EP2873334B1 - Procédé et dispositif de détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac - Google Patents

Procédé et dispositif de détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac Download PDF

Info

Publication number
EP2873334B1
EP2873334B1 EP14191605.6A EP14191605A EP2873334B1 EP 2873334 B1 EP2873334 B1 EP 2873334B1 EP 14191605 A EP14191605 A EP 14191605A EP 2873334 B1 EP2873334 B1 EP 2873334B1
Authority
EP
European Patent Office
Prior art keywords
rod
measuring
strand
tobacco
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14191605.6A
Other languages
German (de)
English (en)
Other versions
EP2873334B2 (fr
EP2873334A1 (fr
Inventor
Dierk SCHRÖDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koerber Technologies GmbH
Original Assignee
Hauni Maschinenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51900129&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2873334(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hauni Maschinenbau GmbH filed Critical Hauni Maschinenbau GmbH
Publication of EP2873334A1 publication Critical patent/EP2873334A1/fr
Publication of EP2873334B1 publication Critical patent/EP2873334B1/fr
Application granted granted Critical
Publication of EP2873334B2 publication Critical patent/EP2873334B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes

Definitions

  • the invention relates to a method for the detection of strand inhomogeneities of a material strand of the tobacco-processing industry, in particular a tobacco rod or a filter strand, wherein the material strand is conveyed longitudinally through at least two at different measuring frequencies operated strand measuring devices.
  • the invention further relates to a device for detecting strand inhomogeneities of a material strand of the tobacco processing industry, a strand machine of the tobacco processing industry, a use and a software program.
  • material strands are produced, for example tobacco strands or filter strands.
  • the tobacco rod or the filter strand is after its production cut into individual tobacco rods or filter rods.
  • a common material for making filter strands is a tow of cellulose acetate that can be treated with a plasticizer, such as triacetin, before strand forming.
  • a cellulose acetate-based filter strand may be coated with a wrapping paper when it is formed or may be produced by a heat treatment as a so-called "non-wrapped acetate” (NWA) filter strand.
  • NWA non-wrapped acetate
  • objects can also be inserted into such a filter strand. Such objects may either have further filtering properties, such as activated carbon particles, or flavor-bearing objects, such as liquid-filled capsules, may be incorporated.
  • EP 1 330 961 B1 discloses a method of detecting and removing debris in a tobacco stream wherein a continuous strand of tobacco filling is passed through a forming station and then divided into cigarette sections by a cutter. The tobacco stream is exposed to electromagnetic radiation of a preselected frequency and detects an output signal indicative of changes in moisture content along the tobacco stream caused by the presence of debris in the stream itself. The output signal is provided with an upper threshold signal and a lower threshold signal which are of a predetermined and constant amplitude. According to EP 1 330 961 B1 is measured at microwave frequencies.
  • the dielectric methods known hitherto using high-frequency technology or microwave technology for the detection of foreign bodies measure the complex dielectric constant ⁇ with the variables real part ⁇ 'and imaginary part ⁇ "or the magnitude and phase of the test material to be examined
  • the measurements are subject to certain fluctuations, which in addition to the inhomogeneity, for example, the cause of the water content of the material to be measured also in the inhomogeneity of the composition.
  • US 4,942,363 A a method of monitoring the humidity and density in a tobacco rod by means of scattered linearly polarized electromagnetic microwave radiation detected at an angle to the direction of entry, taking advantage of the fact that the complex dielectric constant of water varies greatly in the GHz range, while that of Tobacco tends to remain constant.
  • the actual moisture and density are determined in proportion to a desired moisture and density.
  • the measured intensities of the scattered radiation are compared with desired intensities of a tobacco rod having the desired moisture content and density, and measures are taken to correct them in the event of deviations.
  • GB 2489586 A relates to a method for determining proportions by weight of several ingredients in a filter material in the form of a filter rod or a filter rod. At least two measuring devices, a conveying device for the filter material and an evaluation device are included. Filter material is conveyed by a microwave measuring device and by an HF measuring device, wherein at least one microwave frequency and at least one high frequency at least three measured variables are measured, which influences the amounts and the Permittforestrysloom of the ingredients contained in the mixture of the filter material become. Weight fractions of the ingredients of the filter material are determined from the measurement results.
  • plastic particles typically have a much smaller imaginary part ⁇ "of the dielectric constant compared to the real part than tobacco, resulting in a deviation of the measured value.
  • Foreign objects can thus be recognized by being different in their measured values from the fluctuations normally occurring during production Distinguish measured values significantly.
  • the object is achieved by a method for detecting strand inhomogeneities of a material strand of the tobacco processing industry, in particular a tobacco rod or a filter strand, wherein the material strand is conveyed longitudinally by at least two at different measuring frequency operated strand measuring devices, which is further developed by measuring signals of the at least two strand measuring devices are each independently derived, at least one comparison variable, a difference of the comparison variable or differences of several comparison variables or a difference vector from the differences of a plurality of comparison variables of the at least two strand measuring devices is formed, and it is checked whether the difference, the differences or the difference vector within at least a predetermined or predeterminable tolerance range lies or lie, wherein exceeding the tolerance range is an intolerable strand gin homogeneity signals.
  • This method is based on the basic idea of a multi-frequency method and exploits its advantages.
  • the measuring frequency decreases, the real part and the imaginary part of the dielectric constants of tobacco and other hydrous vegetable products increase sharply.
  • this does not apply to the foreign bodies of interest, such as plastics.
  • the usual distribution of measured values for the individual measured values should differ only slightly for the different frequencies with correct calibration of the measuring systems. Basically, one would expect a theoretically completely error-free calibration of the various measuring systems a congruent course.
  • a tolerance range for the difference vector for the differences of the comparison variables that is, the derived quantities.
  • a tolerance range can be defined around a single measured value of the one measurement, which is elliptical, rectangular or similar, in which it is to be expected that the corresponding measured value at the other measuring frequency comes within this tolerance range if no foreign body is present. If this is not the case, a foreign body or other strong inhomogeneity was present in the measuring volume in the strand.
  • a difference vector is already present if differences in the measured values of at least two comparison variables are formed.
  • vector is thus interchangeable in the present context with, for example, “tuple” or “pair” or similar terms describing a cohesive plurality of values.
  • a pair of comparison variables for example strand moisture and strand density, can also be called “comparison vector”.
  • the advantage of this method is that the measured value fluctuations of the individual measured values during normal production at the different frequencies are essentially the same and the same.
  • the natural fluctuations in humidity and density are reproduced approximately congruently by both measurement methods.
  • the measured values differ from each other. Only deviations of the measuring signals from each other thus lead to the detection of foreign bodies.
  • the distances between the thresholds for detecting foreign bodies can thereby be set much narrower than in the previous method. This makes it possible to detect much smaller foreign bodies compared to the conventional methods.
  • At least one measuring frequency in the microwave range and another measuring frequency in the HF range wherein in particular the frequency of the strand measuring device in the microwave range by a factor of 10 to 900 is greater than the frequency of the strand measuring device in the RF range.
  • the microwave range is in the context of the invention, in particular a range between 1 GHz and 30 GHz, in particular between 4 GHz and 8 GHz, understood, while an RF frequency or high frequency, the range between 100 kHz and 300 MHz is understood, in particular between 1 MHz and 10 MHz.
  • a strand density and / or a strand moisture content and / or a real part and / or an imaginary part and / or an amount and / or a phase of a complex dielectric constant or permittivity are derived from the measurement signals as comparison variables.
  • the strand density is a derived quantity from the mass. Since the indirect measurement of the mass is known with known geometric dimensions of the strand, it is easy to calculate the strand density from this, for example.
  • one or more further measured quantities are derived from the measuring signals of at least one of the strand measuring devices, which are not derived from the measuring signals of the respective other strand measuring device or are not compared with the corresponding measured variables of the other strand measuring device.
  • further material parameters are recorded, which, however, are not subjected to a comparison.
  • This procedure is also suitable, for example, for those parameters that can be measured with high accuracy in a strand measuring device and in the other strand measuring device with such a low accuracy that a comparison for the detection of strand inhomogeneities no longer makes sense.
  • a temporal offset which occurs between the measurement signals due to a given in the strand conveying direction distance between the strand measuring devices depending on a current material strand conveying speed, by a time delay of the Processing of the measured signals or derived comparison variables of the upstream strand measuring device compensated.
  • an identical measuring field geometry is advantageously realized in the at least two strand measuring devices, in particular gap width, undercuts u. This measure increases comparability and simplifies cross-calibration between the strand measuring devices.
  • the tolerance range for sections of the filter strand with objects and sections of the filter strand without objects defined differently, in particular with an offset to each other, and / or at least one of the strand measuring devices operated at a variable frequency, wherein in the different sections different frequencies and / or evaluation algorithms are used.
  • an additive in particular a plasticizer
  • the object-filled sections additionally preferably in the objectless sections, a determination of a missing, a density, a mass and / or damage an object.
  • the tolerance range is preferably defined as rectangular or elliptical or deformed, wherein the tolerance range is in particular dependent on an absolute value of at least one comparison value.
  • two comparison variables for example strand moisture and strand density
  • a two-dimensional comparison vector results, so that a two-dimensional tolerance range is defined for this purpose.
  • the tolerance range must be dimensioned accordingly.
  • the tolerance range can represent an ellipsoid or a cuboid or a suitable other spatial form.
  • the boundaries in the respective dimensions may be dependent on the direction of a change. Thus, non-linearities can be taken into account in the derivatives of the comparison variables.
  • At least one absolute limit value for at least one measured value or a comparison value of at least one strand measuring device or at least one limit value defined for a running mean value of a measured value or comparison value is used whose exceeding or falling below signals an intolerable strand inhomogeneously.
  • the electronic circuits used are subject to drift, for example due to temperature effects, aging, etc. This limits the ideal parallel operation of the coordinated strand measuring systems in accuracy and thus the accuracy of the measurement.
  • This effect is advantageously reduced by the fact that the derivative of at least one comparison variable from the measurement signals of the at least two strand measuring devices is constantly matched to one another during operation, in particular by evaluating running average values, Standard deviations and / or combinations of mean values and standard deviations of the comparison variable, wherein in particular measured values of the more inaccurate of the comparison size of the at least two strand measuring devices are adapted to the corresponding measured values of the less accurate strand measuring device.
  • This approach works because it recognizes inhomogeneities only as deviations from mean values, ie short-term operations. Drifting is always a long-term process.
  • This ongoing adjustment can be made because for a determination of a measured value, for example, the strand moisture or strand density, or other strand properties, an accurate measurement of a string measuring device usually sufficient.
  • the corresponding measured value, for example the strand moisture, of the other strand measuring device can be adjusted, for example, by a linear transformation, ie multiplication by a linearity factor and subtraction of an offset, such that the mean value and standard deviation of the strand moisture from the second strand measuring device correspond to the mean value and the standard deviation from the first , used as a reference, strand measuring device correspond.
  • the averaging can in this case also be a running average, so that the linearity factor and offset are also continuously adjusted.
  • the signal-to-noise ratio ie the recognition accuracy
  • the signal-to-noise ratio can be further improved by averaging the measured values of the two frequency ranges over a predeterminable range, in particular with a suitable weighting function resulting from the measuring field geometry .
  • This weighted averaging is a convolution of the temporally successive measured values of the respective Strand measuring devices to understand the sensitivity in strand direction.
  • the material strand is conveyed at a known speed through the respective measuring field of the strand measuring devices. An inhomogeneity thus lingers for a certain period of time in the resonator or a measuring capacitor. When entering and exiting to and from the resonator or measuring capacitor, the sensitivity is low, in the center each larger.
  • the sensitivity in strand orientation is thus geometrically dependent, for example approximately Gaussian or has a correspondingly different course.
  • a certain known number of measurements is made in each case.
  • the noise of the individual measuring points is suppressed, while signals of inhomogeneities are retained.
  • the object underlying the invention is also achieved by a device for detecting strand inhomogeneities of a material strand of the tobacco processing industry, in particular a tobacco rod or a filter strand, comprising at least two operated with different measurement frequencies or operable strand measuring devices, by which the material strand is conveyed successively longitudinal axial or promoted is solved, which is developed by the fact that an evaluation device is included, which is designed to independently derive from measurement signals of the at least two strand measuring devices each at least two comparison variables, a difference of the comparison variable or differences of several comparison variables or a difference vector of the differences of several comparison variables at least two strand measuring devices to form and check whether the difference, the differences or the difference vector within a predetermined or predeterminable tolerance range lies or lie, wherein exceeding the tolerance range signals an intolerable strand inhomogeneity.
  • This device is based on the same basic idea as the method according to the invention and shares its advantages, properties and features.
  • At least one strand measuring device is designed as a microwave strand measuring device and / or at least one strand measuring device is designed as a capacitive HF strand measuring device. These preferably have identical or similar measuring field geometries.
  • At least one of the strand measuring devices is designed to be operated at a variable frequency. This is particularly advantageous in filter strands in which objects are inserted and which are thus to be evaluated differently in object sections and empty sections.
  • the device is designed to carry out a method according to the invention described above. This concerns in particular the evaluation device.
  • the object underlying the invention is also achieved by a rod making machine of the tobacco-processing industry, in particular tobacco rod machine or filter rod machine, with a device according to the invention described above.
  • the object underlying the invention is also achieved by using a tolerance range for a difference or differences or difference vectors of one or more of measurement signals two operated with different frequencies strand measuring devices of a previously described inventive device derived comparative variables for the detection of intolerable strand inhomogeneities in a longitudinally supported by the strand measuring devices material strand of the tobacco processing industry, in particular tobacco rod or filter strand solved and by a software program with program code means by means of which during execution a previously described inventive method is carried out an evaluation device of a previously described device according to the invention designed as a data processing device.
  • the stranding machine, the use and the software program also share the advantages, properties and features of the method and the device according to the invention
  • Fig. 1 For example, there is schematically illustrated a two-strand "PROTOS" cigarette making machine of the Applicant Company assembled in a "L-shaped" configuration from a two-strand machine 2 and a filter attachment machine 3.
  • the machine 1 is shown with closed top plates, details are not shown for clarity.
  • the manufacturing process of two endless Tobacco strands begins in the two-strand machine 2 in a two-strand distribution unit 4 with a pre-distributor 5, which includes, inter alia, a steep conveyor and two storage chutes and other known components.
  • a pre-distributor 5 which includes, inter alia, a steep conveyor and two storage chutes and other known components.
  • loose tobacco material is conveyed to a first and a parallel second strand conveyor 6 and thrown from below onto the strand conveyors, so that two tobacco strands are formed, which are held by means of suction air on the strand conveyors.
  • Hanging on the strand conveyors 6, the tobacco material is conveyed in the direction of a first and a second format unit 8.
  • the still open tobacco strands are each wrapped in a wrapping paper unit 7 with wrapping paper strips, which are glued to a longitudinal edge. Subsequently, the tobacco strands in the two format units 8 are formed into two endless closed tobacco strands of circular cross section and the gluing of the wrapping paper strips is solidified.
  • the tobacco rods After the tobacco rods have been formed, they are guided by a measuring device 9 with one or more measuring units for measuring properties of the respective tobacco material strand. For example, the wrapping paper is visually inspected and the moisture content and density are measured.
  • the control of the two-line machine 2 takes place from a control console 11.
  • Output of the two-strand machine 2 is a knife and transfer unit 10, in which the strands are cut into individual tobacco rods multiple use length, the individual tobacco rods are deflected from a longitudinal axial to a transverse axial promotion and transferred to the filter attachment machine 3.
  • the filter attachment machine 3 also has, among other things, a lining paper unit 12, from which tipping paper is removed, cut and glued. The following are the individual tipping paper leaflets wrapped in designated areas around the tobacco sticks and double filter plugs, which are thereby interconnected. Finally, the double cigarettes produced in this way are cut in the middle and transported away one by one.
  • a combination strand measuring device 20 which can be used according to the invention is shown schematically in cross section.
  • the combination strand measuring device 20 has a common housing 21, which is penetrated by a protective tube 23 through which a strand of material, such as a filter strand or a tobacco rod, is guided, wherein the strand of material first enters through a strand inlet tube 22 with conical inner diameter before passing through the Protective tube 23 passes.
  • a strand of material such as a filter strand or a tobacco rod
  • the combination strand measuring device 20 has in the strand conveying direction sequentially a microwave strand measuring device 30 and a capacitive HF strand measuring device 40.
  • the microwave strand measuring device 30 corresponds for example to a microwave strand measuring device, as described in the German patent application no. 10 2011 083 049.9 the applicant is described.
  • This has a microwave resonator 31 in a microwave resonator housing 32.
  • a coupling-in antenna 33 and a coupling-out antenna 34 project for coupling and coupling-out of microwaves in the frequency range between 5 and 9 GHz.
  • the microwave resonator 31 is substantially cylindrically shaped, wherein the protective tube 23 passes centrally through the cylindrical microwave resonator 31.
  • the common housing 21 also contains a plurality of cavities with measuring, tempering and power electronics 37, which is thus integrated into the microwave strand measuring device 30.
  • the power and measurement electronics have the same temperature as the microwave resonator 31 and thus results in a temperature control for the entire microwave strand measuring device 30.
  • the following capacitive RF strand measuring device 40 has a measuring capacitor 41 with a capacitor housing 42 and electrode surfaces 43, 44. An RF alternating voltage in the range between 10 MHz and about 500 MHz is applied to this.
  • a corresponding capacitive RF strand measuring device is known from German patent application no. 10 2011 083 052.9 the applicant, the relevant disclosure of which should also be included by reference in the present patent application.
  • the capacitive RF strand measuring device 40 has with respect to the electrode surfaces 43 and 44 conical collar 45, with which the geometry of the measuring capacitor 41 is adapted to the geometry of the microwave resonator 31.
  • the measurement signals of the microwave strand measuring device 30 and the capacitive HF strand measuring device 40 are therefore also direct with respect to the geometry of the microwave resonator 31 and the measuring capacitor 41 and thus of the alternating electromagnetic fields comparable to each other.
  • the conical collar 45 with the corresponding undercuts ensure that even in this case the RF fields in the axial direction of the material strand do not penetrate far out of the measuring capacitor 41 and, in particular, do not penetrate into the microwave resonator 31.
  • the capacitive HF strand measuring device 40 has integrated measuring, temperature control and power electronics 47 in cavities of the common housing 21. All power electronics, measuring electronics and the temperature control of the entire combination strand measuring device 20 is thus integrated in the combination strand measuring device 20.
  • Fig. 3 is the combination strand measuring device 20 from Fig. 2 shown schematically in a perspective view.
  • the observer looks at the front side of the combination strand measuring device 20 with the microwave strand measuring device 30 and the strand inlet tube 22 and the inside visible protective tube 23. Behind it is the capacitive RF strand measuring device 40.
  • the individual housings are connected to a common housing.
  • FIG. 5 A typical two-dimensional measurement signal I MW of a microwave measuring device for a tobacco rod transported therethrough is shown.
  • the strand density ⁇ is shown in arbitrary units, while on the vertical axis the strand moisture ⁇ is shown in arbitrary units.
  • the measured values of these quantities fluctuate quite strongly, especially in the dimension of the strand density ⁇ , while they are more concentrated with respect to the strand moisture ⁇ .
  • the strand density of the tobacco rod varies quite small scale due to the presence of different tobacco leaf parts such as ribs having a higher density and ribless leaf components having a lower density. For each measuring point, this results in a combination of a strand density value and a strand moisture value.
  • the weight fluctuation range is mainly due to actual density differences in the strand, while the fluctuation range in the water content is largely due to fluctuations in the water content. Since the processed tobacco is conditioned, a comparatively constant water content is to be expected.
  • the measured fluctuation range contains beside The inhomogeneity of the water content, however, also an inhomogeneity of the composition.
  • Fig. 5 For example, a waveform having a relatively large fluctuation width in the vertical axis is shown.
  • a foreign body in the material being measured is recognized by its values of the complex dielectric constant being different from the corresponding values of the material being measured and its surroundings. For example, since a plastic particle typically has a much smaller imaginary component ⁇ "of the dielectric constant compared to the real part than tobacco, this leads to a deviation of the measured value, for example in the in Fig. 5 represented by the arrow 1 direction. Foreign bodies can therefore only be detected by differing in their measured values from the fluctuations of the measured values that normally occur during production. The decision as to which foreign body is and is not, is thus based on the distance of the individual measured value from the measured value distribution during normal production.
  • the deviation in the ordinate direction serves as the main criterion for detecting foreign bodies.
  • a lower threshold A and an upper threshold B are introduced whose undershoot or exceedance serve as a signal for a foreign body.
  • Fig. 5 also shows that the variability occurring during production limits the sensitivity of foreign body detection.
  • the foreign body 2 which starts from a relatively low ordinate, leads to a drop below the threshold A, while a same foreign body 3, which emanates from a higher ordinate, does not lead to falling below the threshold.
  • you want to recognize small foreign bodies must One can already recognize very small distances from the average measured value distribution as a foreign body. Because of the small distance between the thresholds and the measured values that occur, static fluctuations in the measured values, as in the case of the signal waveform I MW , can easily lead to unauthorized detection of foreign bodies if the distance of the threshold to the average signal course is selected too low. Very small foreign bodies can only cause small changes in the dielectric constants that remain within the normal measured value distributions. Such foreign bodies are thus not recognized.
  • Fig. 6 the evaluation according to the invention of in Fig. 5 shown measuring signal waveform shown.
  • I MW the measured value profile
  • ⁇ , ⁇ measured value vector
  • a measuring point or a pair of measured values or measured value vector ( ⁇ , ⁇ ) from I MW a measuring point corresponding to the same strand section of the measuring signal I HF of the HF strand measuring device is shown, which differs from the measuring point I MW in both the derived moisture and the derived strand density is different.
  • a tolerance range 70 is defined around the individual measured value of the microwave measurement, the tolerance range in Fig. 6 is defined elliptically, it is to be expected that the corresponding measured value of the HF measurement comes within this tolerance range. This is in Fig. 6 shown. If the other measured value is outside the tolerance range, then this is a criterion for the presence of a foreign body.
  • the advantage of this method is that the measured value fluctuations of the individual measured values during normal production are compensated by the fact that the fluctuations arise due to real inhomogeneities in the strand and thus are synchronous in both measurements and are largely eliminated by subtraction.
  • the distances of the threshold as the definition of the tolerance range, can therefore be set much narrower than in the previous method. This makes it possible to detect much smaller foreign body than before.
  • Fig. 7 the flow of signal processing is shown schematically.
  • the direct measurement signals from the microwave strand measuring device and the HF strand measuring device are analyzed in a method step 81 or 81 'and comparison variables, in this case, continuous densities ⁇ 1 ', ⁇ 2 and strand moisture values ⁇ 1 'and ⁇ 2 are determined. Since the strand is first conveyed by a strand measuring device and then by the other strand measuring device, there is a time offset. The simultaneously obtained measured values ⁇ 1 'and ⁇ 2 or ⁇ 1 ' and ⁇ 2 thus relate to different strand sections and can not be compared with one another.
  • a time delay is performed according to the time it takes for the strand to pass from the first to the second strand measuring device.
  • the result of this operation is a comparison value pair ⁇ 1 and ⁇ 1 , which relates to the same strand section as the comparison value pair ⁇ 2 , ⁇ 2 from the second strand measuring device.
  • a differential value ⁇ is created from the strand density measured values ⁇ 1 and ⁇ 2 , and a differential value ⁇ is calculated from the strand moisture measured values ⁇ 1 and ⁇ 2 . This results in a difference vector ⁇ , ⁇ .
  • process step 84 checks if it is within the predetermined tolerance range 70. If it is outside the tolerance range 70, the presence of a foreign body or other intolerable inhomogeneity is signaled and the affected strand section after cutting to length a rod-shaped article, such as a filter rod or tobacco rod, excluded from further processing.
  • the difference between ⁇ and ⁇ can be absolute, i. in a positive value
  • This positive value can then be compared with a function defined in this area, for example a quarter ellipse.
  • this value can also be compared with defined individual limits. This case corresponds to a rectangular tolerance range. This approach is particularly effective in the absence of nonlinearity.
  • a quadratic addition weighted with corresponding weighting factors is made, the magnitude of which must be smaller than a threshold S.
  • This embodiment corresponds to an elliptical tolerance range.
  • Fig. 8 shows a schematic representation of a measurement signal vector of a microwave measuring device, from whose measurement signal I MW the real part ⁇ 'and the imaginary part ⁇ "of the complex permittivity or dielectric constant ⁇ of the strand material is derived
  • the amount and the phase of the complex permittivity could be suitably represented and used as the basis for a comparison according to the invention for the detection of strand inhomogeneities.
  • the ⁇ values of the different frequencies are advantageously adjusted proportionally to equal fluctuation ranges.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)

Claims (15)

  1. Procédé de détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac, notamment d'une tige de tabac ou d'une tige de filtre, la tige de matériau étant transportée dans la direction de son axe à travers au moins deux dispositifs de mesure de tige (30, 40) fonctionnant avec des fréquences de mesure (fHF, fMW) différentes, caractérisé en ce que, à partir de signaux de mesure desdits au moins deux dispositifs de mesure de tige (30, 40), indépendamment les unes des autres, au moins une grandeur respective de comparaison (ρ1, ψ1; ε1', ε1" ; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2" ; |ε2|, ϕ2) est déduite (étapes de procédé 81, 81'), en ce qu'il est formé une différence (Δρ, Δψ; Δε', Δε"; Δ|ε|; Δϕ) de la grandeur de comparaison (ρ1, ψ1 ; ε1', ε1"; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2"; |ε2|, ϕ2) ou des différences de plusieurs grandeurs de comparaison (ρ1, ψ1; ε1', ε1" ; |ε1|, ϕ1; ρ2, ψ2 ; ε2', ε2" ; |ε2|, ϕ2) ou un vecteur de différence ({Δρ, Δψ} ; {Δε', Δε"} ; {Δ|ε|; Δϕ}) à partir des différences de plusieurs grandeurs de comparaison (ρ1, ψ1; ε1', ε1"; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2" ; |ε2|, ϕ2) desdits au moins deux dispositifs de mesure de tige (30, 40) (étape de procédé 83) et en ce qu'il est vérifié si la différence (Δρ, Δψ; Δε', Δε"; Δ|ε|; Δϕ), les différences ou le vecteur de différence ({Δρ, Δψ} ; {Δε', Δε"} ; {Δ|ε|; Δϕ}) est ou sont à l'intérieur d'une plage de tolérance (70) susceptible d'être déterminée ou déterminée (étape de procédé 84), un dépassement de la plage de tolérance (70) signalisant un défaut d'homogénéité non tolérable d'une tige.
  2. Procédé selon la revendication 1, caractérisé en ce qu'au moins une fréquence de mesure (fMW) est située dans le domaine des micro-ondes et une autre fréquence de mesure (fHF) est située dans le domaine HF, notamment la fréquence du dispositif de mesure de tige (30) située dans le domaine des micro-ondes étant plus grande, d'un facteur de 10 à 900, que la fréquence du dispositif de mesure de tige (40) dans le domaine HF.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que sont déduites des signaux de mesure, comme grandeurs de comparaison, une densité de tige (ρ) et/ou une humidité de tige (ψ) et/ou une partie réelle (ε') et/ou une partie imaginaire (ε") et/ou une valeur absolue (|ε|) et/ou une phase (ϕ) d'une constante diélectrique complexe (ε).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que sont déduites des signaux de mesure d'au moins un des dispositifs de mesure de tige (30, 40), une ou plusieurs autres grandeurs de mesure qui ne sont pas déduites des signaux de mesure du respectivement autre dispositif de mesure de tige (30, 40) ou qui ne sont pas comparées aux grandeurs de mesure correspondantes de l'autre dispositif de mesure de tige (30, 40).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'un décalage dans le temps qui apparaît entre les signaux de mesure en raison d'une distance donnée, dans le sens de transport des tiges, entre les dispositifs de mesure de tige (30, 40), en fonction de la vitesse de transport momentanée de la tige de matériau, est compensé par un retardement dans le temps de l'exploitation des signaux de mesure ou des grandeurs de comparaison déduites du dispositif de mesure de tige disposé en amont (étape de procédé 82).
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que pour une tige de matériau formée comme tige de filtre dans laquelle se trouvent insérés à des positions prédéterminées des objets, notamment des capsules remplies d'un liquide, la plage de tolérance est définie différemment pour des tronçons de la tige de filtre avec des objets et pour des tronçons de la tige de filtre sans objets, notamment avec un décalage de l'un par rapport à l'autre, et/ou en ce qu'au moins un des dispositifs de mesure de tige (30, 40) fonctionne avec une fréquence variable, des fréquences différentes et/ou des algorithmes d'exploitation différents étant utilisés pour les tronçons différents, notamment pour les tronçons sans objets, notamment de manière supplémentaire, il est déterminée une humidité et/ou une quantité d'un additif, notamment d'un adoucissant, et/ou qu'il est déterminée pour les tronçons remplis d'un objet, de manière supplémentaire, l'absence, une densité, une masse et/ou une détérioration d'un objet.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la plage de tolérance est définie comme rectangulaire ou elliptique ou déformée, la plage de tolérance étant notamment fonction d'une valeur absolue d'au moins une valeur de comparaison.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que, en sus de l'exploitation de la plage de tolérance, au moins une valeur limite absolue pour au moins une valeur de mesure ou pour une valeur de comparaison d'au moins un dispositif de mesure de tige (30, 40) ou au moins une valeur limite (A, B) définie pour une valeur moyenne courante d'une valeur de mesure ou d'une valeur de comparaison, est utilisée dont le dépassement vers le haut ou vers le bas signale un défaut d'homogénéité de tige non tolérable.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la déduction d'au moins une valeur de comparaison (ρ, ψ; ε', ε" ; |ε|, ϕ) à partir des signaux de mesure desdits au moins deux dispositifs de mesure de tige (30, 40), est adaptée en permanence, en fonctionnement, notamment par exploitation de valeurs moyennes courantes, d'écarts standards courants et/ou de combinaisons courantes de valeurs moyennes et d'écarts standards de la grandeur de comparaison (ρ, ψ; ε', ε" ; |ε|, ϕ), notamment des valeurs de mesure de celui desdits au moins deux dispositifs de mesure de tige (30, 40) qui est moins précis pour la valeur de comparaison, sont adaptées aux valeurs de mesure correspondantes du dispositif de mesure de tige (30, 40) plus précis.
  10. Dispositif pour la détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac, notamment d'une tige de tabac ou d'une tige de filtre, comprenant au moins deux dispositifs de mesure de tige (30, 40) susceptibles de fonctionner ou fonctionnant avec des fréquences de mesure (fHF, fMW) différentes à travers lesquels la tige de matériau est susceptible d'être transportée ou est transportée successivement dans la direction de son axe, caractérisé en ce qu'il comprend un dispositif d'exploitation qui est configuré pour déduire, à partir de signaux de mesure desdits au moins deux dispositifs de mesure de tige (30, 40), de manière indépendante les unes des autres, au moins une grandeur respective de comparaison (ρ1, ψ1; ε1', ε1" ; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2" ; |ε2|, ϕ2), pour former une différence (Δρ, Δψ; Δε', Δε"; Δ|ε|; Δϕ) de la grandeur de comparaison (ρ1, ψ1; ε1', ε1" ; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2"; |ε2|, ϕ2) ou des différences de plusieurs grandeurs de comparaison (ρ1, ψ1; ε1', ε1" ; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2" ; |ε2|, ϕ2) ou un vecteur de différence ({Δρ, Δψ}; {Δε', Δε"}; {Δ|ε|; Δϕ}) à partir des différences de plusieurs grandeurs de comparaison (ρ1, ψ1; ε1', ε1" ; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2" ; |ε2|, ϕ2) desdits au moins deux dispositifs de mesure de tige (30, 40) (étape de procédé 83) et pour vérifier si la différence (Δρ, Δψ; Δε', Δε"; Δ|ε|; Δϕ), les différences ou le vecteur de différence ({Δρ, Δψ} ; {Δε', Δε"} ; {Δ|ε|; Δϕ}) est ou sont à l'intérieur d'une plage de tolérance (70) susceptible d'être déterminée ou déterminée, un dépassement de la plage de tolérance (70) signalisant un défaut d'homogénéité non tolérable d'une tige.
  11. Dispositif selon la revendication 10, caractérisé en ce qu'au moins un dispositif de mesure de tige (30, 40) est configuré comme dispositif de mesure de tige à micro-ondes (30) et/ou en ce qu'au moins un dispositif de mesure de tige (30, 40) est configuré comme dispositif de mesure de tige HF capacitif et/ou en ce qu'au moins un des dispositifs de mesure de tige (30, 40) est configuré pour fonctionner avec une fréquence variable.
  12. Dispositif selon la revendication 10 à 11, caractérisé en ce qu'il est configuré pour mettre en oeuvre un procédé selon l'une des revendications 1 à 9.
  13. Machine de formation de tige (2) de l'industrie de traitement du tabac, notamment une machine pour la formation d'une tige de tabac ou une machine pour la formation d'une tige de filtre, avec un dispositif selon l'une des revendications 10 à 12.
  14. Utilisation d'une plage de tolérance (70) pour une différence ou des différences ou des vecteurs de différence ({Δρ, Δψ}; {Δε', Δε"} ; {Δ|ε|; Δϕ}) d'une ou de plusieurs grandeurs de comparaison (ρ1, ψ1; ε1', ε1" ; |ε1|, ϕ1; ρ2, ψ2; ε2', ε2" ; |ε2|, ϕ2) déduites de signaux de mesure de deux dispositifs de mesure de tige (30, 40) fonctionnant avec des fréquences différentes (fHF, fMW), d'un dispositif selon l'une des revendications 10 à 12 pour reconnaître des défauts d'homogénéité non tolérables dans une tige de matériau transportée dans la direction de son axe, de l'industrie de traitement du tabac, notamment dans une tige de tabac ou une tige de filtre.
  15. Programme d'ordinateur avec des moyens de codage de programme à l'aide desquels, lors d'une mise en oeuvre dans un dispositif d'exploitation configuré comme dispositif de traitement de données d'un dispositif selon l'une des revendications 10 à 12, un procédé selon l'une des revendications 1 à 9 est mis en oeuvre.
EP14191605.6A 2013-11-19 2014-11-04 Procédé et dispositif de détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac Active EP2873334B2 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013223535.6A DE102013223535A1 (de) 2013-11-19 2013-11-19 Verfahren und Vorrichtung zur Erkennung von Stranginhomogenitäten eines Materialstrangs der Tabak verarbeitenden Industrie

Publications (3)

Publication Number Publication Date
EP2873334A1 EP2873334A1 (fr) 2015-05-20
EP2873334B1 true EP2873334B1 (fr) 2019-01-30
EP2873334B2 EP2873334B2 (fr) 2023-09-13

Family

ID=51900129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14191605.6A Active EP2873334B2 (fr) 2013-11-19 2014-11-04 Procédé et dispositif de détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac

Country Status (3)

Country Link
EP (1) EP2873334B2 (fr)
CN (1) CN104643283B (fr)
DE (1) DE102013223535A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119453B4 (de) * 2015-11-11 2017-06-22 Hauni Maschinenbau Gmbh Vorrichtung und Verfahren zur Bestimmung des Anteils mindestens eines Zusatzstoffs in einem tabakhaltigen Stoff, und Maschine der Tabak verarbeitenden Industrie
DE102016114642A1 (de) 2016-08-08 2018-02-08 Hauni Maschinenbau Gmbh Verfahren und Vorrichtung zum Erkennen und/oder Prüfen eines in ein stab- oder strangförmiges Produkt der Tabak verarbeitenden Industrie eingelegten Objekts
CN111487296B (zh) * 2020-04-21 2022-11-01 郑州星驰智能科技有限公司 一种粉末状物料混合均匀度的检测方法
DE102020123754A1 (de) 2020-09-11 2022-03-17 Endress+Hauser Conducta Gmbh+Co. Kg Taster zur Erkennung von Phasenübergängen
DE102020129732B3 (de) * 2020-11-11 2021-12-02 Tews Elektronik Gmbh & Co. Kg Verfahren und Vorrichtung zur Erkennung von Kapselfehlern in einem Filter der tabakverarbeitenden Industrie
DE102021110760A1 (de) 2021-04-27 2022-10-27 Tews Elektronik Gmbh & Co. Kg Verfahren zur Messung eines Zusatzstoffgehalts in einem Tabakpapier für elektrische Zigaretten

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1376747A (en) * 1971-02-11 1974-12-11 Molins Ltd Monitoring devices
US4865054A (en) 1987-01-31 1989-09-12 Korber Ag Method of and apparatus for making and processing streams of fibrous material of the tobacco processing industry
DE10100664A1 (de) 2001-01-09 2002-07-11 Hauni Maschinenbau Ag Verfahren zum Prüfen eines Produktionsmaterials
EP1247462A2 (fr) 2001-04-06 2002-10-09 Hauni Maschinenbau AG Procédé et dispositif de génération d'une information concernant les propriétés d'un courant de fibres
EP1327876A1 (fr) 2002-01-11 2003-07-16 Tews Elektronik Procédé et dispositif pour détecter des corps étrangers dans des flux de masse utilisant un résonateur hyperfréquence
EP1702524A1 (fr) 2005-03-17 2006-09-20 Hauni Maschinenbau AG Détection des inhomogénéités dans une tige de filtre
EP2207027A2 (fr) 2009-01-13 2010-07-14 TEWS Elektronik GmbH & Co. KG Procédé et dispositif de mesure de masse et de densité et/ou de mesure de l'humidité d'unités en portion, qui sont transportées à travers un résonateur au moins d'un matériau de support
EP2243385A2 (fr) 2009-04-21 2010-10-27 HAUNI Maschinenbau AG Surveillance de capsule et réglage de la position de la capsule dans des filtres de l'industrie de traitement du tabac
DE102011006414A1 (de) 2011-03-30 2012-10-04 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3400410A1 (de) * 1983-01-22 1984-07-26 Hauni-Werke Körber & Co KG, 2050 Hamburg Verfahren und vorrichtung zum herstellen eines bewegten faserstrangs der tabakverarbeitenden industrie
US4785830A (en) * 1983-01-22 1988-11-22 Korber Ag Method and apparatus for monitoring and evaluating the density of a tobacco stream
US4942363A (en) * 1989-04-25 1990-07-17 Philip Morris Incorporated Apparatus and method for measuring two properties of an object using scattered electromagnetic radiation
DE4014659A1 (de) * 1989-05-19 1990-11-22 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum bestimmen der dichte eines tabakstrangs
JPH03130063A (ja) * 1989-05-19 1991-06-03 Koerber Ag たばこ連続体の密度を検出するための方法および装置
ITBO20020038A1 (it) 2002-01-24 2003-07-24 Gd Spa Metodo per il rilevamento e l'eliminazione di corpi estranei in un flusso di tabacco
DE102011083052B4 (de) 2011-09-20 2016-03-10 Hauni Maschinenbau Ag Kapazitive HF-Strangmessvorrichtung und Strangmaschine
DE102011083049A1 (de) 2011-09-20 2013-03-21 Hauni Maschinenbau Ag Mikrowellenstrangmessvorrichtung
DE102012209954A1 (de) 2012-06-14 2013-12-19 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Erkennung von Stranginhomogenitäten eines Materialstrangs der Tabak verarbeitenden Industrie

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1376747A (en) * 1971-02-11 1974-12-11 Molins Ltd Monitoring devices
US4865054A (en) 1987-01-31 1989-09-12 Korber Ag Method of and apparatus for making and processing streams of fibrous material of the tobacco processing industry
DE10100664A1 (de) 2001-01-09 2002-07-11 Hauni Maschinenbau Ag Verfahren zum Prüfen eines Produktionsmaterials
EP1247462A2 (fr) 2001-04-06 2002-10-09 Hauni Maschinenbau AG Procédé et dispositif de génération d'une information concernant les propriétés d'un courant de fibres
EP1327876A1 (fr) 2002-01-11 2003-07-16 Tews Elektronik Procédé et dispositif pour détecter des corps étrangers dans des flux de masse utilisant un résonateur hyperfréquence
EP1702524A1 (fr) 2005-03-17 2006-09-20 Hauni Maschinenbau AG Détection des inhomogénéités dans une tige de filtre
EP2207027A2 (fr) 2009-01-13 2010-07-14 TEWS Elektronik GmbH & Co. KG Procédé et dispositif de mesure de masse et de densité et/ou de mesure de l'humidité d'unités en portion, qui sont transportées à travers un résonateur au moins d'un matériau de support
EP2243385A2 (fr) 2009-04-21 2010-10-27 HAUNI Maschinenbau AG Surveillance de capsule et réglage de la position de la capsule dans des filtres de l'industrie de traitement du tabac
DE102011006414A1 (de) 2011-03-30 2012-10-04 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial

Also Published As

Publication number Publication date
CN104643283B (zh) 2020-01-21
EP2873334B2 (fr) 2023-09-13
EP2873334A1 (fr) 2015-05-20
DE102013223535A1 (de) 2015-05-21
CN104643283A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
EP2873334B1 (fr) Procédé et dispositif de détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac
EP1221608B1 (fr) Méthode pour tester un matériau de production dans un champ de micro-ondes
EP2207027B1 (fr) Procédé et dispositif de mesure de l'humidité des capsules dans une tige de filtre à cigarettes en transportant la tige de filtre à travers un résonateur à micro-ondes
EP2674044B1 (fr) Procédé et dispositif de détection de défauts d'homogénéité d'une tige de matériau de l'industrie de traitement du tabac
DE102011006414C5 (de) Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial
EP2042858B1 (fr) Dispositif résonateur à microondes de mesure
EP3354143B1 (fr) Procédé et dispositif de surveillance et de fabrication d'un boudin de filtre de l'industrie de traitement du tabac
EP3158325B1 (fr) Dispositif de mesure à micro-ondes, ensemble et procédé de contrôle d'articles en forme de bâtonnet ou d'un boudin de matière issus de l'industrie de transformation du tabac, et machine de l'industrie de transformation du tabac
EP1895291A1 (fr) Station de mesure de la tige d'un filtre tout comme procédé de mesure de la masse d'un plastifiant, de l'humidité et/ou du matériau de filtre sec dans la tige d'un filtre
EP3281536B1 (fr) Procédé et dispositif de détection et/ou de contrôle d'un produit inséré dans un produit en forme de tige ou de barre provenant de l'industrie du tabac
DE102010026178A1 (de) Vorrichtung zur Herstellung von Zigaretten in der tabakverarbeitenden Industrie sowie ein Verfahren hierzu
EP1327876B1 (fr) Procédé et dispositif pour détecter des corps étrangers dans des flux de masse utilisant un résonateur hyperfréquence
EP2572594A2 (fr) Boîtier de résonateur pour micro-ondes passé par un tronçon de matière pour déterminer des attributs du tronçon de matière
DE102011121918B3 (de) Verfahren und Vorrichtung zur Messung der Position von Segmenten mit absorbierenden Substanzen in Multisegmentfilterstäben der tabakverarbeitenden Industrie
EP3176567A1 (fr) Système, machine et procédé et utilisation de vérification de la qualité d'un bout de cigarette
DE102016115098A1 (de) Messvorrichtung und Verfahren zum Erkennen von elektrisch leitenden Elementen in Produkten sowie eine Maschine zum Herstellen von Produkten der Tabak verarbeitenden Industrie
EP1197746B1 (fr) Méthode et dispositif de détermination du contenu en triacétine d'embouts filtres
DE102006041191C5 (de) Filtermeßstabstation sowie Verfahren zur Messung der Masse eines Weichmachers in einem Filterstab
EP2865282B1 (fr) Système et procédé de contrôle d'articles en forme de tige de l'industrie de traitement du tabac
DE102020129732B3 (de) Verfahren und Vorrichtung zur Erkennung von Kapselfehlern in einem Filter der tabakverarbeitenden Industrie
DE102022106532A1 (de) Maschine und Verfahren zur Herstellung eines Endlosstrangs der Tabakindustrie
WO2022135936A1 (fr) Procédé de mesure de quantités de substances dans un mélange de substances
WO2024062065A1 (fr) Procédé de mesure de dérivés de polypropylène glycol dans un filtre en papier
DE102014107747A1 (de) Messmodul, Messanordnung und Strangmaschine in der Tabak verarbeitenden Industrie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151119

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAUNI MASCHINENBAU GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1092518

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010695

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014010695

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

26 Opposition filed

Opponent name: G.D S.P.A.

Effective date: 20191028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1092518

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141104

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014010695

Country of ref document: DE

Owner name: KOERBER TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: HAUNI MASCHINENBAU GMBH, 21033 HAMBURG, DE

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KOERBER TECHNOLOGIES GMBH

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: TITEL

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230616

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20230913

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014010695

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231129

Year of fee payment: 10

Ref country code: DE

Payment date: 20231121

Year of fee payment: 10