumpe (30) gebildet werden, wobei sich die Vertiefung entlang einer Länge des Stators (7-2), insbesondere entlang der Gesamtlänge des Stators (7-2), erstreckt.Eccentric screw pump (30) according to claim 4, wherein the at least one connecting line (52) in particular by a continuous recess in the outer circumferential surface of the stator (7-2) parallel to the longitudinal axis (L) of the eccentric screw pump (30) are formed, wherein the depression along a length of the stator (7-2), in particular along the entire length of the stator (7-2) extends. Exzenterschneckenpumpe (30) nach Anspruch 1 oder 2, wobei der Rotor (8-3) einen Hohlraum (60) entlang seiner Rotorlängsachse (LR) umfasst, der mit den jeweiligen Innenräumen des Einlassbereiches (4) und des Auslassbereiches (5) in fluider Verbindung steht und die Bypass- Verbindung ausbildet.Eccentric screw pump (30) according to claim 1 or 2, wherein the rotor (8-3) comprises a cavity (60) along its rotor longitudinal axis (L R ), with the respective interiors of the inlet region (4) and the outlet region (5) in fluid Connection and forms the bypass connection. Exzenterschneckenpumpe (30) nach Anspruch 1 oder 2, wobei der Stator (7-4) mindestens einen Rückströmkanal (65) aufweist, der parallel zur Längsachse (L) der Exzenterschneckenpumpe (30) entlang der Statorlänge ausgebildet ist, wobei der mindestens eine Rückströmkanal (65) mit den jeweiligen Innenräumen des Einlassbereiches (4) und des Auslassbereiches (5) in fluider Verbindung steht und die Bypass- Verbindung ausbildet.Eccentric screw pump (30) according to claim 1 or 2, wherein the stator (7-4) has at least one return flow channel (65) which is formed parallel to the longitudinal axis (L) of the eccentric screw pump (30) along the stator length, wherein the at least one return flow channel ( 65) is in fluid communication with the respective interior spaces of the inlet region (4) and the outlet region (5) and forms the bypass connection. Exzenterschneckenpumpe (30) nach Anspruch 6, wobei der Rückströmkanal (65) in einem Bereich zwischen einem Innengewindegang des Stators (7-4) und der Außenmantelfläche des Stators (7-4) ausgebildet ist und wobei der Rückströmkanal (65) keine offene Verbindung zu dem Innengewindegang des Stators (7-4) und / oder der Außenmantelfläche des Stators (7-4) aufweist.The progressive cavity pump (30) of claim 6, wherein the return flow channel (65) is formed in a region between an internal thread of the stator (7-4) and the outer surface of the stator (7-4) and wherein the return flow channel (65) is not openly connected to the internal thread of the stator (7-4) and / or the outer circumferential surface of the stator (7-4). Exzenterschneckenpumpe (30) nach Anspruch 6 oder 7, wobei der mindestens eine Rückströmkanal (65) in den Stator (7-4) eingegossen ist.Eccentric screw pump (30) according to claim 6 or 7, wherein the at least one return flow channel (65) is cast into the stator (7-4). Exzenterschneckenpumpe (30) nach einem der Ansprüche 6 bis 8, wobei das Sicherheitsventil (40) innerhalb des Rückströmkanals (65) angeordnet ist, insbesondere wobei das Sicherheitsventil (40) in einem Bereich zwischen Einlassbereich (4) und Pumpeinheit (5) angeordnet ist.Eccentric screw pump (30) according to one of claims 6 to 8, wherein the safety valve (40) within the return flow channel (65) is arranged, in particular wherein the safety valve (40) in a region between the inlet region (4) and pumping unit (5) is arranged. Exzenterschneckenpumpe (30) nach einem der Ansprüche 6 bis 8, wobei das Sicherheitsventil (40*) in den Auslassbereich (6) des Pumpenkörpers (3) integriert und wobei eine Austrittsöffnung des Sicherheitsventils (40*) über eine erste Verbindung (66) in den Rückströmkanal (65) mündet.Eccentric screw pump (30) according to one of claims 6 to 8, wherein the safety valve (40 *) integrated into the outlet region (6) of the pump body (3) and wherein an outlet opening of the safety valve (40 *) via a first connection (66) in the Return flow channel (65) opens. Exzenterschneckenpumpe (30) nach einem der voranstehenden Ansprüche, wobei das Sicherheitsventil (40, 40*) ein Überströmventil ist.Eccentric screw pump (30) according to one of the preceding claims, wherein the safety valve (40, 40 *) is an overflow valve. Verwendung einer Exzenterschneckenpumpe (30) nach einem der voranstehenden Ansprüche zur Förderung von fluiden und / oder körnigen Medien (M) in einem Bohrloch.Use of an eccentric screw pump (30) according to one of the preceding claims for conveying fluid and / or granular media (M) in a borehole.
EP20140003567 2013-10-24 2014-10-18 Eccentric screw pump, and use of an eccentric screw pump Withdrawn EP2873862A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310111716 DE102013111716B3 (en) 2013-10-24 2013-10-24 Eccentric screw pump and use of an eccentric screw pump

Publications (1)

Publication Number Publication Date
EP2873862A1 true EP2873862A1 (en) 2015-05-20

Family

ID=51752975

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20140003567 Withdrawn EP2873862A1 (en) 2013-10-24 2014-10-18 Eccentric screw pump, and use of an eccentric screw pump

Country Status (7)

Country Link
US (1) US20150118085A1 (en)
EP (1) EP2873862A1 (en)
CN (1) CN104564655A (en)
AU (1) AU2014240308B2 (en)
BR (1) BR102014025717A2 (en)
DE (1) DE102013111716B3 (en)
RU (1) RU2014142779A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020097B1 (en) * 2014-04-22 2019-07-19 Pcm Technologies ADVANCED CAVITY PUMP
EP2944819B1 (en) * 2014-05-12 2017-07-12 Hugo Vogelsang Maschinenbau GmbH Eccentric screw pump
DE102015101352A1 (en) * 2015-01-29 2016-08-04 Netzsch Pumpen & Systeme Gmbh Stator-rotor system and method for adjusting a stator in a stator-rotor system
CN106678036B (en) * 2015-11-10 2019-01-11 耐驰(兰州)泵业有限公司 Adjustable stator for eccentrie helical totorpump
DE102016207247A1 (en) * 2016-04-28 2017-11-02 BSH Hausgeräte GmbH Cavity Pump
DE102018117374A1 (en) * 2018-07-18 2020-01-23 Seepex Gmbh pump housing
CN108825511A (en) * 2018-07-23 2018-11-16 无锡唯勒科技有限公司 Single-screw rotor pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505136A (en) * 1946-06-18 1950-04-25 Robbins & Myers Internal helical gear pump
US4076466A (en) * 1973-05-18 1978-02-28 Swanson Engineering, Inc. Fluid pump for use in explosive bore holes
DE3818508A1 (en) * 1988-05-31 1989-12-07 Netzsch Mohnopumpen Gmbh Sterilisable model of an eccentric screw pump
EP0482912A1 (en) * 1990-10-23 1992-04-29 Halliburton Company Downhole pump for formation testing
US20080050249A1 (en) 2006-08-23 2008-02-28 Higra Industrial Ltda Progressive vortex pump

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527673A (en) * 1947-02-28 1950-10-31 Robbins & Myers Internal helical gear pump
US3011445A (en) * 1957-11-13 1961-12-05 Robbin & Myers Inc Helical gear pump with by-pass
US4011917A (en) * 1974-08-19 1977-03-15 Wladimir Tiraspolsky Process and universal downhole motor for driving a tool
DE4330226C1 (en) * 1993-09-07 1994-09-08 Bornemann J H Gmbh & Co Eccentric worm screw pump
US7757781B2 (en) * 2007-10-12 2010-07-20 Halliburton Energy Services, Inc. Downhole motor assembly and method for torque regulation
AR064436A1 (en) * 2007-12-19 2009-04-01 Knoop Eberardo COUPLING BETWEEN MOTOR AND HELICOIDAL ROTOR FOR PROGRESSIVE CAVITY PUMPS
CN201318291Y (en) * 2008-12-17 2009-09-30 杭州兴龙泵业有限公司 Skidded special sulfonate screw pump system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505136A (en) * 1946-06-18 1950-04-25 Robbins & Myers Internal helical gear pump
US4076466A (en) * 1973-05-18 1978-02-28 Swanson Engineering, Inc. Fluid pump for use in explosive bore holes
DE3818508A1 (en) * 1988-05-31 1989-12-07 Netzsch Mohnopumpen Gmbh Sterilisable model of an eccentric screw pump
EP0482912A1 (en) * 1990-10-23 1992-04-29 Halliburton Company Downhole pump for formation testing
US20080050249A1 (en) 2006-08-23 2008-02-28 Higra Industrial Ltda Progressive vortex pump

Also Published As

Publication number Publication date
DE102013111716B3 (en) 2015-03-19
US20150118085A1 (en) 2015-04-30
CN104564655A (en) 2015-04-29
AU2014240308A1 (en) 2015-05-14
BR102014025717A2 (en) 2015-09-22
AU2014240308B2 (en) 2016-03-31
RU2014142779A (en) 2016-05-20

Similar Documents

Publication Publication Date Title
DE102013111716B3 (en) Eccentric screw pump and use of an eccentric screw pump
DE102013102030B3 (en) Screw Pump
DE2720130A1 (en) DIRECT CHISEL DRIVE FOR DEEP DRILLING TOOLS
EP3236074B1 (en) Rotary pump having lubricating groove in sealing bar
WO2017021115A1 (en) Displacement pump and hydraulic system
DE102014222322B3 (en) Vane pump with improved starting behavior
EP2961988B1 (en) Screw pump with at least two parts
DE102010035597A1 (en) Bearing arrangement for a pump
EP2935890A2 (en) Multiple pump arrangement
DE102009017452B4 (en) Oil pump
DE102013102032A1 (en) Screw Pump
DE102015115841A1 (en) Pump-motor unit with cooling of a pump driving electric motor by means of leakage fluid
DE102021214256A1 (en) Gerotor device and pump device with gerotor device
DE102013100451B4 (en) Rotor for worm and / or eccentric worm pumps and worm or eccentric worm pump
EP3827170A1 (en) Fluid delivery device
DE102008059636A1 (en) pump assembly
WO2015104012A1 (en) Progressive cavity pump, pin joint, and method for producing a pin joint
DE102018112492B3 (en) Screw Pump
DE102015215982B4 (en) Pump and system for supplying a consumer
DE102008042233A1 (en) Mechanical coupling element for coupling drive shaft to eccentric screw of eccentric screw pump, has rigid crank, and bearing arranged in crank for formation of rotary bearing of eccentric screw around rotation axis
EP0628725A2 (en) Gear pump
DE202020107544U1 (en) Pump with 3D printed rotors
EP4198309A1 (en) Screw spindle pump
DE3545698C1 (en) Clutch fitted to an internal combustion engine
DE102004030123B3 (en) Screw pump has casting forming end piece of housing with cavity connecting axial bore to bearing as part of pressure line

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20171211