EP2859158A1 - Panneau isolant thermique - Google Patents

Panneau isolant thermique

Info

Publication number
EP2859158A1
EP2859158A1 EP13728722.3A EP13728722A EP2859158A1 EP 2859158 A1 EP2859158 A1 EP 2859158A1 EP 13728722 A EP13728722 A EP 13728722A EP 2859158 A1 EP2859158 A1 EP 2859158A1
Authority
EP
European Patent Office
Prior art keywords
films
walls
flexible
thermal insulation
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13728722.3A
Other languages
German (de)
English (en)
Other versions
EP2859158B1 (fr
Inventor
Thierry Duforestel
Diane De Cacqueray
Pierre-Henri Milleville
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Electricite de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA filed Critical Electricite de France SA
Publication of EP2859158A1 publication Critical patent/EP2859158A1/fr
Application granted granted Critical
Publication of EP2859158B1 publication Critical patent/EP2859158B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7608Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
    • E04B1/7612Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels in combination with an air space
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/806Heat insulating elements slab-shaped with air or gas pockets included in the slab
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • E04C2002/3444Corrugated sheets
    • E04C2002/3455Corrugated sheets with trapezoidal corrugations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • E04C2002/3444Corrugated sheets
    • E04C2002/3466Corrugated sheets with sinusoidal corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/008Variable conductance materials; Thermal switches

Definitions

  • the present invention relates to the field of thermal insulation of buildings.
  • the present invention relates to the field of thermal insulation vacuum air or gas.
  • the envelope we can distinguish two families: on the one hand the family of metal envelopes where the seal is made in fact of steel or aluminum metal plates and, on the other hand the family consisting of all other envelopes, the most common case being that of an envelope consisting of an alternation of plastic and metallic (or metallized) polymer layers.
  • nanostructured porosity For core materials, the distinction is essentially about the nature of nanostructured porosity or not. Functionally, a nanostructured material is less sensitive than the others to a pressure rise in the vacuum panel. Therefore, the materials of this family can maintain a high thermal performance even if leaks (in practice unavoidable) allow gas to enter the component when it is used.
  • the vacuum is drawn to the manufacture of the component and it then relies on the core material and the sealing of the envelope to keep it at a level sufficient for the component to continue to provide lasting its insulation function.
  • Durable means the lifetime relative to the building envelope that is to say of the order of 10 to 40 years.
  • a "watch” a molecular sieve capsule that captures the gases in the component to maintain a vacuum pushed until 'its saturation prevents it from continuing to perform this function
  • the second family is that of vacuum insulators whose vacuum is maintained permanently by a vacuum pump connected to the component.
  • the sealing barrier that surrounds the core material is always metallic or metallized. It therefore causes a thermal bridge (conduction of heat) on the edges of the component. Thus, if one assembles side by side several components to achieve an insulating wall, the insulation level of the assembly, taking into account these thermal bridges, is much less than that of the current part.
  • the second problem comes from the presence of the core material.
  • the core material Even if a perfect vacuum were established in the component, there would remain a mode of transfer by conduction through the nanostructure solid matrix of the core material.
  • This inevitable phenomenon with this kind of component inevitably limits the thermal conductivity that it can reach to a minimum value of the order of 5 mw / m. K.
  • thermal insulation devices examples include US-A-3968831, US-A-3167159, DE-A-19647567, US-A-5433056, DE-A-1409994, US-A-3920953, SU-A-2671441, US-A-5014481, US-A-3463224, DE-A-4300839.
  • FIG. 2 The document WO-A-03/054456 attempted to improve the situation by proposing a device of the type illustrated in FIG. 2 comprising a panel defined by two partitions 20, 22 separated by spacers 24 and delimiting a chamber 30 placed under pressure. ambient or in depression and which houses a deformable membrane 32.
  • the membrane 32 is connected punctually to the partition 20 at a thermally insulating point 34. It is also clamped between the spacers 24 and the second partition 22.
  • FIG. 2a when potentials of opposite polarities are applied to the membrane 32 and the second partition 22 while potentials of the same polarity are applied to the first partition 20 and to the membrane 32, the latter 32 being pressed against the second partition 22.
  • FIG. 2a when potentials of opposite polarities are applied to the membrane 32 and the second partition 22 while potentials of the same polarity are applied to the first partition 20 and to the membrane 32, the latter 32 being pressed against the second partition 22.
  • FIG. 3 which comprises a V-shaped deflector 40 to the base of the spacers 24, second wall side 22 and cradles 42 U on the first partition 20.
  • the present invention now aims to propose a new thermal insulation device which has superior qualities to the state of the art in terms of cost, industrialization, efficiency and reliability, among others.
  • the present invention aims to provide new means for achieving a thermal insulation device capable of evolving between a state of high thermal insulation and a state of least thermal insulation, or relative thermal conduction.
  • a thermal insulation device in particular for buildings, characterized in that it comprises at least one panel comprising two walls separated by a peripheral main spacer to define a sealed chamber in gas, in depression, and at least two flexible films arranged in said chamber, fixed locally to secondary spacers, at intermediate points between the two walls and defining between them sealed secondary compartments, so that, by applying successive potentials of polarity chosen between the walls and the flexible films, the flexible films are moved between a first position of thermal insulation in which the films placed at the same electrical potential of polarity opposite to the electric potential of the walls, are separated from each other and in contact with the walls, the pressure in the secondary compartments defined between the films being less than the pressure prevailing in the chamber outside the compartments and a second position in which the films are separated from the walls and in mutual contact at least over a substantial part of their surface, said second position having thermal insulation properties lower than the first position.
  • FIG. 1 previously described, schematically represents a thermal insulation device according to the teaching of document US-A-3734172,
  • FIGS. 2a and 2b show two states of a device according to a first variant of a device according to document WO-A-03/054456, previously described,
  • FIGS. 3a and 3b schematically represent two similar states of a device previously described, according to a second variant of embodiment taught by the document WO-A-03/054456,
  • FIG. 6 represents a view of an improved device according to the present invention
  • FIG. 7 shows the assembly of several elementary panels according to the present invention, singing against singing
  • FIG. 8 represents the superposition of several panels of a thermal insulation device according to the present invention
  • a thermal insulation panel 100 according to the present invention comprises two main walls 110, 120, separated by a main peripheral spacer 102 to form a gas-tight chamber 104.
  • the chamber 104 is placed in depression, that is to say at a pressure below atmospheric pressure.
  • the internal pressure of the chamber 104 is of the order of a few Pascals, advantageously between 1 Pa and 100 Pa, very advantageously of the order of 10 Pa.
  • the chamber 104 houses at least two films 150, 160.
  • the films 150, 160 are flexible. They extend parallel to the walls 110, 120.
  • the flexible films 150, 160 are attached locally to secondary spacers 140, disposed between the walls 110, 120 at intermediate points between the two walls 110, 120.
  • the films 150, 160 are preferably fixed on the spacers 140 halfway between the two walls 110, 120.
  • the flexible films 150, 160 are capable of deformation, as will be explained later, in FIG. their portions extending between two spacers 140 adjacent.
  • the films 150, 160 define between them gas-tight compartments 158 placed under a controlled vacuum level.
  • the films 150, 160 being placed halfway from the walls 110, 120, they divide the chamber 104 into two sub-chambers 104a and 104b located respectively on either side of the compartments 158.
  • communication means 103 for providing a fluid connection between the two sub-chambers 104a and 104b.
  • These communication means 103 are moreover preferably adapted to ensure a fluid connection between a means 190 of pressure control, such as a compressor or equivalent means, and said chamber 104.
  • the spacers 102 and 140 are made of a thermally insulating material so as not to constitute a thermal conduction bridge between the walls 110 and 120.
  • the spacers 102, 140 are advantageously formed of thermoplastic material.
  • FIGS. 4 and 5 The operation of the device according to the present invention shown diagrammatically in FIGS. 4 and 5 is essentially as follows.
  • FIG. 4 shows a generator adapted to apply controlled polarity potentials respectively to the films 150, 160 and to the walls 110, 120.
  • the two films 150, 160 When applying potentials of opposite polarities between the films 150, 160, on the one hand, and respectively identical polarities between each of the films 150, 160, and the wall 110, 120, opposite, the two films 150, 160 are pressed against each other mid-thickness of the chamber 104 as shown in Figure 4. They are thus placed in mutual contact at least over a substantial part of their surface, away from the walls, it is that is to say, separated from the walls 110, 120. In this state, the films 150, 160, in mutual contact, allow a certain thermal transfer by conduction between them.
  • the pressure in the compartments 158 between the films 150, 160 is less than the pressure that prevails in the sub-chambers 104a and 104b situated on the outside of the films 150, 160, preferably less than 1 Pa, or typically comprised between 10 "3 and 10 " 4 Pascals.
  • the voltages applied to the device respond to the relationship
  • V / e 3,4.10 5 (p / s r) 1/2, in which relationship:
  • V is the electrical potential
  • e denotes the initial gap between the outer faces of the deformable flexible films 150, 160, and the surface facing the plates 110, 120, p represents the internal pressure in the chamber 104, and
  • s r represents the permittivity of the medium filling chamber 104.
  • the walls 110, 120 constituting the panel 100 may be the subject of numerous variants.
  • the walls 110, 120 may be rigid. Alternatively, they can be flexible. In this case, the panel 100 can be wound, which facilitates its transport and storage.
  • the walls 110, 120 may be at least partially electrically conductive to allow the application of an electric field generating the electrostatic forces required for the state switching of the films 150, 160.
  • the walls 110, 120 may be made of metal.
  • They may also be made of a composite material, for example in the form of an electrically insulating layer associated with an electrically conductive layer (metal or material loaded with electrically conductive particles).
  • the flexible films 150, 160 are at least partially electrically conductive to allow the application of the electric field required by the generation of the aforementioned electrostatic forces.
  • the flexible films 150, 160 are formed of a sheet of flexible metal or based on thermoplastic material or equivalent, loaded with electrically conductive particles.
  • the flexible films 150, 160 are preferably each formed of an electrically conductive core 152, 162 coated on each of its faces with a coating of electrically insulating material 154, 156, 164, 166 (for example a thermoplastic material).
  • the electrically insulating layers 154, 156 and 164, 166, illustrated in Figure 6 fulfill this function of electrical insulation. This function can be performed alternatively by similar means provided on the walls 110, 120, at least for the electrical insulation required between the walls 110, 120 and the flexible films 150, 160.
  • FIG. 7 a modular arrangement of several panels 100 according to the present invention juxtaposed side by side by their edge.
  • cover elements 106 integrated in the walls 110, 120 of a panel 100 and adapted to overlap the adjacent panel.
  • such covering elements 106 could be provided on elements that are attached at the junction zones between two of such adjacent panels 100.
  • the device according to the present invention offers good thermal insulation due to the vacuum prevailing in the chamber 104 and the depression prevailing in the compartments 158 between the films 150 and 160, in the separated position thereof.
  • means 190 for maintaining the vacuum within the chamber 104 for example based pumps sequentially or automatically operated or gas absorbing products as indicated above).
  • the use of two thermally insulating films 150, 160 makes it possible to reinforce the thermal barrier effect, that is to say to reduce the thermal conductivity.
  • the device according to the present invention allows a realization in the form of overall low thickness compatible with an inner insulation.
  • the device according to the present invention has a maximum thickness of a few millimeters.
  • the films 150, 160 are chosen from a material with low emissivity in the infrared or treated to be less emissive in the infrared.
  • the films 150, 160 have an emission coefficient (defined as the ratio between the emission of said films and the emission of a black body) less than 0.1 for wavelengths greater than 0.78 pm .
  • the device according to the present invention thus makes it possible, for example, to recover, by the state of thermal conduction, solar contributions from walls exposed in winter or to cool walls in summer when the external freshness allows it, by placing it in the illustrated state. in Figure 4.
  • all the components of the device that is to say, walls 110, 120 and films 150, 160 may be optically transparent in the visible range (0.4-0.8pm).
  • the device according to the present invention can thus be applied to transparent walls, for example in front of a solar collector.
  • Thermal insulation panels according to the present invention can also play a role of decoration.
  • the device according to the present invention is applied to the lossy walls of a building, it is possible to modulate the insulation in order to optimize the recovery of external inputs (solar in winter, cool in summer). Contrary to current concepts of heating or air conditioning, where the indoor installation catches up losses or heat gains through the envelope, a system that manages this loss or gain of heat to maintain the conditions of comfort desired interior. Such control can of course be operated automatically from appropriate thermal probes.
  • the present invention also contributes to completely control the thermal inertia of the walls of buildings in limits hitherto never reached.
  • the present invention is not limited to the particular application previously mentioned of building insulation.
  • the present invention which leads to excellent insulation
  • the thickness of the device which is independent of the thickness of the device and allows for an extremely small thickness, makes it possible to apply the present invention in a large number of technical fields.
  • the present invention may in particular apply to clothing or any other industrial problem requiring thermal insulation.
  • FIGS. 9 and 10 show an alternative embodiment according to which three adjacent films are thus provided. , 160 and 170 at mid-distance between the walls 110, 120.
  • the films 150, 160 and 170 are separated from each other by an air gap.
  • the outer films 150, 170 are pressed against the walls 110, 120, in a position separated from the central film (s) (ux) 160.
  • the device is then in a position of thermal insulation resulting from the separation between the films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)
  • Thermal Insulation (AREA)

Abstract

La présente invention concerne un dispositif d'isolation thermique, qui comprend au moins un panneau (100) comportant deux parois (110, 120) séparées par une entretoise principale périphérique (102) pour définir une chambre étanche au gaz (104), en dépression, et au moins deux films souples (150, 160) fixés localement à des entretoises secondaires (140) en des points intermédiaires entre les deux parois (110, 120) et définissant entre eux des compartiments secondaires étanches (158). Par application de potentiels successifs de polarité choisie entre les parois (110,120) et les films souples (150, 60), les films souples (150,160) sont déplacés entre une première position d'isolation thermique dans laquelle les films (150, 160) sont séparés entre eux et une deuxième position dans laquelle les films (150, 60) sont en contact mutuel au moins sur une partie substantielle de leur surface.

Description

PANNEAU ISOLANT THERMIQUE
La présente invention concerne le domaine de l'isolation thermique de bâtiments.
Plus précisément, la présente invention concerne le domaine de l'isolation thermique sous vide d'air ou gaz.
Depuis plus de 20 ans, le concept d'isolant sous vide est étudié pour diverses applications, dont l'isolation des bâtiments. Mais les premières applications industrielles ont concerné essentiellement les problématiques du froid (réfrigérateurs, glacières, containers réfrigérés, etc ...). En effet, en termes d'isolation thermique, sur terre, seule la technique d'isolation par le vide permet d'obtenir des conductivités thermiques minimales conduisant ainsi à des épaisseurs d'isolant minimales pour une résistance thermique donnée.
Pour des applications d'isolation des bâtiments, le thème des isolants sous vide n'est vraiment apparu dans les laboratoires de Recherche & Développement qu'à la fin des années 90, lorsque les politiques énergétiques et environnementales ont impulsé dans ce secteur une recherche accrue sur le thème de l'efficacité énergétique.
Le poids important des consommations d'énergie du parc de bâtiments existants dans les pays industrialisés impose effectivement le renforcement drastique de l'isolation thermique des parois opaques des bâtiments. Ainsi l'idée de disposer d'un isolant de conductivité thermique très faible (inférieure à lOmW/m. K), donc très mince, pour une résistance thermique donnée, s'est alors imposée comme une évidence afin de limiter l'impact des déperditions thermiques des parois opaques sur les volumes habitables disponibles.
Sont alors apparus des concepts de panneaux d'isolants constitués de matériaux de coeur thermiquement peu conducteurs de la chaleur, entourés d'une enveloppe barrière étanche et tirés au vide, que l'on pourrait qualifiés de Super isolant en regard de la performance des isolants traditionnels. On peut ainsi distinguer plusieurs familles de produits selon la nature de l'enveloppe, celle du matériau de coeur et la façon dont le vide est géré dans le temps.
Pour l'enveloppe, on peut distinguer deux familles : d'une part la famille des enveloppes métalliques où l'étanchéité est constituée en fait de plaques métalliques d'acier ou d'aluminium et, d'autre part la famille constituée de toutes les autres enveloppes, le cas le plus fréquent étant celui d'une enveloppe constituée d'une alternance de couches polymères plastiques et métalliques (ou métallisées).
Pour les matériaux de coeur, la distinction porte essentiellement sur la nature de la porosité nanostructurée ou non. Sur le plan fonctionnel, un matériau nanostructuré est moins sensible que les autres à une élévation de la pression dans le panneau sous vide. De ce fait, les matériaux de cette famille permettent de conserver une performance thermique élevée même si des fuites (en pratique inévitables) laissent pénétrer du gaz dans le composant lorsqu'il est en oeuvre.
Concernant la gestion du vide, on distingue là encore deux familles. Pour la première, la plus courante, le vide est tiré à la fabrication du composant et on compte ensuite sur le matériau de coeur et l'étanchéité de l'enveloppe pour le conserver à un niveau suffisant pour que le composant continue d'assurer durablement sa fonction d'isolation . On entend par durable, la durée de vie relative à l'enveloppe du bâtiment c'est-à-dire de l'ordre de 10 à 40 ans. A l'intérieur de cette famille on peut aussi distinguer les produits pour lesquels le matériau de coeur reçoit l'aide d'un "guetter" (une capsule de tamis moléculaire qui capte les gaz dans le composant afin d'entretenir un vide poussé jusqu'à ce que sa saturation l'empêche de continuer à assurer cette fonction) et ceux qui n'en ont pas. La seconde famille est celle des isolants sous vide dont le vide est entretenu en permanence par une pompe à vide branchée sur le composant.
Les problèmes posés par les produits connus de ce type, pour une utilisation en isolation du bâtiment, sont multiples.
L'on évoquera ici trois problèmes de natures différentes. Le premier concerne le passage du composant isolant à la paroi isolée. Effectivement, en tirant au vide un matériau poreux et en l'enfermant dans une enveloppe étanche, il est tout à fait possible de construire un composant très isolant, dont la conductivité thermique peut durablement rester inférieure à 10 mW/m. K. Mais cette performance est celle de la partie courante ou corps du composant. Or la barrière d'étanchéité qui entoure le matériau de coeur est toujours métallique ou métallisée. Elle provoque donc un pont thermique conséquent (par conduction de la chaleur) sur les bords du composant. Ainsi, si l'on assemble côte à côte plusieurs composants pour réaliser une paroi isolante, le niveau d'isolation de l'assemblage, tenant compte de ces ponts thermiques, est bien moindre que celui de la partie courante. En clair, on peut par ce moyen fabriquer des supers isolants, mais il est plus difficile de faire avec ces supers isolants de la super isolation. Une solution pourrait être de fabriquer des composants de grande dimension, pour limiter l'impact des bords, mais alors la fabrication, et notamment les opérations de tirage du vide et de fermeture de l'enveloppe, deviennent t très longues, très complexes et très coûteuses.
Le second problème provient de la présence du matériau de coeur. Ainsi, même si un vide parfait était établi dans le composant, il resterait un mode de transfert par conduction au travers de la matrice solide nanostructure du matériau de coeur. Ce phénomène inévitable avec ce genre de composant borne inévitablement la conductivité thermique qu'il peut atteindre à une valeur minimale de l'ordre de 5 mw/m. K.
Le dernier problème est qu'un tel composant ne peut se comporter qu'en isolant thermique. Même dans le cas d'un vide entretenu, où il paraît possible de jouer sur le niveau de vide pour piloter la conductivité thermique du composant, on ne peut agir que sur une plage très restreinte de conductivité, en pratique comprise au mieux entre 5 mW/m. K lorsqu'il est sous vide et inférieure à 30 mW/m. K lorsqu'il est à pression atmosphérique. Cette plage n'est pas suffisante pour réguler l'enveloppe en continu de façon à ce qu'elle isole énormément quand on a besoin de conserver le chaud ou le froid à l'intérieur du bâtiment et qu'elle n'isole pratiquement plus lorsqu'au contraire on souhaiterait faire pénétrer le chaud ou le froid extérieur dans le bâtiment.
On trouvera des exemples de dispositifs connus d'isolation thermique dans les documents US-A-3968831, US-A-3167159, DE-A- 19647567, US-A-5433056, DE-A-1409994, US-A-3920953, SU-A- 2671441, US-A-5014481, US-A-3463224, DE-A-4300839.
Une autre voie d'investigation pour la réalisation de dispositif d'isolation thermique contrôlée, c'est-à-dire conçue pour modifier sur commande, la conductivité thermique, a été proposée dans les documents US-A-3734172 et WO-A-03/054456.
Comme schématisé sur la figure 1 annexée, le document US-A- 3734172, publié en 1973, a proposé un dispositif comprenant un empilement de feuilles souples 10 dont l'écartement est censé être modifié par des forces électrostatiques, lors de l'application de tensions électriques contrôlées de polarités alternativement opposées, entre ces feuilles, à l'aide d'un générateur 12 et d'un commutateur 14 associé.
En pratique un tel dispositif n'a connu aucun développement industriel conséquent, faute de résultat probant.
Le document WO-A-03/054456 a tenté d'améliorer la situation en proposant un dispositif du type illustré sur la figure 2 comprenant un panneau défini par deux cloisons 20, 22 séparées par des entretoises 24 et délimitant une chambre 30 placée à pression ambiante ou en dépression et qui loge une membrane déformable 32. La membrane 32 est reliée ponctuellement à la cloison 20 en un point thermiquement isolant 34. Elle est par ailleurs pincée entre les entretoises 24 et la deuxième cloison 22. Comme on le voit sur la figure 2a, lorsque des potentiels de polarités opposées sont appliqués sur la membrane 32 et la deuxième cloison 22 alors que des potentiels de même polarité sont appliqués sur la première cloison 20 et sur la membrane 32, cette dernière est plaquée contre la deuxième cloison 22. Inversement, comme on le voit sur la figure 2b lorsque des potentiels de polarités opposées sont appliqués sur la membrane 32 et la première cloison 20 alors que des potentiels de même polarité sont appliqués sur la deuxième cloison 22 et sur la membrane 32, cette dernière est plaquée contre la première cloison 20. L'on comprend que la commutation d'état résultante de la membrane 32 permet de modifier sur commande la conductibilité thermique entre les deux cloisons 20 et 22.
Face aux difficultés rencontrées lors d'essais sur le dispositif illustré sur la figure 2, le document WO-A-03/054456 lui même a proposé une évolution de ce dispositif, illustrée sur la figure 3, qui comporte un déflecteur 40 en V à la base des entretoises 24, côté deuxième cloison 22 et des berceaux 42 en U sur la première cloison 20.
De telles tentatives d'évolution n'ont cependant pas plus permis un réel développement industriel de ce dispositif.
La désaffection des industriels pour ce produit, malgré la forte demande existante dans le domaine de l'isolation thermique pour le bâtiment, provient en grande partie de la complexité du produit, que l'on comprend au simple examen visuel de la figure 3.
Dans ce contexte, la présente invention a maintenant pour objectif de proposer un nouveau dispositif d'isolation thermique qui présente des qualités supérieures à l'état de la technique en termes de coût, d'industrialisation , efficacité et fiabilité, notamment.
Plus précisément la présente invention a pour but de proposer de nouveaux moyens permettant de réaliser un dispositif d'isolation thermique susceptible d'évoluer entre un état de forte isolation thermique et un état de moindre isolation thermique, voire relative conduction thermique.
Ce but est atteint dans le cadre de la présente invention grâce à un dispositif d'isolation thermique, notamment pour bâtiments, caractérisé par le fait qu'il comprend au moins un panneau comportant deux parois séparées par une entretoise principale périphérique pour définir une chambre étanche au gaz, en dépression, et au moins deux films souples disposés dans ladite chambre, fixés localement à des entretoises secondaires, en des points intermédiaires entre les deux parois et définissant entre eux des compartiments secondaires étanches, de sorte que, par application de potentiels successifs de polarité choisie entre les parois et les films souples, les films souples soient déplacés entre une première position d'isolation thermique dans laquelle les films placés à un même potentiel électrique de polarité opposée au potentiel électrique des parois, sont séparés entre eux et en contact avec les parois, la pression dans les compartiments secondaires définis entre les films étant inférieure à la pression régnant dans la chambre à l'extérieur des compartiments et une deuxième position dans laquelle les films sont séparés des parois et en contact mutuel au moins sur une partie substantielle de leur surface, ladite deuxième position présentant des propriétés d'isolation thermique inférieures à la première position.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :
- la figure 1, précédemment décrite, représente schématiquement un dispositif d'isolation thermique conforme à l'enseignement du document US-A-3734172,
- les figures 2a et 2b représentent deux états d'un dispositif conforme à une première variante d'un dispositif conforme au document WO-A- 03/054456, précédemment décrit,
- les figures 3a et 3b représentent schématiquement deux états similaires d'un dispositif précédemment décrit, conforme à une seconde variante de réalisation enseignée par le document WO-A-03/054456,
- les figures 4 et 5 annexées représentent, selon des vues schématiques en coupe transversale, deux états d'un dispositif basique d'isolation thermique conforme à la présente invention,
- la figure 6 représente une vue d'un dispositif amélioré conforme à la présente invention,
- la figure 7 représente l'assemblage de plusieurs panneaux élémentaires conforme à la présente invention, chant contre chant, - la figure 8 représente la superposition de plusieurs panneaux d'un dispositif d'isolation thermique conforme à la présente invention et
- les figures 9 et 10 représentent deux états d'un dispositif d'isolation thermique conforme à une variante de réalisation de la présente invention.
On aperçoit sur les figures 4 et suivantes annexées, un panneau d'isolation thermique 100 conforme à la présente invention comprenant deux parois principales 110, 120, séparées par une entretoise principale périphérique 102 pour former une chambre étanche au gaz 104. La chambre 104 est placée en dépression, c'est-à-dire à une pression inférieure à la pression atmosphérique. Typiquement, la pression interne de la chambre 104 est de l'ordre de quelques Pascals, avantageusement entre 1 Pa et lOOOPa, très avantageusement de l'ordre de lOPa.
La chambre 104 loge au moins deux films 150, 160. Les films 150, 160, sont souples. Ils s'étendent parallèlement aux parois 110, 120. Les films souples 150, 160 sont fixés localement à des entretoises secondaires 140, disposées entre les parois 110, 120, en des points intermédiaires entre les deux parois 110, 120.
Plus précisément, de préférence, les films 150, 160 sont fixés sur les entretoises 140 à mi-distance entre les deux parois 110, 120. Les films souples 150, 160 sont susceptibles de déformation, comme on l'exposera par la suite, dans leurs portions qui s'étendent entre deux entretoises 140 adjacentes.
Les films 150, 160 définissent entre eux des compartiments étanches au gaz 158 placés sous un niveau de vide contrôlé.
Les films 150, 160 étant placés à mi-distance des parois 110, 120, ils divisent la chambre 104 en deux sous chambres 104a et 104b situées respectivement de part et d'autre des compartiments 158.
De préférence il est prévu des moyens de communication 103 permettant d'assurer une liaison fluidique entre les deux sous chambres 104a et 104b. Ces moyens de communication 103 sont par ailleurs de préférence adaptés pour assurer une liaison fluidique entre un moyen 190 de contrôle de pression, tel qu'un compresseur ou un moyen équivalent, et ladite chambre 104.
Bien entendu, les entretoises 102 et 140 sont réalisées en un matériau thermiquement isolant pour ne pas constituer de pont thermique de conduction entre les parois 110 et 120. Ainsi, les entretoises 102, 140, sont formées avantageusement en matériau thermoplastique.
Le fonctionnement du dispositif conforme à la présente invention schématisé sur les figures 4 et 5 est essentiellement le suivant.
On a schématisé sous la référence 195 sur la figure 4 un générateur adapté pour appliquer des potentiels de polarité contrôlée respectivement sur les films 150, 160 et sur les parois 110, 120.
Lors de l'application de potentiels de polarités opposées entre les films 150, 160, d'une part, et de polarités respectivement identiques entre chacun des films 150, 160, et la paroi 110, 120, en regard, les deux films 150, 160 sont plaqués l'un contre l'autre à mi-épaisseur de la chambre 104 comme illustré sur la figure 4. Ils sont ainsi placés en contact mutuel au moins sur une partie substantielle de leur surface, à distance des parois, c'est-à-dire séparés des parois 110, 120. Dans cet état, les films 150, 160, en contact mutuel, autorisent un certain transfert thermique par conduction entre eux.
Dans le cadre de la présente invention, on entend par « partie substantielle », une partie largement majoritaire de la surface des films
150, 160, typiquement supérieure à au moins 90% de cette surface, le reliquat des films 150, 160 qui ne sont pas en contact mutuel étant dû à la présence d'un résidu de molécules de gaz à très faible pression restant présentes dans les compartiments 158.
Au contraire, lorsque des potentiels de même polarité sont appliqués entre les films 150, 160, d'une part, et d'autre part, des potentiels de polarités opposées sont appliqués respectivement entre chacun des films 150, 160, et la paroi 110, 120 placée en regard, comme on le voit sur la figure 5, les films 150, 160, sont respectivement en contact avec l'une des parois 110, 120. Par conséquent les films 150, 160 sont séparés entre eux sur toute leur surface, à la seule exception de la zone de pincement commune au niveau des entretoises 140. Les films 150, 160 sont alors séparés par une couche d'air à très faible pression, et sont placés dans une position d'isolation thermique.
Dans cet état la pression dans les compartiments 158 entre les films 150, 160, est inférieure à la pression qui règne dans les sous chambres 104a et 104b situées sur l'extérieur des films 150, 160, de préférence inférieure à lPa, soit typiquement comprise entre 10"3 et 10"4 Pascals.
Les tensions appliquées sur le dispositif répondent à la relation
V/e = 3,4.105(p/sr)1/2, relation dans laquelle :
V désigne le potentiel électrique,
e désigne l'écartement initial entre les faces externes des films souples déformables 150, 160, et la surface en regard des plaques 110, 120, p représente la pression interne dans la chambre 104, et
sr représente la permittivité du milieu remplissant la chambre 104.
Les parois 110, 120, composant le panneau 100 peuvent faire l'objet de nombreuses variantes de réalisation.
Les parois 110, 120, peuvent être rigides. En variante, elles peuvent être souples. Dans ce cas, le panneau 100 peut être enroulé, ce qui facilite son transport et son stockage.
Les parois 110, 120 peuvent être au moins partiellement électriquement conductrices pour permettre l'application d'un champ électrique générant les forces électrostatiques requises pour la commutation d'états des films 150, 160.
Les parois 110, 120 peuvent être réalisées en métal .
Elles peuvent également être réalisées en un matériau composite, par exemple sous forme d'une couche électriquement isolante associée à une couche électriquement conductrice (métal ou matériau chargé de particules électriquement conductrices).
De même, les films souples 150, 160 sont au moins partiellement électriquement conducteurs pour permettre l'application du champ électrique requis par la génération des forces électrostatiques précitées.
Typiquement, les films souples 150, 160 sont formés d'une feuille de métal souple ou à base de matériau thermoplastique ou équivalent, chargé de particules électriquement conductrices.
Comme on le voit sur la figure 6, de préférence, les films souples 150, 160, sont formés chacun d'une âme 152, 162, électriquement conductrice revêtue sur chacune de ses faces d'un revêtement en matériau électriquement isolant 154, 156, 164, 166 (par exemple un matériau thermoplastique).
On notera que dans le cadre de la présente invention, il est nécessaire de prévoir une isolation électrique entre les films 150, 160, d'une part, et entre chacun des films 150, 160 et les parois 110, 120 d'autre part, pour éviter un court-circuit entre ces éléments lors d'application des tensions successives entre ces éléments.
Les couches électriquement isolantes 154, 156 et 164, 166, illustrées sur la figure 6 remplissent cette fonction d'isolation électrique. Cette fonction peut être assurée en variante par des moyens similaires prévus sur les parois 110, 120, au moins pour l'isolation électrique requise entre les parois 110, 120 et les films souples 150, 160.
On a représenté sur la figure 7, un agencement modulaire de plusieurs panneaux 100 conforme à la présente invention juxtaposés côte à côte par leur chant. Comme on le voit sur la figure 7 de préférence il est prévu, pour assurer une parfaite continuité d'isolation, des éléments de recouvrement 106 intégrés dans les parois 110, 120 d'un panneau 100 et adaptés pour chevaucher le panneau adjacent. En variante de tels éléments de recouvrement 106 pourraient être prévus sur des éléments rapportés au niveau des zones de jonction entre deux de tels panneaux 100 adjacents.
On a représenté également sur la figure 8, une combinaison de plusieurs panneaux conformes à la présente invention empilés pour renforcer l'isolation thermique. Bien entendu la présente invention n'est pas limitée aux modes de réalisation particuliers qui viennent d'être décrits mais s'étend à toute variante conforme à son esprit.
Le dispositif conforme à la présente invention offre une bonne isolation thermique en raison du vide régnant dans la chambre 104 et de la dépression régnant dans les compartiments 158 entre les films 150 et 160, en position séparée de ceux-ci.
Il est prévu de préférence des moyens 190 permettant d'entretenir le vide au sein de la chambre 104 (par exemple à base de pompes mises en service séquentiellement ou automatiquement ou encore de produits absorbeurs de gaz comme indiqué précédemment).
Par rapport à certains dispositifs connus de l'état de la technique, l'utilisation de deux films 150, 160, thermiquement isolants permet de renforcer l'effet de barrière thermique, c'est-à-dire de réduire la conductivité thermique.
Le dispositif conforme à la présente invention autorise une réalisation sous forme de faible épaisseur globale compatible avec une isolation intérieure. Typiquement, le dispositif conforme à la présente invention présente une épaisseur maximale de quelques millimètres.
L'homme de l'art comprendra que la présente invention permet de développer un système pilotable d'isolation sous vide de très faible épaisseur qui présente par conséquent une très grande performance thermique.
De préférence, les films 150, 160, sont choisis en un matériau peu émissif dans l'infrarouge ou encore traité pour être peu émissif dans l'infrarouge. Ainsi les films 150, 160 ont un coefficient d'émission (défini comme étant le rapport entre l'émission desdits films et l'émission d'un corps noir) inférieur à 0,1 pour les longueurs d'onde supérieures à 0,78pm.
Le pilotage du champ électrique appliqué entre les films 150,
160, et entre les films 150, 160 et les parois 110, 120, permet soit de maintenir les films en contact mutuel ou en très faible écartement, comme illustré sur la figure 4, rendant le système relativement conducteur thermique, soit de séparer les films 150, 160 rendant ainsi le système thermiquement isolant comme illustré sur la figure 5.
Le dispositif conforme à la présente invention permet ainsi par exemple de récupérer par l'état de conduction thermique les apports solaires de parois exposées en hiver ou de refroidir des murs en été quand la fraîcheur extérieure le permet, en le plaçant dans l'état illustré sur la figure 4.
Selon une variante, l'ensemble des composants du dispositif, c'est-à-dire, parois 110, 120 et films 150, 160 peuvent être optiquement transparents dans le domaine visible (0,4-0, 8pm). Le dispositif conforme à la présente invention peut ainsi être appliqué sur des parois transparentes, par exemple devant un capteur solaire.
On notera en particulier que tous les dispositifs conformes à l'état de la technique utilisant des matériaux de coeur, n'autorisent pas une telle propriété de transparence optique.
Les panneaux d'isolation thermique conformes à la présente invention peuvent également jouer un rôle de décoration.
Si l'on applique le dispositif conforme à la présente invention aux parois déperditives d'un bâtiment, on peut moduler l'isolation afin d'optimiser la récupération des apports externes (solaire en hiver, fraîcheur en été). On a alors contrairement aux concepts existant actuellement de chauffage ou de climatisation, où l'installation intérieure rattrape les pertes ou les gains de chaleur au travers de l'enveloppe, un système qui gère cette perte ou gain de chaleur pour conserver les conditions de confort intérieur souhaitées. Un tel pilotage peut bien entendu être opéré automatiquement à partir de sondes thermiques appropriées.
La présente invention contribue également à maîtriser totalement l'inertie thermique des parois des bâtiments dans des limites jusque là jamais atteintes.
Bien entendu, la présente invention n'est pas limitée à l'application particulière précédemment évoquée d'isolation des bâtiments. La présente invention qui conduit à une excellente isolation électrique indépendante de l'épaisseur du dispositif et autorisant une épaisseur extrêmement petite permet d'appliquer la présente invention dans un grand nombre de domaines techniques.
La présente invention peut en particulier s'appliquer à des vêtements ou toute autre problématique industrielle demandant une isolation thermique.
Comme indiqué précédemment la présente invention n'est pas limitée à la présence de deux films 150, 160 au sein de la chambre 104. On a illustré sur les figures 9 et 10 une variante de réalisation selon laquelle il est ainsi prévu trois films adjacents 150, 160 et 170 à mi- distance entre les parois 110, 120.
Lorsque les potentiels appliqués entre chaque paire de films adjacents 150, 160 et 170 sont alternativement opposées et par ailleurs les potentiels appliqués sur les films les plus externes 150, 170 sont identiques aux parois placées respectivement en regard 110, 120, les films sont en contact mutuel sur une partie substantielle de leur surface comme illustré sur la figure 9 et le dispositif est dans un état de relative conduction thermique.
En revanche lorsque les potentiels appliqués sur les films 150, 160 et 170 sont identiques et opposés aux parois respectivement en regard 110, 120, les films 150, 160 et 170 sont séparés entre eux par une lame d'air. Les films externes 150, 170 sont plaqués contre les parois 110, 120, en position séparée du ou des film(s) central(ux) 160. Le dispositif est alors dans une position d'isolation thermique résultant de la séparation entre les films.

Claims

REVENDICATIONS
1. Dispositif d'isolation thermique, notamment pour bâtiments, caractérisé par le fait qu'il comprend au moins un panneau (100) comportant deux parois (110, 120) séparées par une entretoise principale périphérique (102) pour définir une chambre étanche au gaz (104), en dépression, et au moins deux films souples (150, 160) disposés dans ladite chambre (104), fixés localement à des entretoises secondaires (140) en des points intermédiaires entre les deux parois (110, 120) et définissant entre eux des compartiments secondaires étanches (158), de sorte que par application de potentiels successifs de polarité choisie entre les parois (110,120) et les films souples (150, 160), les films souples (150,160) soient déplacés entre une première position d'isolation thermique dans laquelle les films (150, 160) placés à un même potentiel électrique de polarité opposée au potentiel électrique des parois (110, 120), sont séparés entre eux et en contact avec les parois (110, 120), la pression dans les compartiments secondaires (158) définis entre les films (150, 160) étant inférieure à la pression régnant dans la chambre (104) à l'extérieur des compartiments (158) et une deuxième position dans laquelle les films (150, 160) sont séparés des parois (110, 120) et en contact mutuel au moins sur une partie substantielle de leur surface, ladite deuxième position présentant des propriétés d'isolation thermique inférieures à la première position.
2. Dispositif selon la revendication 1, caractérisé par le fait que dans la deuxième position, les paires de films adjacents (150, 160) reçoivent des potentiels opposés, de préférence respectivement identiques aux parois (110, 120) en regard des films externes.
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé par le fait qu'il comprend au moins trois films souples (150, 160, 170) dans la chambre étanche (104).
4. Dispositif selon l'une des revendications 1 à 3, caractérisé par le fait que les parois (110, 120) sont souples.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé par le fait que les parois (110, 120) sont choisies dans le groupe suivant : des parois en métal, des parois en matériau composite, typiquement une couche électriquement isolante et une couche électriquement conductrice, par exemple à base de métal ou chargée en particules électriquement conductrices, des parois (110, 120) dont la face interne est revêtue d'un matériau électriquement isolant..
6. Dispositif selon l'une des revendications 1 à 5, caractérisé par le fait que les films souples (150, 160) sont choisis dans le groupe suivant : des films en métal, des films souples réalisés à base de matériau thermoplastique chargé de particules électriquement conductrices, des films souples revêtus d'un revêtement (154, 156, 164, 166) électriquement isolant.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé par le fait que la pression interne de la chambre (104) est comprise entre 1
Pa et lOOOPa, très avantageusement de l'ordre de lOPa.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé par le fait que la pression entre les deux films (150, 160) est inférieure à la pression qui règne dans les sous chambres (104a et 104b) situées sur l'extérieur des films (150, 160), de préférence inférieure à lPa, soit typiquement comprise entre 10"3 et 10"4 Pascals.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé par le fait que les parois (110, 120) et/ou les films (150, 160) sont réalisés en un matériau peu émissif dans l'infrarouge ou traités pour être peu émissif dans l'infrarouge et présentant de préférence un coefficient d'émission inférieur à 0,1 dans l'infrarouge.
10. Dispositif selon l'une des revendications 1 à 9, caractérisé par le fait que les parois (110, 120) et les films souples (150, 160) sont optiquement transparents dans le visible.
EP13728722.3A 2012-06-12 2013-06-11 Panneau isolant thermique Active EP2859158B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255497A FR2991698B1 (fr) 2012-06-12 2012-06-12 Panneau isolant thermique
PCT/EP2013/062054 WO2013186225A1 (fr) 2012-06-12 2013-06-11 Panneau isolant thermique

Publications (2)

Publication Number Publication Date
EP2859158A1 true EP2859158A1 (fr) 2015-04-15
EP2859158B1 EP2859158B1 (fr) 2016-04-27

Family

ID=46826718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13728722.3A Active EP2859158B1 (fr) 2012-06-12 2013-06-11 Panneau isolant thermique

Country Status (6)

Country Link
US (1) US9481996B2 (fr)
EP (1) EP2859158B1 (fr)
JP (1) JP6009663B2 (fr)
FR (1) FR2991698B1 (fr)
RU (1) RU2585772C1 (fr)
WO (1) WO2013186225A1 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9071907B2 (en) 2012-04-02 2015-06-30 Whirpool Corporation Vacuum insulated structure tubular cabinet construction
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10100520B2 (en) 2014-09-30 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. Panel unit
DE102015008123A1 (de) * 2014-11-25 2016-05-25 Liebherr-Hausgeräte Lienz Gmbh Vakuumdämmkörper
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US20170159996A1 (en) * 2015-12-08 2017-06-08 Whirlpool Corporation Vacuum insulation structures with a filler insulator
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
EP3387351B1 (fr) 2015-12-09 2021-10-13 Whirlpool Corporation Structures d'isolation sous vide avec isolants multiples
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
EP3443284B1 (fr) 2016-04-15 2020-11-18 Whirlpool Corporation Structure de réfrigérateur à isolation sous vide, dotée de caractéristiques tridimensionnelles
WO2017180147A1 (fr) 2016-04-15 2017-10-19 Whirlpool Corporation Armoire de réfrigérateur à isolation sous vide
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
EP3500804B1 (fr) 2016-08-18 2022-06-22 Whirlpool Corporation Armoire de réfrigérateur
CN107542187A (zh) * 2016-09-27 2018-01-05 河南众联云科工程技术有限公司 移动房屋用模块化降噪墙体
WO2018101954A1 (fr) 2016-12-02 2018-06-07 Whirlpool Corporation Ensemble support de charnière
US10352613B2 (en) 2016-12-05 2019-07-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
EP3559571A4 (fr) * 2016-12-23 2020-08-26 Whirlpool Corporation Structures isolées sous vide ayant des structures de chambre interne
EP3559570B1 (fr) 2016-12-23 2023-04-19 Whirlpool Corporation Panneau isolé sous vide pour neutraliser des déformations induites par un arc sous vide
US11060804B2 (en) 2017-02-15 2021-07-13 Panasonic Intellectual Property Management Co., Ltd. Thermal rectifier and thermal rectification unit
US20180230736A1 (en) * 2017-02-16 2018-08-16 Charles Richard Treadwell Mechanical locking mechanism for hollow metal doors
EP3604886A4 (fr) * 2017-03-31 2020-03-18 Panasonic Intellectual Property Management Co., Ltd. Unité de commutation de conductivité thermique
DE102017107684A1 (de) * 2017-04-10 2018-10-11 Ensinger Gmbh Isolierprofil, insbesondere für die Herstellung von Fenster-, Türen- und Fassadenelementen, sowie Verfahren zu seiner Herstellung
CN109974514B (zh) * 2017-12-28 2020-08-11 清华大学 热三极管及热路
CN109980079B (zh) * 2017-12-28 2021-02-26 清华大学 热三极管及热路
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
KR101978605B1 (ko) * 2018-08-02 2019-05-14 공주대학교 산학협력단 절판 구조를 이용한 진공 단열 패널
ES2708400B2 (es) * 2019-02-06 2019-10-29 Kuhamisha Tech S L Panel de aislamiento de vacío continuo flexible
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
CN109779177B (zh) * 2019-03-01 2020-11-13 江苏久诺建材科技股份有限公司 一种装饰保温板
US11614229B2 (en) * 2019-03-14 2023-03-28 Jason Earl Dock Water vapor insulation system
JPWO2021153389A1 (fr) * 2020-01-31 2021-08-05
US12070924B2 (en) 2020-07-27 2024-08-27 Whirlpool Corporation Appliance liner having natural fibers

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671441A (en) 1948-09-10 1954-03-09 Clyde W Harris Variable heat insulating apparatus and solar heating system comprising same
US3167159A (en) 1959-07-30 1965-01-26 Gen Electric Insulating structures with variable thermal conductivity and method of evacuation
DE1158015C2 (de) 1961-08-18 1964-06-04 Nikolaus Laing Vorrichtung zur AEnderung der Durchlaessigkeit einer Wandung fuer elektromagnetische Strahlung
US3463224A (en) 1966-10-24 1969-08-26 Trw Inc Thermal heat switch
US3920953A (en) 1969-01-08 1975-11-18 Nikolaus Laing Building plates with controllable heat insulation
CA950627A (en) 1970-05-29 1974-07-09 Theodore Xenophou System of using vacuum for controlling heat transfer in building structures, motor vehicles and the like
US3734172A (en) 1972-01-03 1973-05-22 Trw Inc Electrostatic control method and apparatus
US5318108A (en) 1988-04-15 1994-06-07 Midwest Research Institute Gas-controlled dynamic vacuum insulation with gas gate
US5014481A (en) * 1989-03-13 1991-05-14 Moe Michael K Panel configurable for selective insulation or heat transmission
DE4300839A1 (de) 1993-01-14 1994-08-04 Michael Klier Schaltbare Wärmebrücke zur Energiegewinnung bzw. -einsparung
DE19647567C2 (de) 1996-11-18 1999-07-01 Zae Bayern Vakuumwärmedämmpaneel
WO2003054456A1 (fr) * 2001-12-11 2003-07-03 Sager Ag Isolation thermique commutable
RU2324037C2 (ru) * 2005-12-15 2008-05-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный строительный университет Вакуумный строительный блок и способ его изготовления
DE102006028956A1 (de) * 2006-06-23 2008-01-24 Airbus Deutschland Gmbh Flugzeugseitenverkleidung
DE102007035851A1 (de) * 2007-01-13 2008-08-14 Vacuum Walls Ag Vakuum-Isolationspaneel und Herstellungsverfahren dafür
GB0810670D0 (en) * 2008-06-11 2008-07-16 Airbus Uk Ltd Apparatus for providing variable thermal insulation for an aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013186225A1 *

Also Published As

Publication number Publication date
US9481996B2 (en) 2016-11-01
EP2859158B1 (fr) 2016-04-27
FR2991698A1 (fr) 2013-12-13
FR2991698B1 (fr) 2014-07-04
JP6009663B2 (ja) 2016-10-19
US20150152635A1 (en) 2015-06-04
JP2015528863A (ja) 2015-10-01
RU2585772C1 (ru) 2016-06-10
WO2013186225A1 (fr) 2013-12-19

Similar Documents

Publication Publication Date Title
EP2859158B1 (fr) Panneau isolant thermique
EP2859157B1 (fr) Dispositif d'isolation thermique
FR3040210B1 (fr) Ensemble modulaire pour stockeur ou batterie
EP0004242A1 (fr) Concentrateur de rayonnement solaire
WO2011148115A1 (fr) Structure multicouches elastique a alveoles avec trous
FR3034592A1 (fr) Panneau solaire photovoltaique et thermique
FR3040211A1 (fr) Ensemble et panneau articule, pour une isolation thermique
CA2012886C (fr) Fenetre chauffante
FR2908261A1 (fr) "panneau chauffant etanche et unidirectionnel pour radiateur electrique et radiateur electrique incluant un tel panneau"
EP1220346A1 (fr) Element de base composite et son joint pour pile à combustible et procédé de fabrication de l'ensemble
EP2366845B1 (fr) Procédé d'isolation thermique active et dispositif pour la mise en oeuvre du procédé
WO2011148114A1 (fr) Structure multicouches a alveoles avec depot metallique
EP3338020B1 (fr) Ensemble et panneau articulé, a portions intermédiaires de positionnement, pour une isolation thermique
FR3047550B1 (fr) Panneau solaire
EP1496320A1 (fr) Capteur thermique solaire plan de faible épaisseur
FR3108130A1 (fr) Mur trombe presentant une paroi de stockage thermique et une couverture transparente
EP3375033B1 (fr) Separateur bipolaire pour pile a combustible
FR2481785A1 (fr) Surfaces pour capteur solaire
FR3026046B1 (fr) Ecran sous-toiture
EP2720252B1 (fr) Detecteur courbe de particules gazeux
WO2014177474A1 (fr) Dispositif de chauffage et/ou de rafraichissement a paroi ayant un capteur thermique solaire et un element de stockage d'energie thermique
FR3005813A1 (fr) Panneau solaire hybride
CA2810532A1 (fr) Electrolyseur a haute temperature (eht) a surete de fonctionnement amelioree
EP0324702A1 (fr) Matériau isolant et emballage protecteur isothermique réalisé à partir d'un tel matériau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013007085

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E04B0001740000

Ipc: E04B0001760000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/74 20060101ALI20151103BHEP

Ipc: F28F 13/00 20060101ALI20151103BHEP

Ipc: E04B 1/76 20060101AFI20151103BHEP

Ipc: E04B 1/80 20060101ALI20151103BHEP

Ipc: E04C 2/34 20060101ALI20151103BHEP

INTG Intention to grant announced

Effective date: 20151123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 794991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013007085

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 794991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013007085

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160611

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130611

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160611

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190515

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240626

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240613

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240515

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240606

Year of fee payment: 12