EP2856146A1 - Messgerät und verfahren zum erfassen des kohlenwasserstoffanteils in gasen unter berücksichtigung von querempfindlichkeiten - Google Patents

Messgerät und verfahren zum erfassen des kohlenwasserstoffanteils in gasen unter berücksichtigung von querempfindlichkeiten

Info

Publication number
EP2856146A1
EP2856146A1 EP13729277.7A EP13729277A EP2856146A1 EP 2856146 A1 EP2856146 A1 EP 2856146A1 EP 13729277 A EP13729277 A EP 13729277A EP 2856146 A1 EP2856146 A1 EP 2856146A1
Authority
EP
European Patent Office
Prior art keywords
content
measuring
gas
gas stream
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13729277.7A
Other languages
English (en)
French (fr)
Inventor
Martin Friedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beko Technologies GmbH
Original Assignee
Beko Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beko Technologies GmbH filed Critical Beko Technologies GmbH
Publication of EP2856146A1 publication Critical patent/EP2856146A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0042SO2 or SO3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0059Avoiding interference of a gas with the gas to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4975Physical analysis of biological material of gaseous biological material, e.g. breath other than oxygen, carbon dioxide or alcohol, e.g. organic vapours
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0063General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a measuring device and a method for determining a measured value in a gas stream taking into account cross-sensitivities of the measuring device due to at least one further constituent in the gas stream which disturbs the measured gas.
  • the cross-sensitivity represents the sensitivity of a measuring device to variables other than the measured variable or the measured value, ie the quantity to be measured.
  • a variable that is not a measurable variable but influences the information about the measured value supplied by the measuring device is called influencing variable. It causes the measured value to change simply because the influencing variable changes.
  • Important factors include temperature, humidity, air pressure, electric field or magnetic field.
  • the object of the invention is to provide a measuring device and a method for determining a measured value in a gas stream which at least substantially largely eliminates interfering cross-sensitivities of the measuring device due to at least one further ingredient influencing the measured gas value.
  • the meter should be simple and have a low susceptibility to errors.
  • the object is achieved by a measuring device for determining a measured value in a gas stream taking into account cross-sensitivities of the measuring device due to at least one further constituent disturbing the measured value of the measuring gas in the gas stream which has
  • a device for dividing a source gas stream to be measured into a first sample gas stream and a second sample gas stream
  • a sensor element with a sensor for determining the measured value
  • the sensor element is alternately supplied with the first sample gas stream or the modified second sample gas stream for determining a first intermediate measured value in the first sample gas stream and for determining an intermediate measured value in the second sample gas stream
  • the evaluation unit calculates the final measured value on the basis of the two intermediate measurement results.
  • the object is achieved by a method for determining a content of a measurement gas in a gas stream taking into account cross-sensitivities of the measuring device due to at least one further content of the measurement gas disturbing further ingredient in the gas stream, which is characterized by the method steps,
  • the original gas stream to be measured is divided into a first sample gas stream and a second sample gas stream.
  • the splitting of the original gas stream can be done by an actual physical splitting, for example by means of a separator, alternatively, the source gas stream, for example by means of valves alternately supplied to the sensor element.
  • the invention is based on the assumption that there are two gases in the original gas stream which influence the final measured value via their cross-sensitivity. If, for example, the content of the first gas in the original gas stream is to be determined, the presence of the second gas influences the final measured value, this represents the interfering further ingredient.
  • the invention is based on the idea of first dividing the source gas stream into two sample gas streams and influencing one of the sample gas streams by changing an influencing variable influencing the content of the sample gas.
  • two measurements can be performed with only one sensor element, which leads to different results.
  • the change of the second measuring gas flow is known, for example the measuring gas is reduced or completely removed, the real measured value can be calculated from the two intermediate measured values.
  • the invention is particularly suitable for a measuring device for the determination of sulfur dioxide (SO 2 ) in a measuring gas in which nitrogen dioxide (NO 2 ) is also contained.
  • a sulfur dioxide sensor has a strong cross-sensitivity to nitrogen dioxide. It is particularly difficult that the sensor for both gases in about the same amount of sensitivity, but the output at Nitrogen dioxide is negative. If the same proportion of sulfur dioxide and nitrogen dioxide is present in the sample gas, the output signal is approximately 0.
  • Sulfur dioxide dissolves almost completely in water and is practically completely removed after passing through a moistening element, preferably in conjunction with a membrane, for example a hollow fiber bundle (membrane moistener), which is lapped with water.
  • a moistening element preferably in conjunction with a membrane, for example a hollow fiber bundle (membrane moistener), which is lapped with water.
  • Nitrogen dioxide on the other hand, does not dissolve in water, so it is still completely present at the outlet of the humidifying element.
  • the first sample gas stream is fed directly to the sensor element, the second sample gas stream only after passing through the moistening element.
  • One important advantage of the invention is, inter alia, that assuming that, apart from nitrogen dioxide, no further gases are present in the measurement gas, to which the sulfur dioxide sensor has a cross-sensitivity, the sulfur dioxide sensor can also be used as a nitrogen dioxide sensor or measuring cell can. This results in a significant reduction in costs and maintenance over the life of the meter.
  • the gas humidification by means of the membrane humidifier with hollow fiber membranes is particularly advantageous for the field of respiratory gas measurement.
  • One Such membrane humidifier is inexpensive to produce and works very reliably over long lifetimes. Added to this is its low specific weight.
  • the hollow fiber bundle is advantageously lapped with water that softens, for example, via a mixed-bed cartridge before it enters the membrane humidifier in order to avoid lime deposits in the membrane humidifier.
  • the water supply can be cyclically released, for example, every hour for about 10 seconds.
  • the wastewater is discharged into the sewage system.
  • the moistening takes place according to the invention at about 2 bar overpressure.
  • the moisture at the outlet is almost 100% relative humidity at 2 bar overpressure.
  • a relative humidity of approx. 40% relative humidity is established.
  • the measuring device can be calibrated by means of at least one, preferably two reference gases, which are provided via external compressed gas cylinders. It is both a slope correction, an offset correction, as well as a combined slope and offset correction possible.
  • the sample gas is switched off via valves and simultaneously switched over to one of the reference gases, which act as calibration gases.
  • the others During the calibration process it is thus possible to switch between humidified and dry reference gas.
  • the sensor element has further sensors with which, for example, in addition to the content of nitrogen dioxide and sulfur dioxide, the content of carbon monoxide, nitrogen monoxide, carbon dioxide and oxygen can be determined. Also for these sensors, the possibility can be provided to calibrate them with reference gas.
  • the carbon dioxide sensor has a low moisture dependency. Therefore, this sensor is operated according to the invention only with dry sample gas. In contrast, the electrochemical gas sensors must not only be operated with dry air, otherwise the electrolyte will dry out. The carbon monoxide, the Nitrogen dioxide and oxygen sensors are therefore always operated with humidified air. Since these gases do not dissolve in water, the measured value is not distorted by the humidification.
  • Sulfur dioxide dissolves in water and is therefore almost completely absorbed by the gas as it passes through the humidifying element. Therefore, valves are cyclically switched between dry and humidified sample gas. On average, in this embodiment, the sensor element reaches a measured value of about 20% relative humidity, which is sufficient to prevent the cells from drying out over the operating period.
  • an oxygen volume calculation takes place, the partial pressure dependence being corrected by the measured ambient pressure. This additionally improves the measuring accuracy, since the output signal of the measuring cell (current signal) is a function of the 02 partial pressure.
  • the moisture dependency of the oxygen volume calculation (vol%) is compensated by the measured ambient humidity. This also improves the measurement accuracy, since the output signal of the oxygen measuring cell (current signal) has a relatively significant dependence on the relative gas humidity.
  • the meter has an amperiometric, lead-free oxygen measuring cell, which has a very long life expectancy.
  • the commonly used sensor element is, in principle, a lead-air galvanic cell in which the lead electrode is consumed by the measurement of the oxygen.
  • the life expectancy of the lead cell is strongly dependent on the partial pressure of oxygen and the temperature, as well as on the storage time and the storage conditions (storage under exclusion of air).
  • the amperiometric measuring cell does not have these disadvantages, the cell is not consumed because the electrolyte is restored by the reaction at the counter electrode.
  • a carbon dioxide volume calculation takes place in which the partial pressure dependence is corrected by the measured ambient pressure.
  • the operating principle of the carbon dioxide sensor is an optical one NDIR measuring method.
  • the absorption of the I R light depends on the density of the gas (ie the partial pressure).
  • the TCO Temporal Compensation Offset
  • the TCO Temporal Compensation Offset of the amperiometric measuring cells (except for the oxygen measurement) is corrected by a fourth electrode. Only by optimizing the measuring cell and measuring the zero level in the electrolyte can it be possible to achieve the required measuring accuracy.
  • the TCG (Temperature Compensation Gain) of the amperiometric measuring cells is calibrated in the application temperature range. This is done by measuring or calibrating the gas concentration in the range of the limit values at several different temperatures and mathematical correction.
  • a correction value can be determined in relation to the factory calibration. About the amount of the correction value can make a statement about the aging of the measuring cell and initiate a service request. By this method, it is possible to detect the aging state of the cell. Despite the aging and the reduced sensitivity, correct values are measured again after calibration of the slope. Thus, it is possible to optimize the maintenance intervals.
  • a self-test of the device is carried out.
  • the self-test checks all gas paths and volume flows. This is an important feature to increase the reliability of the device. In the case of a sealed gas path, the measuring cells would not give an alarm when the limit values were exceeded and the error would not be detected.
  • the humidification is permanently monitored. If the humidification fails, the gas paths are shut off to protect the measuring cells, which otherwise would dry out after a few hours of dry operation. Also by this measure, the reliability of the device is increased because a dried measuring cell provides a zero signal and thus the safe alarm would not be guaranteed. In addition, dry operation would cause considerable damage.
  • operation via a water tank is possible in order to be independent of an external water supply. The water level in the tank is ideally monitored and a low level service request is made. This possibility of water supply, the customer has lower installation costs, if there is no water supply in the vicinity of the device.
  • the service intervals are also monitored according to the invention and a service request is signaled to the outside. For reasons of operational safety, regular maintenance is indispensable.
  • the automatic monitoring of the service interval prevents failure of the device due to forgotten maintenance.
  • the measuring range up to -60C td, f is guaranteed.
  • the polymer sensor can only guarantee reliable measurement results up to about -40 C td, f. Especially at high operating temperatures, the measurement accuracy of a polymer sensor is not sufficient.
  • the meter has an internal data logger for recording the measurement data.
  • an internal event logger for recording events is installed. This feature enables analysis of hidden errors or occurred errors between service intervals.
  • FIG. 1 shows a first simplified functional representation of a measuring device according to the invention
  • FIG. 1 shows a schematic representation of the essential elements of a measuring device 20 according to the invention.
  • This device has a sensor element 22 with various sensors.
  • a source gas stream 26 is divided by gas lines and by means of valves 27 into a first sample gas stream 38 and a second sample gas stream 39. In the embodiment shown, the distribution of the original gas stream takes place
  • the first sample gas stream 38 is fed directly to the sensor element 22, the second sample gas stream 39, however, first a humidification, preferably a membrane humidifier 28.
  • the membrane humidifier 28 has a water connection 30 and a water outlet 32. Subsequently, the humidified second gas stream 39 also reaches the sensor element 22 via a valve
  • the water supply can be cyclically released, for example, every hour for about 10 seconds.
  • the amount of water is about 100 ml.
  • the annual consumption is therefore only about 876 liters.
  • a not shown mixed bed cartridge is designed for this amount of water and relatively small with about 200 ml volume.
  • the sensor element comprises various sensors, including a sulfur dioxide sensor 34 (S02 sensor), a nitrogen monoxide sensor 36 (NO sensor), a nitrogen dioxide sensor 42 (N0 2 sensor), a carbon monoxide sensor 44 (CO sensor), an oxygen sensor (0 2 sensor) 46, a temperature sensor 48 and a carbon dioxide sensor 50 (C0 2 sensor).
  • a sulfur dioxide sensor 34 S02 sensor
  • NO sensor nitrogen monoxide sensor
  • N0 2 sensor nitrogen dioxide sensor 42
  • CO sensor carbon monoxide sensor 44
  • oxygen sensor (0 2 sensor) 46 a temperature sensor 48
  • C0 2 sensor 50 carbon dioxide sensor 50
  • the sulfur dioxide sensor 34 in contrast to the embodiment shown on the assumption that except nitrogen dioxide in the sample gas no other gases available are the, to which the sulfur dioxide sensor 34 has a cross sensitivity, the sulfur dioxide sensor 34 also determine the content of nitrogen, the nitrogen dioxide sensor 42 can then be omitted.
  • the nitrogen dioxide sensor 42 is more selective than the sulfur dioxide sensor 34 and has advantages in principle.
  • the selectivity is not absolutely necessary, so that the measured value of the sulfur dioxide sensor 34 humidified gas flow both for the nitrogen dioxide compensation of Sulfur dioxide measured value, as well as for the nitrogen dioxide measurement can be used.
  • the condition in this case is that the humidifying element removes all of the sulfur dioxide, otherwise the nitrogen dioxide reading would be falsified by the amount of residual sulfur dioxide. According to experimental results, this is the case.
  • the first sample gas stream 38 is fed to the sulfur dioxide sensor 34, the nitrogen monoxide sensor 36 and the carbon dioxide sensor 50.
  • the second sample gas stream 39 is supplied to the sulfur dioxide sensor 34, the nitrogen monoxide sensor 36, and the other sensors except for the carbon dioxide sensor 50.
  • the measuring device 20 can be calibrated by means of two reference gas streams 52, 54, which are provided via external compressed gas cylinders.
  • the measuring device 20 has a plurality of throttles 56.
  • FIG. 2 shows a second variant of the invention. This differs from the variant of FIG. 1 in that the sulfur dioxide sensor 34 and the nitrogen monoxide sensor 36 are operated in a dry / damp-timed manner,
  • the carbon dioxide measurement is performed separated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Die Erfindung betrifft ein Messgerät (20) zur Bestimmung eines Messwertes in einem Gasstrom unter Berücksichtigung von Querempfindlichkeiten der Messeinrichtung aufgrund mindestens eines den Messwert des Messgases störenden weiteren Inhaltsstoffes in dem Gasstrom. Das Messgerät weist auf - eine Vorrichtung zum Aufteilen eines zu messenden Ursprungsgasstroms (26) in einen ersten Messgasstrom (38) und einen zweiten Messgasstrom (39), - eine Vorrichtung zum Verändern des Gehalts an Messgas im zweiten Messgasstrom (39) durch Verändern einer den Gehalt des Messgases beeinflussenden Einflussgröße, - ein Sensorelement (22) mit einem Sensor zur Bestimmung des Messwertes, - eine Auswerteinheit zur Auswertung der Messwerte, wobei - dem Sensorelement (22) im Wechsel der erste Messgasstrom (38) oder der veränderte zweite Messgasstrom (39) zur Bestimmung eines ersten Zwischenmesswertes im ersten Messgasstrom (38) und zur Bestimmung eines Zwischenmesswertes im zweiten Messgasstrom (39), zugeführt wird, die Auswerteeinheit den endgültigen Messwert auf Basis der beiden Zwischenmessergebnisse berechnet. Weiterhin betrifft die Erfindung ein entsprechendes Verfahren zur Bestimmung eines Messwertes in einem Gasstrom.

Description

Bezeichnung:
MESSGERÄT UND VERFAHREN ZUM ERFASSEN DES KOHLENWASSERSTOFFANTEILS IN GASEN UNTER BERÜCKSICHTIGUNG VON QUEREMPFINDLICHKEITEN
Die vorliegende Erfindung betrifft ein Messgerät und ein Verfahren zur Bestimmung eines Messwertes in einem Gasstrom unter Berücksichtigung von Querempfindlichkeiten der Messeinrichtung aufgrund mindestens eines den Messwert des Messgases störenden weiteren Inhaltsstoffes in dem Gasstrom.
Die Querempfindlichkeit stellt die Empfindlichkeit eines Messgerätes auf andere Größen als die Messgröße bzw. des Messwertes dar, also die zu messende Größe. Eine Größe, die nicht Messgröße ist, jedoch die von der Messeinrichtung gelieferte Information über den Messwert beeinflusst, heißt Einflussgröße. Sie bewirkt, dass sich der Messwert allein schon dadurch ändert, dass sich die Einflussgröße ändert.
Zu einer Querempfindlichkeit trägt auch unvollständige Selektivität bei, wie sie zum Beispiel in Gassensoren vorkommt. Diese sprechen oft auch auf Konzentrationen anderer Gase an, als des zu detektierenden Gases.
Wichtige Einflussgrößen sind beispielsweise Temperatur, Feuchtigkeit, Luftdruck, elektrisches Feld oder magnetisches Feld.
Eine Möglichkeit zur Berücksichtigung von Querempfindlichkeiten bzw. zur Korrektur aufgrund von Querempfindlichkeiten verursachter Messfehler besteht darin, eine Vielzahl an Sensoren vorzusehen, die einzelne Messwerte getrennt voneinander zu ermitteln und dann die Messwerte zu vergleichen und zu korrigieren. Dies führt zu entsprechend kosten- und wartungsintensiven Messgeräten.
Die Aufgabe der Erfindung besteht darin, ein Messgerät und ein Verfahren zur Bestimmung eines Messwertes in einem Gasstrom zu schaffen, das störende Querempfindlichkeiten der Messeinrichtung aufgrund mindestens eines den Messwert des Messgases beinflussenden weiteren Inhaltsstoffes in dem Gasstrom zumindest weitgehend, möglichst aber vollständig eliminiert. Das Messgerät soll dabei einfach aufgebaut sein und eine geringe Fehleranfälligkeit aufweisen. Die Aufgabe wird durch ein Messgerät zur Bestimmung eines Messwertes in einem Gasstrom unter Berücksichtigung von Querempfindlichkeiten der Messeinrichtung aufgrund mindestens eines den Messwert des Messgases störenden weiteren Inhaltsstoffes in dem Gasstrom gelöst, das aufweist
eine Vorrichtung zum Aufteilen eines zu messenden Ursprungsgasstroms in einen ersten Messgasstrom und einen zweiten Messgasstrom,
eine Vorrichtung zum Verändern des Gehalts an Messgas im zweiten Messgasstrom durch Verändern einer den Gehalt des Messgases beeinflussenden Einflussgröße,
ein Sensorelement mit einem Sensor zur Bestimmung des Messwertes,
eine Auswerteinheit zur Auswertung der Messwerte,
wobei
dem Sensorelement im Wechsel der erste Messgasstrom oder der veränderte zweite Messgasstrom zur Bestimmung eines ersten Zwischenmesswertes im ersten Messgasstrom und zur Bestimmung eines Zwischenmesswertes im zweiten Messgasstrom, zugeführt wird,
die Auswerteeinheit den endgültigen Messwert auf Basis der beiden Zwischenmessergebnisse berechnet.
Weiterhin wird die Aufgabe durch ein Verfahren zur Bestimmung eines Gehalts eines Messgases in einem Gasstrom unter Berücksichtigung von Querempfindlichkeiten der Messeinrichtung aufgrund mindestens eines den Messwert des Messgases störenden weiteren Inhaltsstoffes in dem Gasstrom gelöst, das gekennzeichnet ist durch die Verfahrensschritte,
Aufteilen eines zu messenden Ursprungsgasstroms in mindestens einen ersten Messgasstrom und einen zweiten Messgasstrom, Verändern des Gehalts an Messgas im zweiten Messgasstrom durch Verändern einer den Gehalt des Messgases beeinflussenden Einflussgröße,
Wechselseitiges Zuführen des ersten Messgasstroms und des zweiten Messgastroms zu einem Sensor, Bestimmen eines ersten Zwischenmesswertes im ersten Messgasstrom, der die Summe des Gehalts an Messgas und des Gehalts an dem störenden weiteren Inhaltsstoff darstellt,
Bestimmen eines zweiten Zwischenmesswertes im zweiten Messgasstrom, der die Summe des Gehalts an Messgas und des Gehalts an dem störenden weiteren Inhaltsstoff darstellt,
Berechnen des endgültigen Messwertes auf Basis der beiden Zwischen messergebnisse.
Erfindungsgemäß wird der zu messende Ursprungsgasstrom in einen ersten Messgasstrom und einen zweiten Messgasstrom aufgeteilt. Das Aufteilen des Ursprungsgasstroms kann dabei durch ein tatsächliches physikalisches Aufteilen beispielsweise mittels eines Separators erfolgen, alternativ kann der Ursprungsgasstrom beispielsweise mit Hilfe von Ventilen wechselweise dem Sensorelement zugeführt werden.
Die Erfindung geht von der Annahme aus, dass in Ursprungsgasstrom zwei Gase vorhanden sind, die über ihre Querempfindlichkeit den endgültigen Messwert beeinflussen. Soll beispielsweise der Gehalt des ersten Gases in dem Ursprungsgasstrom bestimmt werden, beeinflusst das Vorhandensein des zweiten Gases den endgültigen Messwert, dieses stellt den störenden weiteren Inhaltsstoff dar.
Die Erfindung basiert auf der Idee, den Ursprungsgasstrom zunächst in zwei Messgasströme aufzuteilen und einen der Messgasströme durch Verändern einer den Gehalt des Messgases beeinflussenden Einflussgröße zu beeinflussen. Somit können mit nur einem Sensorelement zwei Messungen durchgeführt werden, die zu unterschiedlichen Ergebnissen führen. Ist aber die Veränderung des zweiten Messgastroms bekannt, wird beispiesweise das Messgas reduziert oder vollständig entfernt, kann aus den beiden Zwischenmesswerten der reale Messwert errechnet werden.
Die Erfindung eignet sich insbesondere für ein Messgerät zur Bestimmung von Schwefeldioxid (S02) in einem Messgas, in dem auch Stickstoffdioxid (N02) enthalten ist. Ein Schwefeldioxidsensor hat eine starke Querempfindlichkeit zu Stickstoffdioxid. Schwierig ist insbesondere, dass der Sensor für beide Gase in etwa denselben Betrag der Empfindlichkeit aufweist, aber das Ausgangssignal bei Stickstoffdioxid negativ ist. Liegt im Messgas also derselbe Anteil Schwefeldioxid und Stickstoffdioxid vor, so beträgt das Ausgangssignal in etwa 0.
Schwefeldioxid löst sich praktisch vollständig in Wasser und ist nach Durchtritt durch ein Befeuchtungselement, vorzugsweise in Verbindung mit einer Membran, beispielsweise einem mit Wasser umspülten Hohlfaserbündel (Membranbefeuchter), praktisch vollständig entfernt. Stickstoffdioxid löst sich hingegen nicht in Wasser, ist also am Austritt des Befeuchtungselement noch vollständig vorhanden.
Der erst Messgastrom wird erfindungsgemäß unmittelbar dem Sensorelement zugeführt, der zweite Messgasstrom erst nach Passieren des Befeuchtungselementes. Durch Umschalten zwischen dem trockenen ersten Messgasstrom und dem befeuchteten zweiten Messgasstrom erhält man also zwei unterschiedliche Messwerte:
1. Bei trockenem Messgas den Summenwert Schwefeldioxid zusammen mit Stickstoffdioxid (erster Zwischenmesswert), wobei Stickstoffdioxid mit negativem Vorzeichen in den Summenwert eingeht.
2. Bei feuchtem Gas nur den Wert der Querempfindlichkeit zu anderen Gasen außer Schwefeldioxid (typischerweise Stickstoffdioxid, zweiter Zwischenmesswert))
Subtrahiert man nun vom erster Zwischenmesswert den zweiten Zwischenmesswert (mit Vorzeichen, also quasi eine Addition) so erhält man den tatsächlichen endgültigen Messwert für den Schwefeldioxid-Gehalt im Messgas.
Ein wesentlicher Vorteil der Erfindung besteht unter anderem darin, dass unter der Annahme, dass außer Stickstoffdioxid im Messgas keine weiteren Gase vorhanden sind, zu denen der Schwefeldioxid-Sensor eine Querempfindlichkeit aufweist, der Schwefeldioxid-Sensor auch als Stickstoffdioxid-Sensor bzw. Messzelle genutzt werden kann. Es ergibt sich also eine signifikante Reduktion der Kosten und des Wartungsaufwandes über die Laufzeit des Messgerätes.
Die Gasbefeuchtung mittels des Membranbefeuchters mit Hohlfasermembranen ist insbesondere für den Bereich Atemgasmessung ausgesprochen vorteilhaft. Ein derartiger Membranbefeuchter ist kostengünstig herstellbar und funktioniert auch über lange Lebensdauern sehr zuverlässig. Hinzu kommt sein geringes spezifisches Gewicht.
Das Hohlfaserbündel ist vorteilhafterweise mit Wasser umspült, das vor dem Eintritt in den Membranbefeuchter beispielsweise über eine Mischbettkartusche enthärtet um Kalkablagerungen im Membranbefeuchter zu vermeiden.
Über ein Ventil kann der Wasserzulauf zyklisch, beispielsweise stündlich für ca. 10 Sekunden freigegeben werden. Das Abwasser wird in die Kanalisation geleitet.
Die Befeuchtung findet erfindungsgemäß bei ca. 2 bar Überdruck statt. Die Feuchte am Austritt beträgt nahezu 100 % relative Feuchte bei 2 bar Überdruck. Nach der Expansion auf Umgebungsdruck stellt sich eine relative Feuchte von ca. 40 % relative Feuchte ein.
Das Messgerät kann mittels mindestens einem, vorzugsweise zweier Referenzgasen, die über externe Druckgasflaschen bereit gestellt werden, kalibriert werden. Es ist sowohl eine Steigungskorrektur, eine Offsetkorrektur, als auch eine kombinierte Steigungs- und Offsetkorrektur möglich.
Zur Kalibrierung wird das Messgas über Ventile abgeschaltet und gleichzeitig auf eines der Referenzgase, die als Kalibriergase wirken, umgeschaltet. Die übrigen Während des Kalibriervorgangs kann somit zwischen befeuchtetem und trockenem Referenzgas umgeschaltet werden.
Bei einem bevorzugten erfindungsgemäßen Messgerät weist das Sensorelement weitere Sensoren auf, mit denen beispielsweise neben dem Gehalt an Stickstoffdioxid und Schwefeldioxid auch der Gehalt an Kohlenmonoxid, Stickstoffmonoxid, Kohlendioxid und Sauerstoff bestimmbar ist. Auch für diese Sensoren kann die Möglichkeit vorgesehen sein, sie mit Referenzgas zu kalibrieren.
Der Kohlendioxid Sensor hat eine geringe Feuchteabhängigkeit. Daher wird dieser Sensor erfindungsgemäß nur mit trockenem Messgas betrieben. Die elektrochemischen Gassensoren dürfen dagegen jedoch nicht nur mit trockener Luft betrieben werden, da der Elektrolyt sonst austrocknet. Der Kohlenmonoxid-, der Stickstoffdioxid- und Sauerstoff-Sensor werden daher immer mit befeuchteter Luft betrieben. Da sich diese Gase nicht in Wasser lösen, wird der Messwert durch die Befeuchtung nicht verfälscht.
Schwefeldioxid löst sich in Wasser und wird daher während dem Durchtritt durch das Befeuchtungselement nahezu vollständig aus dem Gas absorbiert. Daher wird Ventile zyklisch zwischen trockenem und befeuchtetem Messgas umgeschaltet. Im Durchschnitt erreicht das Sensorelement bei dieser Ausführungsvariante Messgad mit ca. 20 % relativer Feuchte, was ausreicht, um ein Austrocknen der Zellen über die Betriebsdauer zu verhindern.
Vorteilhafterweise erfolgt eine Sauerstoff- Volumenberechnung (Vol%), wobei die Partialdruckabhängigkeit durch den gemessenen Umgebungsdruck korrigiert wird. Dies verbessert zusätzlich die Messgenauigkeit, da das Ausgangssignal der Messzelle (Stromsignal) eine Funktion des 02 Partialdrucks ist.
Außerdem wird erfindungsgemäß die Feuchteabhängigkeit der Sauerstoff- Volumenberechnung (Vol%) durch die gemessene Umgebungsfeuchte kompensiert. Dies verbessert ebenfalls die Messgenauigkeit, da das Ausgangssignal der Sauerstoff Messzelle (Stromsignal) eine relativ signifikante Abhängigkeit zur relativen Gasfeuchte besitzt.
Vorteilhafterweise weist das Messgerät eine amperiometrische, bleifreie Sauerstoff-Messzelle auf, die eine ausgesprochen lange Lebenserwartung besitzt. Dies ergibt sich auch daraus, dass das üblicherweise verwendete Sensorelement im Prinzip eine galvanische Blei-Luft Zelle ist, bei der die Blei-Elektrode durch die Messung des Sauerstoffs verbraucht wird. Die Lebenserwartung der Bleizelle ist stark abhängig vom Sauerstoff-Partialdruck und von der Temperatur, sowie auch von der Lagerzeit und den Lagerbedingungen (Lagerung unter Luftabschluss). Die amperiometrische Messzelle besitzt diese Nachteile nicht, die Zelle verbraucht sich nicht, da der Elektrolyt durch die Reaktion an der Gegenelektrode wieder hergestellt wird.
Erfindungsgemäß erfolgt auch eine Kohlendioxid-Volumenberechnung (Vol%), bei der die Partialdruck Abhängigkeit durch den gemessenen Umgebungsdruck korrigiert wird. Das Funktionsprinzip des Kohlendioxidsensors ist ein optisches NDIR Messverfahren. Die Absorption des I R- Lichts ist abhängig von der Dichte des Gases (also vom Partialdruck). Durch Messung des Umgebungsdrucks wird die Messgenauigkeit zwischen den Kalibrierintervallen verbessert.
Bei der erfindungsgemäßen Offsetkorrektur wird der TCO (Temperatur Compensation Offset) der amperiometrischen Messzellen (außer bei der Sauerstoffmessung) durch eine vierte Elektrode korrigiert. Nur durch diese Optimierung der Messzelle und die Messung des Nullpegels im Elektrolyth ist es überhaupt möglich, die geforderte Messgenauigkeit zu erreichen.
Bei der erfindungsgemäßen Steigungskorrektur wird der TCG (Temperatur Compensation Gain) der amperiometrischen Messzellen im Anwendungs- Temperaturbereich kalibriert. Dies erfolgt durch Vermessen bzw. Kalibrieren der Gaskonzentration im Bereich der Grenzwerte bei mehreren verschiedenen Temperaturen und rechnerische Korrektur. Über die Kalibrierung der Steigung der Messzellen kann in Bezug zur Werkskalibrierung ein Korrekturwert ermittelt werden. Über den Betrag des Korrekturwerts kann eine Aussage zur Alterung der Messzelle getroffen und eine Serviceanforderung eingeleitet werden. Durch dieses Verfahren ist es möglich, den Alterungszustand der Zelle zu erkennen. Trotz der Alterung und die verringerte Empfindlichkeit werden nach der Kalibrierung der Steigung wieder korrekte Werte gemessen. Somit ist es möglich, die Wartungsintervalle zu optimieren.
Zyklisch wird ein Selbsttest des Gerätes ausgeführt. Es werden beim Selbsttest alle Gaswege und Volumenströme geprüft. Dies ist ein wichtiges Leistungsmerkmal, um die Zuverlässigkeit des Gerätes zu erhöhen. Im Fall eines verschlossenes Gasweges würden die Messzellen nämlich keinen Alarm bei Überschreitung der Grenzwerte abgeben und der Fehler würde nicht erkannt werden.
Vorteilhafterweise wird die Befeuchtung permanent überwacht. Bei Ausfall der Befeuchtung werden die Gaswege abgeschaltet, um die Messzellen zu schützen, diese ansonsten nach einigen Stunden trockenem Betrieb austrocknen würden. Auch durch diese Maßnahme wird die Zuverlässigkeit des Gerätes erhöht, da eine ausgetrocknete Messzelle ein Nullsignal liefert und damit die sichere Alarmgabe nicht gewährleistet sein würde. Zudem würde durch trockenen Betrieb ein beträchtlicher Schaden entstehen. Erfindungsgemäß ist ein Betrieb über einen Wassertank möglich, um von einer externen Wasserversorgung unabhängig zu sein. Der Wasserpegel im Tank wird idealerweise überwacht und bei Niedrigpegel erfolgt eine Serviceanforderung. Durch diese Möglichkeit der Wasserversorgung hat der Kunde geringere Installationskosten, sofern sich in der Nähe des Gerätes keine Wasserversorgung befindet.
Die Serviceintervalle werden erfindungsgemäß ebenfalls überwacht und eine Serviceanforderung nach außen signalisiert. Aus Gründen der Betriebssicherheit ist eine regelmäßige Wartung unabdingbar. Durch die automatische Überwachung des Serviceintervalls wird einem Ausfall des Gerätes durch vergessene Wartung vorgebeugt.
Vorteilhafterweise erfolgt eine Messung der Wasserdampf Massenkonzentration, in einer bevorzugten Ausführungsvariante über einen Aluminiumoxid Feuchtesensor, der die Messbereiche wesentlich besser auflöst als ein Polymer Feuchtesensor. Der Messbereich bis -60C td,f ist damit gewährleistet. Der Polymer-Sensor kann nur bis ca. -40 C td,f sichere Messergebnisse garantieren. Insbesondere bei hohen Einsatztemperaturen ist die Messgenauigkeit eines Polymer-Sensors nicht ausreichend.
Durch den zweiten Referenzgasanschluss ist erfindungsgemäß die Kalibrierung der Steigung der Messzellen und damit die Kompensation der Alterung möglich, was wiederum längere Wartungsintervalle zur Folge hat.
Vorteilhafterweise besitzt das Messgerät einen internen Datenlogger zur Aufzeichnung der Messdaten. Damit ist eine Archivierung der Historie im Gerät, unabhängig von externen Systemen möglich. In einer besondersvorteilhaften Ausführungsvariante ist ein interne Event-Logger zur Aufzeichnung von Ereignissen verbaut. Dieses Leistungsmerkmal ermöglicht Analysen über versteckte Fehler oder aufgetretene Fehler zwischen den Serviceintervallen.
Die Erfindung wird im Folgenden mit Bezug auf die beiliegenden Figuren näher erläutert. Dabei zeigen die Figuren lediglich eine vorteilhafte Ausführungsvariante in stark vereinfachter Prinzipdarstellung, die Erfindung soll keinesfalls auf diese beschränkt sein. Es zeigen:
Fig. 1: eine erste vereinfachte Funktionsdarstellung eines erfindungsgemäßen Messgeräts,
Fig. 2: eine zweite vereinfachte Funktionsdarstellung des erfindungsgemäßen Messgeräts,
Figur 1 zeigt in einer Prinzipdarstellung die wesentlichen Elemente eines erfindungsgemäßen Messgeräts 20. Dieses weist ein Sensorelement 22 mit verschiedenen Sensoren auf.
Ein Ursprungsgasstrom 26 wird über Gasleitungen und mit Hilfe von Ventilen 27 in einen ersten Messgasstrom 38 und einen zweiten Messgasstrom 39 aufgeteilt. Im gezeigten Ausführungsbeispiel erfolgt die Aufteilung des Ursprungsgastroms
26 über die Zeit, eine Aufteilung in zwei getrennte Volumenströme ist aber ebenfalls möglich.
Der erste Messgasstrom 38 wird dem Sensorelement 22 unmittelbar zugeführt, der zweite Messgasstrom 39 dagegen zunächst einem Befeuchtungselement, vorzugsweise einem Membranbefeuchter 28. Der Membranbefeuchter 28 weist einen Wasseranschluss 30 und einen Wasserablauf 32 auf. Anschließend gelangt auch der befeuchtete zweite Gasstrom 39 zum Sensorelement 22. Über ein Ventil
27 kann der Wasserzulauf zyklisch, beispielsweise stündlich für ca. 10 Sekunden freigegeben werden. Die Wassermenge beträgt ca. 100 ml. Der Jahresverbrauch beträgt somit nur ca. 876 Liter. Eine nicht gezeigte Mischbettkartusche ist auf diese Wassermenge ausgelegt und mit ca. 200 ml Volumen relativ klein.
Das Sensorelement weist verschiedene Sensoren auf, unter anderem einen Schwefeldioxidsensor 34 (S02-Sensor) , einen Stickstoffmonoxidsensor 36 (NO- Sensor), einen Stickstoffdioxidsensor 42 (N02-Sensor), einen Kohlenmonoxidsensor 44 (CO-Sensor), einen Sauerstoffsensor (02-Sensor) 46, einen Temperatursensor 48 und einen Kohlendioxissensor 50 (C02-Sensor). Erfindungsgemäß kann im Gegensatz zur gezeigten Ausführungsvariante unter der Annahme, dass außer Stickstoffdioxid im Messgas keine weiteren Gase vorhan- den sind, zu denen der Schwefeldioxid-Sensor 34 eine Querempfindlichkeit aufweist, der Schwefeldioxid-Sensor 34 auch den Gehalt an Stickstoff ermitteln, der Stickstoffdioxid-Sensor 42 kann dann entfallen.
Der Stickstoffdioxid-Sensor 42 ist selektiver als der Schwefeldioxid-Sensor 34 und bringt grundsätzlich Vorteile. Bezogen auf die Anwendung in Druckluftanlagen, in denen in aller Regel nur mit Gaskontaminationen zu rechnen ist, für die keine Querempfindlichkeiten bestehen ist die Selektivität nicht unbedingt erforderlich, so dass der Messwert des Schwefeldioxid-Sensors 34 bei befeuchtetem Gasstrom sowohl für die Stickstoffdioxid-Kompensation des Schwefeldioxid Messwerts, als auch für die Stickstoffdioxid-Messung herangezogen werden kann. Bedingung ist in diesem Fall, dass das Befeuchtungselement das gesamte Schwefeldioxid entfernt, andernfalls wäre der Stickstoffdioxid-Messwert um den Betrag des Schwefeldioxid Restanteils verfälscht. Nach experimentellen Ergebnissen ist dies der Fall.
Der erste Messgasstrom 38 wird dem Schwefeldioxidsensor 34, dem Stickstoffmonoxidsensor 36 und dem Kohlendioxissensor 50 zugeleitet.
Der zweite Messgasstrom 39 dem Schwefeldioxidsensor 34, dem Stickstoffmonoxidsensor 36 und den anderen Sensoren außer dem Kohlendioxissensor 50 zugeleitet.
Das Messgerät 20 kann mittels zweier Referenzgasströme 52, 54, die über externe Druckgasflaschen bereit gestellt werden, kalibriert werden.
Weiterhin weist das Messgerät 20 mehrere Drosseln 56 auf.
Figur 2 zeigt eine zweite Variante der Erfindung. Diese unterscheidet sich von der Variante aus Fig. 1 dadurch, dass der Schwefeldioxidsensor 34 und der Stickstoffmonoxidsensor 36 trocken/feucht getaktet betrieben werden,
mehr Messpunkte für sekundäre Messgrößen (Flow, Druck, Feuchte) vorhanden sind,
anstelle von 2/2-Ventile 3/2-Ventile eingestezt sind, - eine Druckregelung im Ursprungsgasstrom 26 vorgesehen ist, ein Überdruckventil 58 vorhanden ist,
Rückschlagventile 60 im Ursprungsgasstrom 26 und im Wasserzulauf 30 vorhanden sind,
die Kohlendioxidmessung separiert durchgeführt wird.
Bei den Unterschieden handelt es sich im Wesentlichen um praxisorientierte Optimierungen zur Erweiterung des Anwendungsbereichs oder zur sicherheitstechnischen Verbesserung.
Die Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt, diese dienen lediglich der Erläuterung der Erfindung.

Claims

Patentansprüche
1. Messgerät (20) zur Bestimmung eines Messwertes in einem Gasstrom unter Berücksichtigung von Querempfindlichkeiten der Messeinrichtung aufgrund mindestens eines den Messwert des Messgases störenden weiteren Inhaltsstoffes in dem Gasstrom, aufweisend
eine Vorrichtung zum Aufteilen eines zu messenden Ursprungsgasstroms (26) in einen ersten Messgasstrom (38) und einen zweiten Messgasstrom (39),
eine Vorrichtung zum Verändern des Gehalts an Messgas im zweiten Messgasstrom (39) durch Verändern einer den Gehalt des Messgases beeinflussenden Einflussgröße,
ein Sensorelement (22) mit einem Sensor zur Bestimmung des
Messwertes,
eine Auswerteinheit zur Auswertung der Messwerte, wobei
dem Sensorelement (22) im Wechsel der erste Messgasstrom (38) oder der veränderte zweite Messgasstrom (39) zur Bestimmung eines ersten Zwischenmesswertes im ersten Messgasstrom (38) und zur Bestimmung eines Zwischenmesswertes im zweiten Messgasstrom (39), zugeführt wird,
die Auswerteeinheit den endgültigen Messwert auf Basis der beiden Zwischenmessergebnisse berechnet.
2. Messgerät (20) nach Anspruch 1, dadurch gekennzeichnet, dass Vorrichtung zum Verändern zumindest einer Einflussgröße eine Größe aus der Gruppe Feuchtigkeit, Temperatur, elektrisches Feld oder magnetisches Feld verändert.
3. Messgerät (20) nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass es als medizinisches Atemgasmessgerät ausgeführt ist.
4. Messgerät (20) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Sensorelement (22) mindestens einen Sensor zur Bestimmung des Gehalts an Schwefeldioxid und Stickstoffdioxid aufweist, wobei Schwefeldioxid das Messgas darstellt und die Vorrichtung zum Verändern des Gehalts an Messgas (39) den Gehalt an Schwefeldioxid im zweiten Messgasstroms (39) ändert.
5. Messgerät (20) nach Anspruch 4, dadurch gekennzeichnet, dass die Vorrichtung die Feuchtigkeit des zweiten Messgastroms (39) verändert, so dass Schwefeldioxid aus dem zweiten Messgasstrom (39) entfernt wird.
6. Messgerät (20) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass dem Sensorelement (22) neben den Messgasströmen (38, 39) weiterhin Kalibriergas zuführbar ist.
7. Messgerät (20) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Sensorelement (22) weitere Sensoren zur Bestimmung des Gehalt weiterer unterschiedlicher Gase aufweist.
8. Messgerät (20) nach Anspruch 7, dadurch gekennzeichnet, dass das Sensorelement (22) Sensoren zur Bestimmung des Gehalts an Kohlenmono- xid, Stickstoffmonoxid, Stickstoffdioxid, Schwefeldioxid, Kohlendioxid und Sauerstoff aufweist.
9. Messgerät (20) nach Anspruch 8, dadurch gekennzeichnet, dass die Sensoren zur Bestimmung des Gehalts Schwefeldioxid ausschließlich mit dem ersten Messgasstrom (38) und die Sensoren zur Bestimmung des Gehalts an Kohlenmonoxid und Sauerstoff stets mit dem zweiten Messgasstrom (39) beaufschlagt wird.
10. Messgerät (20) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Vorrichtung zum Verändern des Gehalts an Messgas im zweiten Messgasstrom (39) durch ein Bündel aus Hohlmembranfasern gebildet ist, das mit Wasser umspült wird.
11. Verfahren zur Bestimmung eines Gehalts eines Messgases in einem Gasstrom unter Berücksichtigung von Querempfindlichkeiten der Messeinrichtung aufgrund mindestens eines den Messwert des Messgases störenden weiteren Inhaltsstoffes in dem Gasstrom, gekennzeichnet durch die Verfahrensschritte, Aufteilen eines zu messenden Ursprungsgasstroms (26) in mindestens einen ersten Messgasstrom (38) und einen zweiten Messgasstrom (39),
Verändern des Gehalts an Messgas im zweiten Messgasstrom (39) durch Verändern einer den Gehalt des Messgases beeinflussenden Einflussgröße,
Wechselseitiges Zuführen des ersten Messgasstroms (38) und des zweiten Messgastroms (39) zu einem Sensor (22),
Bestimmen eines ersten Zwischenmesswertes im ersten Messgasstrom (38), der die Summe des Gehalts an Messgas und des Gehalts an dem störenden weiteren Inhaltsstoff darstellt,
Bestimmen eines zweiten Zwischenmesswertes im zweiten Messgasstrom (39), der die Summe des Gehalts an Messgas und des Gehalts an dem störenden weiteren Inhaltsstoff darstellt,
Berechnen des endgültigen Messwertes auf Basis der beiden Zwischen messergebnisse.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Einflussgröße eine Größe aus der Gruppe Feuchtigkeit, Temperatur, elektrisches Feld oder magnetisches Feld ist.
13. Verfahren nach Anspruch 11 oder Anspruch 12, dadurch gekennzeichnet, dass der zu messende Messwert der Gehalt an Schwefeldioxid und der störende Inhaltsstoff Stickstoffdioxid ist.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Veränderung der störenden Einflussgröße die Erhöhung der Feuchtigkeit des zweiten Messgasstroms (39) bedeutet, so dass Schwefeldioxid aus dem zweiten Messgasstrom (39) entfernt wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Berechnung des endgültigen Schwefeldioxid-Messergebnisses durch Subtraktion des zweiten Messergebnisses vom ersten Messergebniss erfolgt, wobei beide Messergebnisse jeweils durch die Summe des Gehalts an Schwefeldioxid und Stickstoffdioxid gebildet sind.
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass der Gasstrom ein Atemgasstrom eines medizinischen Gerätes ist.
17. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass anstelle der Messgasströme (38, 39) weiterhin regelmäßig Kalibriergas zugeführt wird.
18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass weiterhin der Gehalt an Kohlenmonoxid, Stickstoffmonoxid, Kohlendioxid und Sauerstoff bestimmt wird, wobei der Gehalt an Schwefeldioxid ausschließlich im ersten Messgasstrom (38) und der Gehalt an Kohlenmonoxid und Sauerstoff ausschließlich im zweiten Messgasstrom (39) bestimmt wird.
EP13729277.7A 2012-05-30 2013-05-29 Messgerät und verfahren zum erfassen des kohlenwasserstoffanteils in gasen unter berücksichtigung von querempfindlichkeiten Withdrawn EP2856146A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012010613 2012-05-30
PCT/EP2013/061130 WO2013178714A1 (de) 2012-05-30 2013-05-29 Messgerät und verfahren zum erfassen des kohlenwasserstoffanteils in gasen unter berücksichtigung von querempfindlichkeiten

Publications (1)

Publication Number Publication Date
EP2856146A1 true EP2856146A1 (de) 2015-04-08

Family

ID=48628622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13729277.7A Withdrawn EP2856146A1 (de) 2012-05-30 2013-05-29 Messgerät und verfahren zum erfassen des kohlenwasserstoffanteils in gasen unter berücksichtigung von querempfindlichkeiten

Country Status (8)

Country Link
US (1) US20150136616A1 (de)
EP (1) EP2856146A1 (de)
JP (1) JP2015518155A (de)
KR (1) KR20150022929A (de)
CN (1) CN104350382A (de)
BR (1) BR112014029268A2 (de)
IN (1) IN2014MN02226A (de)
WO (1) WO2013178714A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234417B2 (en) * 2016-02-02 2019-03-19 Msa Technology, Llc Sensor interrogation with fast recovery
CN106770523A (zh) * 2016-12-30 2017-05-31 聚光科技(杭州)股份有限公司 空气中多组分气体浓度检测装置及方法
EP3589203A1 (de) 2017-03-01 2020-01-08 NGK Spark Plug Co., Ltd. Stickoxiddetektor mit reduktionsgas
WO2018183204A1 (en) * 2017-03-27 2018-10-04 Spirosure, Inc. Hyperglycemic sensor apparatus for breath gas analysis
DE102019120446A1 (de) * 2019-07-29 2021-02-04 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Korrektur von zwei Messwerten von jeweils verschiedener Analysenmessgeräte sowie Messstelle zum Ausführen des Verfahrens
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558283A (en) * 1967-06-09 1971-01-26 Mine Safety Appliances Co Determination of reactive hydrocarbons in air
US3622488A (en) * 1968-09-09 1971-11-23 Dynasciences Corp Apparatus for measuring sulfur dioxide concentrations
US4265714A (en) * 1980-03-24 1981-05-05 General Electric Company Gas sensing and measuring device and process using catalytic graphite sensing electrode
JPS6336265Y2 (de) * 1980-12-26 1988-09-27
US4388411A (en) * 1981-04-29 1983-06-14 Hewlett-Packard Company Apparatus and method for detecting fluid
JPH02212766A (ja) * 1989-02-13 1990-08-23 Shimadzu Corp O↓2換算排ガス演算装置
DE4005761A1 (de) * 1990-02-23 1991-08-29 Draegerwerk Ag Messgeraet zum nachweis von gasen mit einem elektrochemischen sensor und variabler diffusionssperre
JP2541419B2 (ja) * 1992-03-30 1996-10-09 株式会社島津製作所 燃焼排ガス測定装置
DE19612706A1 (de) * 1996-03-29 1997-10-02 Sick Ag Meßvorrichtung sowie Verfahren für deren Betrieb
DE19636415B4 (de) * 1996-09-07 2007-12-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung der Funktionsweise eines Kohlenwasserstoffsensors für eine Brennkraftmaschine
DE19732546C1 (de) * 1997-07-29 1998-12-17 Draegerwerk Ag Gasdetektionssystem mit austauschbaren Gassensoren
JP4153658B2 (ja) * 2000-11-28 2008-09-24 三菱重工業株式会社 NOx及びNH3同時分析装置及び方法
JP2004085581A (ja) * 2003-10-24 2004-03-18 Mitsubishi Heavy Ind Ltd 煙道排ガス中のNOx分析装置
JP2009533682A (ja) * 2006-04-14 2009-09-17 セラマテック・インク 呼気中の窒素酸化物を測定する装置および方法
DE102006035173A1 (de) * 2006-07-06 2008-01-17 Woelke Industrieelektronik Gmbh Verfahren zur Korrektur von mittels eines Gasmessgerätes gewonnenen Konzentrations-Messwerten
DE102009004278A1 (de) * 2009-01-05 2010-07-15 Synthesechemie Dr. Penth Gmbh Messgerät für geringe Kohlenwasserstoffkonzentrationen
JP5672243B2 (ja) * 2009-02-18 2015-02-18 ベコー テヒノロギース ゲーエムベーハー 気体中の炭化水素成分を検出するための測定装置および方法
DE102011055001A1 (de) * 2011-11-02 2013-05-02 Hygrosens Instruments GmbH Messgerät und Verfahren zum Erfassen des Kohlenwasserstoffanteils in Gasen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013178714A1 *

Also Published As

Publication number Publication date
BR112014029268A2 (pt) 2017-06-27
KR20150022929A (ko) 2015-03-04
CN104350382A (zh) 2015-02-11
JP2015518155A (ja) 2015-06-25
US20150136616A1 (en) 2015-05-21
IN2014MN02226A (de) 2015-07-17
WO2013178714A1 (de) 2013-12-05

Similar Documents

Publication Publication Date Title
EP2856146A1 (de) Messgerät und verfahren zum erfassen des kohlenwasserstoffanteils in gasen unter berücksichtigung von querempfindlichkeiten
DE69122357T2 (de) Diagnostisches Verfahren zur Überwachung von Gas
DE102013008425B3 (de) Verfahren zur Erkennung von Sensorvergiftungen und Teststation zur Durchführung des Verfahrens
WO2014118028A1 (de) Restöl-messgerät
DE10122173C2 (de) Verfahren und Vorrichtung zur Überwachung von Gasen
WO2013135539A1 (de) Funktionsüberprüfung von wärmeleitfähigkeits - gassensoren
AT521823B1 (de) Ermittlung des Massenstromes eines Abgasbestandteils einer Brennstoffzelle
EP2729800B1 (de) Überwachung der funktionalität eines konverters eines atemanalysegerätes
DE102016207516B4 (de) Verfahren zur Alterungsbestimmung einer zur Ermittlung einer Gaskonzentration eines Gasgemischs ausgebildeten Sonde einer Brennkraftmaschine
WO2009092350A1 (de) Hochtemperatur-polymerelektrolyt-brennstoffzellensystem (ht-pefc) sowie ein verfahren zum betreiben desselben
DE10148855A1 (de) Sensor zur Ermittlung einer Kohlenmonoxidkonzentration eines Gasgemisches
DE102005031552B4 (de) Verfahren zur Betriebsprüfung einer Messeinrichtung
EP3173784A1 (de) Gasmessanordnung mit prüfgaserzeugungseinheit
AT517486A1 (de) Verfahren zur Bestimmung der Dichte von Flüssigkeiten
AT521829B1 (de) Verfahren zum Prüfen einer Brennstoffzelle auf einem Prüfstand
WO2019081207A1 (de) Verfahren und system zur detektion einer leckage in einem fluidsystem
EP2733489B1 (de) Extraktion mehrerer Einzelgase aus einer Isolierflüssigkeit
DE3937635C2 (de)
AT509551B1 (de) Kreislauftauchgerät mit einem mundstück
DE102017220562A1 (de) Diagnosesystem, Brennstoffzellensystem mit einem Diagnosesystem und Verfahren zur Bestimmung einer Kathodengasverschmutzung
DD218465A1 (de) Verfahren zur ueberwachung oelisolierter hochspannungsgeraete, insbes. oeltransformatoren
DE102014102669B4 (de) Verfahren zum Berücksichtigen der Änderung des Leistungsvermögens einer Kathodenbefeuchtungseinrichtung in einem Brennstoffzellensystem sowie Vorrichtung zum Aufrechterhalten des Leistungsvermögens einer Kathodenbefeuchtungseinrichtung
DE102021101841A1 (de) Kathodeneinlassfeuchtigkeitserfassung mit universallambdasonde
WO2023242239A1 (de) Verfahren zum kalibrieren von sensoreinheiten zum bestimmen einer konzentration eines gases in einem gasgemisch
EP1045245A2 (de) Verfahren und Vorrichtung zur Überwachung von ammoniakalisierten Wasserdampfkreisläufen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170405

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170617