EP2867339A1 - Procédé de fabrication d'oléfines par craquage thermique à la vapeur d'eau - Google Patents

Procédé de fabrication d'oléfines par craquage thermique à la vapeur d'eau

Info

Publication number
EP2867339A1
EP2867339A1 EP13747796.4A EP13747796A EP2867339A1 EP 2867339 A1 EP2867339 A1 EP 2867339A1 EP 13747796 A EP13747796 A EP 13747796A EP 2867339 A1 EP2867339 A1 EP 2867339A1
Authority
EP
European Patent Office
Prior art keywords
cracking
cracking furnace
conditions
furnace
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13747796.4A
Other languages
German (de)
English (en)
Other versions
EP2867339B1 (fr
Inventor
Gunther Schmidt
Helmut Fritz
Stefanie Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46762800&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2867339(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP13747796.4A priority Critical patent/EP2867339B1/fr
Publication of EP2867339A1 publication Critical patent/EP2867339A1/fr
Application granted granted Critical
Publication of EP2867339B1 publication Critical patent/EP2867339B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a method for the implementation of
  • Hydrocarbon inserts by thermal vapor cracking to at least one olefin-containing product stream containing at least ethylene and propylene, wherein a hydrocarbon feed is at least partially reacted in at least one cracking furnace.
  • Thermal steam cracking also known as steam cracking or steam cracking
  • steam cracking is a long-established petrochemical process.
  • Extracting aromatics from the steam cracker the aromatics are removed and the raffinate obtained in the aromatics extraction is fed into the kiln with six to eight carbon hydrocarbons.
  • thermal vapor cracking cracking furnaces are used. The cracking furnaces, together with Quechenheit and downstream facilities for the processing of the product mixtures formed, in corresponding larger plants
  • the cracking conditions are particularly influenced by the temperature and the
  • composition of the hydrocarbon mixtures used as a feed and the type of cracking furnaces used also influence the cracking conditions.
  • Cleavage conditions in addition to the classical target compound ethylene sometimes considerable amounts of by-products, which can be separated from a corresponding product stream.
  • by-products include, but are not limited to, lower alkenes such as e.g. Propylene and butenes, as well as dienes such as butadienes, and aromatics such as e.g. Benzene, toluene and xylenes.
  • lower alkenes such as e.g. Propylene and butenes
  • dienes such as butadienes
  • aromatics such as e.g. Benzene, toluene and xylenes.
  • the present invention therefore has as its object the possibilities for
  • the invention proposes a process for the conversion of hydrocarbon feedstocks by thermal vapor cracking. to at least one olefin-containing product stream containing at least ethylene and propylene, wherein a hydrocarbon feed is at least partially reacted in at least one cracking furnace, having the features of the independent claims.
  • Hydrocarbon use in the cracking furnace is reacted under mild cleavage conditions, wherein mild cleavage conditions mean that at the cracking furnace exit propylene to ethylene in a ratio of 0.81 to 1, 6 kg / kg are present, and wherein the
  • cracking furnace is understood to mean a splitting unit in which the cracking conditions are defined. It is possible that there is a subdivision into two or more cracking furnaces in a total furnace. One speaks often of
  • Column unit and is therefore referred to here as cracking furnace.
  • the total furnace then has several column units or, in other words, it has several
  • the fission conditions within a furnace group will usually be set the same or similar.
  • inventive method is not used.
  • a higher ratio of propylene to ethylene is accompanied by a lower conversion of the use, so that for the values upwards technical and economic limits occur.
  • the steam cracker is technically manageable and economically operable.
  • Hydrocarbons having the specified carbon number but in addition to the hydrocarbons of the specified carbon number also hydrocarbons with different carbon numbers and other impurities may be present.
  • an output stream and / or the fractions and / or fresh-use fractionation always remains the remains Component (s) in the product stream or in the fraction.
  • Other impurities remain, so that a processed product or
  • Hydrocarbons and other impurities will generally be considered to be contained in the product stream and / or in the fraction with a maximum of 40% by weight. Usually even a maximum value of 20% by weight or less is achieved. Ideally, a maximum value of 10% by weight is achieved.
  • This is at least 60% by weight, preferably at least 80%
  • Percent by weight preferably at least 80 weight percent and more preferably at least 90 weight percent and most preferably at least 95
  • Weight percent and most preferably at least 98 weight percent included are weight percent and most preferably at least 98 weight percent included.
  • one or more fractions which are obtained from the product stream and which predominantly contains hydrocarbons having a carbon number of at most 5, are used as the cracking furnace which converts under mild cleavage conditions
  • Hydrocarbon used By returning such fractions increases the amount of suitable use for the second cracking furnace or such a fraction is a suitable hydrocarbon feed for the reaction in mild gap conditions cracking furnace.
  • a fraction with hydrocarbons having a carbon number of 4 and a fraction with a Carbon number of 5 obtained in the workup of the product stream in steam crackers, which can be recycled after the separation of the desired products directly or after further treatment steps.
  • the recycled fractions are largely free of diolefins when they are fed to the cracking furnace which converts under mild cracking conditions as a hydrocarbon feed. Diolefins have an adverse effect in the cracking furnace.
  • the diolefins are predominantly removed from the fractions which are recycled to the second cracking furnace by preceding conversion processes or separation steps. The removal can take place either before or after the separation of the fractions which are recycled.
  • saturated hydrocarbons are used as the hydrocarbon feed to the cracking furnace which converts under mild cracking conditions.
  • Saturated hydrocarbons are particularly suitable for thermal vapor columns.
  • the hydrocarbon feed is reacted in the cracking furnace under mild cleavage conditions resulting in a ratio of propylene to ethylene of from 0.82 to 1.4 kg / kg, more preferably from 0.85 to 1.2 kg / kg at
  • a hydrocarbon feed is reacted under normal cracking conditions in a further cracking furnace, wherein normal cracking conditions mean that at the cracking furnace exit propylene to ethylene in a ratio of 0.25 to 0.85 kg / kg, preferably from 0.3 to 0 , 75 kg / kg, more preferably from 0.4 to 0.65 kg / kg, wherein the ratio of propylene to ethylene for the cracking furnace operating under mild cracking conditions always has a value greater than the value for the ratio of propylene to ethylene for the cracking furnace which converts under normal conditions.
  • the steam cracker therefore has at least one cracking furnace which converts under normal cracking conditions. These are used as the insert those hydrocarbons out, which are disadvantageous for the cracking furnace which converts under mild cleavage conditions. Owing to the presence of at least one cracking furnace which converts under normal cracking conditions, the operation of the cracking furnace which converts under mild gap conditions becomes economically advantageous if
  • Fresh use is a mixture of hydrocarbons, which does not meet the condition mentioned in claim 1. With particular advantage is so for the under normal conditions
  • Cleavage furnace which converts cleavage conditions is supplied with at least one fraction separated off from the product stream and recycled, which comprises predominantly hydrocarbons having a carbon number of at least 6. Since certain hydrocarbons accumulate in recirculated fractions through the circulation, hydrocarbons having a carbon number of 6 under normal cracking conditions are recommended for recycled fractions. However, it is also possible to recycle these into the cracking furnace which converts under mildly cleavage conditions.
  • a fresh use is used, which is fractionated into at least a first and a second fresh-use fraction and the first fresh-use fraction at least partially,
  • Hydrocarbons having a carbon number of at most 6, preferably of a maximum of 5, are particularly suitable as an insert for the cracking furnace which converts under mild cleavage conditions.
  • the inserts proposed herein may be used alone or as a mixture in mild ones
  • Hydrocarbon use can thus one or more recirculated fractions or a fresh feed fraction or another use of hydrocarbons having a carbon number of at most 6, preferably a maximum of 5, are used.
  • recycle fraction (s) and a fresh feed fraction or recycle fraction (s) and another feed may be hydrocarbons having a maximum carbon number of 6 or a fresh feed fraction and another use of hydrocarbons having a maximum carbon number of 6 or a mixture from all possible uses as a hydrocarbon feed to the cracking furnace operating under mild cracking conditions.
  • the cracking furnace exit temperature for the reaction in the cracking furnace operating at mild cracking conditions is advantageously between 680 ° C and 820 ° C, preferably between 700 ° C and 800 ° C and more preferably between 710 ° C and 780 ° C and more preferably between 720 ° C and 760 ° C.
  • a cracking furnace exit temperature for the reaction in the cracking furnace which converts under normal cracking conditions is advantageously between 800 ° C and 1000 ° C, preferably between 820 ° C and 950 ° C and more preferably between 840 ° C and 900 ° C.
  • the cracking furnace outlet temperature is below normal
  • thermal vapor columns are implemented in a cracking furnace for gaseous use.
  • the saturated gaseous hydrocarbons are recovered from the product stream and recycled to the cracking furnace for gaseous use and implemented there.
  • both gases or gas fractions such as ethane, propane or butane and corresponding mixtures and condensates as well as liquid hydrocarbons and hydrocarbon mixtures can be used.
  • the gas mixtures and condensates mentioned include in particular so-called natural gas condensates (English: Natural Gas Liquids, NGL).
  • the liquid hydrocarbons and hydrocarbon mixtures can originate, for example, from the so-called gasoline fraction of crude oil.
  • Such crude naphthas (NT) and kerosene are mixtures of preferably saturated compounds with boiling points between 35 and 210 ° C.
  • the invention is but also advantageous when using middle distillates, atmospheric
  • Middle distillates are so-called light and heavy gas oils, which can be used as starting materials for the production of light heating and diesel oils as well as heavy fuel oil.
  • the compounds contained have boiling points of 180 to 360 ° C. Preferably, these are predominantly saturated compounds which can be reacted during thermal vapor cracking.
  • derived fractions can be used.
  • Examples are light, heavy and vacuum gas oils (English: Atmospheric Gas Oil, AGO, or Vacuum Gas Oil, VGO) and mixtures and / or residues treated by the hydrogenation processes mentioned (English Hydrotreated Vacuum Gas Oil, HVGO, Hydroeracker Residue, HCR or Unconverted Oil, UCO).
  • natural gas condensates and / or crude oil fractions and / or mixtures derived therefrom are used as fresh feed.
  • the invention thus encompasses the use of
  • Hydrocarbon mixtures with a boiling range of up to 600 ° C as
  • Hydrocarbon use as a fresh use for the reaction under normal cracking conditions hydrocarbon use hydrocarbon use.
  • hydrocarbon mixtures with different boiling ranges for example with boiling ranges of up to 360 ° C. or up to 240 ° C.
  • the reaction conditions in the cracking furnace are matched to the hydrocarbon mixtures used in each case.
  • the invention can be used to advantage with any other fresh inserts, which have comparable properties, such as biogenic and / or synthetic hydrocarbons.
  • the inventive method in a particularly advantageous embodiment is based on the process diagrams, which show the essential process steps schematically be explained in more detail.
  • the known method will first be explained with reference to FIG.
  • Figure 2 shows a schematic representation of the essential steps of the method according to the invention in a particularly advantageous embodiment
  • Figure 3, 4 and 5 show, also schematically, the essential steps of a particularly advantageous embodiment of the invention.
  • the schematic process diagram 100 of FIG. 1 for the known process includes a cracking furnace 1, in which the fresh feed A (for example naphtha) and the recycled fractions S and P are conducted as a hydrocarbon feed.
  • the fresh feed A for example naphtha
  • the recycled fractions S and P are conducted as a hydrocarbon feed.
  • cracking furnace 1 the use of hydrocarbons in convection and
  • Working-up unit are obtained as essential product fractions E to N the following fractions: hydrogen E, spent liquor F, methane G, ethylene H, propylene I, gaseous hydrocarbons L having a carbon number of 4, pyrolysis gasoline M and pyrolysis N.
  • Hydrocarbon numbers of 4 are further treated in a C4 workup unit 5 which is used to process hydrocarbons having a carbon number of 4.
  • a C4-processing unit 5 further treats the fraction having a carbon number of 4 such that butadiene O can be discharged.
  • the remaining hydrocarbons having a carbon number of 4 represent a fraction P, which is recycled to the cracking furnace 1.
  • the pyrolysis gasoline M which
  • Hydrocarbons having a carbon number of 5 and more is further processed in a pyrolysis gasoline processing unit 6 and there are aromatics Q and hydrocarbons R having a carbon number of, for example, more than 9 dissipated.
  • the remaining hydrocarbons having a carbon number of 5 or more are recycled as fraction S into the cracking furnace 1.
  • the workup unit 4 and the C4 workup unit 5 and the pyrolysis gasoline workup unit 6 comprise conventional units for further processing of the product stream
  • Process steps are used, such as compression, condensation and cooling, drying, distillation and fractionation, extraction and hydrogenation.
  • the schematic process diagram 10 of FIG. 2 now shows the method according to the invention in its essential steps.
  • a fresh feed BL is fed.
  • the product stream X which has a temperature which is advantageously between 700 ° C and 800 ° C. The ratio of propylene to ethylene is thereby.
  • the product stream X is further processed in the processing unit 4.
  • the processes for further treatment and work-up in the processing unit 4 are known and have just been described.
  • the processing unit 4 also, as just described, to the
  • the schematic process diagram 10 of FIG. 3 now shows the method according to the invention in a particularly advantageous embodiment and its essential process steps.
  • a cracking furnace 2 which converts under mild cracking conditions, and advantageously a fresh fractionation unit 7.
  • a fresh batch B (for example naphtha) is now fractionated in the fresh fractionation unit 7 and the first freshly used fraction B1 is fed into the cracking furnace 1, while the second fresh-use fraction B2 in the cracking furnace second to be led.
  • the fresh fraction fractionation processes use the usual methods of separating and treating hydrocarbon streams known from refinery olefin plants. This knows the expert and he knows how to use it.
  • the slit furnace 2 which converts under mild cracking conditions, is supplied with a further feedstock BL comprising hydrocarbons having a maximum carbon number of 6, preferably a maximum of 5, as fresh feed.
  • the cleavage product stream C exits with the above-mentioned properties.
  • the cleavage product stream X exits.
  • the cleavage product stream X has a temperature which is advantageously between 700 ° C and 800 ° C. The ratio of propylene to ethylene is thereby
  • the product streams C and X are further processed in the workup unit 4 and combined at a suitable point to a common product stream.
  • the processes for further treatment and work-up in the processing unit 4 are known and have just been described.
  • the workup unit 4 also leads, as just described, to the product fractions E to N.
  • the product fractions L and M are further treated, as just described, in the special workup units 5 and 6.
  • the fraction P which contains hydrocarbons having a carbon number of 4 is now advantageously not recycled into the cracking furnace 1 but into the cracking furnace 2.
  • the fractions T and U are recovered in addition to the above-mentioned fractions Q and R.
  • the fraction T which contains hydrocarbons having a carbon number of 5
  • the fraction U which contains hydrocarbons having a carbon number of 6 and more, in particular between 6 and 9, advantageously recycled to the cracking furnace 1 becomes.
  • various inserts are performed for the cracking furnace. These then form the second hydrocarbon feed.
  • gap furnace 2 For example a
  • the following operations are possible in the second cracking furnace: B2, BL, T, P, B2 + BL, B2 + T, B2 + P, BL + T, BL + P, T + P, B2 + BL + T, B2 + BL + P, B2 + P + T, BL + P + T or B2 + BL + P + T.
  • FIG. 4 also has a particularly advantageous embodiment of the invention.
  • FIG. 4 has the same schematic process diagram as FIG. 3 shows. This is supplemented by a cracking furnace 3 for gaseous use, in which a fraction V is performed as an insert.
  • the fraction V contains saturated gaseous hydrocarbons having a carbon number of 2 or 3, which are also obtained in the workup unit 4.
  • FIG. 5 contains the same schematic process diagram as FIG. 3, but here the fresh-use fractionation is missing.
  • Fresh use is here as Frischs vom B the first cracking furnace 1 added and the second cracking furnace 2, a fresh use BL of hydrocarbons having a carbon number of at most 6, preferably a maximum of 5 added.
  • the further process steps were already in the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé de conversion de charges hydrocarbonées par craquage thermique à la vapeur d'eau en au moins un courant de produit oléfinique, lequel contient au moins de l'éthylène et du propylène, une charge hydrocarbonée étant convertie au moins partiellement dans au moins un four de craquage (2), la charge hydrocarbonée dans le four de craquage (2) étant convertie dans des conditions de craquage douces, des conditions de craquage douces signifiant qu'à la sortie du four de craquage, du propylène et de l'éthylène sont présents dans un rapport de propylène à éthylène de 0,81 à 1,6 kg/kg, et la charge hydrocarbonée contenant majoritairement des hydrocarbures ayant un nombre de carbones d'au maximum 6, de préférence d'au maximum 5.
EP13747796.4A 2012-08-09 2013-08-06 Procédé de fabrication d'oléfines par vapocraquage thermique Revoked EP2867339B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13747796.4A EP2867339B1 (fr) 2012-08-09 2013-08-06 Procédé de fabrication d'oléfines par vapocraquage thermique

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12005783 2012-08-09
EP13747796.4A EP2867339B1 (fr) 2012-08-09 2013-08-06 Procédé de fabrication d'oléfines par vapocraquage thermique
PCT/EP2013/002348 WO2014023418A1 (fr) 2012-08-09 2013-08-06 Procédé de fabrication d'oléfines par craquage thermique à la vapeur d'eau

Publications (2)

Publication Number Publication Date
EP2867339A1 true EP2867339A1 (fr) 2015-05-06
EP2867339B1 EP2867339B1 (fr) 2015-10-28

Family

ID=46762800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13747796.4A Revoked EP2867339B1 (fr) 2012-08-09 2013-08-06 Procédé de fabrication d'oléfines par vapocraquage thermique

Country Status (15)

Country Link
US (1) US9670418B2 (fr)
EP (1) EP2867339B1 (fr)
JP (1) JP6184496B2 (fr)
KR (1) KR102117730B1 (fr)
CN (1) CN104540925B (fr)
AU (1) AU2013301898B2 (fr)
CA (1) CA2877163C (fr)
ES (1) ES2558588T3 (fr)
HU (1) HUE027415T2 (fr)
IN (1) IN2014DN11047A (fr)
MY (1) MY173254A (fr)
PH (1) PH12015500279A1 (fr)
RU (1) RU2627663C2 (fr)
WO (1) WO2014023418A1 (fr)
ZA (1) ZA201500937B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2867337B1 (fr) * 2012-08-09 2015-11-04 Linde Aktiengesellschaft Procédé de fabrication d'oléfines par craquage thermique à la vapeur d'eau dans des fours de craquage
BR112015010348A2 (pt) * 2012-11-08 2017-07-11 Linde Ag processo para produzir produtos que contêm olefina por craqueamento por vapor térmico
CN105974583B (zh) 2015-03-11 2019-06-18 现代摩比斯株式会社 用于车辆的抬头显示器及其控制方法
KR102358409B1 (ko) * 2018-08-23 2022-02-03 주식회사 엘지화학 열분해 생성물의 냉각 방법
CN114555546A (zh) 2019-09-13 2022-05-27 沙特基础工业全球技术公司 用于通过萃取精馏、蒸馏、和/或选择性加氢制备1,3-丁二烯的集成系统和方法
US11066606B2 (en) 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins with steam
US11066605B2 (en) 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins
WO2024013002A1 (fr) * 2022-07-09 2024-01-18 Sabic Global Technologies B.V. Systèmes et procédés de production de produits oléfiniques à partir de charges d'hydrocarbures
US11866397B1 (en) 2023-03-14 2024-01-09 Saudi Arabian Oil Company Process configurations for enhancing light olefin selectivity by steam catalytic cracking of heavy feedstock

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1196927A (fr) 1956-11-16 1959-11-26 Ici Ltd Perfectionnements à la production d'hydrocarbures
FR1363389A (fr) 1963-04-03 1964-06-12 Azote Office Nat Ind Fabrication de gaz riches en éthylène et propylène
BE649095A (fr) 1963-06-10
GB1011518A (en) 1964-08-10 1965-12-01 Conch Int Methane Ltd Method for the production of ethylene from a liquified natural gas
US3714282A (en) 1970-07-09 1973-01-30 Monsanto Co Production of propylene and aromatic compounds from liquid feed streams
DE2217869A1 (de) 1972-04-13 1973-10-25 Vni I Pi Neftepererabatywajusc Verarbeitungsverfahren fuer einen gasfoermigen oder fluessigen kohlenwasserstoff-rohstoff und roehrenofen zur durchfuehrung dieses verfahrens
JPS601138A (ja) 1983-06-17 1985-01-07 Mitsubishi Heavy Ind Ltd 炭化水素からオレフイン、および芳香族炭化水素を選択的に製造するための熱分解法
FR2625509B1 (fr) * 1987-12-30 1990-06-22 Total France Procede et dispositif de conversion d'hydrocarbures en lit fluidise
CA2389536A1 (fr) 1999-11-04 2001-05-10 Concordia University Procede et dispositif de craquage catalytique selectif profond d'hydrocarbures
DE10000889C2 (de) * 2000-01-12 2002-12-19 Mg Technologies Ag Verfahren zum Erzeugen von C¶2¶- und C¶3¶-Olefinen aus Kohlenwasserstoffen
MXPA03010740A (es) 2001-05-25 2004-03-02 Shell Int Research Proceso para preparacion de olefinas lineales y uso de las mismas para preparar alcoholes lineales.
FR2834515B1 (fr) * 2002-01-10 2006-03-10 Atofina Vapocraquage de naphta modifie
EP1365004A1 (fr) * 2002-05-23 2003-11-26 ATOFINA Research Production d'olefines
US6743961B2 (en) 2002-08-26 2004-06-01 Equistar Chemicals, Lp Olefin production utilizing whole crude oil
JP4452021B2 (ja) 2003-01-24 2010-04-21 出光興産株式会社 炭化水素の接触分解方法
WO2006063201A1 (fr) * 2004-12-10 2006-06-15 Bhirud Vasant L Craquage a la vapeur avec desaromatisation de naphtha
KR100632571B1 (ko) * 2005-10-07 2006-10-09 에스케이 주식회사 탄화수소 원료 혼합물로부터 접촉분해공정을 통해서 경질올레핀계 탄화수소 화합물을 증산하는 방법
US8608942B2 (en) * 2007-03-15 2013-12-17 Kellogg Brown & Root Llc Systems and methods for residue upgrading
US8324441B2 (en) * 2007-10-16 2012-12-04 Uop Llc Pentane catalytic cracking process
SG10201407378RA (en) 2009-11-10 2015-01-29 Shell Int Research Process for the preparation of a lower olefin product
DE102011110000A1 (de) 2011-08-11 2013-02-14 Linde Aktiengesellschaft Verfahren zur Spaltung von Kohlenwasserstoffen
CA2877157A1 (fr) * 2012-08-09 2014-02-13 Linde Aktiengesellschaft Procede de conversion de charges hydrocarbonees par craquage thermique a la vapeur d'eau en des flux de produit renfermant des olefines
JP6215936B2 (ja) * 2012-08-09 2017-10-18 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft 炭化水素供給原料の熱水蒸気分解による転化方法
EP2867337B1 (fr) * 2012-08-09 2015-11-04 Linde Aktiengesellschaft Procédé de fabrication d'oléfines par craquage thermique à la vapeur d'eau dans des fours de craquage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014023418A1 *

Also Published As

Publication number Publication date
HUE027415T2 (en) 2016-10-28
PH12015500279B1 (en) 2015-04-27
WO2014023418A1 (fr) 2014-02-13
EP2867339B1 (fr) 2015-10-28
JP6184496B2 (ja) 2017-08-23
MY173254A (en) 2020-01-09
CA2877163C (fr) 2022-07-19
CN104540925A (zh) 2015-04-22
IN2014DN11047A (fr) 2015-09-25
KR20150042211A (ko) 2015-04-20
PH12015500279A1 (en) 2015-04-27
CN104540925B (zh) 2017-04-05
US20150315484A1 (en) 2015-11-05
ES2558588T3 (es) 2016-02-05
CA2877163A1 (fr) 2014-02-13
RU2627663C2 (ru) 2017-08-09
US9670418B2 (en) 2017-06-06
AU2013301898B2 (en) 2017-07-06
JP2015524451A (ja) 2015-08-24
AU2013301898A1 (en) 2015-02-05
RU2015105404A (ru) 2016-09-27
KR102117730B1 (ko) 2020-06-01
ZA201500937B (en) 2015-12-23

Similar Documents

Publication Publication Date Title
EP2867336B1 (fr) Procédé de conversion de charges hydrocarbonées par craquage thermique à la vapeur d'eau
EP2867337B1 (fr) Procédé de fabrication d'oléfines par craquage thermique à la vapeur d'eau dans des fours de craquage
EP2867338B1 (fr) Procédé de conversion de charges hydrocarbonées en des courants de produits oléfiniques par craquage thermique à la vapeur d'eau
EP2867339B1 (fr) Procédé de fabrication d'oléfines par vapocraquage thermique
EP2917305B1 (fr) Procédé de fabrication de produits chargés en oléfines par vapocraquage thermique
DE2601875C2 (de) Gesamtverfahren zur Erzeugung von unter Normalbedingungen gasförmigen Olefinen mittels Dampfcracken eines hydrierten Erdöleinsatzmaterials
DE2215664C3 (fr)
DE2953190A1 (de) Verfahren zum herstellen von hochwertigem koks
EP3068849B1 (fr) Procédé de séparation d'un mélange d'hydrocarbures
DE1931952A1 (de) Verfahren zur Hydrierung von schwefelhaltigem Pyrolysebenzin
DE69507037T2 (de) Verfahren zum selektive hydrierung von vrackkohlenwasserstoffen
EP3041916B1 (fr) Procédé de production d'hydrocarbures
DE1914603A1 (de) Verfahren zur Herstellung aromatischer und olefinischer Kohlenwasserstoffe
EP3489330A1 (fr) Procédé et installation permettant d'obtenir des composés aromatiques polymérisables
WO2013020676A1 (fr) Procédé de dissociation d'hydrocarbures
EP3137578B1 (fr) Procédé de production de produits de pétrole brut
EP3137577B1 (fr) Procédé de production de produits de pétrole brut
DE102014006326A1 (de) Verfahren und Anlage zur Gewinnung von Rohölprodukten
DE102014006327A1 (de) Verfahren und Anlage zur Gewinnung von Rohölprodukten
DE102015208943A1 (de) Verfahren und Anlage zur Bearbeitung eines Stoffgemischs
DE102013014867A1 (de) Verfahren und Anlage zur Erzeugung von Kohlenwasserstoffprodukten
DE102013014866A1 (de) Verfahren und Anlage zur Erzeugung von Kohlenwasserstoffprodukten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20150128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

INTG Intention to grant announced

Effective date: 20150428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20150813

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 757941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001422

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2558588

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013001422

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: INEOS MANUFACTURING DEUTSCHLAND GMBH

Effective date: 20160721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E027415

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170814

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170801

Year of fee payment: 5

Ref country code: CZ

Payment date: 20170714

Year of fee payment: 5

Ref country code: GB

Payment date: 20170802

Year of fee payment: 5

Ref country code: ES

Payment date: 20170901

Year of fee payment: 5

Ref country code: FR

Payment date: 20170714

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170623

Year of fee payment: 5

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502013001422

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502013001422

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

27W Patent revoked

Effective date: 20180325

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20180325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 757941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180806