EP2859161A1 - Construction brick with limited heat conduction - Google Patents

Construction brick with limited heat conduction

Info

Publication number
EP2859161A1
EP2859161A1 EP13731393.8A EP13731393A EP2859161A1 EP 2859161 A1 EP2859161 A1 EP 2859161A1 EP 13731393 A EP13731393 A EP 13731393A EP 2859161 A1 EP2859161 A1 EP 2859161A1
Authority
EP
European Patent Office
Prior art keywords
element according
parallelepiped
construction element
oriented
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13731393.8A
Other languages
German (de)
French (fr)
Inventor
Pascal Del-Gallo
Nicolas Richet
Olivier Dubet
Richard Gaignon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solumix
Original Assignee
Solumix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solumix filed Critical Solumix
Publication of EP2859161A1 publication Critical patent/EP2859161A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/14Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
    • E04B2/16Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position
    • E04B2/18Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position by interlocking of projections or inserts with indentations, e.g. of tongues, grooves, dovetails
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • E04C1/41Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts composed of insulating material and load-bearing concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0208Non-undercut connections, e.g. tongue and groove connections of trapezoidal shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0228Non-undercut connections, e.g. tongue and groove connections with tongues next to each other on one end surface and grooves next to each other on opposite end surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0289Building elements with holes filled with insulating material
    • E04B2002/0293Building elements with holes filled with insulating material solid material

Definitions

  • the present invention relates to a construction element of parallelepipedal general shape comprising a porous silico-limestone material and can be used in the construction of a wall.
  • Terracotta bricks called “monomur”, or cement, called “cinderblock”, honeycomb structure, are widely used for the construction of walls, floors, partitions or other elements of buildings.
  • These bricks are usually composed of empty cells (not filled) more or less large, more or less different shape, to increase the thermal insulation.
  • These structures are composed of cells of reduced size to limit thermal convection and have low wall thicknesses to limit the conduction effect.
  • the interior space of the cells of these building bricks is usually empty. When a temperature gradient exists within a cell, the air contained in this cell moves by convection. The direct consequence is a decrease in the thermal resistance of the system.
  • One of the solutions implemented to minimize the convective effects is to reduce the size of the cells, but this solution is limited by (i) a technical implementation of the bricks more and more complex, (ii) larger quantities of material (iii) the appearance of conduction phenomena by larger sherds.
  • this inorganic material generally porous, is due to its micro structure to give a "mechanical strength to the air", namely to trap the air so as to minimize the effects of convection.
  • the solution is to reduce as much as possible the cross section of the sherds oriented in the direction of the heat flow (direction 1).
  • document FR 2521 197 A1 mentions clay bricks with cells filled with "a cellular material with high thermal insulation”.
  • the materials proposed for the filling of the cells are: "a polyurethane foam, a polystyrene foam, or any other fibrous material (glass wool or rock) or divided (cork agglomerate)”.
  • the disadvantage of this solution is the low mechanical strength of the agglomerates, which entails a risk of deterioration of these packing masses during transport and assembly of these elements. It should be noted the low cohesive power of this structure inducing particular risks of loss of material during drilling, cutting, ... walls for example. It is also worth noting the settlement of the grains several years after the laying of the building elements, which ultimately leads to the reduction of the insulating power. Also the use of organic binders or hydrophobic agent substantially reduces the thermal resistance of these materials and increases the risk of fire resistance.
  • the disadvantage of all the solutions presented above is the low mechanical resistance to compression and the lack or absence of adhesion between the brick and the insulation material. This implies the need to ensure the mechanical strength of a building brick only by the shards of clay and to have on the sides of the brick shards of significant thickness. This induces the presence of thermal bridges made of thick clay sherds at the junction between two bricks.
  • a solution of the present invention is a construction element of generally parallelepipedal shape comprising at least two cells 1 delimited by internal shards 2 and peripheral shards 3, opening on a first opposite face and second face of the parallelepiped and comprising a porous material silico-limestone 4, the first and second faces of the parallelepiped comprising two edges 5 oriented in a first direction 1 and two edges 6 oriented in a second direction 2, in which at least 70% of the volume of the parallelepiped is characterized by the absence continuous passage between the shards oriented in the direction 2.
  • the construction element according to the invention there is no continuous passage formed by the sherds allowing the heat to pass from one of the two edges oriented in the direction 2 to the other directed stop in direction 2.
  • the porous silico-limestone material has sufficient mechanical strength to participate in the compressive strength of the construction element. Also, this compressive strength makes it possible to reduce the quantity of sherds and / or their sections, to avoid the continuous passages between the sherds and thus to reduce the effects of thermal conduction.
  • this porous silico-calcareous material makes it possible, because of its micro structure, to give a mechanical strength to the air or to the vacuum, namely to trap the air (or vacuum) so as to minimize the effects of convection. .
  • Figure 2 shows a diagram of a building brick according to the prior art showing continuous passages between the inner shards oriented in the direction 2.
  • FIG. 3 shows a diagram of a building block according to the invention showing the absence of continuous passages between the sherds oriented in the direction 2.
  • the cells are completely filled with the porous silico-calcareous material.
  • the building element according to the invention may have one or more of the following characteristics:
  • At least 80%, preferably at least 90%, even more preferably 100%) of the volume of the parallelepiped is characterized by the absence of continuous passage between the shards oriented in the direction 2;
  • the ratio between the surface of the sherds present on the first or second face and the total surface of this same face of the parallelepiped is between 20 and 32%;
  • the first and second faces of the parallelepiped are each characterized by a total surface area of the sherds of between 20,000 and 35,000 mm 2 , for a total surface of said parallelepiped face of between 90,000 and 130,000 mm 2 ;
  • the peripheral shards oriented in the second direction 2 have rectangular openings with a width of between 6 mm and 20 mm and a length of between 20 and 35 mm;
  • the cells are of different sizes
  • the porous material comprises 25% by weight to 75% by mass of silica, from 75% by weight to 25% by mass of calcium hydroxide, and from 0 to 5% by mass of magnesia and having a microstructure composed of nodules and / or crystals under shaped needles so as to provide pores of average diameter D50 between 0.1 and 10 ⁇ , and so that said porous material has a porosity of between 60 and 95%;
  • the porous material has a micro-structure composed of nodules and / or crystals in the form of needles and possibly of elementary grains so as to provide pores with an average diameter D50 of between 0.1 and ⁇ ;
  • the porous material has a mechanical strength of between 5 and 40 kg / cm 2, preferably between 10 and 30 kg / cm 2 and a thermal conductivity of between 50 and 150 mW / ° Km, preferably less than 100 mW / ° Km;
  • the porous material comprises at least 70% by weight of crystalline phase (s); the crystalline phase also contains one or more silico-calcareous phases representing 0 to 50% of the weight of the porous material;
  • sand-lime phases are selected from the xonotlite, the foshagite, tobermorite 11A, tobermorite 9A, the riversidéite 9A, the Trabzonite [Ca 4 Si30io .2H 2 0], the Rosenhahnite [Ca 3 SÎ308 (OH) 2] Kilalaite [Ca 6 Si 4 O 4 , H 2 O], and Gyrolite;
  • the cells have profiled or grooved walls
  • peripheral shards comprise at least one stud designed to anchor in the groove of a second building element
  • said building element is a terracotta brick.
  • the present invention also relates to a wall comprising one or more building elements according to the invention, wherein the first direction 1 is oriented in the direction of the thickness of the wall.
  • the porous material used in the invention is totally inorganic which gives it excellent properties in terms of fire resistance (maintenance of mechanical properties at high temperature), reduction of toxic emissions in case of fire, reduction dust or fiber emissions, ...
  • the porous material preferably fills all the spaces of the brick because the latter serves as a mold during the shaping of the insulation. This facilitates the filling and adhesion and avoids any space between the brick and the porous material, space in which the air could circulate by convection. This could result in loss of insulation performance.
  • the porous material used also reduces the transmission of sound waves through the building element.
  • the sound transmission is generally reduced when passing between two materials of different density.
  • all the materials used in the construction of the building element according to the invention are natural and recyclable.
  • the building elements are made from extruded clay to give it the desired shape.
  • Clay is a material consisting of leaflets that orient in the direction of extrusion.
  • the thermal conductivity of clay sherds is different in the direction considered: 0.54 W / m in direction 1 and 0.37 W / m in direction 2.
  • the transfer of heat through the brick is mainly in the direction 1, between the outside of the building and the interior. Two modes of transfer are predominant, the conduction through the material of the brick and the convection of the air trapped in the openings of the brick.
  • the solution most often used is to fill it with a porous material that prevents the convective movements of the air.
  • the most commonly cited materials are organic foams (polyurethane), mineral wools, organic insulation.
  • these insulators are pre-cut and inserted into the openings of the brick.
  • the porous silico-calcareous material is synthesized in the brick itself, using the latter as a mold. This has the advantage of completely filling the opening of the brick without space between the shard and the insulation. Space could lead to convective phenomena that would reduce thermal insulation performance. In contrast, tamping an organic foam type insulation, would lead to an insulation material of higher density and therefore lower insulation performance.
  • the conduction of heat through the brick is essentially ensured by the shards of clay.
  • Three approaches are possible to reduce the conduction, 1) increase the porosity of the clay by adding a porogen like perlite, 2) reduce the quantity of shard 3) introduce discontinuities of shards between the two faces of the brick.
  • the term discontinuity means the absence of continuous passage between the sherds oriented in the direction 2.
  • the inorganic insulating material provided in this invention has sufficient strength and sherbidity to prevent passage continuous between the sherds oriented in the direction 2 while maintaining the mechanical properties of the structural element and allowing its handling and transport.
  • the conduction of heat into the shards, which is one of the most important heat transfer modes in constructions, is therefore reduced and the wall insulation performance improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Finishing Walls (AREA)
  • Building Environments (AREA)

Abstract

The invention relates to a construction element having a general parallelepiped shape and comprising at least two cells (1) defined by webs (2) and shells (3), ending on a first surface and a second surface of the parallelepiped that face each other, and comprising a calcium silicate porous material (4), the first and second surfaces of the parallelepiped comprising two edges (5) oriented in a first direction 1 and two edges (6) oriented in a second direction 2, wherein at least 70% of the volume of the parallelepiped are characterised by the absence of a continuous passage between the webs oriented in direction 2.

Description

Brique de construction avec conduction thermique limitée  Building brick with limited thermal conduction
La présente invention a pour objet un élément de construction de forme générale parallélépipédique comprenant une matière poreuse silico-calcaire et pouvant être utilisée dans la construction d'un mur. The present invention relates to a construction element of parallelepipedal general shape comprising a porous silico-limestone material and can be used in the construction of a wall.
Les briques en terre cuite, dites « monomur », ou en ciment, dites « parpaing », à structure alvéolaire, sont largement utilisées pour la construction de murs, de sols, de cloisons ou autres éléments de bâtiments.  Terracotta bricks, called "monomur", or cement, called "cinderblock", honeycomb structure, are widely used for the construction of walls, floors, partitions or other elements of buildings.
Ces briques sont habituellement composées d'alvéoles vides (non remplies) plus ou moins grandes, de forme plus ou moins différentes, destinées à augmenter l'isolation thermique. Ces structures sont composées d'alvéoles de taille réduite pour limiter la convection thermique et présentent de faibles épaisseurs de parois pour limiter l'effet de conduction.  These bricks are usually composed of empty cells (not filled) more or less large, more or less different shape, to increase the thermal insulation. These structures are composed of cells of reduced size to limit thermal convection and have low wall thicknesses to limit the conduction effect.
L'espace intérieur des alvéoles de ces briques de construction est généralement vide. Lorsqu'il existe un gradient de température au sein d'une alvéole, l'air contenu dans cette alvéole se déplace par convection. La conséquence directe est une diminution de la résistance thermique du système. Une des solutions mises en œuvre pour minimiser les effets convectifs consiste à réduire la taille des alvéoles, mais cette solution est limitée par (i) une mise en œuvre technique des briques de plus en plus complexe, (ii) des quantités de matière plus importantes, (iii) l'apparition de phénomènes de conduction par les tessons plus importants.  The interior space of the cells of these building bricks is usually empty. When a temperature gradient exists within a cell, the air contained in this cell moves by convection. The direct consequence is a decrease in the thermal resistance of the system. One of the solutions implemented to minimize the convective effects is to reduce the size of the cells, but this solution is limited by (i) a technical implementation of the bricks more and more complex, (ii) larger quantities of material (iii) the appearance of conduction phenomena by larger sherds.
Pour limiter les phénomènes de convection dans les alvéoles, il est possible de les remplir avec un matériau inorganique et ainsi empêcher ces mouvements convectifs. Le rôle de ce matériau inorganique, en général poreux, est du fait de sa micro structure de donner une «tenue mécanique à l'air», à savoir emprisonner l'air de manière à minimiser les effets de convection.  To limit the phenomena of convection in the cells, it is possible to fill them with an inorganic material and thus prevent these convective movements. The role of this inorganic material, generally porous, is due to its micro structure to give a "mechanical strength to the air", namely to trap the air so as to minimize the effects of convection.
Pour limiter les phénomènes de conduction par les tessons d'argile de la brique, la solution consiste à réduire au maximum la section des tessons orientés dans la direction du flux thermique (direction 1). Cependant, on se heurte aux problèmes de manutention et de résistance de la brique.  To limit the phenomena of conduction by the clay sherds of the brick, the solution is to reduce as much as possible the cross section of the sherds oriented in the direction of the heat flow (direction 1). However, there are problems of handling and resistance of the brick.
A titre d'exemple, le document FR 2521 197 Al, fait mention de briques en terre cuite avec des alvéoles remplies « d'un matériau cellulaire à haut pouvoir d'isolation thermique ». Les matériaux proposés pour le remplissage des alvéoles sont : « une mousse de polyuréthane, une mousse de polystyrène, ou tout autre matériaux fibreux (laine de verre ou de roche) ou divisé (agglomérat de liège) ». By way of example, document FR 2521 197 A1 mentions clay bricks with cells filled with "a cellular material with high thermal insulation". The materials proposed for the filling of the cells are: "a polyurethane foam, a polystyrene foam, or any other fibrous material (glass wool or rock) or divided (cork agglomerate)".
L'inconvénient de cette solution est l'utilisation de matériaux organiques et/ou inorganiques qui soient (i) peuvent mal se comporter face au risque d'incendie : tenue au feu, résistance au feu, émission(s) de gaz toxique(s) et de débris enflammés (ii) soit sont potentiellement dangereux car classifiables à termes dans la catégorie des FCR (Fibres Céramiques Réfractaires) nécessitant des conditions spécifiques de pose puis de gestion des déchets, (iii) soit perdre des propriétés d'isolation au cours du temps (tassement du garnissage, dégradation chimique des matériaux, ...), (iv) ne présentent pas ou peu de tenue mécanique (< 5 kg/cm2), (v) ne sont pas recyclables dans les filières traditionnelles, (vi) soit un mélange de points (i) à (vi). On peut également noter que dans certains cas le garnissage se fait sur place pendant le chantier, cela est une contrainte et nécessite de la main d'œuvre supplémentaire. The disadvantage of this solution is the use of organic and / or inorganic materials which are (i) may behave badly in the face of the risk of fire: fire resistance, fire resistance, emission (s) of toxic gas (s) ) and flaming debris (ii) are potentially dangerous because they are classifiable in terms of the RCF (Refractory Ceramics Fibers) category requiring specific conditions for the installation and subsequent management of waste, or (iii) to lose insulation properties during time (packing compaction, chemical degradation of materials, ...), (iv) have little or no mechanical strength (<5 kg / cm 2 ), (v) are not recyclable in traditional channels, ( vi) a mixture of points (i) to (vi). It can also be noted that in some cases the lining is done on site during the construction, this is a constraint and requires additional labor.
Le document FR 2 876 400 décrit quant à lui l'utilisation de briques creuses remplie Document FR 2 876 400 describes the use of filled hollow bricks.
« avec un matériau isolant à base de produit(s) poreux en vrac ». La matière dite naturelle pour le garnissage est à base de perlite expansée ou de la vermiculite expansée dans laquelle on utilise l'amidon comme épaississant. Ce document fait également mention de l'utilisation d'autres composants comme de la silice colloïdale, des agents hydrophobes, ou du plastique dispersé. "With an insulating material based on loose porous product (s)". The so-called natural material for filling is based on expanded perlite or expanded vermiculite in which starch is used as a thickener. This document also mentions the use of other components such as colloidal silica, hydrophobic agents, or dispersed plastic.
L'inconvénient de cette solution est la faible tenue mécanique des agglomérats, cela entraînant un risque de détérioration de ces masses de garnissage pendant le transport et le montage de ces éléments. Il est à noter le faible pouvoir cohésif de cette structure induisant notamment des risques de perte de matière lors de perçage, de découpe, ... des murs par exemple. Il est à noter également le tassement des grains plusieurs années après la pose des éléments de construction, ce qui entraîne à terme la diminution du pouvoir isolant. Egalement l'emploi de liants organiques ou d'agent hydrophobe diminue sensiblement la résistance thermique de ces matériaux et accroît le risque de tenue au feu.  The disadvantage of this solution is the low mechanical strength of the agglomerates, which entails a risk of deterioration of these packing masses during transport and assembly of these elements. It should be noted the low cohesive power of this structure inducing particular risks of loss of material during drilling, cutting, ... walls for example. It is also worth noting the settlement of the grains several years after the laying of the building elements, which ultimately leads to the reduction of the insulating power. Also the use of organic binders or hydrophobic agent substantially reduces the thermal resistance of these materials and increases the risk of fire resistance.
Sur le même principe, on peut citer le document FR2 927 623 Al qui divulgue des éléments de construction de type brique en terre cuite, garnie d'une mousse de chaux. Cette matière poreuse est constituée d'un mélange chaux-ciment 65 à 90% de la matière sèche, de fibres, de charges minérales, d'un durcisseur et d'un agent moussant. Le principe est de faire prendre de la chaux avec un agent moussant pour créer des bulles d'air, de les emprisonner lors de la réaction et avoir ainsi une structure poreuse. Une telle structure présente le désavantage d'avoir une tenue mécanique faible, ce qui limite la réduction du nombre de parois de la brique de terre cuite et entraîne des risques de dégradation de la matière poreuse pendant la pose des éléments de construction. On the same principle, one can quote the document FR2 927 623 A1 which discloses elements of brick-type construction in terracotta, lime-filled with foam. This porous material consists of a mixture lime-cement 65 to 90% of the dry matter, fibers, mineral fillers, a hardener and a foaming agent. The principle is to get lime with a foaming agent to create air bubbles, to trap them during the reaction and thus have a porous structure. Such a structure has the disadvantage of having a low mechanical strength, which limits the reduction of the number of walls of the clay brick and entails risks of degradation of the porous material during the laying of the building elements.
Autrement dit, l'inconvénient de toutes les solutions présentées ci-dessus est la faible résistance mécanique à la compression et le manque ou l'absence d'adhésion entre la brique et le matériau d'isolation. Ceci implique la nécessité d'assurer la tenue mécanique d'une brique de construction uniquement par les tessons d'argile et d'avoir sur les côtés de la brique des tessons d'épaisseur importante. Ceci induit la présence de ponts thermiques constitués de tessons d'argile épais à la jonction entre deux briques.  In other words, the disadvantage of all the solutions presented above is the low mechanical resistance to compression and the lack or absence of adhesion between the brick and the insulation material. This implies the need to ensure the mechanical strength of a building brick only by the shards of clay and to have on the sides of the brick shards of significant thickness. This induces the presence of thermal bridges made of thick clay sherds at the junction between two bricks.
De plus, la tendance générale pour améliorer les performances d'isolation thermique des briques est à l'augmentation de leur épaisseur par rapport à leur largeur. A l'heure actuelle, cette dernière est comprise entre 200 et 650 mm. Pour des raisons de manutention (poids maximum de la brique) et de transport, les briques de construction deviennent plus épaisses que larges. Cela implique un nombre plus important de joints entre deux briques lors de la construction des murs (figure 1). La Figure 1 représente à gauche un mur avec des briques larges mais peu épaisse, et à droite un mur avec des briques moins large mais plus épaisse. On remarque effectivement une augmentation du nombre de joints entre deux briques sur le schéma de droite. Or, ces joints représentent des ponts thermiques très importants sur le mur final ce qui représente un frein à l'amélioration des performances d'isolation des constructions.  In addition, the general trend to improve the thermal insulation performance of bricks is to increase their thickness relative to their width. At present, the latter is between 200 and 650 mm. For handling reasons (maximum weight of the brick) and transport, the building bricks become thicker than they are wide. This implies a greater number of joints between two bricks during the construction of the walls (Figure 1). Figure 1 shows on the left a wall with bricks wide but not thick, and on the right a wall with bricks narrower but thicker. There is indeed an increase in the number of joints between two bricks in the diagram on the right. However, these seals represent very important thermal bridges on the final wall which represents a brake to the improvement of the insulation performance of the constructions.
Partant de là, un problème qui se pose est de fournir une brique de construction dans lequel l'effet de conduction thermique est réduit.  From there, a problem is to provide a building brick in which the thermal conduction effect is reduced.
Une solution de la présente invention est un élément de construction de forme générale parallélépipédique comprenant au moins deux alvéoles 1 délimitées par des tessons intérieurs 2 et des tessons périphériques 3, débouchant sur une première face et une deuxième face opposées du parallélépipède et comprenant une matière poreuse silico-calcaire 4, la première et la deuxième face du parallélépipède comprenant deux arêtes 5 orientées dans une première direction 1 et deux arêtes 6 orientées dans une deuxième direction 2, dans lequel au moins 70% du volume du parallélépipède est caractérisé par l'absence de passage continu entre les tessons orientés dans la direction 2.  A solution of the present invention is a construction element of generally parallelepipedal shape comprising at least two cells 1 delimited by internal shards 2 and peripheral shards 3, opening on a first opposite face and second face of the parallelepiped and comprising a porous material silico-limestone 4, the first and second faces of the parallelepiped comprising two edges 5 oriented in a first direction 1 and two edges 6 oriented in a second direction 2, in which at least 70% of the volume of the parallelepiped is characterized by the absence continuous passage between the shards oriented in the direction 2.
Autrement dit, dans l'élément de construction selon l'invention, il n'y a pas de passage continu constitué par les tessons permettant à la chaleur de passer d'une des deux arrêtes orientées dans la direction 2 à l'autre arrête orientée dans la direction 2. La matière poreuse silico-calcaire présente une résistance mécanique suffisante pour participer à la résistance à la compression de l'élément de construction. Aussi, cette résistance à la compression permet de réduire la quantité de tessons et/ou leurs sections, d'éviter les passages continus entre les tessons et donc de réduire les effets de conduction thermique. In other words, in the construction element according to the invention, there is no continuous passage formed by the sherds allowing the heat to pass from one of the two edges oriented in the direction 2 to the other directed stop in direction 2. The porous silico-limestone material has sufficient mechanical strength to participate in the compressive strength of the construction element. Also, this compressive strength makes it possible to reduce the quantity of sherds and / or their sections, to avoid the continuous passages between the sherds and thus to reduce the effects of thermal conduction.
D'autre part, cette matière poreuse silico-calcaire permet du fait de sa micro structure de donner une tenue mécanique à l'air ou au vide, à savoir emprisonner l'air (ou le vide) de manière à minimiser les effets de convection.  On the other hand, this porous silico-calcareous material makes it possible, because of its micro structure, to give a mechanical strength to the air or to the vacuum, namely to trap the air (or vacuum) so as to minimize the effects of convection. .
La Figure 2 représente un schéma d'une brique de construction selon l'art antérieur montrant des passages continus entre les tessons intérieurs orientés dans la direction 2.  Figure 2 shows a diagram of a building brick according to the prior art showing continuous passages between the inner shards oriented in the direction 2.
La Figure 3 représente un schéma d'une brique de construction selon l'invention montrant l'absence de passages continu entre les tessons orientés dans la direction 2.  3 shows a diagram of a building block according to the invention showing the absence of continuous passages between the sherds oriented in the direction 2.
On notera que de préférence les alvéoles sont remplis entièrement par la matière poreuse silico-calcaire.  It will be noted that preferably the cells are completely filled with the porous silico-calcareous material.
Selon le cas, l'élément de construction selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :  As the case may be, the building element according to the invention may have one or more of the following characteristics:
au moins 80%, de préférence au moins 90%>, encore plus préférentiellement 100%) du volume du parallélépipède est caractérisé par l'absence de passage continu entre les tessons orientés dans la direction 2 ;  at least 80%, preferably at least 90%, even more preferably 100%) of the volume of the parallelepiped is characterized by the absence of continuous passage between the shards oriented in the direction 2;
le rapport entre la surface des tessons présents sur la première ou deuxième face et la surface totale de cette même face du parallélépipède est compris entre 20 et 32% ;  the ratio between the surface of the sherds present on the first or second face and the total surface of this same face of the parallelepiped is between 20 and 32%;
la première et la deuxième face du parallélépipède sont chacune caractérisée par une surface totale des tessons comprise entre 20 000 et 35 000 mm2, pour une surface totale de ladite face parallélépipède comprise entre 90 000 et 130 000 mm2 ; the first and second faces of the parallelepiped are each characterized by a total surface area of the sherds of between 20,000 and 35,000 mm 2 , for a total surface of said parallelepiped face of between 90,000 and 130,000 mm 2 ;
les tessons périphériques orientés dans la deuxième direction 2 présentent des ouvertures rectangulaires de largeur comprise entre 6 mm et 20 mm et de longueur comprise entre 20 et 35 mm ;  the peripheral shards oriented in the second direction 2 have rectangular openings with a width of between 6 mm and 20 mm and a length of between 20 and 35 mm;
les alvéoles sont de dimensions différentes ;  the cells are of different sizes;
la matière poreuse comprend 25% massique à 75% massique de silice, de 75% massique à 25% massique d'hydroxyde de calcium, et de 0 à 5% massique de magnésie et présentant une microstructure composée de nodules et/ou de cristaux sous forme d'aiguilles de manière à ménager des pores de diamètre moyen D50 compris ente 0,1 et 10 μιη, et de manière à ce que ladite matière poreuse présente une porosité comprise entre 60 et 95% ; la matière poreuse présente une micro structure composée de nodules et/ou de cristaux sous forme d'aiguilles et éventuellement de grains élémentaires de manière à ménager des pores de diamètre moyen D50 compris entre 0,1 et Ιμιη ; the porous material comprises 25% by weight to 75% by mass of silica, from 75% by weight to 25% by mass of calcium hydroxide, and from 0 to 5% by mass of magnesia and having a microstructure composed of nodules and / or crystals under shaped needles so as to provide pores of average diameter D50 between 0.1 and 10 μιη, and so that said porous material has a porosity of between 60 and 95%; the porous material has a micro-structure composed of nodules and / or crystals in the form of needles and possibly of elementary grains so as to provide pores with an average diameter D50 of between 0.1 and Ιμιη;
la matière poreuse présente une résistance mécanique comprise entre 5 et 40kg/cm2 préférentiellement entre 10 et 30kg/cm2 et une conductivité thermique comprise entre 50 et 150mW/°K.m préférentiellement inférieure à 100mW/°K.m ; the porous material has a mechanical strength of between 5 and 40 kg / cm 2, preferably between 10 and 30 kg / cm 2 and a thermal conductivity of between 50 and 150 mW / ° Km, preferably less than 100 mW / ° Km;
la matière poreuse comprend au moins 70% en poids de phase(s) cristalline(s) ; la phase cristalline renferme en outre une ou plusieurs phases silico-calcaire représentant 0 à 50% du poids de la matière poreuse ;  the porous material comprises at least 70% by weight of crystalline phase (s); the crystalline phase also contains one or more silico-calcareous phases representing 0 to 50% of the weight of the porous material;
les phases silico-calcaires sont choisis parmi la xonotlite, la foshagite, la tobermorite 11 A, la tobermorite 9A, la Riversideite 9Â, la Trabzonite [Ca4Si30io, 2H20 ], la Rosenhahnite [Ca3SÎ308(OH)2], la Kilalaite [Ca6Si40i4, H20], et la Gyrolite ; sand-lime phases are selected from the xonotlite, the foshagite, tobermorite 11A, tobermorite 9A, the riversidéite 9A, the Trabzonite [Ca 4 Si30io .2H 2 0], the Rosenhahnite [Ca 3 SÎ308 (OH) 2] Kilalaite [Ca 6 Si 4 O 4 , H 2 O], and Gyrolite;
les alvéoles présentent des parois profilées ou rainurées ;  the cells have profiled or grooved walls;
au moins une partie des tessons périphériques comprennent au moins un tenon dessiné pour s'ancrer dans la rainure d'un deuxième élément de construction ;  at least a portion of the peripheral shards comprise at least one stud designed to anchor in the groove of a second building element;
ledit élément de construction est une brique en terre cuite.  said building element is a terracotta brick.
La présente invention a également pour objet un mur comprenant un ou plusieurs éléments de construction selon l'invention, dans lequel la première direction 1 est orientée dans le sens de l'épaisseur du mur.  The present invention also relates to a wall comprising one or more building elements according to the invention, wherein the first direction 1 is oriented in the direction of the thickness of the wall.
La matière poreuse utilisée dans l'invention est totalement inorganique ce qui lui confère d'excellentes propriétés en terme de résistance au feu (maintien des propriétés mécaniques à haute température), de réduction des émissions de produits toxiques en cas d'incendie, de réduction des émissions de poussières ou de fibres,...  The porous material used in the invention is totally inorganic which gives it excellent properties in terms of fire resistance (maintenance of mechanical properties at high temperature), reduction of toxic emissions in case of fire, reduction dust or fiber emissions, ...
La matière poreuse remplit de préférence la totalité des espaces de la brique car cette dernière sert de moule lors de la mise en forme de l'isolant. Cela facilite le remplissage et l'adhésion et permet d'éviter tout espace entre la brique et la matière poreuse, espace dans lequel l'air pourrait circuler par convection. Ceci pourrait entraîner une perte de performance d'isolation.  The porous material preferably fills all the spaces of the brick because the latter serves as a mold during the shaping of the insulation. This facilitates the filling and adhesion and avoids any space between the brick and the porous material, space in which the air could circulate by convection. This could result in loss of insulation performance.
La pose de ces éléments de construction est facilitée par rapport aux isolants traditionnels car il fait partie intégrante de la brique. La pose est donc identique à celle d'une brique non garnie.  The installation of these building elements is facilitated compared to traditional insulators because it is an integral part of the brick. The pose is therefore identical to that of an unladen brick.
La matière poreuse utilisée permet également de réduire la transmission des ondes sonores à travers l'élément de construction. La transmission sonore est en générale réduite lors du passage entre deux matériaux de densité différente. Enfin, l'ensemble des matériaux utilisés dans l'élaboration de l'élément de construction selon l'invention sont naturelles et recyclables. The porous material used also reduces the transmission of sound waves through the building element. The sound transmission is generally reduced when passing between two materials of different density. Finally, all the materials used in the construction of the building element according to the invention are natural and recyclable.
Les éléments de construction sont réalisés à partir d'argile extrudé pour lui donner la forme souhaitée. L'argile est un matériau constitué de feuillets qui s'orientent dans la direction de l'extrusion. La conductivité thermique des tessons d'argile est différente suivant la direction considérée : 0,54 W/m dans la direction 1 et 0,37 W/m dans la direction 2.  The building elements are made from extruded clay to give it the desired shape. Clay is a material consisting of leaflets that orient in the direction of extrusion. The thermal conductivity of clay sherds is different in the direction considered: 0.54 W / m in direction 1 and 0.37 W / m in direction 2.
Le transfert de la chaleur à travers la brique se fait majoritairement dans la direction 1 , entre l'extérieur du bâtiment et l'intérieur. Deux modes de transferts sont prépondérants, la conduction à travers le matériau de la brique et la convection de l'air emprisonné dans les ouvertures de la brique.  The transfer of heat through the brick is mainly in the direction 1, between the outside of the building and the interior. Two modes of transfer are predominant, the conduction through the material of the brick and the convection of the air trapped in the openings of the brick.
En considérant la convection de l'air dans les ouvertures de la brique, la solution retenue le plus souvent est de la remplir à l'aide d'un matériau poreux qui empêche les mouvements convectifs de l'air. Les matériaux les plus couramment cités sont les mousses organiques (polyuréthane), les laines minérales, les isolants organiques. Dans l'art antérieur, ces isolants sont prédécoupés puis insérés dans les ouvertures de la brique. Dans le cadre de l'invention, la matière poreuse silico-calcaire est synthétisée dans la brique elle-même, en se servant de cette dernière comme d'un moule. Cela présente l'avantage de remplir totalement l'ouverture de la brique sans espace entre le tesson et l'isolant. Un espace pourrait conduire à des phénomènes convectifs qui réduiraient les performances d'isolation thermique. A l'opposé, tasser un isolant de type mousse organique, conduirait à un matériau isolant de plus forte densité et donc aux performances d'isolation plus faibles.  Considering the convection of air in the openings of the brick, the solution most often used is to fill it with a porous material that prevents the convective movements of the air. The most commonly cited materials are organic foams (polyurethane), mineral wools, organic insulation. In the prior art, these insulators are pre-cut and inserted into the openings of the brick. In the context of the invention, the porous silico-calcareous material is synthesized in the brick itself, using the latter as a mold. This has the advantage of completely filling the opening of the brick without space between the shard and the insulation. Space could lead to convective phenomena that would reduce thermal insulation performance. In contrast, tamping an organic foam type insulation, would lead to an insulation material of higher density and therefore lower insulation performance.
La conduction de la chaleur à travers la brique est essentiellement assurée par les tessons d'argile. Trois approches sont possibles pour réduire la conduction, 1) augmenter la porosité de l'argile en ajoutant un porogène comme la perlite, 2) réduire la quantité de tesson 3) introduire des discontinuités de tessons entre les deux faces de la brique. On entend par discontinuité l'absence de passage continu entre les tessons orientés dans la direction 2. Ces deux derniers points se heurtent au problème du maintien de la résistance mécanique minimale en compression de la brique assuré par les tessons d'argile et à la manutention des briques lors de la pose. La plupart des matériaux isolants utilisés classiquement n'ont pas ou peu de résistance mécanique et d'adhérence avec le tesson de la brique. Cela induit l'impossibilité de réduire la section des tessons et d'éviter les passages continus entre les tessons orientés dans la direction 2.  The conduction of heat through the brick is essentially ensured by the shards of clay. Three approaches are possible to reduce the conduction, 1) increase the porosity of the clay by adding a porogen like perlite, 2) reduce the quantity of shard 3) introduce discontinuities of shards between the two faces of the brick. The term discontinuity means the absence of continuous passage between the sherds oriented in the direction 2. These two last points come up against the problem of maintaining the minimum mechanical compressive strength of the brick provided by clay sherds and handling. bricks when laying. Most of the insulation materials used conventionally have little or no mechanical strength and adhesion to the shard of brick. This induces the impossibility of reducing the section of the shards and to avoid the continuous passages between the shards oriented in the direction 2.
Le matériau isolant inorganique proposé dans cette invention possède une résistance mécanique et une adhésion aux tessons d' suffisante pour permettre d'éviter les passages continus entre les tessons orientés dans la direction 2 tout en maintenant les propriétés mécaniques de l'élément de structure et en permettant sa manutention et son transport. La conduction de la chaleur dans les tessons qui est l'un des modes de transfert thermique les plus importants dans les constructions est donc réduit et les performances d'isolation du mur améliorées. The inorganic insulating material provided in this invention has sufficient strength and sherbidity to prevent passage continuous between the sherds oriented in the direction 2 while maintaining the mechanical properties of the structural element and allowing its handling and transport. The conduction of heat into the shards, which is one of the most important heat transfer modes in constructions, is therefore reduced and the wall insulation performance improved.

Claims

Revendications claims
1. Elément de construction de forme générale parallélépipédique comprenant au moins deux alvéoles (1) délimitées par des tessons intérieurs (2) et des tessons périphériques (3), débouchant sur une première face et une deuxième face opposées du parallélépipède et comprenant une matière poreuse silico-calcaire (4), la première et la deuxième face du parallélépipède comprenant deux arêtes (5) orientées dans une première direction 1 et deux arêtes (6) orientées dans une deuxième direction 2, dans lequel au moins 70% du volume du parallélépipède est caractérisé par l'absence de passage continu entre les tessons orientés dans la direction 2, avec la matière poreuse comprenant 25% massique à 75% massique de silice, de 75%) massique à 25% massique d'hydroxyde de calcium, et de 0 à 5% massique de magnésie et présentant une micro structure composée de nodules et/ou de cristaux sous forme d'aiguilles de manière à ménager des pores de diamètre moyen D50 compris ente 0, 1 et 10 μιη, et de manière à ce que ladite matière poreuse présente une porosité comprise entre 60 et 95%. 1. Construction element of parallelepipedal general shape comprising at least two cells (1) delimited by internal sherds (2) and peripheral sherds (3), opening on a first and second opposite faces of the parallelepiped and comprising a porous material silico-limestone (4), the first and second faces of the parallelepiped comprising two ridges (5) oriented in a first direction 1 and two edges (6) oriented in a second direction 2, in which at least 70% of the volume of the parallelepiped is characterized by the absence of continuous passage between the directionally oriented shards 2, with the porous material comprising 25 weight percent to 75 weight percent silica, 75 weight percent to 25 weight percent calcium hydroxide, and 0 to 5% by weight of magnesia and having a micro structure composed of nodules and / or crystals in the form of needles so as to provide pores of average diameter D50 inclusive of 0, 1 and 10 μιη, and so that said porous material has a porosity of between 60 and 95%.
2. Elément de construction selon la revendication 1 , caractérisé en ce qu'au moins 80%), de préférence au moins 90%>, encore plus préférentiellement 100% du volume du parallélépipède est caractérisé par l'absence de passage continu entre les tessons orientés dans la direction 2. 2. Construction element according to claim 1, characterized in that at least 80%), preferably at least 90%>, even more preferably 100% of the volume of the parallelepiped is characterized by the absence of continuous passage between the shards oriented in the direction 2.
3. Elément de construction selon l'une des revendications 1 ou 2, caractérisé en ce que le rapport entre la surface des tessons présents sur la première ou deuxième face et la surface totale de cette même face du parallélépipède est compris entre 20 et 32%. 3. Construction element according to one of claims 1 or 2, characterized in that the ratio between the surface of the shards present on the first or second face and the total surface of the same face of the parallelepiped is between 20 and 32% .
4. Elément de construction selon l'une des revendications 1 à 3, dans lequel la première et la deuxième faces du parallélépipède sont chacune caractérisée par une surface totale des tessons comprise entre 20 000 et 35 000 mm2, pour une surface totale de ladite face parallélépipède comprise entre 90 000 et 130 000 mm2. 4. Construction element according to one of claims 1 to 3, wherein the first and second faces of the parallelepiped are each characterized by a total surface of the shards of between 20 000 and 35 000 mm 2 , for a total area of said parallelepiped face between 90 000 and 130 000 mm 2 .
5. Elément de construction selon l'une des revendications 1 à 4, caractérisé en ce que les tessons périphériques orientés dans la deuxième direction 2 présentent des ouvertures rectangulaires de largeur comprise entre 6 mm et 20 mm et de longueur comprise entre 20 et 35 mm. 5. Construction element according to one of claims 1 to 4, characterized in that the peripheral shards oriented in the second direction 2 have rectangular openings with a width of between 6 mm and 20 mm and a length of between 20 and 35 mm .
6. Elément de construction selon l'une des revendications 1 à 5, caractérisé en ce que les alvéoles sont de dimensions différentes. 6. Construction element according to one of claims 1 to 5, characterized in that the cells are of different dimensions.
7. Elément de construction selon l'une des revendications précédentes, caractérisé en ce que la matière poreuse présente une micro structure composée de nodules et/ou de cristaux sous forme d'aiguilles et éventuellement de grains élémentaires de manière à ménager des pores de diamètre moyen D50 compris entre 0,1 et Ιμιη. 7. Construction element according to one of the preceding claims, characterized in that the porous material has a micro-structure composed of nodules and / or crystals in the form of needles and optionally of elementary grains so as to provide pores of diameter average D50 between 0.1 and Ιμιη.
8. Elément de construction selon l'une des revendications précédentes, caractérisé en ce que la matière poreuse présente une résistance mécanique comprise entre 5 et 40kg/cm2 préférentiellement entre 10 et 30kg/cm2 et une conductivité thermique comprise entre 50 et 150mW/°K.m préférentiellement inférieure à 100mW/°K.m. 8. Construction element according to one of the preceding claims, characterized in that the porous material has a strength of between 5 and 40kg / cm 2 preferably between 10 and 30kg / cm 2 and a thermal conductivity between 50 and 150mW / ° Km preferentially less than 100mW / ° Km
9. Elément de construction selon l'une des revendications précédentes, caractérisée en ce que la matière poreuse comprend au moins 70% en poids de phase(s) cristalline(s). 9. Construction element according to one of the preceding claims, characterized in that the porous material comprises at least 70% by weight of crystalline phase (s).
10. Elément de construction selon la revendication 9, caractérisée en ce que la phase cristalline renferme en outre une ou plusieurs phases silico-calcaire représentant 0 à 50% du poids de la matière poreuse 10. Construction element according to claim 9, characterized in that the crystalline phase also contains one or more silico-limestone phases representing 0 to 50% of the weight of the porous material
11. Elément de construction selon la revendication 10, caractérisée en ce que les phases silico-calcaires sont choisis parmi la xonotlite, la foshagite, la tobermorite 11 A, la tobermorite 9A, la Riversideite 9Â, la Trabzonite [Ca4Si30io, 2H20 ], la Rosenhahnite [Ca3Si308(OH)2], la Kilalaite [Ca6Si40i4, H20], et la Gyrolite. 11. Building element according to claim 10, characterized in that the silico-calcareous phases are selected from xonotlite, foshagite, tobermorite 11A, tobermorite 9A, Riversideite 9A, Trabzonite [Ca 4 Si30io, 2H 2 0], Rosenhahnite [Ca 3 Si 3 08 (OH) 2], Kilalaite [Ca 6 Si 4 O 4 , H 2 0], and Gyrolite.
12. Elément de construction selon l'une des revendications 1 à 11, caractérisé en ce qu'au moins une partie des tessons périphériques comprennent au moins un tenon dessiné pour s'ancrer dans la rainure d'un deuxième élément de construction. 12. Building element according to one of claims 1 to 11, characterized in that at least a portion of the peripheral sherds comprise at least one pin designed to anchor in the groove of a second building element.
13. Elément de construction selon l'une des revendications 1 à 12, caractérisé en ce que ledit élément de construction est une brique en terre cuite. 13. Building element according to one of claims 1 to 12, characterized in that said building element is a brick terracotta.
14. Mur comprenant un ou plusieurs éléments de construction selon l'une des revendications l à 13, dans lequel la première direction 1 est orientée dans le sens de l'épaisseur du mur. Wall comprising one or more building elements according to one of claims 1 to 13, wherein the first direction 1 is oriented in the direction of the thickness of the wall.
EP13731393.8A 2012-06-11 2013-06-07 Construction brick with limited heat conduction Withdrawn EP2859161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255424A FR2991701B1 (en) 2012-06-11 2012-06-11 CONSTRUCTION BRICK WITH THERMAL CONDUCTION LIMIT
PCT/FR2013/051320 WO2013186471A1 (en) 2012-06-11 2013-06-07 Construction brick with limited heat conduction

Publications (1)

Publication Number Publication Date
EP2859161A1 true EP2859161A1 (en) 2015-04-15

Family

ID=47172755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13731393.8A Withdrawn EP2859161A1 (en) 2012-06-11 2013-06-07 Construction brick with limited heat conduction

Country Status (3)

Country Link
EP (1) EP2859161A1 (en)
FR (1) FR2991701B1 (en)
WO (1) WO2013186471A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044253A1 (en) * 2010-09-02 2012-03-08 Roro Plant&Baut Gmbh Apparatus for constructing building, particularly masonry structure, comprises brick portion that is connected with porous concrete portion such that the porous concrete portion is located at inner side
WO2013171390A1 (en) * 2012-05-16 2013-11-21 Rgo Building brick filled with a porous sand-lime material having mechanical strength
WO2013171391A1 (en) * 2012-05-16 2013-11-21 Rgo Building brick filled with a porous sand-lime material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598442A5 (en) * 1976-11-30 1978-04-28 Btr Materiaux Sa Brick assembly for building wall
DE3124375A1 (en) * 1981-06-22 1983-02-03 Hasit Trockenmörtel GmbH & Co, 8050 Freising Building block
DE3202817A1 (en) * 1982-01-29 1983-08-11 Hoechst Ag, 6230 Frankfurt "INORGANIC COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF"
FR2521197A1 (en) 1982-02-08 1983-08-12 Labasse Gaston Composite construction element for building - comprises clay brick containing cavities with central row to receive insulation
DE4216204A1 (en) * 1992-05-15 1993-11-18 Rainer Haug Thermal insulation for buildings
ES2125731T3 (en) * 1996-07-04 1999-03-01 Hebel Ag PROCEDURE FOR THE MANUFACTURE OF A THERMO-INSULATING, LIGHTWEIGHT, OPEN-PORE AND MINERAL PLATE.
DE102004049618B4 (en) 2004-10-12 2007-08-30 Knauf Perlite Gmbh Hollow brick and use of a free-flowing mixture
DE102007051830A1 (en) * 2007-10-30 2009-05-07 Rimmele, Matthias Component and structural system comprises hydrophobic microporous thermal insulation, where thermal insulating material is micro-porous thermal insulating material, which is injected or compressed without binders to plates or molded parts
FR2927623B1 (en) 2008-02-19 2012-05-25 Imerys Tc LIME FOAM COMPOSITION FOR THERMAL INSULATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044253A1 (en) * 2010-09-02 2012-03-08 Roro Plant&Baut Gmbh Apparatus for constructing building, particularly masonry structure, comprises brick portion that is connected with porous concrete portion such that the porous concrete portion is located at inner side
WO2013171390A1 (en) * 2012-05-16 2013-11-21 Rgo Building brick filled with a porous sand-lime material having mechanical strength
WO2013171391A1 (en) * 2012-05-16 2013-11-21 Rgo Building brick filled with a porous sand-lime material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCHOBER, GEORG: "Pore size distribution in AAC", 17 January 2012 (2012-01-17), Retrieved from the Internet <URL:www.pb-aac.de/pores.html> [retrieved on 20151021] *
See also references of WO2013186471A1 *
WEBER, HELMUT; HULLMANN, HEINZ: "Das Porenbeton Handbuch, Planen und Bauen mit System", 1996, BAUVERLAG GMBH, WIESBADEN UND BERLIN, Wiesbaden, Berlin, ISBN: 3-7625-3228-1 *

Also Published As

Publication number Publication date
FR2991701A1 (en) 2013-12-13
WO2013186471A1 (en) 2013-12-19
FR2991701B1 (en) 2015-03-06

Similar Documents

Publication Publication Date Title
EP2093201A2 (en) Lime foam composition for thermal insulation
CN109024913A (en) Assembled self-insulating building block system and application method
EP2775056A1 (en) Structural/Insulating hybrid building block
FR3023859A1 (en) INSULATING CONSTRUCTION ELEMENT, METHOD OF MANUFACTURE AND CORRESPONDING INSULATING MATERIAL
WO2013171391A1 (en) Building brick filled with a porous sand-lime material
CN102409794A (en) Wall body building block and wall corner
WO2013171390A1 (en) Building brick filled with a porous sand-lime material having mechanical strength
WO2013186471A1 (en) Construction brick with limited heat conduction
FR2915701A1 (en) Making a construction element having a fire resistant side, comprises placing a fire protection layer to be set and hardened at a base of a mold and then placing a construction material on the hardened fire protection layer, or vice-versa
FR2989707A1 (en) BRICK TRIM OF CONSTRUCTION BY POROUS MATERIAL
EP2159204A1 (en) Method of manufacturing a construction element with at least one fire-resistant face.
EP1063364B1 (en) Insulating wall
EP3730722A1 (en) Casing and method for thermal insulation for technical elements
RU87723U1 (en) BUILDING STONE
CN213572518U (en) SG composite external template cast-in-place concrete heat preservation system
AU2011250735A1 (en) A masonry block and a masonry wall construction
EP3828358B1 (en) Integrated formwork wall and method for producing this wall
FR2977600A1 (en) Edge tile for use between intermediate floor and exterior wall of e.g. single-family house, has framework defining housing to receive insulation element that is made of polymer, where framework is manufactured from light aggregate concrete
CN214574772U (en) Building block outer wall composite heat insulation system
WO2021254791A1 (en) Building brick and method for building a wall with such bricks
CN212295296U (en) Fireproof and heat-insulating aerated concrete brick
CN209837280U (en) Building structure of porous steel frame composite light wall
RU2318101C1 (en) Three-layered construction block
FR3125074A1 (en) Structure for constructing a wall of a building and method for constructing such a structure
FR3062147A1 (en) PREFABRICATED PANELS FOR THE THERMAL INSULATION OF BUILDING FROM THE OUTSIDE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEL-GALLO, PASCAL

Inventor name: GAIGNON, RICHARD

Inventor name: DUBET, OLIVIER

Inventor name: RICHET, NICOLAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180327