EP2872357A1 - Ansteuervorrichtung und verfahren zum laden eines elektrischen energiespeichers - Google Patents

Ansteuervorrichtung und verfahren zum laden eines elektrischen energiespeichers

Info

Publication number
EP2872357A1
EP2872357A1 EP13737567.1A EP13737567A EP2872357A1 EP 2872357 A1 EP2872357 A1 EP 2872357A1 EP 13737567 A EP13737567 A EP 13737567A EP 2872357 A1 EP2872357 A1 EP 2872357A1
Authority
EP
European Patent Office
Prior art keywords
voltage
designed
rectified
rectifier circuit
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13737567.1A
Other languages
German (de)
English (en)
French (fr)
Inventor
Heinz Waeldele
Ingo Dwertmann
Bertram SCHILLINGER
Holger Borst
Heiner Jacobs
Karlheinz Lunghard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2872357A1 publication Critical patent/EP2872357A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/14Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation with three or more levels of voltage

Definitions

  • the invention relates to a drive device and a method for charging an electrical energy store.
  • the publication DE 3 612 906 A1 describes a power supply for the transformerless conversion of a mains AC voltage in at least one DC voltage with at least one rectifier circuit, wherein at least one of the rectified AC mains voltage supplied energy storage device, which includes the series connection of the winding of a choke and a capacitor, via a rectifier or a Zener diode is connected to an output of the rectifier circuit.
  • the document DE 195 235 76 A1 describes an AC voltage
  • the AC voltage DC power supply described therein has a semiconductor switch which is mounted on the low voltage side of the flyback converter with a lower breakdown voltage.
  • the lower breakdown voltage can be achieved by means of a shunt regulator, which regulates a clamping voltage on the low-voltage switch side.
  • FIG. 10 shows an exemplary representation of an electrical drive with battery, intermediate circuit, converter and motor.
  • An inverter UMR1 generates from the battery voltage of a battery BR1 a rotating field for a motor M.
  • the battery BR1 comprises statically or variably interconnected cells Z1 -Z2.
  • the inverter UMR1 is passive in the state of charge.
  • FIG. 11 shows an exemplary illustration of a charging device.
  • the charger includes a line filter B1, a diode rectifier B2, a power factor correction filter B3, a first voltage intermediate circuit B4, a transformer bridge circuit B5, a second voltage intermediate circuit B6 and an output B7.
  • the present invention provides a drive device for charging an electrical energy storage device comprising: a network filter device which is designed to limit electrical interference of an input AC voltage; a mains rectifier circuit means coupled to the mains filter means and adapted to convert the AC input voltage into a rectified input voltage; a full bridge device coupled to the power rectifier circuit means and configured to convert the rectified input voltage into a high frequency AC voltage; a transformer device coupled to the full bridge device and configured to convert the high frequency AC voltage into a transformed AC voltage; a rectifier circuit means coupled to the transformer means and adapted to convert the transformed AC voltage to a rectified output voltage; and an output choke coupled to the rectifier circuit means and configured to filter the rectified output voltage to thereby charge the electrical energy storage.
  • the present invention provides a method for charging an electrical energy storage, comprising the following method steps: converting an input AC voltage into a rectified input voltage and converting the rectified input voltage into a high-frequency AC voltage; Transforming the high frequency AC voltage into a transformed AC voltage and converting the transformed AC voltage to a rectified output voltage; and filtering the rectified output voltage.
  • said invention offers the advantage that neither the rectified mains voltage, nor the rectified output voltage must be smoothed.
  • the charging current is controlled so that the charging current follows the input voltage.
  • the present invention offers cost and space advantages over a normal charger.
  • the elimination of these large capacitors also results in an advantage in the life of the drive device.
  • the transformer device is used for galvanic isolation and sets by its transmission ratio, the voltage according to the requirements.
  • the output voltage of the transformer device is subsequently rectified.
  • the output choke is used for decoupling to direct converter, English "direct converter” short DICO or the decoupling to the direct inverter, English “direct inverter”, short DINV.
  • An idea of the present invention is that the charging current of the energy storage is adjusted by the counter voltage of the direct inverter or the direct converter accordingly.
  • the network filter device is designed as a low-pass filter. This advantageously allows to limit both electrical disturbances of electronic devices into the power supply network and electrical disturbances from the power supply network to the electronic devices.
  • the power rectifier circuit device is designed as an uncontrolled rectifier with a plurality of semiconductor diodes.
  • the full bridge device is formed as a bridge circuit.
  • the transformer device as a toroidal transformer or is designed as a planar transformer or as another transformer. This allows a space-saving integration of the transformer device.
  • the rectifier circuit device is designed as an uncontrolled rectifier with a plurality of semiconductor diodes. This advantageously allows to accomplish the rectification of the output voltage cost-effective and to achieve a reduction of the filter effort.
  • the output throttle device is designed as an air coil or as another coil. This advantageously allows to achieve filtering of the output voltage.
  • FIG. 1 is a schematic representation of a drive device for charging an electrical energy store according to an embodiment of the invention
  • 2 shows a schematic representation of a diagram of a temporal voltage curve of an input voltage according to a further embodiment of the invention
  • FIG. 3 shows a schematic representation of a diagram of a temporal voltage profile of a rectified input voltage according to a further embodiment of the invention
  • FIG. 4 shows a schematic representation of a diagram of a temporal voltage curve of a high-frequency AC voltage according to a further embodiment of the invention
  • FIG. 5 shows a schematic representation of a diagram of a temporal voltage curve of a rectified output voltage according to a further embodiment of the invention
  • FIG. 6 shows a schematic representation of a diagram of a temporal current profile of a charging current according to a further embodiment of the invention
  • FIG. 7 shows a schematic representation of a diagram of a time profile of a countervoltage according to a further embodiment of the invention.
  • FIG. 8 shows a schematic representation of an integrated inverter with a direct converter according to a further embodiment of the invention
  • 9 is a schematic representation of a flowchart of a method for charging an electrical energy store according to an embodiment of the invention
  • FIG. 10 shows an exemplary illustration of an electrical output with battery, intermediate circuit, converter and motor
  • Fig. 1 1 is an exemplary illustration of a charger.
  • a drive device 100 for charging an electrical energy store T5 comprises a network filter device T1, a mains rectifier circuit device T2, a full bridge device T3, a transformer device TRF1, a rectifier circuit device T4 and an output choke device DL1.
  • the network filter device T1 in the present embodiment comprises a network filter N1.
  • the network filter device T1 is designed, for example, to limit electrical interference of an input AC voltage U1.
  • the network filter device T1 can limit both electrical interference from electronic devices in the power supply network and electrical interference from the power supply network in the electronic devices.
  • the power rectifier circuit device T2 is in the present case designed as an uncontrolled rectifier with a plurality of semiconductor diodes HL1-HL4. Furthermore, the network rectifier circuit device T2 is designed, for example, to convert the input AC voltage U1 into a rectified input voltage U2.
  • the full-bridge device T3 is designed, for example, as a bridge circuit and comprises a plurality of field-effect transistors FET1-FET4. In this case, other transistors of any type can be used instead of the field effect transistors FET1 - FET4.
  • the transformer device TRF1 is designed, for example, to convert the high-frequency AC voltage U3 into a transformed AC voltage U4.
  • the transformer device TRF1 is designed, for example, as a toroidal transformer or as a planar transformer.
  • the rectifier circuit device T4 is designed to convert the transformed AC voltage U4 into a rectified output voltage U5.
  • the rectifier circuit device T4 in the present embodiment includes a plurality of semiconductor diodes HL5-HL8.
  • the output throttle DL1 is designed, for example, the
  • the electrical energy store T5 comprises at least one cell module Z1 -Zn.
  • the direct converter of the electrical energy store T5 actively switches a specific number of cell modules Z1 -Zn as a function of a charging voltage U6 applied to the electrical energy store T5 in order to generate a countervoltage U7 advantageous for charging the electrical energy store in accordance with the charging voltage U6.
  • a charging voltage U6 63.3 V
  • three cell modules Z1-Z3 are connected in series internally, each cell module having a cell voltage of 20 V.
  • an applied charging voltage U6 of 43.3 V two cell modules Z1 -Z3 are connected internally in series.
  • the direct converter can switch the cell modules Z1-Zn on and off in a predetermined sequence in order to ensure uniform charging of the electrical energy store T5.
  • the switching operations of the direct converter can take place within time periods in the milli or microsecond range.
  • the electrical energy storage T5 is, for example, as a cell module composite with a plurality of lithium-ion accumulators, capacitors, lithium polymer accumulators, lithium titanate accumulators, lithium manganese accumulators or lithium iron phosphate accumulators or with formed a plurality of other accumulators or electrical energy storage.
  • FIG. 2 shows a schematic representation of a diagram of a temporal voltage curve of an input voltage according to another embodiment of the invention.
  • the ordinate axis of the time diagram shown in Figure 2 represents the amplitude of the input AC voltage U1 in the unit volts, on the abscissa axis, the time t is plotted.
  • a voltage characteristic curve SK1 is shown in the diagram shown in FIG. 2 and represents the time profile of the input AC voltage U1.
  • FIG. 3 shows a schematic representation of a diagram of a temporal voltage curve of a rectified input voltage according to another embodiment of the invention.
  • the ordinate axis of the time diagram shown in FIG. 3 represents the amplitude of the rectified input voltage in the unit volt, and the time t is plotted on the abscissa axis.
  • a voltage characteristic curve SK2 is shown in the diagram shown in FIG. 3 and represents the time profile of the rectified input voltage U2.
  • 4 shows a schematic representation of a diagram of a temporal voltage curve of a high-frequency AC voltage according to another embodiment of the invention.
  • the ordinate axis of the timing diagram shown in FIG. 4 represents the amplitude of a high-frequency alternating voltage U3 in the unit volt, the time t is plotted on the abscissa axis.
  • a voltage characteristic curve SK3 is shown in the diagram shown in FIG. 4 and represents the time profile of the high-frequency AC voltage U3.
  • FIG. 5 shows a schematic representation of a diagram of a temporal voltage curve of a rectified output voltage according to a further embodiment of the invention.
  • the ordinate axis of the timing diagram shown in FIG. 5 represents the amplitude of a rectified output voltage U5 in the unit volt, the time t is plotted on the abscissa axis.
  • a voltage characteristic curve SK4 is shown in the diagram shown in FIG. 5 and represents the time course rectified output voltage U5.
  • FIG. 6 shows a schematic representation of a diagram of a temporal current profile of a charging current according to another embodiment of the invention.
  • the ordinate axis of the time diagram shown in FIG. 6 represents the amplitude of a charging current in the unit A, the time t is plotted on the abscissa axis.
  • a current characteristic IK1 is shown in the diagram shown in FIG. 5 and represents the time profile of a charging current 11 corresponding to the rectified output voltage U5.
  • FIG. 7 shows a schematic representation of a diagram of a temporal voltage curve of a reverse voltage according to a further embodiment of the invention.
  • the ordinate axis of the time diagram shown in FIG. 7 represents the amplitude of a countervoltage U7 in the unit volt, the time t is plotted on the abscissa axis.
  • a voltage characteristic curve SK5 is shown in the diagram shown in FIG. 7 and represents the time profile of the countervoltage U7.
  • FIG. 8 shows a schematic representation of an integrated inverter with a direct converter according to a further embodiment of the invention.
  • the integrated inverter DICO allows a direct converter to directly generate the rotating field with a predetermined amplitude and a predetermined frequency for the motor.
  • the concept of the integrated DICO inverter generates a variable DC link voltage.
  • These concepts also require a charging circuit, such as the driving device 100 for charging the electrical energy storage T5.
  • FIG. 9 shows a schematic representation of a flow diagram of a method for charging an electrical energy store according to an embodiment of the invention.
  • the method for charging the electrical energy store T5 with a direct converter is carried out, for example, by the drive device 100.
  • a conversion S1 of an input AC voltage U1 into a rectified input voltage U2 and a conversion of the rectified input voltage U2 into a high-frequency AC voltage U3 takes place.
  • a transformation S2 of the high-frequency AC voltage U3 into a transformed AC voltage U4 and a conversion of the transformed AC voltage U4 to a rectified output voltage U5 takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
EP13737567.1A 2012-07-13 2013-07-04 Ansteuervorrichtung und verfahren zum laden eines elektrischen energiespeichers Withdrawn EP2872357A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012212262.1A DE102012212262A1 (de) 2012-07-13 2012-07-13 Ansteuervorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers
PCT/EP2013/064160 WO2014009254A1 (de) 2012-07-13 2013-07-04 Ansteuervorrichtung und verfahren zum laden eines elektrischen energiespeichers

Publications (1)

Publication Number Publication Date
EP2872357A1 true EP2872357A1 (de) 2015-05-20

Family

ID=48794060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13737567.1A Withdrawn EP2872357A1 (de) 2012-07-13 2013-07-04 Ansteuervorrichtung und verfahren zum laden eines elektrischen energiespeichers

Country Status (5)

Country Link
US (1) US20150180344A1 (ja)
EP (1) EP2872357A1 (ja)
JP (1) JP2015523845A (ja)
DE (1) DE102012212262A1 (ja)
WO (1) WO2014009254A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218512A1 (de) * 2012-10-11 2014-04-17 Robert Bosch Gmbh Vorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers aus einer dreiphasigen Wechselspannungsquelle
US20180241313A1 (en) * 2015-08-06 2018-08-23 Hitachi Automotive Systems, Ltd. Dcdc converter integrated charger
CN109693579A (zh) * 2017-10-24 2019-04-30 广西民族大学 一种远程监控的充电控制装置
DE102020213002A1 (de) * 2020-10-15 2022-04-21 Robert Bosch Gesellschaft mit beschränkter Haftung Anschlussvorrichtung für eine Vorrichtung zum Aufladen eines elektrischen Energiespeichers, Ladevorrichtung und Elektrofahrzeug

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3612906A1 (de) 1986-04-17 1987-10-22 Erzmoneit Dorit Netzteil fuer die transformatorlose umwandlung einer netzwechselspannung in zumindest eine gleichspannung
JPH0628508B2 (ja) * 1987-08-21 1994-04-13 日本電信電話株式会社 プッシュプル昇降圧dc−dcコンバータ
US5646832A (en) 1994-06-28 1997-07-08 Harris Corporation Power factor corrected switching power supply
JPH08280173A (ja) * 1995-02-08 1996-10-22 Meidensha Corp コンデンサ充電装置
US5621622A (en) * 1995-04-12 1997-04-15 Operating Technical Electronics, Inc. Power converter overload protection circuit
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
JPH09298840A (ja) * 1996-05-02 1997-11-18 Meidensha Corp 電気自動車の充電装置
US6222437B1 (en) * 1998-05-11 2001-04-24 Nidec America Corporation Surface mounted magnetic components having sheet material windings and a power supply including such components
US6160374A (en) * 1999-08-02 2000-12-12 General Motors Corporation Power-factor-corrected single-stage inductive charger
CN1383569A (zh) * 2000-04-06 2002-12-04 埃利亚股份有限公司 小型化ac/dc电源及电池充电器
US7135836B2 (en) * 2003-03-28 2006-11-14 Power Designers, Llc Modular and reconfigurable rapid battery charger
JP2006074963A (ja) * 2004-09-06 2006-03-16 Fuji Electric Systems Co Ltd 電力変換装置
AT502244B1 (de) * 2005-10-11 2007-02-15 Fronius Int Gmbh Batterieladegerät und verfahren zum betreiben eines solchen batterieladegeräts und stromwandler
JP5326517B2 (ja) * 2008-11-21 2013-10-30 ソニー株式会社 集積回路およびそれを用いた電池パック
JP4978647B2 (ja) * 2009-03-19 2012-07-18 Tdk株式会社 コイル部品、トランス及びスイッチング電源装置
DE102010006125A1 (de) * 2010-01-29 2011-08-04 Volkswagen AG, 38440 Ladegerät und Verfahren zur Energieübertragung in einem Elektro- oder Hybridfahrzeug
US8395280B2 (en) * 2010-02-16 2013-03-12 Infineon Technologies Ag Circuit arrangement including a multi-level converter
DE102010041077A1 (de) * 2010-09-20 2012-03-22 Robert Bosch Gmbh System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014009254A1 *

Also Published As

Publication number Publication date
WO2014009254A1 (de) 2014-01-16
JP2015523845A (ja) 2015-08-13
US20150180344A1 (en) 2015-06-25
DE102012212262A1 (de) 2014-01-16

Similar Documents

Publication Publication Date Title
DE102018106305B4 (de) Wechselstromladung einer intelligenten Batterie
DE102017108099B4 (de) Stromrichter für Energieübertragung
WO2018122094A1 (de) Niedervoltauskopplung aus einem modularen energiespeicher-umrichtersystem
DE102011075927A1 (de) Multifunktionaler stromrichter von gleichspannung zu gleichspannung, von gleichspannung zu wechselspannung und von wechselspannung zu gleichspannung
DE102010044322A1 (de) Elektrische Energieversorgungsanordnung für Antriebseinrichtungen von Schienenfahrzeugen
WO2014009369A2 (de) Modularer aufbau von dc-schnellladestationen
DE102006028503A1 (de) Vorrichtung und Verfahren zum Laden eines Energiespeichers
EP2731227B1 (de) Vorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers aus einer Wechselspannungsquelle
DE102018221519B4 (de) Fahrzeugseitige Ladevorrichtung
DE102018008603A1 (de) Schaltungsanordnung und Verfahren zum Laden einer Batterieanordnung mit mehreren Batteriemodulen
EP2673860A1 (de) Laden eines energiespeichers
DE102018116486A1 (de) Kopplungsvorrichtung
EP2254224A1 (de) Verfahren zum Entladen einer Entstörkapazität am Ausgang einer Wechselrichtereinrichtung und Wechselrichtereinrichtung
EP2872357A1 (de) Ansteuervorrichtung und verfahren zum laden eines elektrischen energiespeichers
DE4426017C2 (de) Stromversorgungsgerät, insbesondere Batterie-Ladegerät für Elektrofahrzeuge oder dergleichen
DE102021205265A1 (de) Fahrzeug-Spannungswandler und Fahrzeugbordnetz mit einem Spannungswandler
WO2017008927A1 (de) Vorrichtung und verfahren zur induktiven übertragung elektrischer energie zu beweglichen elektrischen verbrauchern
WO2019053160A1 (de) Aufladen eines elektrischen energiespeichers eines kraftfahrzeugs
DE102013111231A1 (de) Wechselrichter mit einer Anpassschaltung für hohe variable Eingangsgleichspannungen und Verwendung der Anpassschaltung
CH707447B1 (de) Vorrichtung zur Gleichspannungswandlung für hohe Übersetzungsverhältnisse.
DE202017007328U1 (de) Lade-/Entladeeinheit zur Anbindung eines mobilen elektrischen Energiespeichers an ein Spannungsnetz
DE102017130992A1 (de) Lade-/Entladeeinheit zur Anbindung eines mobilen elektrischen Energiespeichers an ein Spannungsnetz
DE102017130387A1 (de) Umrichter-Vorrichtung, Anordnung mit mehreren solcher Umrichter-Vorrichtungen sowie Verfahren zum Betreiben einer Umrichter-Vorrichtung
DE102014212930B3 (de) Vorrichtung zum Bereitstellen einer elektrischen Spannung sowie Antriebsanordnung und Verfahren
DE102016203150A1 (de) Spannungswandler und elektrisches Antriebssystem mit einem Spannungswandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190201