EP2872797B1 - Amortisseur de vibrations torsionnelles - Google Patents

Amortisseur de vibrations torsionnelles Download PDF

Info

Publication number
EP2872797B1
EP2872797B1 EP13731112.2A EP13731112A EP2872797B1 EP 2872797 B1 EP2872797 B1 EP 2872797B1 EP 13731112 A EP13731112 A EP 13731112A EP 2872797 B1 EP2872797 B1 EP 2872797B1
Authority
EP
European Patent Office
Prior art keywords
damping device
vibration damper
torsional vibration
damper according
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13731112.2A
Other languages
German (de)
English (en)
Other versions
EP2872797A1 (fr
Inventor
Daniel Eckhardt
Patrick Rediger
Erwin Wack
Christoph Sasse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP2872797A1 publication Critical patent/EP2872797A1/fr
Application granted granted Critical
Publication of EP2872797B1 publication Critical patent/EP2872797B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum

Definitions

  • the invention relates to a torsional vibration damper for a coupling device for producing an operative connection between a drive and an output.
  • the coupling device has a coupling system with a coupling element, which can be displaced between an engagement position in which an operative connection between the drive and the output can be produced, and a disengagement position in which this operative connection is canceled, as well as at least two with radial offset from one another Damping devices, which are associated with at least one effective between the two damping devices Tilgersystem and at least one independent of the absorber system additional mass.
  • the coupling element is in operative connection with an input of one of the damping devices, and an output of another of the damping devices is in operative connection with the output.
  • the output of one of the damping devices is in operative connection with an input of another of the damping devices by means of a connecting device.
  • the connecting device has at least one absorber mass carrier for receiving at least one absorber mass of the absorber system.
  • the drive may be designed as an internal combustion engine, while the coupling device is formed by a hydrodynamic torque converter, which has a hydrodynamic circuit and a clutch system, wherein the hydrodynamic circuit consists of impeller, turbine wheel and stator, and the coupling system has a coupling element, which is displaceable between an engagement position and a disengagement position, and offers the possibility to bridge the hydrodynamic circuit in the engagement position.
  • a hydrodynamic torque converter which has a hydrodynamic circuit and a clutch system
  • the hydrodynamic circuit consists of impeller, turbine wheel and stator
  • the coupling system has a coupling element, which is displaceable between an engagement position and a disengagement position, and offers the possibility to bridge the hydrodynamic circuit in the engagement position.
  • the engagement position an operative connection between the drive and the output can be produced while in the disengaged position this operative connection is canceled.
  • the coupling device also associated with two damping devices are arranged without substantial axial offset, but with radial offset from one another and also with respect to a Tilgersystem, this Tilgersystem is located radially between the two damping devices.
  • the entrance of the radially outer Damping device is rotatably connected to the coupling element, while the output of this damping device is connected by means of the connecting device with the input of the radially inner damping device.
  • the connecting device comprises two with axial offset to each other arranged disc elements, of which one energy storage of the radially outer damping device encloses at least a portion of the circumference, and thus forms a centrifugal force support for these energy storage.
  • the two disc elements of the connecting device are on the one hand rotatably connected to the turbine wheel, which is effective as an additional mass, and on the other hand effective as Tilgermassenhov by record on Hautnzapfen, which serve for the axial connection of the disc elements, Tilgermassen the absorber system. Due to the inclusion of the connecting device, the absorber system between the two damping devices is effective. Finally, the output of the radially inner damping device is formed by a hub disc, which, as well as the absorber mass carrier in this radial region, recesses for receiving energy storage of the radially inner damping device, and which are rotatably connected via a hub with an output, such as a transmission input shaft can.
  • the radially outer damping device Due to the considerable energy storage volume in the radially outer damping device, in particular when it is designed with low rigidity, there is the risk that individual windings of energy accumulators experience considerable deflection in the radial direction as a result of centrifugal force, and thus buckle against other windings.
  • the radially outer damping device as realized in the known torsional vibration damper, be assigned to a centrifugal force. Disadvantage of such centrifugal force support is, however, that the windings of the energy storage relative to the centrifugal force during deflection movements between the input and the output of the damping device are frictionally loaded, whereby the decoupling quality decreases.
  • An insufficient decoupling quality with a damping device arranged in the moment flow in front of a damping system has a disadvantageous effect on the functionality of the absorber system, since insufficiently damped torsional vibrations trigger a deflection movement of the absorber masses out of the centrifugal-supported central position.
  • Such a deflection movement has a particularly disadvantageous effect if the absorber masses are deflected so strongly that they strike against rotational angle limitations.
  • Fig. 5 which is a concretization of the in Fig. 2d also indicates in this printed publication, the coupling device is formed by a hydrodynamic torque converter, which has in addition to the hydrodynamic circuit via a coupling system whose displaceable between an engagement position and a release position coupling element offers the opportunity to bridge the hydrodynamic circuit in the engagement position ,
  • the two damping devices of the torsional vibration damper are arranged without substantial axial offset, but with radial offset to each other, wherein the coupling element is rotatably connected to the input of the radially inner damping device, while the output of this damping device is connected by means of the connecting device not only with the input of the radially outer damping device, but in addition, with the input of an additional spring system whose output acts on the turbine wheel of the hydrodynamic circuit serving as absorber system.
  • the absorber system is due to the inclusion of the connecting device between the two damping devices effectively.
  • the outlet of the radially outer damping device is formed by a cover plate which can be non-rotatably connected via a hub to an output, such as a transmission input shaft.
  • the invention has the object of providing a Tilgersystem and an additional mass possessing Torsionsschwingungsdämpfer so that Tilgersystem and additional mass are so coupled with components of the torsional vibration damper, that sets the best possible eradication and damping effect.
  • a torsional vibration damper for a coupling device used to establish an operative connection between a drive and an output.
  • the coupling device has a coupling system with a coupling element, which can be displaced between an engagement position in which an operative connection between the drive and the output can be produced, and a disengagement position in which this operative connection is canceled, as well as at least two with radial offset from one another Damping devices, which are associated with at least one effective between the two damping devices Tilgersystem and at least one independent of the absorber system additional mass.
  • the coupling element is in operative connection with an input of one of the damping devices, and an output of another of the damping devices is in operative connection with the output.
  • the output of one of the damping devices is connected to an input of a another of the damping devices by means of a connecting device in operative connection.
  • the connecting device has at least one absorber mass carrier for receiving at least one absorber mass of the absorber system.
  • the coupling element is in operative connection with the input of the radially inner damping device and the output of the radially outer damping device via the additional mass with the output, while the output of the radially inner damping device via the connecting device to the input of the radially outer damping device is operatively connected, so that the additional mass and the connecting device are provided movable relative to each other.
  • a Tilgersystem undergoes only a small deflection movement of the absorber masses from the centrifugal force-based center position, when initiated with a torque torsional vibrations before transmission to the absorber masses are at least largely degraded. Only then can namely be effectively avoided that the absorber masses learn due to insufficient damped torsional vibrations a deflection movement from the centrifugal central position, and in the worst case beat against rotational angle limitations.
  • the arrangement of a damping device which provides a particularly high degree of decoupling, in the moment flow before the absorber system is of particular importance. Such a damping device results when it is designed with low rigidity and also low friction.
  • the radially inner damping device can be formed with very low rigidity.
  • the energy storage of the radially inner damping device usually have a lower energy storage volume than the energy storage of the radially outer damping device, and therefore need not necessarily be performed in an energy storage channel to support it against the effective centrifugal force.
  • the energy storage of the radially inner damping device can therefore be performed with less friction than the energy storage of the radially outer damping device. All this favors the radially inner damping device as the damping device which is provided in the moment flow before the absorber masses.
  • the coupling element is connected to the input of the radially inner damping device.
  • the torsional vibration damper is assigned an additional mass, which can be formed by a turbine wheel when forming the coupling device with a hydrodynamic circuit.
  • the output ie the transmission input shaft
  • the additional mass is provided at the outlet of the radially outer damping device.
  • the additional mass is then relatively movable relative to the effective between the two damping devices connecting device.
  • the radially outer damping device Due to its arrangement on a radially large diameter, the radially outer damping device has a considerable energy storage volume which is applied either by a small amount of energy storage of large circumferential extent, or by a plurality of energy stores of lesser circumferential extent.
  • energy storage is a centrifugal force for the energy storage of considerable advantage to limit undesirable centrifugal force deflections of the energy storage radially outward at least.
  • the centrifugal force support is provided with an energy storage channel which, in particular when it is continuous in the circumferential direction, acts as a guideway for the energy storage devices, which are thus slidably received on the centrifugal force support.
  • such an energy storage channel is very dimensionally stable when the centrifugal force.
  • the connecting device has at least one transmission element, which is provided to form the energy storage channel with at least one transformation
  • the output of the radially outer damping device is provided for forming the energy storage channel with at least one transformation
  • the energy storage volume is considerably lower than in the radially outer damping device.
  • an energy storage channel can therefore be provided to form at least the input of the radially inner damping device, but possibly also their effective as a transmission element of the connecting device output as an energy storage carrier having recesses for the energy storage, as well as at least one of the energy storage associated centrifugal force.
  • the energy storage carrier which has a centrifugal force support, is provided with a deformation that forms this centrifugal force support, with which the energy storage carrier supports the energy store at least substantially radially outward.
  • the at least one transmission element of the connecting device is designed as a Tilgermassenhov.
  • both the preferably provided on the radially outer damping device energy storage channel and at least one of the preferably provided on the radially inner damping device energy storage carrier may be provided on the absorber mass carrier.
  • the respective absorber mass carrier has trajectories in which stepped rollers are provided for the relative movement of the absorber masses relative to the at least one absorber mass carrier and, if appropriate, step pins for the axial positioning of the individual absorber masses relative to one another and relative to the absorber mass carrier.
  • these Tilgermassenlivities are advantageously arranged in each case with axial distance from each other and held by spacers in a predetermined axial distance from each other.
  • the spacers are stepped in the axial direction, wherein they are formed in those axial regions in which they pass through recesses of the respective absorber mass carrier, with a diameter which differ from the diameters of the spacers axially on both sides of the respective recesses.
  • the spacers of the absorber mass carriers are fastened to the input of this damping device or to a component which is non-rotatable with the input, such as the coupling element of the coupling system, and if the recesses in the absorber mass carriers are formed as curved paths extending in the circumferential direction, then the spacers in conjunction with the recesses act as a rotational angle limiting when the curved paths are dimensioned in the circumferential direction in relation to the deformation path of the energy storage such that the spacers have reached the following in Auslenkraum circumferential ends of the cam tracks before the energy storage of the radially inner damping device their maximum Ingestion state.
  • the spacers are dimensioned in the circumferential direction in relation to the deformation path of the energy storage such that the spacers do not reach the circumferential ends of the curved paths following in the deflection direction, even if the energy stores of the radially inner damping device already assume their maximum compression state, then the spacers only have one Guide function for the Tilgermassenenstill too.
  • the energy stores are designed for the maximum load torque of the drive. This ensures that only then the respective rotation angle limit is reached when the maximum load torque of the drive is exceeded. Since this will only be the case in extreme situations, it is ensured that in normal operating conditions the rotation angle limitation does not take effect. This is important because the activation of the rotation angle limit would result in the initiation of a shock in the absorber masses of the absorber system.
  • the torsional vibration damper according to the invention is axially positioned in a housing assigned to the coupling device and has a housing on the drive side.
  • the additional mass is in the form of the turbine wheel in the direction away from the housing cover direction of the stator or on a component thereof axially supportable.
  • the coupling element via a thrust bearing on a component of the torsional vibration damper is axially supported.
  • damping devices of the torsional vibration damper can be further developed in an advantageous manner. Since in particular the radially inner damping device lying in the moment flow before the absorber system should provide a high degree of decoupling, such developments are preferred for this damping device.
  • the damping device can also be designed in parallel with two damping units, which are arranged with spatial offset from one another. In this case, at least the outer diameter of the previous inner energy storage can be increased and thereby the rigidity of the damping device can be reduced. On an internal energy storage is then omitted in both damping units, of course.
  • the two damping units of the respective damping device can of course also be designed in series connection. It then creates a so-called wide-angle damper.
  • Fig. 1 shows a coupling device 4 in the form of a hydrodynamic torque converter.
  • the coupling device 4 has a housing 45 with a pump wheel carrier 53, to which a housing cover 54 is fastened by means of welding 55.
  • a housing cover 54 In favor of a rotationally fixed connection of the housing 45 with a drive 2, such as the crankshaft of an internal combustion engine, the housing cover 54 has on its side facing the drive 2 via a plurality of mounting pins 56 which are connected via a drive plate 57 to the drive 2.
  • the connection between drive and drive plate 57 and between the latter and the mounting pin 56 in the usual manner, and is therefore in Fig. 1 not shown in detail.
  • a coupling element 6 of a coupling system 5 is axially displaceable centered on an output 3 in the form of a transmission input shaft.
  • spacers 50 which are arranged at predetermined circumferential distances from each other and secured to the coupling element 6, a Reibbelagani 46 fixed on its the housing cover 54 side facing a friction lining 58 which has a friction surface 47 and can be brought into abutment with a counter-friction surface 48 provided on the housing cover 54.
  • an effective as input 11 of a radially inner damping device 7 support member 79 is fixed to the coupling element 6 in the radially inner region, wherein the radially inner damping device 7 is provided with energy storage 23.
  • the energy storage 23 are based on the other end of two support elements 60a, 60b, which are effective as the output 12 of the radially inner damping device 7.
  • the support members 60a, 60b are arranged on both sides of the input 11 of the radially inner damping device 7, and provided with recesses 51 a, 51 b, which, as Fig. 2 shows, extend in the circumferential direction and are penetrated by the attached to the coupling element 6 spacers 50.
  • the spacers 50 are stepped in the axial direction, wherein they are provided in the axial areas in which they pass through recesses 51 a, 51 b, with diameters which differ from the diameters of the spacers 50 axially on both sides of the respective recesses 51 a, 51 b.
  • the support members 60a, 60b positioned at a fixed axial distance from each other. This is important because the support elements 60a, 60b have in their radial outer regions on trajectories 31 a, 31 b, which are penetrated by axial end portions of step rollers 32.
  • a respective axial center region of the stepped rollers 32 is formed with another, here larger diameter than the axial end portions, and is guided in trajectories 34 of absorber masses 17 of a damper system 9, which in Fig. 3 are shown.
  • the trajectories 31 a, 31 b in this case extend in such a way that, viewed in the circumferential direction, their respective center 74 has the greatest radial distance to an axis of rotation 62 of the coupling device 4.
  • the trajectories 34 of the absorber masses 17, viewed in the circumferential direction run in such a way that their respective center 75 has the smallest radial distance to an axis of rotation 62 of the coupling device 4.
  • the carrier elements 60a, 60b are effective as absorber mass carriers 16a, 16b.
  • This in Fig. 1 2b facing away from the drive carrier element 60b is formed at its radially outer end to an energy storage channel 26.
  • This energy storage channel 26 acts against energy storage 24 a radially outer damping device 8 as centrifugal force support 29.
  • the carrier element 60b controls the energy storage 24, and thus serves as an input of the radially outer damping device 8, whose output formed by a Axialanformung 63 on a turbine wheel shell 88 of a turbine wheel 20 is.
  • this carrier element 60b Since the carrier element 60b is thus likewise output 12 of the radially inner damping device 7 and input 13 of the radially outer damping device 8, this carrier element 60b acts as a connecting device 15 of a torsional vibration damper comprising the two damping devices 7, 8 1, while the turbine wheel 20 is effective as additional mass 10 of the torsional vibration damper 1.
  • the turbine 20 forms together with an impeller provided on the pump impeller pump impeller 19 19 and carried by a freewheel 64 and arranged on this on a support shaft 65 stator 21 a hydrodynamic circuit 18, the impeller 19 as well as the turbine wheel 20 and the stator 21 with each a blading is provided.
  • the turbine wheel 20 has a turbine wheel root 66, via which it engages on a turbine hub 20 and thus the additional mass 10 associated output hub 67.
  • the output hub 67 is rotatably connected via a toothing 68 with the output 3.
  • the output hub 67 has a radial abutment surface 76 for the support element 60b adjacent to the turbine wheel 20 and an axial abutment surface 77 for an axial bearing 44, which forms a stop 70 for the coupling element 6 in the direction away from the drive 2.
  • the coupling element 6 comes to the stop 70 in abutment when in a pressure chamber 71 which extends axially between the housing cover 54 and the coupling element 6, an overpressure against a cooling chamber 72 which is located on the side remote from the pressure chamber 71 side.
  • the absorber masses 17 Upon initiation of very strong torsional vibrations, the absorber masses 17 are deflected so strongly in the circumferential direction that they come into abutment with travel limit stops 33 with circumferential stop surfaces 73.
  • Such Wegbegrenzungsanelle 33 can, as Fig. 3 shows, be received on recesses 78 of the Tilgermassenvic 16a, 16b.
  • the Wegbegrenzungsanelle 33 and / or the abutment surfaces 73 may be made to cushion the shock load of material or covered with the same, which deforms elastically under impact.
  • the carrier element 60b and thus the connecting device 15 has in the region of the energy storage channel 26 via a toothing 41, which is provided with a provided on the Axialanformung 63 of the turbine wheel 20 counter-teeth 42 in play-related connection.
  • the play between the two teeth 41, 42 determines the size of the rotational angle deflection between the connecting device 15 and the turbine wheel 20 and thus between the input 13 and the output 14 of the radially outer damping device 8, and thus limits the compression of the energy storage 24 of this damping device eighth
  • the profiling 38 formed by the toothing 41 as well as the counter-profiling 39 formed by the counter-teeth 42 thus form a rotational angle limit 36 for the radially outer damping device 8.
  • the turbine wheel 20 Since the output of the radially outer damping device 8 is formed by a part of the turbine wheel 20, namely by the Axialanformung 63, the turbine wheel 20 is used to transmit the torque introduced via the output hub 67 to the output 3. Due to the mass inertia effect of the turbine wheel 20 this acts as additional mass 10, the output side of the radially outer damping device 8 and thus the output side of the torsional vibration damper 1 is effective. In contrast, the absorber masses 17 act due to their inclusion on the connecting device 15 between the two damping devices 7 and 8.
  • the input 11 for the energy storage 23 of the radially inner damping device 7 is not formed solely by the support member 79 attached to the coupling element 6, but In addition, by a molding 80 on the coupling element 6.
  • recesses 28 are provided for the energy storage 23, so that it is effective as an energy storage medium 27.
  • bends 81, 82 are provided, of which the radially outer bend 81 as centrifugal force support 25 for the respective energy storage 23 is effective.
  • the individual Tilgermassenarme 16 is formed by a support member 60, which is also effective as a connecting device 15 between the two damping devices 7, 8.
  • the carrier element 60 is centered on the spacers 50 fastened in the coupling element 6 by engaging in the recesses 51 with play in the circumferential direction.
  • a respective stepped roller 32 is received, which receives the absorber masses 17 on both sides of the absorber mass carrier 16, and secures axially by means of carrier element heads 61.
  • Fig. 7 shows an embodiment in which the remote from the turbine 20 Tilgermassenarme 16a is centered on the radial abutment surface 76 of the output hub 67.
  • This Tilgermassenarme 16a is used by means for receiving energy storage 23 of the radially inner damping device 7 specific recesses 28 for controlling these energy storage 23, while the turbine wheel 20 adjacent Tilgermassenarme 16b is provided for controlling the energy storage 24 of the radially outer damping device 8.
  • the radially inner damping device 7 has two support elements 79a, 79b, of which one, namely the support member 79a, not only has recesses 28 for the energy storage 23 and thus effective as an energy storage medium 27, but also Has over a centrifugal force 25 as effective bend 82.
  • the already mentioned carrier element 60b is, deviating from the embodiment according to Fig. 1 formed without energy storage channel for the energy storage 24 of the radially outer damping device 8.
  • this carrier element 60b has the profile 38 formed by the toothing 41. Together with the formed by the counter-teeth 42 counter-profiling 39 at the output 14 thus the rotation angle limit 36 is formed for the radially outer damping device 8.
  • the output 14 has to form a centrifugal force support 29 for the energy storage 24 via an effective energy storage channel 87 deformation 83, which is rotatably by riveting 84 to the turbine wheel 88 with the turbine wheel 20.
  • the carrier element 60a is able to support itself in the direction of the turbine wheel 20 on an axial stop 69 assigned to the turbine wheel root 66.
  • Both carrier elements 79a, 79b of the input 11 of the radially inner damping device 7 are formed as energy storage carrier 27 for the energy storage 23 of this damping device 7 by the carrier elements 79a, 79b each have recesses 28 for the energy storage 23. Radially outside of the recesses 28 bends 82a, 82b are provided, which are held by a provided on one of the support members 79a, 79b clamp member 89 in axial engagement with each other. The bends 82 a, 82 b together form a centrifugal force support 25 for the radially inner damping device 7.
  • the carrier element 86 of the output 14 of the radially outer damping device 8 has on its side facing the turbine wheel 20 lugs 90, the after penetration of apertures 91 provided in the turbine shell 88, they are rolled with the turbine shell 88 and secured therewith.
  • Such a solution is in Fig. 12 shown.
  • Both carrier elements 79a, 79b of the input 11 of the radially inner damping device 7 are formed as energy storage carrier 27 for the energy storage 23 of this damping device 7 by the carrier elements 79a, 79b each have recesses 28 for the energy storage 23. Radially outside of the recesses 28 bends 82 a, 82 b are provided, which together form a centrifugal force support 25 for the radially inner damping device 7.
  • the carrier elements 79a, 79b are centered by the spacers 50 fastened to the coupling element 6 and are positioned in the axial direction relative to one another and with respect to the coupling element 6. For this purpose, the spacers 50 pass through openings 92 in the carrier elements 79a, 79b. Furthermore, the spacers 50 pass through the recesses 51 in the carrier element 60a, ie the absorber mass carrier 16a.
  • the carrier element 86 of the output 14 of the radially outer damping device 8 is attached to the turbine wheel shell 20 with its side facing the turbine wheel 20 by means of a weld 93, preferably a laser welding, on the turbine wheel shell 88.
  • energy storage 23, 24 may be provided both in the case of the radially inner damping device 7 and in the radially outer damping device 8, in each of which the turns of an outer damping unit enclose the turns of an inner damping unit.
  • Exemplary are in Fig. 10 for the radially inner damping device 7, the damping units 7a, 7b shown.
  • the energy storage devices 23a, 23b of these damping units 7a, 7b are subjected to the same extent of extent in the circumferential direction parallel to each other by the support elements 79a, 79b of the input 11, and are supported at the other end on the carrier element 60a of the output 12.
  • Fig. 11 shows, with otherwise the same configuration of the radially inner damping device 7 as in Fig. 9 , the damping units 7a, 7b with radial offset to each other.
  • the carrier element 86 of the output 14 is provided on its side facing the turbine wheel 20 with openings 94, in which blade flaps 95 of the turbine wheel 20 are inserted and rolled.
  • Fig. 12 For this purpose, an embodiment of the example of the radially inner damping device 7 with the damping units 7a, 7b.
  • the energy input 23a of the damping unit 7a are based on the other end to a connection support 96, through which the energy storage 23b of the damping unit 7b are acted upon, and as a mass element between the damping units 7a , 7b is effective.
  • the energy stores 23b are supported on the carrier element 60a at the other end.
  • radially inner damping device 7 At the in FIGS. 13 and 14 shown radially inner damping device 7 are the energy storage 23a, 23b in the circumferential direction with the interposition of a torque transfer unit 97 in operative connection with each other.
  • the torque transmission unit 97 has an annular body 98 and radially projecting therefrom Driving projections 43 on.
  • the An horrvorsge 43 are received at predetermined circumferential intervals on the annular body 98, and engage in the circumferential direction between each two energy storage 23a, 23b.
  • Support element 79 fastened to the coupling element 6 is provided for acting on the first energy accumulator 23a in the circumferential direction at the other end on two torque transmission elements 85a, 85b of the torque transmission unit 97.
  • These torque transmission elements 85a, 85b can in turn be brought into operative connection with the second energy accumulator 23b second energy storage 23b in the circumferential direction at the other end on the support member 60a is supported.
  • the two torque transmission elements 85a, 85b of the torque transmission unit 97 are both relative to the carrier element 79, so the input 11 of the radially inner damping device 7, and relative to the support member 60a, so the output 12 of the radially inner damping device 7, relatively rotatable.
  • the two torque transmission elements 85a, 85b receive both a carrier element 79 of the input 11 connected to the coupling element 6 and the carrier element 60a axially between them.
  • Stepped tapers 101 are provided to hold the aforementioned components in fixed axial relative position to one another.
  • the carrier element 79 has a profiling 37, in which engages a counter-profiling 40 with predetermined play in the circumferential direction to form a rotational angle limit.
  • the profiling 37 may be 40 formed by a toothing as well as the counter-profiling.
  • the rotation angle limit is located radially inside the energy storage 23.
  • the second energy store 23b can be acted on at the circumference at one end by two torque transmission elements 85a, 85b and at the other end by a single carrier element 60a Fig. 15 a solution in which the second energy storage 23b circumferentially one end by a single torque transmission element 85 of the torque transmission unit 97 and the other end by two support members 60a, 60b acted upon, wherein the both latter are effective as a connecting device 15 between the radially inner damping device 7 and the radially outer damping device 8.
  • the two support elements 60a, 60b of the connecting device 15 receive both a carrier element 79 of the input 11 connected to the coupling element 6 and the torque transfer element 85 of the torque transfer unit 97 axially between them.
  • Stepped stems 30 are provided to hold the aforementioned components in fixed relative axial position with respect to each other. Also in the execution according to Fig. 15 Again, there is a rotation angle limit 35 between the input 11 and the output 12 of the radially inner damping device 7. In contrast to the solution according to the embodiment according to Fig. 13 sits the rotation angle limit 35 in the execution Fig. 15 however, radially outside the energy storage 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Claims (26)

  1. Amortisseur de vibrations torsionnelles (1) pour un dispositif d'accouplement (4) servant à établir une liaison fonctionnelle entre un entraînement (2) et une prise de force (3) qui dispose d'un système d'embrayage (5) avec un élément d'embrayage (6) pouvant être déplacé entre une position embrayée dans laquelle une liaison fonctionnelle peut être établie entre l'entraînement (2) et la prise de force (3) et une position débrayée dans laquelle cette liaison fonctionnelle est supprimée, et disposant également d'au moins deux dispositifs d'amortissement (7, 8) disposés de manière décalée radialement l'un par rapport à l'autre, auxquels sont associés au moins un système d'amortisseur (9) agissant entre les deux dispositifs d'amortissement (7, 8) et au moins une masse supplémentaire (10) indépendante du système d'amortisseur (9), l'élément d'embrayage (6) étant en liaison fonctionnelle avec une entrée (11) de l'un des dispositifs d'amortissement (7, 8) et une sortie (14) d'un autre dispositif d'amortissement (7, 8) étant en liaison fonctionnelle avec la prise de force (3), et la sortie (12) de l'un des dispositifs d'amortissement (7, 8) étant en liaison fonctionnelle avec une entrée (13) d'un autre des dispositifs d'amortissement (7, 8) au moyen d'un dispositif de liaison (15) qui présente au moins un support de masse d'amortissement (16 ; 16a, 16b) pour recevoir au moins une masse d'amortissement (17) du système d'amortisseur (9), caractérisé en ce que l'élément d'embrayage (6) est en liaison fonctionnelle avec l'entrée (11) du dispositif d'amortissement radialement interne (7) et la sortie (14) du dispositif d'amortissement radialement externe (8) est en liaison fonctionnelle avec la prise de force (3) par le biais de la masse supplémentaire (10), tandis que la sortie (12) du dispositif d'amortissement radialement interne (7) est en liaison fonctionnelle par le biais du dispositif de liaison (15) avec l'entrée (13) du dispositif d'amortissement radialement externe (8), de telle sorte que la masse supplémentaire (10) et le dispositif de liaison (15) soient prévus de manière à pouvoir être déplacés l'un par rapport à l'autre.
  2. Amortisseur de vibrations torsionnelles selon la revendication 1, comprenant un dispositif d'accouplement (4) qui présente, en plus du système d'embrayage (5) et des dispositifs d'amortissement (7, 8), un circuit hydrodynamique (18) qui dispose d'au moins une roue de pompe (19) et d'une roue de turbine (20), caractérisé en ce que la roue de turbine (20) agit en tant que masse supplémentaire (10) associée aux dispositifs d'amortissement (7, 8) et est en liaison fonctionnelle par le biais d'un moyeu de prise de force (67) avec la prise de force (3).
  3. Amortisseur de vibrations torsionnelles selon la revendication 1, comprenant des dispositifs d'amortissement (7, 8) qui disposent à chaque fois d'accumulateurs d'énergie (23, 24), caractérisé en ce qu'au moins un dispositif d'amortissement (7 ; 8) dispose d'un support de force centrifuge (25 ; 29) pour l'accumulateur d'énergie (23 ; 24).
  4. Amortisseur de vibrations torsionnelles selon la revendication 3, caractérisé en ce qu'au moins le support de force centrifuge (29) d'un dispositif d'amortissement (8) est pourvu d'un canal accumulateur d'énergie (26 ; 87) par le biais duquel les accumulateurs d'énergie (24) sont supportés au moins essentiellement radialement vers l'extérieur.
  5. Amortisseur de vibrations torsionnelles selon la revendication 4, caractérisé en ce que le canal accumulateur d'énergie (26 ; 87) est soit reçu au niveau du dispositif de liaison (15) agissant entre les deux dispositifs d'amortissement (7, 8), soit est associé à la masse supplémentaire (10).
  6. Amortisseur de vibrations torsionnelles selon la revendication 5, caractérisé en ce que le dispositif de liaison (15) dispose d'au moins un élément de support (60 ; 60a ; 60b) au niveau duquel est prévu le canal accumulateur d'énergie (26).
  7. Amortisseur de vibrations torsionnelles selon la revendication 5, caractérisé en ce que la sortie (14) du dispositif d'amortissement radialement externe (8) connectée à la masse supplémentaire (10) présente le canal accumulateur d'énergie (87).
  8. Amortisseur de vibrations torsionnelles selon la revendication 3, dans lequel l'entrée (11) d'au moins un dispositif d'amortissement (7) dispose d'au moins un support d'accumulateur d'énergie (27) qui présente des évidements (28) pour les accumulateurs d'énergie (23), caractérisé en ce qu'un support de force centrifuge (25) pour les accumulateurs d'énergie (23) du dispositif d'amortissement (7) est associé à l'au moins un support d'accumulateur d'énergie (27).
  9. Amortisseur de vibrations torsionnelles selon la revendication 8, caractérisé en ce que le support d'accumulateur d'énergie (27) disposant d'un support de force centrifuge (25) est pourvu d'une partie recourbée (82 ; 82a, 82b) formant le support de force centrifuge (25), avec laquelle le support d'accumulateur d'énergie (27) supporte les accumulateurs d'énergie (23) du dispositif d'amortissement radialement interne (7) au moins essentiellement radialement vers l'extérieur.
  10. Amortisseur de vibrations torsionnelles selon la revendication 1, caractérisé en ce qu'au moins un élément de support (60 ; 60a, 60b) du dispositif de liaison (15) est réalisé sous forme de support de masse d'amortissement (16 ; 16a, 16b).
  11. Amortisseur de vibrations tortionnaires selon la revendication 10, caractérisé en ce que lors de la réalisation du dispositif de liaison (15) avec un support de masse d'amortissement unique (16), les masses d'amortissement (17a, 17b) sont reçues des deux côtés du support de masse d'amortissement (16), tandis que lors de la réalisation du dispositif de liaison (15) avec une pluralité de supports de masse d'amortissement (16a, 16b), les masses d'amortissement (17a, 17b) sont reçues dans une région axiale prévue entre deux supports de masse d'amortissement (16a, 16b).
  12. Amortisseur de vibrations torsionnelles selon la revendication 10 ou 11, caractérisé en ce que le support de masse d'amortissement respectif (16 ; 16a, 16b) dispose de trajectoires courbes (31 ; 31a, 31b) dans lesquelles sont prévues des poulies à gorges (32) pour le mouvement relatif des masses d'amortissement (17) par rapport au support de masse d'amortissement (16 ; 16a, 16b).
  13. Amortisseur de vibrations torsionnelles selon la revendication 11, caractérisé en ce que les supports de masse d'amortissement (16 ; 16a, 16b) sont à chaque fois retenus par des pièces d'espacement (50) à une distance prédéterminée de l'élément d'embrayage (6), les pièces d'espacement (50) étant étagées dans la direction axiale et étant réalisées, dans les régions axiales dans lesquelles elles viennent en prise à travers des évidements (51 ; 51a, 51b) du support de masse d'amortissement respectif (16 ; 16a, 16b), avec des diamètres qui sont différents des diamètres des pièces d'espacement (50) axialement des deux côtés des évidements respectifs (51 ; 51a, 51b).
  14. Amortisseur de vibrations torsionnelles selon les revendications 10 et 13, caractérisé en ce que lors de la réalisation du dispositif de liaison (15) avec une pluralité de supports de masse d'amortissement (16a, 16b), ceux-ci sont à chaque fois disposés à une distance axiale les uns des autres et sont retenus par les pièces d'espacement (50) à une distance axiale prédéterminée les uns des autres.
  15. Amortisseur de vibrations torsionnelles selon la revendication 1, caractérisé en ce qu'entre l'entrée (11, 13) et la sortie (12, 14) d'au moins l'un des dispositifs d'amortissement (7, 8) est prévue une limitation d'angle de rotation (35, 36), au niveau de laquelle, à l'entrée (11, 13) ou au niveau d'un composant (6) solidaire en rotation de celle-ci, est prévu un profilage (37, 38) qui coopère avec jeu dans la direction périphérique avec un profilage conjugué (39, 40) prévu au niveau de la sortie (12, 14), afin de de fournir à la sortie (12, 14) un mouvement de rotation relatif limité dans la direction périphérique par rapport à l'entrée (11, 13).
  16. Amortisseur de vibrations torsionnelles selon la revendication 13, caractérisé en ce que les pièces d'espacement (50) sont fixées au niveau de l'élément d'embrayage (6) du système d'embrayage (5), et en ce que les évidements (51 ; 51a, 51b) sont réalisés dans les supports de masse d'amortissement (16 ; 16a, 16b), qui sont dimensionnés, dans la direction périphérique par rapport à la course de déformation des accumulateurs d'énergie (23), et ce de telle sorte que les pièces d'espacement (50) contribuent soit à la formation d'une limitation d'angle de rotation (35), en atteignant les extrémités du côté de la périphérie (52a, 52b) des évidements (51 ; 51a, 51b) se suivant dans la direction de déviation avant un état d'écrasement complet des accumulateurs d'énergie (23) de ce dispositif d'amortissement (7), soit de telle sorte que les pièces d'espacement (50) exercent seulement une fonction de guidage pour les supports de masse d'amortissement (16 ; 16a, 16b) en n'atteignant pas les extrémités du côté de la périphérie (52a, 52b) des évidements (51 ; 51a, 51b) se suivant dans la direction de déviation même en cas d'écrasement maximal des accumulateurs d'énergie (23) de ce dispositif d'amortissement (7).
  17. Amortisseur de vibrations torsionnelles selon la revendication 15, caractérisé en ce que pour former la limitation d'angle de rotation (36) dans le cas du dispositif d'amortissement radialement externe (8), au moins une denture (41) est prévue à l'entrée (13), et une denture conjuguée correspondante (42) est prévue à la sortie (14).
  18. Amortisseur de vibrations torsionnelles selon la revendication 1, caractérisé en ce que les accumulateurs d'énergie (23, 24) d'au moins l'un des dispositifs d'amortissement (7, 8) sont conçus pour le couple de charge maximal de l'entraînement (2).
  19. Amortisseur de vibrations torsionnelles selon la revendication 1, comprenant un boîtier (45) associé au dispositif d'accouplement (4), disposant, du côté de l'entraînement, d'un couvercle de boîtier (54), caractérisé en ce que l'élément d'embrayage (6) peut être supporté axialement dans la direction s'éloignant du couvercle de boîtier (54) au moyen d'un support sur palier axial (44) par le biais de la masse supplémentaire (10).
  20. Amortisseur de vibrations torsionnelles selon les revendications 2 et 19, comprenant un circuit hydrodynamique (18) qui dispose d'une roue directrice (21) disposée entre la roue de pompe (19) et la roue de turbine (20), caractérisé en ce que la masse supplémentaire (10) formée par la roue de turbine (20) peut être supportée axialement dans la direction s'éloignant du couvercle de boîtier (54) par le biais de la masse supplémentaire (10) sur la roue directrice (21).
  21. Amortisseur de vibrations torsionnelles selon la revendication 1, caractérisé en ce qu'un support de garniture de friction (46) est associé à l'élément d'embrayage (6), lequel présente, au niveau de son côté tourné vers le couvercle de boîtier (54), une surface de friction (47) et peut être amené en liaison fonctionnelle avec une surface de friction conjuguée (48) du couvercle de boîtier (54) par le biais de cette surface de friction (47) dans la position d'embrayage de l'élément d'embrayage (6).
  22. Amortisseur de vibrations torsionnelles selon la revendication 1, caractérisé en ce qu'au moins l'un des dispositifs d'amortissement (7, 8), de préférence le dispositif d'amortissement radialement interne (7), dispose de deux unités d'amortissement (7a, 7b) disposées de manière décalée l'une par rapport à l'autre.
  23. Amortisseur de vibrations torsionnelles selon la revendication 22, caractérisé en ce que les deux unités d'amortissement (7a, 7b) sont disposées l'une par rapport à l'autre dans un montage en parallèle ou dans un montage en série.
  24. Amortisseur de vibrations torsionnelles selon la revendication 22 ou 23, caractérisé en ce que les deux unités d'amortissement (7a, 7b) sont disposées de manière décalée radialement l'une par rapport à l'autre.
  25. Amortisseur de vibrations torsionnelles selon la revendication 1, caractérisé en ce qu'au moins l'un des dispositifs d'amortissement (7, 8), de préférence le dispositif d'amortissement radialement interne (7), dispose d'au moins deux accumulateurs d'énergie (23a, 23b), entre lesquels agit au moins un élément de transfert de couple (85a, 85b) d'une unité de transfert de couple (97), cet au moins un élément de transfert de couple (85a, 85b) pouvant être animé d'un mouvement de rotation relatif à la fois par rapport à l'entrée (11) de ce dispositif d'amortissement (7) et par rapport à la sortie (12) de ce dispositif d'amortissement (7).
  26. Amortisseur de vibrations torsionnelles selon la revendication 1, caractérisé en ce que l'au moins un support de masse d'amortissement (16 ; 16a, 16b) est centré au niveau de l'élément d'embrayage (6) ou au niveau du moyeu de prise de force (67) associé à la masse supplémentaire (10).
EP13731112.2A 2012-07-11 2013-06-20 Amortisseur de vibrations torsionnelles Active EP2872797B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012212125.0A DE102012212125A1 (de) 2012-07-11 2012-07-11 Torsionsschwingungsdämpfer
PCT/EP2013/062838 WO2014009125A1 (fr) 2012-07-11 2013-06-20 Amortisseur de vibrations torsionnelles

Publications (2)

Publication Number Publication Date
EP2872797A1 EP2872797A1 (fr) 2015-05-20
EP2872797B1 true EP2872797B1 (fr) 2017-04-12

Family

ID=48692483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13731112.2A Active EP2872797B1 (fr) 2012-07-11 2013-06-20 Amortisseur de vibrations torsionnelles

Country Status (5)

Country Link
EP (1) EP2872797B1 (fr)
JP (1) JP6047233B2 (fr)
KR (1) KR102019748B1 (fr)
DE (1) DE102012212125A1 (fr)
WO (1) WO2014009125A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219194A1 (de) * 2012-10-22 2014-04-24 Zf Friedrichshafen Ag Torsionsschwingungsdämpferanordnung
DE102013214350A1 (de) * 2013-07-23 2015-01-29 Zf Friedrichshafen Ag Anfahrelement
JP6142812B2 (ja) * 2014-01-31 2017-06-07 アイシン・エィ・ダブリュ株式会社 発進装置
WO2015149788A2 (fr) * 2014-04-01 2015-10-08 Schaeffler Technologies AG & Co. KG Dispositif pour transmettre un couple
JP6541969B2 (ja) * 2014-12-26 2019-07-10 株式会社エクセディ 動力伝達装置及びトルクコンバータのロックアップ装置
DE102015203368A1 (de) * 2015-02-25 2016-08-25 Zf Friedrichshafen Ag Hydrodynamische Kopplungsanordnung mit Axialabstützung für ein Turbinenrad
DE102017215402A1 (de) 2017-09-04 2019-03-07 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer mit zumindest einer Energiespeichereinrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057647A1 (de) * 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung mit einem drehzahladaptiven Tilger und Verfahren zur Verbesserung des Dämpfungsverhaltens
CN101883933B (zh) 2007-11-29 2014-04-23 舍弗勒技术股份两合公司 尤其是用于在驱动机与从动部分之间传递功率的力传递装置
JP5595390B2 (ja) 2008-07-04 2014-09-24 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 流体力学式のトルクコンバータ
WO2011076168A1 (fr) 2009-12-21 2011-06-30 Schaeffler Technologies Gmbh & Co. Kg Dispositif de transmission de force
WO2011110146A1 (fr) 2010-03-11 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Unité amortisseur et dispositif de transmission de force équipé d'une telle unité amortisseur
JP5531728B2 (ja) 2010-03-31 2014-06-25 アイシン・エィ・ダブリュ株式会社 流体伝動装置
DE102011017660A1 (de) * 2011-04-28 2012-10-31 Zf Friedrichshafen Ag Drehmomentübertragungsanordnung

Also Published As

Publication number Publication date
DE102012212125A1 (de) 2014-01-16
JP6047233B2 (ja) 2016-12-21
WO2014009125A1 (fr) 2014-01-16
JP2015522144A (ja) 2015-08-03
KR20150028987A (ko) 2015-03-17
EP2872797A1 (fr) 2015-05-20
KR102019748B1 (ko) 2019-09-09

Similar Documents

Publication Publication Date Title
EP2872797B1 (fr) Amortisseur de vibrations torsionnelles
EP2577092B1 (fr) Agencement amortisseur de vibrations torsionnelles et dispositif amortisseur de vibrations, en particulier dans un agencement amortisseur de vibrations torsionnelles
DE19514411B4 (de) Kraftübertragungseinrichtung mit Flüssigkeitskupplung
EP2702296B1 (fr) Ensemble de transmission de couple de rotation
DE3614158C2 (de) Torsionsschwingungsdämpfer mit schwimmend gelagerten Zwischenteilen
DE102011017659A1 (de) Drehmomentübertragungsbaugruppe, insbesondere für den Antriebsstrang eines Fahrzeuges
EP2212587B1 (fr) Dispositif d'accouplement hydrodynamique
DE112006002790B4 (de) Hydrodynamische Drehmomentwandler-Vorrichtung mit einer Lamellenkupplung
DE102009002481A1 (de) Hydrodynamische Kopplunganordnung, insbesondere Drehmomentwandler
DE102012212970A1 (de) Drehmomentübertragungseinrichtung und Antriebsstrang mit Drehmomentübertragungseinrichtung
EP1464873A2 (fr) Amortisseur de vibration en torsion pour convertisseur de couple
DE102013212314A1 (de) Fliehkraftpendel
EP2053273A1 (fr) Amortisseur de vibration en torsion pour convertisseur de couple
DE19525842C2 (de) Torsionsschwingungsdämpfer mit variabler Übersetzung
WO2016058762A1 (fr) Dispositif d'accouplement avec ensemble de réduction de vibrations et ensemble d'accouplement
EP2853772A1 (fr) Amortisseur d'oscillations de torsion
EP2853773B1 (fr) Amortisseur d'oscillations de torsion
EP3580471B1 (fr) Arrangement de transmission de couple
DE19926983A1 (de) Hydrodynamischer Drehmomentwandler
EP2853771B1 (fr) Amortisseur d'oscillations de torsion
DE102017204558A1 (de) Torsionsschwingungsdämpfer
DE102014220901A1 (de) Baueinheit einer Kopplungsanordnung mit einer Schwingungsreduzierungseinrichtung und mit einer Kupplungseinrichtung
DE112015002014T5 (de) Angetriebene Platte mit Zwischenplattenzentrierführung
DE19816518B4 (de) Torsionsschwingungsdämpfer mit einer strömungsbildenden Einrichtung
DE102007057432A1 (de) Hydrodynamische Kopplungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20160929

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 884238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006952

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170412

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013006952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

26N No opposition filed

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170712

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170620

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 884238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230510

Year of fee payment: 11

Ref country code: DE

Payment date: 20230425

Year of fee payment: 11