EP2853610A2 - Vorrichtung und Verfahren zum Elektroschlacke-Umschmelzen - Google Patents

Vorrichtung und Verfahren zum Elektroschlacke-Umschmelzen Download PDF

Info

Publication number
EP2853610A2
EP2853610A2 EP20140186604 EP14186604A EP2853610A2 EP 2853610 A2 EP2853610 A2 EP 2853610A2 EP 20140186604 EP20140186604 EP 20140186604 EP 14186604 A EP14186604 A EP 14186604A EP 2853610 A2 EP2853610 A2 EP 2853610A2
Authority
EP
European Patent Office
Prior art keywords
preheating
tip
fuel
abschmelzelektrode
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20140186604
Other languages
English (en)
French (fr)
Other versions
EP2853610A3 (de
EP2853610B1 (de
Inventor
Michael Potesser
Johannes Rauch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Austria GmbH
Original Assignee
Messer Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Austria GmbH filed Critical Messer Austria GmbH
Priority to RS20180087A priority Critical patent/RS56789B1/sr
Priority to PL14186604T priority patent/PL2853610T3/pl
Priority to SI201430578T priority patent/SI2853610T1/en
Publication of EP2853610A2 publication Critical patent/EP2853610A2/de
Publication of EP2853610A3 publication Critical patent/EP2853610A3/de
Application granted granted Critical
Publication of EP2853610B1 publication Critical patent/EP2853610B1/de
Priority to HRP20180138TT priority patent/HRP20180138T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Definitions

  • the invention relates to an apparatus for producing metal blocks by the electroslag remelting process, comprising a metallurgically active slag bath and a preheating oven for preheating at least one tip of a consumable electrode to be supplied to the slag bath.
  • the invention further relates to a corresponding method.
  • meltdown electrodes dip into a resistance heated, metallurgically active slag bath located within a mold, usually cooled by water.
  • the slag overheats (1700 ° C to 2000 ° C) and metal drops melt from the Abschmelzelektrode.
  • the droplets sink through the slag, where they are freed from non-metallic contaminants by chemical extraction, and are finally collected in the still-liquid, already refined steel bath.
  • the quality of the finished ESU block depends not only on the quality of the consumable electrodes and the accuracy of the system control, but above all on the quality of the slag used.
  • Pre-molten slags provide a safe starting point. They ensure a reliable composition with good homogeneity for a uniform and reproducible process management in remelting operation.
  • the ESU process is now usually held under inert gas, such as in the DE 101 28 168 C1 or the EP 0 727 500 B1 described.
  • a plurality of melting electrodes are successively melted, with one electrode removed during the ESC process apart from the remainder being removed from the slag bath and replaced by a new melting electrode.
  • the alternating electrodes are preheated before they are fed to the slag bath, while the previously used electrode is still in contact with the slag bath Melting process, wherein at least the region (hereinafter referred to as "tip") is preheated the Abschmelzelektrode, which is later immersed in the slag bath.
  • tip region
  • An approach of this kind is, for example, in the DE 2 124 960 A2 described.
  • the preheating of the Abschmelzelektrode for remelting in an ESU plant is nowadays usually with current-heated Vormérmöfen, which are arranged spaced from the remelting furnace.
  • Vormérmöfen which are arranged spaced from the remelting furnace.
  • an ESU apparatus is known in which the tip of an alternating electrode is preheated by means of an inductor and then fed to the reflow.
  • heating takes place between 300 ° C. and 900 ° C.
  • the known ESU systems with electric preheating are associated with a number of disadvantages.
  • the efficiency of these furnaces is very low, which is reflected in the achievable, far below the respective melting temperatures preheating temperatures, high power consumption and lower product quality;
  • Last but not least, a low product quality is also due to the high duration of time required for the electrode change between the removal of the old electrode and the heating of the new electrode to the melting point.
  • the heated by means of electrical resistance Vorissermöfen are very maintenance-intensive, which manifests itself in high maintenance costs and frequent shutdowns.
  • the invention is therefore based on the object to improve the efficiency of working with alternating electrodes ESU system and to reduce maintenance.
  • the method according to the invention is characterized in that the preheating of the tip of the consumable electrode in the preheating furnace by combustion of a Fuel with an oxidizer takes place.
  • the preheating furnace is operated in the manner of a cyclone furnace, ie fuel and / or oxidizer are registered with a - viewed in a plane perpendicular to the longitudinal axis of the preheating furnace - tangential direction component in the combustion region of the furnace. This results in a swirling flow in which fuel and oxidant are conducted past the tip of the preheating electrode to be preheated.
  • the tip of the Abschmelzelektrode can thus be heated to a temperature which is close to the melting temperature of the material to be remelted in each case;
  • the interruption duration of the remelting process during the electrode change that is to say the time duration between the termination of the melting process of the old and the beginning of the melting process of the new electrode, is significantly shortened.
  • fuels are gaseous fuels, such as natural gas, as well as aerosol atomized liquid fuels or fluidized solid particles (dusts).
  • fuels may be used which contain carbon, hydrogen, sulfur or a mixture of two or three of these substances or a compound containing one or more of these substances.
  • the oxidizing agent used can be air or an oxygen-enriched gas (with an oxygen content of more than 21% by volume); Pure oxygen is preferably suitable with an oxygen concentration of more than 90% by volume, particularly preferably with an oxygen concentration of more than 95% by volume.
  • the insertion means are either perpendicular to the longitudinal axis of the preheating furnace or arranged, or angular, with its mouth opening facing upwards, ie in the direction of the preheating Abschmelzelektrode to favor the formation of a helical flow.
  • a direct loading of the Abschmelzelektrode should be avoided with a burner flame, as this can lead to a local overheating of Abschmelzelektrode.
  • an arrangement of lances can be provided as insertion devices, by means of which the fuel and oxidizer are introduced at respectively separate locations into the combustion region, subsequently mixed and ignited.
  • a plurality of tangentially carrying lances or burners are arranged at preferably uniform angular intervals in order to ensure uniform heating of the electrode surface.
  • the entry device or the entry devices are arranged in their length and / or angular position adjustable in the wall of the preheating furnace.
  • the position of the entry device can be adapted in this way the geometry of the respective preheating electrode.
  • it is also conceivable within the scope of the invention to change the position of the insertion device relative to the electrode during the current warm-up process in order to achieve optimal heat application with minimum energy input for example the electrode can be opposite the preheating furnace or opposite the electrode about its longitudinal axis be rotatably mounted to allow even with a small number of entry devices in the preheating a uniform heat application of the electrode tip.
  • the end portion of the preheating furnace is equipped with a cover which is intended to prevent the ingress of ambient atmosphere.
  • a cover which is intended to prevent the ingress of ambient atmosphere.
  • the cover In the case of long melting electrodes, it is advisable in this case to equip the cover with a recess for the electrode, so that in operation the melting electrode protrudes only with its tip into the combustion region enclosed by the cover.
  • the cover At this Embodiment of the invention, therefore, only the area of the electrode tip is intensively charged with hot combustion gases, wherein the cover at least largely prevents gases from the ambient atmosphere, in particular oxygen, penetrate into the heated region of the preheating furnace and lead to undesirable reactions on the surface of the electrode.
  • a hood which completely envelopes the electrode for example a hood construction of the type as described in US Pat EP 0 727 500 B1 is described.
  • the preheating furnace is equipped with an exhaust system for controlling the furnace pressure.
  • the exhaust system includes, for example, means for controlling the pressure or the composition of the atmosphere in the furnace chamber, such as a suction device or means for recirculation of flue gases.
  • the inventive method for producing metal blocks after the electroslag remelting of metals in which a Abschmelzelektrode preheated and then lowered at least with its tip in a metallurgical slag bath, is characterized in that the preheating of the Abschmelzelektrode prior to their supply to the slag by means of Applying at least the tip of the Abschmelzelektrode with a mutually reactive fuel-oxidizer mixture takes place.
  • a particularly preferred embodiment of the method according to the invention provides for the preheating of the tip of the consumable electrode to take place by forming a flame cyclone enveloping the tip.
  • a flame cyclone is created by a tangential entry of fuel and / or oxidizer by means of lances or burners.
  • the substances which react with each other are guided around the tip of the consumable electrode in a swirling flow and heat them up uniformly and with the risk of local overheating being largely eliminated.
  • the duration of the electrode change has a significant influence on the crystallization process and thus the quality of the metal block produced by ESC.
  • at least the tip of the Abschmelzelektrode is heated to a temperature between 100 ° C and the melting temperature of the material of each Abschwezelektrode preh Securenden, preferably between 900 ° C and 1400 ° C.
  • An advantageous development of the invention provides a control by means of which the ratio of fuel and oxidant of the burner during the preheating process can be changed. In this way, the firing in the preheating furnace can be optimized and, in particular, the temperature of the burner flame can be precisely set. Likewise, it is also possible to change or regulate the oxygen content in the oxidizer used during the operation of the preheating furnace by means of the controller.
  • a further preferred embodiment of the invention is characterized in that measures are taken that allow a recirculation of fuel gases in the area before the exit of the burner or the outlet of the burner and thereby flameless - and thus particularly low-emission and energy-efficient - combustion takes place.
  • FIG. 1 shows schematically the construction of a preheating furnace according to the invention for an ESU plant in longitudinal section.
  • the preheating furnace 1 shown in Fig. 1 comprises a constructed of refractory material furnace shell 2, the downwardly facing end portion 3 is conically formed.
  • the end portion 3 are in the wall of the furnace shell 2 bushings 7th 8, in which a plurality of burners are arranged at regular angular intervals, in the exemplary embodiment two burners 9, 10.
  • the burners 9, 10 are burners in the exemplary embodiment shown, by means of which a gaseous fuel, for example natural gas, and oxygen in the Combustion area 6 registered and burned there; However, within the scope of the invention, other burners may also be used, such as burners operating with a solid or liquid fuel and / or burners employing air, oxygen-enriched air or a gas having an oxygen content variable during operation as the oxidizer ,
  • the burners 9, 10 protrude tangentially into the preheating furnace 1 and are arranged in an axial direction with respect to a plane perpendicular to the longitudinal axis of the preheating furnace 1 at an angle, each with its mouth openings facing upward.
  • a further passage 11 is arranged, in which an exhaust pipe 12 is installed for discharging the flue gas.
  • a preheating electrode 13 is guided with its tip 14 through the opening 5 of the cover plate 4 and positioned so that the tip 14 is arranged in the region of the end portion 3, but without touching the walls of the furnace shell 2.
  • the cover plate 4 may be made in two parts and only after the positioning of the Abschmelzelektrode 13 from both sides substantially gas-tightly applied to this.
  • the central opening 5 of the cover plate 4 is adapted to the outer diameter of the Abschmelzelektrode 13 and ideally allows no, usually only a small gas exchange between the combustion region 6 and the ambient atmosphere.
  • the positioning of the Abschmelzelektrode 13 is effected for example by means of a crane assembly 15, which also allows the vertical process of Abschmelzelektrode 13 in the preheating furnace 1 in and out of this.
  • Fuel or oxygen is fed to the burners 9, 10 via a fuel feed line 16 and an oxygen feed line 17, and the fuel-oxidant mixture forming in each case before the outlets of the burners 9, 10 is ignited.
  • the entry of the fuel-oxidizer mixture is in each case tangentially into the combustion zone, wherein the axial tendency of the burner 9, 10 in the direction of the tip 14 of the Abschmelzelektrode 13 and the conical shaping of the end portion 3 a total of a helical course of the flow cause in the combustion region 6.
  • a flame cyclone which wraps the tip 14 of the Abschmelzelektrode 13 while heated uniformly and to a temperature near the melting temperature of the material of the Abschmelzelektrode 13, for example to a value between 900 ° C and 1400 ° C, brought.
  • the temperature can be adjusted or regulated by means of a control, not shown here, which controls the inflows of fuel and / or oxidant.
  • the burners 9, 10 are angularly and / or length-adjustable accommodated in the furnace shell 2.
  • the resulting during combustion flue gases are withdrawn via the exhaust pipe 12.
  • a suction device 18 arranged in the exhaust pipe 12 makes it possible to regulate or adjust the pressure in the combustion region 6.
  • the burners 9, 10 are designed so that it comes within the combustion region 6 to a flameless combustion and thus to a uniform heating of the tip 14 of the Abschmelzelektrode 13 at the same time reduced pollutant emissions.
  • the tip 14 of the Abschmelzelektrode 13 After the tip 14 of the Abschmelzelektrode 13 has been heated to a predetermined temperature value, the supply of fuel and oxygen via the supply lines 16, 17 is blocked.
  • the Abschmelzelektrode 13 is from the Preheating furnace 13 withdrawn and fed to the mold of an electrode slag remelting furnace, not shown here.
  • the preheating furnace 1 is then available for receiving a further Abschmelzelektrode available.
  • the preheating furnace according to the invention operated by combustion of a fuel, the preheating of melting electrodes can be operated much more economically and at higher temperatures than is the case with conventional, electrically operated preheating furnaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Eine Vorrichtung zum Elektroschlacke-Umschmelzen von Metallen, umfasst einen Vorwärmofen (1) zum Vorwärmen einer selbstverzehrende Abschmelzelektrode (13) vor ihrer Zuführung an ein Schlackenbad und ist erfindungsgemäß dadurch gekennzeichnet, dass der Vorwärmofen (1) mit wenigstens einem Brenner (9, 10) ausgerüstet ist, mittels dem die Vorwärmung der Abschmelzelektrode (13) durch Verbrennung eines Brennstoffs mit einem Oxidator erfolgt. Bei der Vorwärmung wird zumindest die Spitze (14) der Abschmelzelektrode (13) in den Vorwärmofen (1) eingeführt und durch Kontaktieren mit einem miteinander reagierenden Brennstoff-Oxidator-Gemisches beheizt. Bevorzugt wird bei der Beheizung dabei ein Flammen-Zyklon erzeugt, der eine gleichmäßige Erwärmung der Spitze (14) der ermöglicht.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Herstellen von Metallblöcken nach dem Elektroschlacke-Umschmelzverfahren, mit einem metallurgisch wirksamen Schlackenbad und einem Vorwärmofen zum Vorwärmen von zumindest einer Spitze einer dem Schlackenbad zuzuführenden Abschmelzelektrode. Die Erfindung betrifft des Weiteren ein entsprechendes Verfahren.
  • Beim Elektroschlacke-Umschmelzen (ESU) tauchen selbstverzehrende Abschmelzelektroden in ein widerstandsbeheiztes, metallurgisch wirksames Schlackenbad, das sich innerhalb einer üblicherweise mittels Wasser gekühlten Kokille befindet. Die Schlacke überhitzt (1700°C bis 2000°C) und Metalltropfen schmelzen von der Abschmelzelektrode ab. Die Tröpfchen sinken durch die Schlacke, in der sie durch chemische Extraktion von nichtmetallischen Verunreinigungen befreit werden, und werden schließlich im noch flüssigen, bereits raffinierten Stahlbad aufgefangen. Dort erfolgt eine dichte und gerichtete Erstarrung des aufgeschmolzenen Metalls von unten nach oben. Die Qualität des fertigen ESU-Blockes hängt neben der Abschmelzelektrodenqualität und der Genauigkeit der Anlagensteuerung vor allem von der Qualität der eingesetzten Schlacke ab. Vorgeschmolzene Schlacken bieten dabei eine sichere Ausgangsbasis. Sie gewährleisten eine zuverlässige Zusammensetzung mit guter Homogenität für eine gleichmäßige und reproduzierbare Prozessführung im Umschmelzbetrieb. Um negative Einflüsse der Umgebungsluft auf die Schlacke und die Metallschmelze zu unterbinden, findet das ESU-Verfahren heute üblicherweise unter Schutzgas statt, wie beispielsweise in der DE 101 28 168 C1 oder der EP 0 727 500 B1 beschrieben.
  • Zur Herstellung größerer Metallblöcke werden nacheinander mehrere Abschmelzelektroden abgeschmolzen, wobei jeweils eine während des ESU-Verfahrens bis auf einen Rest abgeschmolzene Elektrode aus dem Schlackenbad entfernt und durch eine neue Abschmelzelektrode ersetzt wird. Um die dabei auftretende Unterbrechung des Schmelzvorgangs so gering wie möglich zu halten, werden die Wechselelektroden vor ihrer Zuführung an das Schlackenbad vorgewärmt, noch während sich die zuvor verwendete Elektrode im Abschmelzvorgang befindet, wobei zumindest der Bereich (hier in Folgenden "Spitze" genannt) der Abschmelzelektrode vorgewärmt wird, der später in das Schlackenbad eingetaucht wird. Eine Vorgehensweise dieser Art wird beispielsweise in der DE 2 124 960 A2 beschrieben. Die Vorwärmung der Abschmelzelektrode zum Umschmelzen in einer ESU-Anlage erfolgt heute üblicherweise mit strombeheizten Vorwärmöfen, die vom Umschmelzofen beabstandet angeordnet sind. Beispielsweise ist aus der DE 2 755 478 A1 eine ESU-Apparatur bekannt, bei der die Spitze einer Wechselelektrode mit Hilfe eines Induktors vorgewärmt und anschließend der Aufschmelzung zugeführt wird. Bei den heute eingesetzten elektrischen Vorwärmofen erfolgt dabei eine Aufheizung zwischen 300°C und 900°C.
  • Die bekannten ESU- Anlagen mit elektrischer Vorwärmung sind mit einer Reihe von Nachteilen verknüpft. Einerseits ist der Wirkungsgrad dieser Öfen sehr gering, welches sich in den erreichbaren, weit unter den jeweiligen Schmelztemperaturen liegenden Vorwärmtemperaturen, hohen Stromverbräuchen und niedrigerer Produktqualität wiederspiegelt; nicht zuletzt ist eine niedrige Produktqualität einer auch der hohen Zeitdauer geschuldet, die beim Elektrodenwechsel zwischen der Entfernung der alten und der Aufheizung der neuen Elektrode auf Schmelztemperatur erforderlich ist. Zudem sind die mittels elektrischem Widerstand beheizten Vorwärmöfen sehr wartungsintensiv, welches sich in hohen Wartungskosten und häufigen Stillständen manifestiert.
  • Der Erfindung liegt demzufolge die Aufgabe zugrunde, die Wirtschaftlichkeit einer mit Wechselelektroden arbeitenden ESU-Anlage zu verbessern und den Wartungsaufwand zu verringern.
  • Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Patentanspruchs 8 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen beansprucht.
  • Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass die Vorwärmung der Spitze der Abschmelzelektrode im Vorwärmofen durch Verbrennung eines Brennstoffs mit einem Oxidator erfolgt. Dabei wird der Vorwärmofen nach Art eines Zyklonofens betrieben, d.h. Brennstoff und/oder Oxidator werden mit einer - in einer Ebene senkrecht zur Längsachse des Vorwärmofens gesehen - tangentialen Richtungskomponente in den Verbrennungsbereich des Ofens eingetragen. Dies führt zu einer Drallströmung, in der Brennstoff und Oxidatior an der Spitze der vorzuwärmenden Abschmelzelektrode vorbeigeführt werden. Nach Zündung des Brennstoff-Oxidator Gemisches bildet sich somit ein Flammenzyklon aus, der die Spitze der Abschmelzelektrode einhüllt und auf diese Weise gleichmäßig erwärmt. Die Spitze der Abschmelzelektrode kann somit bis zu einer Temperatur aufgeheizt werden, die in der Nähe der Schmelztemperatur des jeweils umzuschmelzenden Materials liegt; dadurch wird insbesondere die Unterbrechungsdauer des Umschmelzvorgangs beim Elektrodenwechsel, also die Zeitdauer zwischen dem Abbruch des Schmelzvorgangs der alten und dem Beginn des Schmelzvorgangs der neuen Elektrode, deutlich verkürzt.
  • Als Brennstoffe sind gasförmige Brennstoffe, wie beispielsweise Erdgas, ebenso geeignet wie zu einem Aerosol zerstäubte flüssige Brennstoffe oder fluidisierte Feststoffpartikel (Stäube). Insbesondere können Brennstoffe zum Einsatz kommen, die Kohlenstoff, Wasserstoff, Schwefel oder eine Mischung aus zwei oder drei dieser Stoffe oder eine einen oder mehrere dieser Stoffe aufweisende Verbindung enthalten. Als Oxidationsmittel kann Luft oder ein mit Sauerstoff angereichertes Gas (mit einem Sauerstoffanteil von über 21 Vol.-%) zum Einsatz kommen; bevorzugt eignet sich reiner Sauerstoff mit einer Sauerstoffkonzentration von über 90 Vol.-%, besonders bevorzugt mit einer Sauerstoffkonzentration von über 95 Vol.-%.
  • In axialer Richtung sind die Eintragseinrichtungen entweder senkrecht zur Längsachse des Vorwärmofens oder angeordnet, oder aber winklig, mit ihrer Mündungsöffnung nach oben, also in Richtung auf die vorzuwärmende Abschmelzelektrode weisend, um die Ausbildung einer helikalen Strömung zu begünstigen. Dabei sollte jedoch eine direkte Beaufschlagung der Abschmelzelektrode mit einer Brennerflamme vermieden werden, da dies zu einer lokalen Überhitzung der Abschmelzelektrode führen kann.
  • Als Eintragseinrichtungen kann beispielsweise eine Anordnung von Lanzen vorgesehen sein, mittels der Brennstoff und Oxidator an jeweils getrennten Orten in den Verbrennungsbereich eingebracht, anschließend vermischt und gezündet werden. Bevorzugt kommen jedoch ein oder mehrere Brenner zum Einsatz, der/die jeweils mindestens eine Zuführung für einen Brennstoff und mindestens eine Zuführung für einen Oxidator aufweist/aufweisen, und bei dem/denen eine Vermischung und Zündung des Brennstoff-Oxidator-Gemisches bereits im Vorfeld der Mündungsöffnung des jeweiligen Brenners erfolgt.
  • Bevorzugt sind zumindest im Endabschnitt des Vorwärmofens mehrere tangential eintragende Lanzen oder Brenner in vorzugsweise gleichmäßigen Winkelabständen angeordnet, um eine gleichmäßige Aufheizung der Elektrodenoberfläche zu gewährleisten.
  • Eine andere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Eintragsvorrichtung bzw. die Eintragsvorrichtungen in ihrer Längen- und/oder Winkelposition verstellbar in der Wandung des Vorwärmofens angeordnet sind. Die Position der Eintragsvorrichtung kann auf diese Weise der Geometrie der jeweils vorzuwärmenden Elektrode angepasst werden. Es ist im Übrigen im Rahmen der Erfindung ebenso vorstellbar, die Position der Eintragsvorrichtung gegenüber der Elektrode während des laufenden Aufwärmvorgangs zu verändern, um eine optimale Wärmebeaufschlagung bei minimalem Energieeinsatz zu erzielen, beispielsweise kann die Elektrode gegenüber dem Vorwärmofen oder dieser gegenüber der Elektrode um deren Längsachse drehbar gelagert sein, um auch bei einer geringen Anzahl von Eintragsvorrichtungen im Vorwärmofen eine gleichmäßige Wärmebeaufschlagung der Elektrodenspitze zu ermöglichen.
  • In einer abermals vorteilhaften Weiterbildung der Erfindung ist der Endabschnitt des Vorwärmofens mit einer Abdeckung ausgerüstet, die das Eindringen von Umgebungsatmosphäre unterbinden soll. Bei langen Abschmelzelektroden empfiehlt es sich dabei, die Abdeckung mit einer Aussparung für die Elektrode auszurüsten, sodass im Betrieb die Abschmelzelektrode lediglich mit ihrer Spitze in den von der Abdeckung eingeschlossenen Verbrennungsbereich hineinragt. Bei dieser Ausgestaltung der Erfindung wird also nur der Bereich der Elektrodenspitze intensiv mit heißen Brennergasen beaufschlagt, wobei die Abdeckung zumindest weitgehend verhindert, dass Gase aus der Umgebungsatmosphäre, insbesondere Sauerstoff, in den beheizten Bereich des Vorwärmofens eindringen und an der Oberfläche der Elektrode zu unerwünschten Reaktionen führen. Alternativ kann im Übrigen auch eine die Elektrode vollständig einhüllende Haube eingesetzt werden, beispielsweise eine Haubenkonstruktion der Art, wie sie in der EP 0 727 500 B1 beschrieben ist.
  • Zweckmäßigerweise ist der Vorwärmofen mit einem Abgassystem zur Regelung des Ofendrucks ausgerüstet. Das Abgassystem umfasst beispielsweise Mittel zur Regelung des Drucks oder der Zusammensetzung der Atmosphäre im Ofenraum, wie beispielsweise eine Absaugeinrichtung oder Mittel zur Rezirkulation von Rauchgasen.
  • Das erfindungsgemäße Verfahren zum Herstellen von Metallblöcken nach dem Elektroschlacke-Umschmelzen von Metallen, bei dem eine Abschmelzelektrode vorgewärmt und anschließend zumindest mit ihrer Spitze in ein metallurgisch wirksames Schlackenbad abgesenkt wird, ist dadurch gekennzeichnet, dass die Vorwärmung der Abschmelzelektrode vor ihrer Zuführung an das Schlackenbad mittels Beaufschlagung von zumindest der Spitze der Abschmelzelektrode mit einem miteinander reagierenden Brennstoff-Oxidator-Gemisch erfolgt.
  • Eine besonders bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens sieht dabei vor, die Vorwärmung der Spitze der Abschmelzelektrode durch Ausbildung eines die Spitze einhüllenden Flammenzyklons erfolgt. Ein Flammenzyklon entsteht bei einem tangentialen Eintrag von Brennstoff und/oder Oxidator mittels Lanzen oder Brennern. Die miteinander reagierenden Stoffe werden in einer Drallströmung um die Spitze der Abschmelzelektrode herumgeführt und erwärmen diese gleichmäßig und unter weitgehender Ausschaltung der Gefahr einer lokalen Überhitzung.
  • Es hat sich herausgestellt, dass die Zeitdauer des Elektrodenwechsels einen wesentlichen Einfluss auf den Kristallisationsvorgang und damit die Qualität des durch ESU erzeugten Metallblocks hat. Je länger die Zeitdauer zwischen der Wegnahme des alten Elektrodenrestes und dem Beginn des Aufschmelzens der Wechselelektrode dauert, desto größer ist die Gefahr der Ausbildung von fehlerhaften Kristallisationen im Grenzbereich zwischen den aufeinanderfolgenden Aufschmelzelektroden zuzuordnenden Materialabschnitten des umgeschmolzenen Metallblocks. Um die Zeitdauer der Unterbrechung des Umschmelzvorgangs während eines Elektrodenwechsels möglichst kurz zu halten, wird daher bei der Vorwärmung zumindest die Spitze der Abschmelzelektrode auf eine Temperatur zwischen 100°C und der Schmelztemperatur des Materials der jeweils vorzuwärmenden Abschmelzelektrode beheizt, bevorzugt zwischen 900°C und 1400°C. Durch die Aufheizung der Abschmelzelektrode auf derart hohe Temperaturen, die nahe an den Schmelzpunkt des jeweils umzuschmelzenden Metalls heranreichen, wird gewährleistet, dass die Abschmelzelektrode bei der anschließenden Zuführung an das Schlackenbad nicht oder nur kurz aufgeheizt werden muss, bis der Umschmelzvorgang wieder einsetzt.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht eine Steuerung vor, mittels der das Verhältnis aus Brennstoff und Oxidationsmittel des Brenners während des Vorwärmvorgangs verändert werden kann. Auf diese Weise kann die Befeuerung im Vorwärmofen optimiert und insbesondere die Temperatur der Brennerflamme genau eingestellt werden. Ebenso ist es auch möglich, mittels der Steuerung den Sauerstoffanteil im eingesetzten Oxidator während des Betriebs des Vorwärmofens zu ändern bzw. zu regeln.
  • Eine wieder bevorzugte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass Maßnahmen getroffen werden, die eine Rezirkulation von Brenngasen in den Bereich vor dem Austritt des Brenners bzw. den Austritten der Brenner ermöglichen und dadurch eine flammenlose - und damit besonders schadstoffarme und energieeffiziente - Verbrennung erfolgt.
  • Anhand der Zeichnungen soll nachfolgend ein Ausführungsbeispiel der Erfindung erläutert werden. Die einzige Zeichnung (Fig. 1) zeigt schematisch den Aufbau eines erfindungsgemäßen Vorwärmofens für eine ESU-Anlage im Längsschnitt.
  • Der in Fig. 1 gezeigte Vorwärmofen 1 umfasst einen aus feuerfestem Material aufgebauten Ofenmantel 2, dessen nach unten weisender Endabschnitt 3 konisch zugeformt ist. Eine Abdeckplatte 4, die mit einer zentralen Öffnung 5 ausgerüstet ist, schließt den Ofenmantel 2 nach oben ab und umgrenzt somit, gemeinsam mit den Wänden des Ofenmantels 2, einen Verbrennungsbereich 6. Im Bereich des Endabschnitts 3 sind in der Wand des Ofenmantels 2 Durchführungen 7, 8 vorgesehen, in denen in regelmäßigen Winkelabständen mehrere Brenner angeordnet sind, im Ausführungsbeispiel zwei Brenner 9, 10. Bei den Brennern 9, 10 handelt es sich im gezeigten Ausführungsbeispiel um Brenner, mittels denen ein gasförmiger Brennstoff, beispielsweise Erdgas, und Sauerstoff in den Verbrennungsbereich 6 eingetragen und dort verbrannt werden; im Rahmen der Erfindung können jedoch auch andere Brenner zum Einsatz kommen, wie beispielsweise Brenner, die mit einem festen oder flüssigen Brennstoff arbeiten und/oder Brenner, die Luft, mit Sauerstoff angereicherte Luft oder ein Gas mit einem während des Betriebs variablen Sauerstoffanteil als Oxidator einsetzen. Die Brenner 9, 10 ragen dabei tangential in den Vorwärmofen 1 hinein und sind in axialer Hinsicht gegenüber einer zur Längsachse des Vorwärmofens 1 senkrechten Ebene winklig, mit ihren Mündungsöffnungen jeweils nach oben weisend, angeordnet. Im oberen Bereich des Ofenmantels 2, dicht unterhalb der Abdeckplatte 4, ist eine weitere Durchführung 11 angeordnet, in der eine Abgasleitung 12 zum Abführen des Rauchgases eingebaut ist.
  • Beim Betrieb des Vorwärmofens 1 wird eine vorzuwärmende Abschmelzelektrode 13 mit ihrer Spitze 14 durch die Öffnung 5 der Abdeckplatte 4 geführt und so positioniert, dass die Spitze 14 im Bereich des Endabschnitts 3 angeordnet ist, ohne jedoch die Wände des Ofenmantels 2 zu berühren. Alternativ kann die Abdeckplatte 4 auch zweiteilig ausgeführt sein und erst nach der Positionierung der Abschmelzelektrode 13 von beiden Seiten im wesentlichen gasdicht an diese angelegt werden. In jedem Fall ist die zentrale Öffnung 5 der Abdeckplatte 4 dem Außendurchmesser der Abschmelzelektrode 13 angepasst und ermöglicht im Idealfall keinen, im Regelfall nur einen geringen Gasaustausch zwischen dem Verbrennungsbereich 6 und der Umgebungsatmosphäre.
  • Die Positionierung der Abschmelzelektrode 13 wird beispielsweise mittels einer Krananordnung 15 bewirkt, die auch das senkrechte Verfahren der Abschmelzelektrode 13 in den Vorwärmofen 1 hinein und aus diesem hinaus ermöglicht. Über eine Brennstoffzuleitung 16 und eine Sauerstoffzuleitung 17 wird Brennstoff bzw. Sauerstoff zu den Brennern 9, 10 geführt, und das sich jeweils vor den Ausmündungen der Brenner 9, 10 bildende Brennstoff-Oxidationsmittel-Gemisch gezündet. Der Eintrag des Brennstoff-Oxidationsmittel-Gemisches erfolgt jeweils tangential in die Verbrennungszone hinein, wobei die in axialer Hinsicht bestehende Neigung der Brenner 9, 10 in Richtung auf die Spitze 14 der Abschmelzelektrode 13 sowie die konische Zuformung des Endabschnitts 3 insgesamt einen helikalen Verlauf der Strömung im Verbrennungsbereich 6 bewirken. Nach Zündung des Brennstoff-Oxidationsmittel-Gemisches kommt zur Ausbildung eines Flammenzyklons, der die Spitze 14 der Abschmelzelektrode 13 einhüllt und dabei gleichmäßig erhitzt und auf eine Temperatur in der Nähe der Schmelztemperatur des Materials der Abschmelzelektrode 13, beispielsweise auf einen Wert zwischen 900°C und 1400°C, gebracht. Die Temperatur kann dabei mittels einer hier nicht gezeigten Steuerung, die die Zuflüsse von Brennstoff und/oder Oxidationsmittel steuert, eingestellt, bzw. geregelt werden. Um bei unterschiedlichen Ausgestaltungen einer Elektrodenspitze eine optimale Beaufschlagung mit Brenngasen zu ermöglichen, sind die Brenner 9, 10 winkel- und/oder längenverstellbar im Ofenmantel 2 aufgenommen. Die bei der Verbrennung entstehenden Rauchgase werden über die Abgasleitung 12 abgezogen. Eine in der Abgasleitung 12 angeordnete Absaugeinrichtung 18 ermöglicht dabei zugleich die Regelung bzw. Einstellung des Drucks im Verbrennungsbereich 6.
  • Besonders vorteilhaft werden die Brenner 9, 10 so ausgelegt, dass es innerhalb des Verbrennungsbereichs 6 zu einer flammenlosen Verbrennung und damit zu einer gleichmäßigen Aufheizung der Spitze 14 der Abschmelzelektrode 13 bei gleichzeitig vermindertem Schadstoffausstoß kommt.
  • Nachdem die Spitze 14 der Abschmelzelektrode 13 auf einen vorgegebenen Temperaturwert erwärmt wurde, wird die Zufuhr von Brennstoff und Sauerstoff über die Zuleitungen 16, 17 gesperrt. Die Abschmelzelektrode 13 wird aus dem Vorwärmofen 13 abgezogen und der Kokille eines hier nicht gezeigten Elektrodenschlacke-Umschmetzofens zugeführt. Der Vorwärmofen 1 steht danach zur Aufnahme einer weiteren Abschmelzelektrode zur Verfügung.
  • Mit dem erfindungsgemäßen, durch Verbrennung eines Brennstoffs betriebenen Vorwärmofen lässt sich die Vorheizung von Abschmelzelektroden weitaus wirtschaftlicher und bei höheren Temperaturen betreiben, als dies bei konventionellen, elektrisch betriebenen Vorwärmöfen der Fall ist.
  • Bezugszeichenliste:
  • 1.
    Vorwärmofen
    2.
    Ofenmantel
    3.
    Endabschnitt
    4.
    Abdeckplatte
    5.
    Öffnung
    6.
    Verbrennungsbereich
    7.
    Durchführung
    8.
    Durchführung
    9.
    Brenner
    10.
    Brenner
    11.
    Durchführung
    12.
    Abgasleitung
    13.
    Abschmelzelektrode
    14.
    Spitze (der Abschmelzelektrode)
    15.
    Krananordnung
    16.
    Brennstoffzuleitung
    17.
    Sauerstoffzuleitung
    18.
    Absaugeinrichtung

Claims (12)

  1. Vorrichtung zum Herstellen von Metallblöcken nach dem Elektroschlacke-Umschmetzverfahren, mit einem metallurgisch wirksamen Schlackenbad und einem Vorwärmofen (1) zum Vorwärmen von zumindest einer Spitze (14) einer dem Schlackenbad zuzuführenden Abschmelzelektrode (13),
    dadurch gekennzeichnet, dass der Vorwärmofen (1) in einem im Betriebszustand des Vorwärmofens (1) die Spitze (14) der Abschmelzelektrode (13) aufnehmenden Verbrennungsbereichs (6) mit zumindest einer Eintragseinrichtung (9, 10) für einen Brennstoff und einen Oxidator ausgerüstet ist, die derart angeordnet ist, dass der Brennstoff und/oder das Oxidationsmittel tangential in den Verbrennungsbereich (6) des Vorwärmofens (1) eingetragen werden.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Eintragseinrichtungen (9, 10) in axialer Hinsicht winklig, mit ihrer Mündungsöffnung in Richtung auf die Spitze (14) der Abschmelzelektrode (13) geneigt, angeordnet sind.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, als Eintragseinrichtungen Brenner (9, 10) vorgesehen sind, die jeweils mindestens eine Zuführung für einen Brennstoff und mindestens eine Zuführung für einen Oxidator aufweisen.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, im Endabschnitt (3) des Vorwärmofens (1) mehrerer Brenner (9, 10) in vorzugsweise gleichmäßigen Winkelabständen angeordnet sind.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der bzw. die Brenner (9, 10) in seiner/ihrer Längen- und/oder Winkelposition verstellbar in der Wand des Vorwärmofens (1) angeordnet ist/sind.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Endabschnitt (3) des Vorwärmofens (1) zum Verhindern des Eindringens von Umgebungsatmosphäre mit einer Abdeckung (4) ausgerüstet ist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Abgassystem (12, 18) zur Regelung des Ofendrucks.
  8. Verfahren zum Herstellen von Metallblöcken nach dem Elektroschlacke-Umschmelzen von Metallen, bei dem eine Abschmelzelektrode (13) vorgewärmt und anschließend mit einer Spitze (14) in ein metallurgisch wirksames Schlackenbad abgesenkt wird,
    dadurch gekennzeichnet,
    dass die Vorwärmung der Abschmelzelektrode (13) vor ihrer Zuführung an das Schlackenbad durch Beaufschlagen von zumindest der Spitze (14) der Abschmelzelektrode (13) mit einem miteinander reagierenden Brennstoff-Oxidatior-Gemisch erfolgt.
  9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Vorwärmung der Spitze (14) der Abschmelzelektrode (13) durch Ausbildung eines die Spitze (14) einhüllenden Flammenzyklons erfolgt.
  10. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Spitze (14) der Abschmelzelektrode (13) bei der Vorwärmung auf eine Temperatur zwischen 100°C und der Schmelztemperatur des Materials der Abschmelzelektrode, bevorzugt zwischen 900°C und 1400°C, beheizt wird.
  11. Verfahren nach Anspruch 7 bis 9, dadurch gekennzeichnet, dass das Verhältnis aus Brennstoff und Oxidationsmittel und/oder den Sauerstoffgehalt im Oxidator während der Vorwärmung verändert oder geregelt wird.
  12. Verfahren nach Anspruch 7 bis 10, dadurch gekennzeichnet, dass die Verbrennung des Brennstoffs flammenlos erfolgt.
EP14186604.6A 2013-09-28 2014-09-26 Vorrichtung und Verfahren zum Elektroschlacke-Umschmelzen Active EP2853610B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RS20180087A RS56789B1 (sr) 2013-09-28 2014-09-26 Uređaj i postupak za pretapanje elektrozgure
PL14186604T PL2853610T3 (pl) 2013-09-28 2014-09-26 Urządzenie i sposób przetapiania elektrożużlowego
SI201430578T SI2853610T1 (en) 2013-09-28 2014-09-26 Device and process for removing electro-slag
HRP20180138TT HRP20180138T1 (hr) 2013-09-28 2018-01-24 Uređaj i postupak za elektrolučno pretaljivanje pod troskom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013016192.4A DE102013016192B3 (de) 2013-09-28 2013-09-28 Vorrichtung und Verfahren zum Elektroschlacke-Umschmelzen

Publications (3)

Publication Number Publication Date
EP2853610A2 true EP2853610A2 (de) 2015-04-01
EP2853610A3 EP2853610A3 (de) 2015-04-08
EP2853610B1 EP2853610B1 (de) 2017-11-15

Family

ID=51625892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14186604.6A Active EP2853610B1 (de) 2013-09-28 2014-09-26 Vorrichtung und Verfahren zum Elektroschlacke-Umschmelzen

Country Status (8)

Country Link
EP (1) EP2853610B1 (de)
DE (1) DE102013016192B3 (de)
ES (1) ES2654892T3 (de)
HR (1) HRP20180138T1 (de)
HU (1) HUE035556T2 (de)
PL (1) PL2853610T3 (de)
RS (1) RS56789B1 (de)
SI (1) SI2853610T1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831082A (zh) * 2015-05-26 2015-08-12 重庆钢铁(集团)有限责任公司 一种电渣冶炼电炉系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831083B (zh) * 2015-05-26 2017-07-28 重庆钢铁(集团)有限责任公司 电渣冶炼电炉装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2124960A1 (de) 1971-05-19 1973-02-01 Boehler & Co Ag Geb Verfahren zur herstellung von bloecken aus staehlen und metallegierungen mittels des elektroschlacke-umschmelzens mit elektrodenwechsel
DE2755478A1 (de) 1977-12-13 1979-06-21 Inst Elektroswarki Patona Anlage zur herstellung von gussbloecken im elektroschlackeumschmelzverfahren
EP0727500B1 (de) 1995-02-20 2000-04-19 Inteco Internationale Technische Beratung Gesellschaft mbH Verfahren und Anlage zum Herstellen von Blöcken aus Metallen
DE10128168C1 (de) 2001-06-09 2002-10-24 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Herstellen von Metallblöcken nach dem Elektroschlacke-Umschmelzverfahren

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT282089B (de) * 1968-02-06 1970-06-10 Boehler & Co Ag Geb Verfahren zum Elektroschlackenumschmelzen von Metallen, insbesondere von Stählen
DE2649141C3 (de) * 1976-10-28 1979-10-18 Institut Elektrosvarki Imeni E.O. Patona Akademii Nauk Ukrainskoj Ssr, Kiew (Sowjetunion) Plasmalichtbogenofen zum Umschmelzen von Metallen und Legierungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2124960A1 (de) 1971-05-19 1973-02-01 Boehler & Co Ag Geb Verfahren zur herstellung von bloecken aus staehlen und metallegierungen mittels des elektroschlacke-umschmelzens mit elektrodenwechsel
DE2755478A1 (de) 1977-12-13 1979-06-21 Inst Elektroswarki Patona Anlage zur herstellung von gussbloecken im elektroschlackeumschmelzverfahren
EP0727500B1 (de) 1995-02-20 2000-04-19 Inteco Internationale Technische Beratung Gesellschaft mbH Verfahren und Anlage zum Herstellen von Blöcken aus Metallen
DE10128168C1 (de) 2001-06-09 2002-10-24 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Herstellen von Metallblöcken nach dem Elektroschlacke-Umschmelzverfahren

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831082A (zh) * 2015-05-26 2015-08-12 重庆钢铁(集团)有限责任公司 一种电渣冶炼电炉系统

Also Published As

Publication number Publication date
DE102013016192B3 (de) 2015-01-15
ES2654892T3 (es) 2018-02-15
EP2853610A3 (de) 2015-04-08
EP2853610B1 (de) 2017-11-15
PL2853610T3 (pl) 2018-04-30
HUE035556T2 (en) 2018-05-02
SI2853610T1 (en) 2018-03-30
HRP20180138T1 (hr) 2018-03-09
RS56789B1 (sr) 2018-04-30

Similar Documents

Publication Publication Date Title
DE69927837T2 (de) Verfahren und vorrichtung zur herstellung von metallen und metalllegierungen
EP0548041A2 (de) Elektro-Lichtbogenofen zur Herstellung von Stahl
DE2821453C3 (de) Plasmaschmelzofen
DE2522467A1 (de) Verfahren und vorrichtung zur verhinderung von ansaetzen im muendungsbereich eines metallurgischen schmelzgefaesses
WO2003060169A1 (de) Verfahren zur pyrometallurgischen behandlung von metallen, metallschmelzen und/oder schlacken sowie eine injektorvorrichtung
DE2062144C3 (de) Verfahren und Vertikalofen zum Schmelzen und Raffinieren von Roh- oder Blisterkupfer
DE3247572C2 (de) Einrichtung zur Herstellung von Stahl
DE3620517A1 (de) Verfahren zum schmelzen und rberhitzen von eisenmetallen und vorrichtung zur durchfuehrung des verfahrens
EP1481101B1 (de) Verfahren und vorrichtung zur kontinuierlichen stahlherstellung unter einsatz von metallischen einsatzmaterialien
DE3220820C2 (de) Verfahren zur Reduktion von Metalloxiden in einer Reduktionsmaterialsäule eines Schachtofens mit Hilfe eines Reduktionsgases
EP2853610B1 (de) Vorrichtung und Verfahren zum Elektroschlacke-Umschmelzen
DE4301322C2 (de) Verfahren und Einrichtung zum Schmelzen von eisenmetallischen Werkstoffen
EP0572609B1 (de) Verfahren zum einschmelzen von schrott, sowie vorrichtung zur durchführung dieses verfahrens
DE4432924C2 (de) Verfahren zum Schmelzen von Metallschrott und elektrischer Lichtbogenofen zur Durchführung des Verfahrens
DE60207694T2 (de) Schachtofen in modulbauweise zum reduktionsschmelzen
EP1204769B1 (de) Vorrichtung und verfahren zur eindüsung von erdgas und/oder sauerstoff
EP2659008B1 (de) Verfahren zur pyrometallurgischen behandlung von metallen, metallschmelzen und/ oder schlacken
DE69312135T2 (de) Schmelzverfahren für Metalle
AT396483B (de) Anlage und verfahren zur herstellung von stahl aus chargiergut
EP3320286B1 (de) Schmelzmetallurgischer ofen
DE3324064C2 (de)
EP0982407B1 (de) Verfahren zum Schmelzen von anorganischen Stoffen
DE2951826C2 (de) Metallurgisches Schmelz- und Frischaggregat
WO2004108975A1 (de) Verfahren zur verringerung von schadstoffen in den abgasen eines schmelzofens
DE2932938A1 (de) Metallurgisches schmelzaggregat, insbesondere lichtbogenofen

Legal Events

Date Code Title Description
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140926

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C22B 9/18 20060101AFI20150227BHEP

R17P Request for examination filed (corrected)

Effective date: 20151008

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20151008

Extension state: BA

Payment date: 20151008

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 946355

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006224

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20180138

Country of ref document: HR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2654892

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180215

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20180138

Country of ref document: HR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E035556

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 26506

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006224

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26N No opposition filed

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180926

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180138

Country of ref document: HR

Payment date: 20190725

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180138

Country of ref document: HR

Payment date: 20200824

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180138

Country of ref document: HR

Payment date: 20210913

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180138

Country of ref document: HR

Payment date: 20220921

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180138

Country of ref document: HR

Payment date: 20230731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230828

Year of fee payment: 10

Ref country code: CZ

Payment date: 20230915

Year of fee payment: 10

Ref country code: AT

Payment date: 20230825

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230814

Year of fee payment: 10

Ref country code: SI

Payment date: 20230725

Year of fee payment: 10

Ref country code: RS

Payment date: 20230815

Year of fee payment: 10

Ref country code: PL

Payment date: 20230712

Year of fee payment: 10

Ref country code: HU

Payment date: 20230815

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20230719

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231005

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20180138

Country of ref document: HR

Payment date: 20240726

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20240717

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240930

Year of fee payment: 11

Ref country code: HR

Payment date: 20240726

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240702

Year of fee payment: 11