EP2841617B1 - Procédé pour le durcissement en solution d'une pièce déformée à froid constituée d'un alliage passif et élément durci en solution par le procédé - Google Patents

Procédé pour le durcissement en solution d'une pièce déformée à froid constituée d'un alliage passif et élément durci en solution par le procédé Download PDF

Info

Publication number
EP2841617B1
EP2841617B1 EP13726673.0A EP13726673A EP2841617B1 EP 2841617 B1 EP2841617 B1 EP 2841617B1 EP 13726673 A EP13726673 A EP 13726673A EP 2841617 B1 EP2841617 B1 EP 2841617B1
Authority
EP
European Patent Office
Prior art keywords
temperature
nitrogen
workpiece
stainless steel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13726673.0A
Other languages
German (de)
English (en)
Other versions
EP2841617A1 (fr
Inventor
Thomas Lundin Christiansen
Thomas Strabo Hummelshoj
MarcelA.J. SOMERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Expanite Technology AS
Original Assignee
Expanite Technology AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/DK2012/050139 external-priority patent/WO2012146254A1/fr
Application filed by Expanite Technology AS filed Critical Expanite Technology AS
Publication of EP2841617A1 publication Critical patent/EP2841617A1/fr
Application granted granted Critical
Publication of EP2841617B1 publication Critical patent/EP2841617B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the invention relates to a method for solution hardening of a cold deformed workpiece of a passive alloy.
  • the method provides a hardened alloy in which substantially no carbides and/or nitrides are formed.
  • the method also provides a corrosion resistant surface while retaining the core strength of the material obtained from the cold deformation.
  • the invention further relates to a member produced by the method.
  • Such members are particularly relevant in the fields of medico, food, automotive, chemical, petrochemical, pharmaceutical, marine, package, watches, cutlery/tableware, medical, energy, pulp & paper, mining, or waste water technology.
  • stainless steel and other passive alloys are typically materials with good corrosion resistance, but with relatively poor tribological characteristics, e.g. adhesive wear characteristics.
  • stainless steel and comparable alloys can be surface hardened at low temperature (below 450-550°C) by dissolution of nitrogen and/or carbon, by which is obtained a zone of so-called expanded austenite or alternatively expanded martensite. This zone is a supersaturated solution of carbon and/or nitrogen in austenite or martensite and is metastable with respect to carbide/nitride formation.
  • low temperature processes can be based on gas, plasma or molten salt; gas processes require use of special activation techniques, whereas for plasma and salt bath activation is immediately achieved and no special treatment is necessary.
  • sensitisation will occur in connection with the low-temperature dissolution of nitrogen and/or carbon, which takes place at temperatures below 550°C.
  • a full annealing of the components has - where possible - been made by a so-called austenitisation in vacuum or hydrogen atmosphere.
  • Full annealing is a process, which is carried out at temperatures above 1020°C, typically in the range 1020-1120°C. Thereby the cold deformation in the material is annihilated and the low-temperature dissolution can be carried out without the risk of sensitisation.
  • the process provides the problem that the strength of the cold-worked metal is reduced - this is referred to as a so-called egg shell effect in the material, i.e. the material becomes soft with a hard thin surface, when the workpiece is subsequently low-temperature hardened.
  • a so-called egg shell effect in the material, i.e. the material becomes soft with a hard thin surface, when the workpiece is subsequently low-temperature hardened.
  • Another possibility is to employ a carburising process where only carbon is dissolved in the material at low temperature, i.e. formation of carbon expanded austenite. Sensitisation is not as critical for carbon dissolution as it is for nitrogen dissolution (nitriding and nitrocarburising) and hence leads to less influence on the corrosion resistance. However, for components with a strong degree of cold deformation even this is considered detrimental.
  • Another disadvantage by only employing carbon dissolution is that a lower surface hardness is obtained than for nitrogen dissolution and that the composition profile (hardness) cannot be adjusted in the same way (see e.g. EP 1095170 B1 and WO 2006/136166 A1 ).
  • carbides and/or nitrides are not formed at these high temperatures.
  • the solubility of nitrogen/carbon is however relatively limited and for austenitic stainless steels no actual surface hardening occurs; this applies in particular for carbon.
  • a fast cooling rate is required.
  • martensitic stainless steel types a significant hardening of the surface can take place by fast cooling; however, the hardening effect is at a significantly lower level than obtained by processes for formation of expanded austenite.
  • WO 2008/124239 suggests a hybrid carburisation process with intermediate rapid quench, according to which a carbon hardened surface in a metal workpiece can be formed without forming carbide precipitates by subjecting the workpiece to both high temperature carburisation and low temperature carburisation, wherein immediately after high-temperature carburisation, the workpiece is rapidly quenched to a temperature below which carbide precipitates form.
  • the rapid quenching may be accomplished using e.g. immersion of the workpiece in water, oil or other cooling medium such as a gas or molten salt.
  • WO 2008/124239 fails to recognize the issues of cold-deformation and formation of carbides and/or nitrides during a subsequent low-temperature hardening.
  • the method comprises a first step in which nitrogen and/or carbon is dissolved in the workpiece at a temperature higher than the solubility temperature for carbide and/or nitride formation and lower than the melting point of the workpiece, and a subsequent second step, wherein nitrogen and/or carbon are dissolved at a temperature where substantially no formation of carbides and/or nitrides occurs.
  • the method may also comprise a quick cooling from the first to the second temperature. While treatment of metals according to PA 2011 70208 provides superior characteristics compared to other processes of the prior art it is suspected that further improvements in the characteristics of the metals may be achieved.
  • the aim of the present invention is to provide a method, which allows solution hardening of products shaped through cold deformation and prepared from passive alloys, in particular stainless steel, without sensitisation occurring in the workpiece and thereby provide a better corrosion resistance. It is a further object that the strengthening effect obtained is comparable to or possibly even larger than the strengthening effect obtained by cold deformation.
  • the present invention relates to a method for solution hardening of a cold deformed workpiece of a passive alloy containing at least 10% chromium, which method comprises
  • the method of the invention may also be viewed as a method for solution hardening of a cold deformed workpiece of a passive alloy, which method is given in claim 1 and comprises the steps of:
  • the first dissolution step is performed in a gas, such as a gas containing N 2 , e.g. substantially pure N 2 without other gasses than unavoidable impurities, and the cooling step is also performed in a gas, which is an inert gas not containing nitrogen (an nitrogen-free inert gas) with argon being particularly preferred.
  • a gas such as a gas containing N 2 , e.g. substantially pure N 2 without other gasses than unavoidable impurities
  • the cooling step is also performed in a gas, which is an inert gas not containing nitrogen (an nitrogen-free inert gas) with argon being particularly preferred.
  • an "inert gas” is a gas that does not contain any substantial amount of molecules which interact with elements of the alloy; any inert gas not containing nitrogen is contemplated in the invention, or mixtures of gasses.
  • the workpiece treated in the method of the invention has a corrosion resistance, which is even superior to the corrosion resistance obtained using other cooling gases, or when the cooling step is performed using other methods.
  • gasses containing nitrogen are believed to accelerate formation of nitrides when the cooling is performed in a gas containing nitrogen compared to cooling in an inert gas, so that a more robust and flexible method is provided with a cooling step using an inert gas.
  • the partial pressure of nitrogen in the treatment at temperature T1 determines the solubility of nitrogen, so that the higher the partial pressure of nitrogen in the treatment at temperature T1 the more pronounced is the effect of cooling in an inert gas not containing nitrogen.
  • Cooling in an nitrogen-free inert gas may also allow longer cooling times than 60 s, but preferably cooling is performed an nitrogen-free inert gas in less than 30 s, such as in less than 10 s.
  • the method further provides formation of expanded austenite and/or expanded martensite in the cold deformed workpiece of the passive alloy.
  • the method may further comprise a subsequent second step of dissolving nitrogen and/or carbon in the workpiece at a temperature T2 of at least 300°C, which temperature T2 is lower than the temperature at which carbides and/or nitrides form in the passive alloy.
  • the first step of dissolving nitrogen in the workpiece at a temperature higher than the solubility temperature for nitride significantly improves the core strength of the passive alloy, such as stainless steel, in comparison to only re-crystallisation annealing of the material prior to low temperature hardening.
  • the high temperature dissolution of nitrogen is done at temperatures above the austenisation temperature of the alloy, e.g. at least or above 1050°C and below the melting point of the alloy.
  • the strengthening effect of this high-temperature nitriding is, surprisingly, sufficient to compensate for the loss of strength caused by annihilating the cold deformation while the workpiece is kept at the high temperature during nitriding.
  • the high-temperature nitriding allows that low temperature hardening can be performed at higher temperatures than usual without creating problems with formation of nitrides and/or carbides, and that it is easier to activate the passive surface on the material at the subsequent low temperature surface hardening process.
  • the formation of the hardened zone is accelerated.
  • better corrosion characteristics are obtained, since nitrogen exists in solid solution.
  • a significant improvement of the hardening of passive alloys can be obtained by the high temperature dissolution of nitrogen followed by low temperature nitriding, carburising or nitrocarburising.
  • Any passive alloy in which expanded austenite or expanded martensite may form is relevant to the invention, and stainless steel is preferred, in particular cold deformed austenitic stainless steel.
  • the optional subsequent low temperature dissolution of nitrogen and/or carbon which takes place at temperatures below the temperature at which carbides and/or nitrides form in the passive alloy, such as below 450-550°C dependent on the process, may in the subsequent step be carried out on a material, which does not contain plastic deformation, but which has a strength on level with a plastically deformed workpiece. This means that the risk of sensitisation is reduced significantly.
  • the presence of nitrogen and optionally carbon in solid solution in stainless steel have even been found to give a faster low temperature process, than can be obtained using methods of the prior art, since the diffusion coefficients of nitrogen and carbon increase with increasing carbon/nitrogen content.
  • the passive alloy is a stainless steel containing nitrogen and/or carbon.
  • the method of the present invention provides manufactured members having at least the same strength as cold deformed members and at the same time better corrosion resistance, and further provides the advantage of taking less time to perform.
  • Dissolution at temperature T1 and at the optional temperature T2 may be performed using any appropriate technology.
  • dissolution at temperature T1 and at temperature T2 may be performed in a gaseous process, e.g. using a gas containing nitrogen, such as ammonia, preferably N 2 .
  • Dissolution may also be performed using ion implantation, salt bath or plasma. It is preferred that dissolution at temperature T1 and temperature T2 are carried out using gas, since this is a cheap and efficient solution and because all types of geometries may be treated uniformly, and there is a good temperature uniformity.
  • the use of a gas process means that the process is within the framework of the laws of thermodynamics, which means that there are very well controlled processing conditions.
  • the high temperature process of the invention makes the surface easier to activate using gas in the low temperature process. It is thus easier to remove the impermeable oxide layer (passive layer), which is found on passive materials after a high temperature dissolution. It is assumed that this is attributable to the presence of nitrogen and optionally carbon which is dissolved at high temperature.
  • the optional low temperature process may be carried out immediately after the high temperature process, but this is not mandatory. It is also possible to perform the two processes with an offset in time and place. If the processes are carried out immediately after each other with the cooling step between the first and the second dissolution step, it is possible to avoid that a passivation of the surface occurs and hence activation prior to the low temperature process is superfluous.
  • the invention also relates to an example wherein dissolution at temperature T2 takes place immediately after cooling from temperature T1 without the passivation/activation of the surface in-between the execution of the high temperature process and the low temperature process. This may be done in the same furnace. When using gas the relevant gases containing nitrogen and/ or carbon for use in the low temperature process may be supplied immediately when the material has been cooled to temperature T2.
  • the cooling is advantageously done using argon without any nitrogen present during cooling.
  • An advantage of using gaseous processing is that it is possible to use gases, which do not activate the surface at temperature T2 in the low temperature process.
  • Other advantages of this example are that the hardening process thereby can be made cheaper and quicker.
  • An advantage of the method of the invention is that better corrosion characteristics are obtained, since nitrogen exists in solid solution. Dissolution of carbon does not change the corrosion characteristics.
  • the material may be considered to be a nitrogen-containing alloy, if the component is fully saturated with nitrogen. This will often be the case for thin-walled workpieces, e.g. workpieces with a material thickness of up to 4 mm, such as a thickness of 2-4 mm, which are treated with the method of the invention.
  • Stainless steel workpieces which are treated with the method of the invention therefore have a far better corrosion resistance compared to workpieces, which solely are treated with the low temperature process (see the examples).
  • An aspect of the invention relates to a thin-walled component, or workpiece, of a cold deformed metal or alloy treated according to the method of the invention.
  • the material may be fully saturated with nitrogen by the high temperature process.
  • a surface zone of up to several millimetres, e.g. up to about 5 mm, may be obtained where nitrogen is in solid solution.
  • the bearing capacity of the material will be increased and comparable to what may be obtained by cold deformation.
  • the method provides that a thickness of expanded austenite or expanded martensite of at least 5 ⁇ m is obtained in the workpiece, and the hardness of the expanded austenite zone or the expanded martensite zone is at least 1000 HV, such as more than 1050 HV.
  • the method may further comprise that dissolution at temperature T2 takes place immediately after cooling from dissolution at temperature T1 without the occurrence of a passivation of the surface.
  • cooling after the first dissolution process at temperature T1 takes place especially quickly, e.g. in a period of no more than 60 second, in the temperature interval in which there is the largest tendency for sensitisation and formation of precipitations, such as nitrides and/or carbides, for the relevant alloy.
  • this in particular takes place in the interval from 900 to 700°C where the material should be cooled quickly.
  • the workpiece is cooled from 900 to 700°C in less than 60 seconds.
  • the workpiece is cooled from 900 to 700°C in less than 30 seconds.
  • the features of the methods of the invention may be combined freely, and all such combinations are contemplated in the present invention.
  • all features and variations discussed for the first dissolution step at temperature T1 are relevant also when the method comprises a second dissolution step at temperature T2.
  • all features discussed for the subsequent step of dissolving nitrogen and/or carbon in the workpiece at a temperature T2, which is lower than the temperature at which carbides and/or nitrides form in the passive alloy are relevant for any combination of features for the first dissolution step at temperature T1 and the cooling in an inert gas not containing nitrogen.
  • the invention relates to a member obtained by the invention.
  • Any workpiece may be treated in the method, although it is preferred that the workpiece has a thickness of up to about 10 mm, since this will provide that the resulting member is fully saturated with nitrogen.
  • Members which are solution hardened according to a method of the invention may be used in any technological field. Fields of particular relevance comprise members for use in the technical areas of medico, food, automotive, chemical, petrochemical, pharmaceutical, marine, package, watches, cutlery/tableware, medical, energy, pulp & paper, mining or waste water technologies.
  • valves (butterfly valves, ball valves, control valves), steering bolts, nuts, washers, fasteners, nozzles, pumps, machinery components, semiconductor ASML, ferrule parts, ball bearings and bearing gages, pneumatic parts, membranes etc.
  • the invention relates to a member obtained by the method according to the invention, where the member is a valve part or a part used in a valve.
  • the invention relates to a member obtained by the method according to the invention, where the member forms an outer surface area of a design object, such as a clips for holding paper or notes, a sign plate, a holder, a lid of a box, cutlery, a watch, or a plate mounted together with a handle or a plate forming part of a lamp.
  • a design object such as a clips for holding paper or notes, a sign plate, a holder, a lid of a box, cutlery, a watch, or a plate mounted together with a handle or a plate forming part of a lamp.
  • the invention relates to a member obtained by the method according to the invention, where the member is part of a bearing, such as a part of a ball bearing, a part of a roller bearing, or a bearing cage.
  • a bearing such as a part of a ball bearing, a part of a roller bearing, or a bearing cage.
  • the invention relates to a member obtained by the method according to the invention, where the member is part of medical equipment, or medical instruments, or dental equipment, or dental instruments, or is a medical instrument or a dental instrument.
  • the invention relates to a member obtained by the method according to the invention, where the member is part of pharmaceutical equipment, such as a plate, a nozzle, a shim, a pipe, or a grid.
  • the invention relates to a member obtained by the method according to the invention, where the member is part of a car, such as a plate, a part in the exhaust system, a filter part, an engine part, a fixture, a handle, or a part having a decorative surface.
  • expansion austenite and “expanded martensite” describe an austenite or martensite, respectively, which has been supersaturated with nitrogen or carbon, or nitrogen and carbon (with respect to nitride or carbide formation). Expanded austenite and expanded martensite may be specified as nitrogen-expanded or carbon-expanded, or the expansion may be specified as nitrogen- and carbon-expanded. However, in the context of the invention “expanded austenite” and “expanded martensite” generally refer broadly to austenite or martensite, respectively, expanded with nitrogen, carbon or any combination of nitrogen and carbon. A review of expanded austenite is provided by T.L.
  • any alloy in which "expanded austenite” or “expanded martensite” may be formed is contemplated for the method of the invention.
  • Expanded austenite or expanded martensite may form in the surface of an alloy when the alloy is subjected to solution of nitrogen or carbon, or nitrogen and carbon, and the expanded austenite or expanded martensite may also be referred to as a "zone" of expanded austenite or expanded martensite.
  • zone should be understood in relation to the thickness of the treated material so that “zone” is comparable to the thickness of expanded austenite or expanded martensite.
  • the method of the invention provides that a thickness of expanded austenite or expanded martensite of at least 5 ⁇ m is obtained in the workpiece; the thickness of the expanded austenite or expanded martensite may be up to about 50 ⁇ m or higher.
  • an "alloying element” may refer to a metallic component or element in the alloy, or any constituent in the analysis of the alloy.
  • alloys of relevance in the method of the invention comprise an element that may form nitrides and/or carbides with present nitrogen and carbon, respectively.
  • the method of the invention advantageously provides a surface free from nitrides and carbides of alloying elements. It is however also contemplated in the invention that an alloy may comprise only a single metallic element capable of forming nitrides and/or carbides.
  • An alloy may also comprise other elements, such as semi-metallic elements, inter-metallic elements, or non-metallic elements.
  • Alloying elements capable of forming nitrides and/or carbides may typically be metallic elements providing corrosion resistance to the alloy due to formation of a passive oxide layer with the alloying element.
  • the terms "nitride” and “carbide” as used in the context of the invention refer to nitrides and carbides formed between alloying elements and nitrogen and carbon, respectively.
  • An exemplary nitride is chromium nitride, CrN or Cr 2 N although terms "nitride” and “carbide” are not limited to nitrides and carbides with chromium.
  • passive in connection with alloys or metals is to be understood an alloy, which has an oxide layer on the surface.
  • the alloy can be both self-passivating or be passivated as a consequence of a process to which the alloy is subjected. Belonging to the group of self-passivating alloys are those, which have a strong affinity to oxygen (e.g. Cr, Ti, V), including alloys containing such alloying elements (e.g. stainless steel which essentially is an Fe-based alloy containing at least 10.5 % Cr).
  • Cold deformation (also named “cold working”) is to be understood a plastic deformation induced in the material by external forces at a temperature below the recrystallisation temperature of the material.
  • Cold deformation may be provided by an actual plastic shape change, such as forging, extrusion, shaping, drawing, pressing, or rolling, and may also be caused by machining such as turning, milling, punching, grinding or polishing etc., or by a combination of these processes.
  • sensitisation is to be understood that nitrogen or carbon have formed nitrides and carbides, respectively, by reaction with one or more alloying elements otherwise utilized to form the protective oxide layer on the surface, as for example chromium in stainless steel.
  • alloying elements otherwise utilized to form the protective oxide layer on the surface, as for example chromium in stainless steel.
  • the free content of the alloying element, such as chromium, in solid solution is lowered to a level, which is no longer sufficient to maintain a complete protective oxide layer, which means that the corrosion characteristics are deteriorated.
  • solubility temperature for carbide and/or nitride is to be understood the temperature at which nitrides/carbides are not stable, and where already formed nitrides/carbides are dissolved.
  • alloys comprising metallic alloying elements capable of forming nitrides and/or carbides will have a temperature interval in which nitrides and/or carbides may form when nitrogen and carbon, respectively, are present. Thus, above this temperature interval, nitrides and carbides will not form, and already formed nitrides/carbides are dissolved.
  • nitrides or carbides exist i.e.
  • these carbides can generally only be removed by exposing the sensitised metal to a temperature above the austenisation temperature. Furthermore, such alloys have a temperature below the temperature interval, where nitrides and carbides will not form, although nitrides or carbides already formed in an alloy cannot be removed at the low temperature.
  • the “austenisation temperature” is typically the temperature used when heat treating an alloy in order to dissolve carbides, and “austenisation temperature” may thus correspond to the "solubility temperature for carbide".
  • austenisation temperature the alloy is in the austenitic phase.
  • the temperature at which a steel alloy changes phase from ferrite to austenite is typically at a somewhat lower temperature than the austenisation temperature.
  • the austenisation temperature as well as the temperature at which carbides and/or nitrides form in a passive alloy are generally well-known to the skilled person. Likewise the temperature below which nitrides or carbides will not form is generally known to the skilled person. Furthermore the melting temperature of the alloy is generally known to the skilled person. The temperatures may depend on the composition of the passive alloy, and for any given composition these temperatures are furthermore easily determined experimentally by the skilled person.
  • alloying contents mentioned are expressed in percent by weight. With respect to compositions of alloys or of gas unavoidable impurities may naturally also be present, even if this is not specifically mentioned.
  • Fig. 1 shows an example of an isothermal transformation diagram (TTT diagram) for a nitrogen-containing austenitic stainless steel; the stainless steel has the composition Fe-19Cr-5Mn-5Ni-3Mo-0.024C-0.69N (from J.W. Simmons, PhD thesis, Oregon graduate Institute of Science and Technology 1993 ).
  • the temperature interval in which nitrides may begin to form is indicated with "Cr 2 N”.
  • the step of dissolving nitrogen in the passive alloy is thus performed at a temperature T1 above the austenisation temperature and the workpiece is cooled to a temperature, which is lower than the temperature at which carbides and/or nitrides form in the passive alloy in an inert gas not containing nitrogen.
  • the method may comprise a second step of dissolving nitrogen and/or carbon, which is performed at a temperature T2 below the temperature interval where nitrides and/or carbides can form.
  • temperature T1 is higher than temperature T2.
  • the workpiece is cooled, e.g. within a time span of 60 seconds, after the first dissolution step at temperature T1 to a temperature which is lower than the temperature at which carbides and/or nitrides form in the passive alloy.
  • the passive alloy of the workpiece will thus be stabilised with respect to formation of nitrides and/or carbides, and the optional second dissolution step may then be performed as desired.
  • the austenisation temperature may also be referred to as "high” temperature in the context of the invention.
  • the temperature below the temperature at which carbides and/or nitrides form is also referred to as "low" temperature.
  • the method of the invention comprises steps of dissolving nitrogen and/or carbon in the passive alloy.
  • the step of dissolving nitrogen may also be referred to as the “dissolution of nitrogen” or “nitriding”, and likewise step of dissolving carbon may also be referred to as the “dissolution of carbon” or “carburising”.
  • nitrogen and carbon are dissolved in the same process step may be referred to as "nitrocarburising”.
  • the invention relates to a member obtained by the method of the invention.
  • treated should be understood broadly.
  • the term “treated” means that method of the invention has been employed in the manufacture of the member.
  • the invention also relates to a member manufactured using the method of the invention and the terms "treated in” and “manufactured using” may be used interchangeably.
  • the method of the invention may be the last step in the manufacture of the member or a member treated by the method may also be subjected to further processing steps to provide the final member.
  • a “thin-walled component” is a component of a size allowing the component to be fully saturated with nitrogen and/or carbon in the method of the invention.
  • a “thin-walled component” may have a material thickness, e.g. in its smallest dimension, of up to, and including, about 10 mm, such as a thickness of about 2 mm to about 4 mm or a thickness in the range from 0.2 mm to 8 mm, or a thickness in the range from 0.4 mm to 6 mm, or a thickness in the range from 0.5 mm to 5 mm, or a thickness in the range from 1.5 mm to 4.5 mm.
  • the method may be used with any thin-walled component.
  • the invention is especially suitable for stainless steels and comparable alloys, where expanded austenite or martensite can be obtained in a low temperature dissolution process.
  • alloys based on iron, nickel and/or cobalt comprising chromium are relevant for the method.
  • the chromium content may vary and may as an example be up to about 10 %. In other examples the chromium content may be at about 10 % or at least 10%.
  • the invention in one example relates to a method for solution hardening of a cold deformed workpiece of stainless steel. Nitrogen and optionally also carbon can be dissolved in the stainless steel at a temperature, which is higher than the austenisation temperature of the stainless steel, e.g.
  • the solubility temperature for carbide and/or nitride for present alloying elements such as chromium. Even relatively small amounts of nitrogen give a significant increase in strength to provide a load bearing capacity, which is necessary for wear resistant expanded austenite.
  • the hardness of the expanded austenite zone or the expanded martensite zone is at least 1000 HV.
  • the stainless steel is an austenitic steel.
  • This material is relatively soft compared to e.g. martensitic stainless steel. Therefore, it is especially advantageous for this material that nitrogen and optionally carbon is dissolved at the high temperature process. Thereby, it is obtained that the austenitic steel receives a sufficient core strength to compensate for the loss of strength, which takes place when the cold deformation is annihilated and that it is then possible to dissolve nitrogen and/or carbon at low temperature without problems with precipitation, such as nitrides and/or carbides.
  • the passive alloy is selected from the group comprising stainless steel, austenitic stainless steel, martensitic stainless steel, ferritic stainless steel, precipitation hardenable (PH) stainless steel or ferritic-austenitic stainless steel; a ferritic-austenitic stainless steel may also be referred to as a duplex stainless steel.
  • the content of nitrogen and optionally carbon, which is dissolved at the high temperature process in stainless steel will typically be less than 1 % by weight, but may, if desired, be higher. This may e.g. be obtained by applying a higher nitrogen and optionally carbon activity, for example in the form of a higher partial pressure of N 2 in a gaseous process.
  • the content of nitrogen and/or carbon, which is obtained in stainless steel at the low temperature dissolution may be as high as 14 % by weight and 6 % by weight, respectively.
  • the above dissolution of nitrogen and/or carbon takes place at the temperature T1 using gas, which contains nitrogen and optionally carbon, but it may also be performed by ion implantation, plasma assistance or by salt bath.
  • gas which contains nitrogen and optionally carbon
  • a nitrogen containing gas such as N 2
  • the pressure of the gas may be up to several bar, but it may also be below 1 bar, such as 0.1 bar. It is an advantage to employ gas, since all types of geometries may be treated uniformly and there is a good temperature uniformity.
  • dissolutions are performed at temperature T1 and temperature T2 using gas.
  • the gasses contain nitrogen and/or carbon, and the gas employed in the cooling step is an inert gas not containing nitrogen.
  • dissolution at temperature T2 is performed in a process selected from the group comprising a gas-based process, ion implantation, salt bath or plasma.
  • a diffusion depth of 50 ⁇ m to 5 mm is obtained by dissolution of nitrogen and optionally carbon at temperature T1.
  • This provides both a hard surface and a strengthening of the core of the material.
  • a full hardening of thin-walled components with a material thickness comparable with, or up to about twice the dissolution depth may be obtained since dissolution normally takes place from both sides of the workpiece.
  • For thicker components a relatively thick surface zone where nitrogen and optionally carbon is in solid solution is obtained.
  • This provides support for the expanded austenitic layer, which is formed in the surface in the subsequent low temperature process.
  • a full nitriding/carburising/nitrocarburising of the workpiece may thus be obtained. Even if this is not fully obtained the dissolution will be a significant advantage, especially for thin-walled workpieces, where strict requirements to the corrosion resistance, and to the bearing capacity, are relevant, since these are improved significantly in the method of the invention.
  • the temperature T1 is above 1000°C, such as at least 1050°C, or it may be at least 1100°C, such as 1120°C or 1160°C, at least 1200°C, or at least 1250°C.
  • the upper limit for the temperature is below the melting point of the treated materials.
  • the melting point is about 1600°C.
  • temperature T1 is below 1600°C, such as below 1500°C, or below 1400°C, such as below 1350°C.
  • temperature T1 is in the range of 1050 and 1300 °C, such as at about 1150°C.
  • the temperature is higher than the solubility temperature for the relevant carbides and/or nitrides, which may potentially be formed in the material, but however below the melting point of the treated material.
  • the employed temperature may be chosen with consideration to the gas mixture and the applied gas pressure.
  • carbon is dissolved at temperature T2, and temperature T2 is below 550 °C, preferably the range of 300 - 530 °C during carburising.
  • nitrogen is dissolved at temperature T2, and temperature T2 is below 500 °C, such as below 470 °C, preferably the range of 300 - 470 °C during nitriding.
  • nitrogen and carbon are dissolved at temperature T2, and temperature T2 is below 500 °C, such as below 470 °C, preferably the range of between 300 - 470 °C during nitrocarburising.
  • the high temperature dissolution is carried out at temperature T1 for at least 20 min, such as for at least 30 minutes, or for at least 1 hour, or for at least 1.5 hours, or for at least 2 hours or for at least 3 hours, or for at least 4 hours, or for at least 5 hours, or for at least 10 hours or for at least 15 hours.
  • T1 for at least 20 min, such as for at least 30 minutes, or for at least 1 hour, or for at least 1.5 hours, or for at least 2 hours or for at least 3 hours, or for at least 4 hours, or for at least 5 hours, or for at least 10 hours or for at least 15 hours.
  • the material may, depending on its thickness, be saturated with nitrogen and optionally carbon, i.e. be fully nitrided or nitrocarburised.
  • the method comprises cooling the material to ambient temperature after the dissolution at temperature T1. It is particularly preferred that the second dissolution step at temperature T2 is performed immediately after the cooling step; this will avoid passivation of the workpiece, i.e. formation of an oxide layer.
  • the cooling takes place under high pressure, such as in the range of 6 and 10 bar, such as at 7 bar or at 8 bar, or at 9 bar.
  • the cooling takes place in an inert gas not containing nitrogen, such as a noble gas, e.g. helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), or radon (Rn), or any mixture of these, with argon being particularly preferred.
  • cooling takes place in argon at high pressure, e.g. in the range of 4 and 20 bar, such as in the range of 6 and 10 bar, such as at 7 bar or at 8 bar, or at 9 bar.
  • the invention further relates to a lock washer (see Fig. 2a and 2b ) of stainless steel for securing bolts and nuts, which is dissolution hardened using the method of the invention.
  • the lock washer is relatively thin-walled, so that by hardening the lock washer using the method of the invention a significant and necessary improvement of both strength and corrosion resistance of the lock washer is obtained.
  • the lock washer has a first side with radial teeth and an opposite other side, the camside, with cams.
  • the lock washers are used in pairs mounted with the cams against each other to obtain a key lock effect. They are especially suitable to effectively lock bolt assemblies which are exposed to extreme vibrations or dynamic loads and to corrosive environment, such as salt water. There are therefore strong requirements to the strength and corrosion resistance of these washers.
  • the invention is especially suitable for stainless steels and comparable alloys, in which expanded austenite or martensite can be obtained at a low temperature dissolution process.
  • the invention is, however, generic in nature: a high temperature dissolution process with nitrogen and optionally carbon in passive alloys, such as iron-based alloys, cobalt-based alloys, nickel-based alloys or chromium-based alloys, which provides strength and an improved low temperature dissolution process with respect to corrosion, processing rate and strength.
  • Fig. 2 shows a key lock washer set 1 of said key lock washers 2 and illustrates the use of these.
  • Each washer 2 has a first side 3 with radial teeth 4 and an opposite other camside 5 with cams 6.
  • the two key lock washers were solution hardened with nitrogen and carbon at a temperature of 440°C.
  • One washer was hardened by a method disclosed in PA 2011 70208 , i.e. in a high temperature process and subsequently in a low temperature process, and the other washer was directly surface hardened with the same low temperature process, i.e.
  • Fig. 3 and Fig. 4 in the left panel show the washer, which was only surface hardened with a nitrocarburising process conducted using a gas containing nitrogen and carbon at a temperature of 440°C for 16 hours at atmospheric pressure.
  • the outer surface in the nitrogen containing zone appears partly sensitised (chromium nitride precipitations).
  • the deformed substrate appears strongly deformed and becomes clearly influenced by the employed etching liquid to development of the micro structure.
  • Fig. 4 shows an enlarged version of Fig. 3 .
  • Fig. 3 and Fig. 4 in the right panel show the washer treated by the method disclosed in PA 2011 70208 .
  • the washer was exposed to a nitrogen containing atmosphere (N 2 gas) at a temperature above 1050°C and was subsequently quickly cooled in the same gas. Thereby the material was austenitised completely and the material was fully saturated with nitrogen.
  • the washer was surface hardened with a nitrocarburising process conducted using a gas containing nitrogen and carbon at a temperature of 440°C for 16 hours at atmospheric pressure, whereby expanded austenite was formed in the surface in a zone with a thickness of at least 5 ⁇ m.
  • the nitrocarburised nitrogen-containing zone was not sensitised and the substrate was clearly without cold deformation.
  • the substrate hardness (260-300 HV0.5) and the surface hardness (1200-1400 HV0.005) in the two washers are however practically identical.
  • the corrosion resistance (exposure time in salt spray chamber (ISO 9227)) of the washer, where the method disclosed in PA 2011 70208 was employed, is many times better than for the washer which was only surface hardened (time in the chamber until corrosion was observed).
  • the washer which was treated with the method disclosed in PA 2011 70208 did not exhibit corrosion after 400 hours whereas the washer which was directly low temperature hardened did exhibit clearly visible corrosion already after 20 hours.
  • a further improvement in the corrosion resistance can be obtained while retaining the other advantageous characteristics by exposing the washer to a nitrogen containing atmosphere (N 2 gas) at a temperature above 1050°C and subsequently quickly cooling in an inert atmosphere not containing nitrogen, e.g. argon, instead of cooling in the nitrogen containing atmosphere.
  • N 2 gas nitrogen containing atmosphere
  • Fig. 5 in the left panel shows the microstructure analysed with optical microscopy of a component, which was only surface hardened with a nitrocarburising process conducted using a gas containing nitrogen and carbon at a temperature 440°C for 12 hours. The outer surface in the nitrogen containing zone appears partly sensitised with clear precipitations of CrN in the outermost surface.
  • FIG. 5 in the right panel shows a component treated with the method disclosed in PA 2011 70208 .
  • the component was exposed to a nitrogen containing atmosphere (N 2 gas) at a temperature above 1050°C and was subsequently quickly cooled in the same gas. Then the component surface was hardened with a nitrocarburising process in a low temperature process conducted using a gas containing nitrogen and carbon at a temperature of 440°C for 12 hours.
  • the nitrocarburised nitrogen containing zone was not sensitised.
  • the substrate hardness (260-300 HV0.5) and the surface hardness (1200-1400 HV0.005) in the two components are, however, practically identical.
  • the total layer thickness of the expanded austenite zone is in both cases approximately 20 ⁇ m.
  • the outermost layer is nitrogen expanded austenite, and the innermost layer is carbon expanded austenite.
  • the corrosion resistance for both components was tested in a 14 % by weight sodium hypochlorite solution.
  • the component which was treated with the method disclosed in PA 2011 70208 did not exhibit corrosion after 24 hours, whereas the component, which was directly low-temperature hardened exhibited clear corrosion after only 10 minutes.
  • the component where the method disclosed in PA 2011 70208 was employed thus differs in having a significantly better corrosion resistance than the workpiece, which was directly nitrocarburised.
  • a further improvement in the corrosion resistance can be obtained while retaining the other advantageous characteristics by exposing the ferrule to a nitrogen containing atmosphere (N 2 gas) at a temperature above 1050°C and subsequently quickly cooling in an inert atmosphere not containing nitrogen, e.g. argon, instead of cooling in the nitrogen containing atmosphere.
  • N 2 gas nitrogen containing atmosphere
  • Fig. 6 in the left panel shows a component, which was only surface hardened with a nitrocarburising process conducted using a gas containing nitrogen and carbon at a temperature of 440°C for 20 hours and subsequently corrosion tested by exposure to 14 % by weight sodium hypochlorite solution for 70 minutes.
  • the component where the method disclosed in PA 2011 70208 was employed thus differs in having a much better corrosion resistance.
  • a further improvement in the corrosion resistance can be obtained while retaining the other advantageous characteristics by exposing the component to a nitrogen containing atmosphere (N 2 gas) at a temperature above 1050°C and subsequently quickly cooling in an inert atmosphere not containing nitrogen, e.g. argon, instead of cooling in the nitrogen containing atmosphere.
  • N 2 gas nitrogen containing atmosphere
  • Lock washers of cold deformed austenitic stainless steel, AISI 316L, as described in Prior Art Example 1 and illustrated in Fig. 2 were exposed to a nitrogen containing atmosphere (N 2 gas) at a temperature above 1050°C before quickly cooling to ambient temperature in either the same atmosphere or an atmosphere of argon. The samples were not subjected to further surface hardening. The corrosion resistance of the components was tested in a 14 % by weight sodium hypochlorite solution.
  • Fig. 8 shows three exemplary lock washers cooled in argon (left side) and three lock washers cooled in nitrogen (right side). The argon cooled lock washers had far superior corrosion resistance than lock washers cooled in nitrogen, which showed clear signs of corrosion.
  • the corrosion resistance of cold deformed austenitic stainless steel AISI 316 treated according to the invention was compared with a similar component treated with a process of the prior art.
  • the corrosion testing was performed by submerging the two surface hardened components into 14% by weight sodium hypochlorite solution for 18 hours.
  • Fig. 9 in the left panel shows the component treated according to the invention, i.e. in a high temperature process and subsequently, after cooling in argon, in a low temperature process and the other component in the right panel was directly surface hardened solely with a low temperature process.
  • the surface of the component treated according to the invention appears unaffected by the corrosion test even after 18 hours of exposure.
  • corrosion attacks were observed after short term exposure (7 minutes).
  • the component where the method of the invention was employed thus differs in having a much better corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (15)

  1. Procédé de traitement en solution d'une pièce déformée à froid constituée d'un alliage à base de fer, de nickel et/ou de cobalt contenant au moins 10 % de chrome, le procédé comprenant :
    - la dissolution au moins d'azote dans la pièce à une température T1, qui est supérieure à 1 020 °C et inférieure au point de fusion de l'alliage, la dissolution d'azote à la température T1 étant réalisée pour obtenir une profondeur de diffusion de 50 µm à 5 mm, et
    - le refroidissement de la pièce après l'étape de dissolution à la température T1 jusqu'à une température qui est inférieure à 550 °C, le refroidissement de la température de 900 °C à la température de 700 °C étant réalisé en moins de 60 secondes, et l'étape de refroidissement se déroulant dans un gaz inerte ne contenant pas d'azote.
  2. Procédé selon la revendication 1, comprenant en outre une deuxième étape ultérieure de dissolution d'azote et/ou de carbone dans la pièce à une température T2 d'au moins 300 °C et inférieure à 550 °C.
  3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel le gaz inerte est sélectionné parmi l'hélium (He), le néon (Ne), l'argon (Ar), le krypton (Kr), le xénon (Xe), ou le radon (Rn), ou un mélange quelconque de ceux-ci.
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'azote et le carbone sont dissous à la température T1.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'alliage est sélectionné dans le groupe comprenant l'acier inoxydable, l'acier inoxydable austénitique, l'acier inoxydable martensitique, l'acier inoxydable ferritique, l'acier inoxydable durcissable par précipitation (DP), ou l'acier inoxydable ferritique-austénitique.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel la dissolution à la température T1 est réalisée à l'aide d'un gaz contenant de l'azote, de préférence N2.
  7. Procédé selon l'une quelconque des revendications 2 à 6, dans lequel la dissolution à la température T2 est réalisée dans un procédé sélectionné dans le groupe comprenant un procédé gazeux, une implantation ionique, un bain de sel ou un plasma.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel la température T1 est d'au moins 1 050 °C, par exemple de 1 050 °C à 1 300 °C.
  9. Procédé selon l'une quelconque des revendications 2 à 8, dans lequel le carbone est dissous à la température T2, et la température T2 est de 300 °C à 530 °C.
  10. Procédé selon l'une quelconque des revendications 2 à 8, dans lequel l'azote est dissous à la température T2 ou l'azote et le carbone sont dissous à la température T2, et la température T2 est inférieure à 500 °C, préférablement de 300 °C à 470 °C.
  11. Procédé selon l'une quelconque des revendications 2 à 10, dans lequel une épaisseur d'austénite expansée ou de martensite expansée d'au moins 5 µm est obtenue dans la pièce.
  12. Procédé selon l'une quelconque des revendications 2 à 11, dans lequel la dureté de la zone d'austénite expansée ou de martensite expansée est d'au moins 1000 HV.
  13. Procédé de fabrication d'un élément résistant à la corrosion, ledit élément résistant à la corrosion étant constitué d'un alliage à base de fer, de nickel et/ou de cobalt et comprenant au moins 10 % de chrome, l'élément ayant une épaisseur de jusqu'à 10 mm, le procédé comprenant les étapes qui consistent à :
    - fournir une pièce déformée à froid constituée d'un alliage à base de fer, de nickel et/ou de cobalt et comprenant au moins 10 % de chrome, la pièce ayant une épaisseur de jusqu'à 10 mm,
    - la dissolution au moins d'azote dans la pièce à une température T1, qui est supérieure à 1 020 °C et inférieure au point de fusion de l'alliage, la dissolution d'azote à la température T1 étant réalisée pour obtenir une profondeur de diffusion de 50 µm à 5 mm, et
    - le refroidissement de la pièce après l'étape de dissolution à la température T1 jusqu'à une température qui est inférieure à 550 °C, le refroidissement de la température de 900 °C à la température de 700 °C étant réalisé en moins de 60 secondes, et l'étape de refroidissement se déroulant dans un gaz inerte ne contenant pas d'azote.
  14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel la pièce ou l'élément résistant à la corrosion est une rondelle d'arrêt en acier inoxydable servant à bloquer en place une pièce de fixation, telle que des boulons et/ou des écrous.
  15. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel la pièce ou l'élément résistant à la corrosion est une pièce utilisée dans une valve, une surface externe d'un objet conceptuel, une pièce d'un roulement, un élément de matériel médical, un élément de matériel dentaire, un instrument médical, un instrument dentaire, un élément de matériel pharmaceutique, ou une pièce automobile.
EP13726673.0A 2012-04-27 2013-04-25 Procédé pour le durcissement en solution d'une pièce déformée à froid constituée d'un alliage passif et élément durci en solution par le procédé Active EP2841617B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/DK2012/050139 WO2012146254A1 (fr) 2011-04-28 2012-04-27 Procédé de durcissement en solution d'une pièce de fabrication en alliage passif déformée à froid, et élément durci en solution par ledit procédé
PCT/DK2013/050119 WO2013159781A1 (fr) 2012-04-27 2013-04-25 Procédé pour le durcissement en solution d'une pièce déformée à froid constituée d'un alliage passif et élément durci en solution par le procédé

Publications (2)

Publication Number Publication Date
EP2841617A1 EP2841617A1 (fr) 2015-03-04
EP2841617B1 true EP2841617B1 (fr) 2017-12-13

Family

ID=48576167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13726673.0A Active EP2841617B1 (fr) 2012-04-27 2013-04-25 Procédé pour le durcissement en solution d'une pièce déformée à froid constituée d'un alliage passif et élément durci en solution par le procédé

Country Status (8)

Country Link
EP (1) EP2841617B1 (fr)
JP (1) JP6241896B2 (fr)
KR (1) KR101897321B1 (fr)
CN (1) CN104246001B (fr)
CA (1) CA2869018A1 (fr)
DK (1) DK2841617T3 (fr)
IN (1) IN2014DN09816A (fr)
WO (1) WO2013159781A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125839A1 (de) * 2019-09-25 2021-04-08 Danfoss A/S Verfahren zum Herstellen einer wasserhydraulischen Maschine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150160416A1 (en) 2013-12-10 2015-06-11 Parker-Hannifin Corporation Multiple layer hardness ferrule
US10605387B2 (en) 2013-12-10 2020-03-31 Parker-Hannifin Corporation Multiple layer hardness ferrule and method
EP3143176B1 (fr) 2014-05-15 2020-05-27 Expanite Technology A/S Élément de fixation en acier inoxydable durci
EP3299487B2 (fr) 2016-09-27 2023-01-04 Bodycote plc Procédé pour le durcissement de surface d'un article déformé à froid comprenant un recuit à basse température
JP6979713B2 (ja) * 2017-04-26 2021-12-15 エクスパナイト テクノロジー アグシャセルスガーッブExpanite Technology A/S 組立部品
CA3068747A1 (fr) * 2017-07-07 2019-01-10 Industries Mailhot Inc. Procede et systeme de refroidissement de pieces metalliques apres nitruration
WO2020176616A1 (fr) * 2019-02-26 2020-09-03 Somnio Global Holdings, Llc Poudre d'acier à haute teneur en azote et procédés de fabrication de celle-ci
JP2020147821A (ja) * 2019-03-15 2020-09-17 株式会社デンソー プラズマ窒化処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333917C2 (de) * 1993-10-05 1994-06-23 Hans Prof Dr Ing Berns Randaufsticken zur Erzeugung einer hochfesten austenitischen Randschicht in nichtrostenden Stählen
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
JP2001032048A (ja) * 1999-07-19 2001-02-06 Nsk Ltd 転がり軸受
AU2003245864A1 (en) * 2002-07-16 2004-02-02 Danmarks Tekniske Universitet-Dtu Case-hardening of stainless steel
CN101198714B (zh) * 2005-06-15 2011-07-20 皇家飞利浦电子股份有限公司 制造不锈钢产品的方法
PL1910584T3 (pl) 2005-06-22 2016-06-30 Bodycote Plc Nawęglanie w gazie węglowodorowym
US20100116377A1 (en) * 2007-04-06 2010-05-13 Swagelok Company Hybrid carburization with intermediate rapid quench
EP2278038A1 (fr) * 2009-07-20 2011-01-26 Danmarks Tekniske Universitet (DTU) Procédé d'activation d'un article de métal passif ferreux ou non ferreux préalable à la carburation, à la nitruration et/ou à la nitrocarburation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125839A1 (de) * 2019-09-25 2021-04-08 Danfoss A/S Verfahren zum Herstellen einer wasserhydraulischen Maschine
GB2589201A (en) * 2019-09-25 2021-05-26 Danfoss As Method for producing a water-hydraulic machine
GB2589201B (en) * 2019-09-25 2023-04-05 Danfoss As Method for producing a water-hydraulic machine

Also Published As

Publication number Publication date
KR101897321B1 (ko) 2018-09-10
KR20150003900A (ko) 2015-01-09
WO2013159781A1 (fr) 2013-10-31
JP6241896B2 (ja) 2017-12-06
CA2869018A1 (fr) 2013-10-31
JP2015514874A (ja) 2015-05-21
CN104246001A (zh) 2014-12-24
IN2014DN09816A (fr) 2015-07-31
CN104246001B (zh) 2017-07-25
DK2841617T3 (en) 2018-03-12
EP2841617A1 (fr) 2015-03-04

Similar Documents

Publication Publication Date Title
US10023924B2 (en) Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method
EP2841617B1 (fr) Procédé pour le durcissement en solution d'une pièce déformée à froid constituée d'un alliage passif et élément durci en solution par le procédé
JP2015514874A5 (fr)
EP2390378A1 (fr) Procédé et appareil de nitratation des articles métalliques
JP3064907B2 (ja) 浸炭硬化締結用品およびその製法
EP1518002A1 (fr) Acier inoxydable a surface modifiee
WO2006071502A2 (fr) Composition et processus permettant de renforcer les proprietes de composants ferreux
JP3005952B2 (ja) オーステナイト系金属に対する浸炭処理方法およびそれによって得られたオーステナイト系金属製品
Triwiyanto et al. Low temperature thermochemical treatments of austenitic stainless steel without impairing its corrosion resistance
Kumar et al. Surface hardening of AISI 304, 316, 304L and 316L ss using cyanide free salt bath nitriding process
Korevaar et al. Effects of nitriding on fatigue strength of quenched and tempered steel: role of interstitial nitrogen
Tahchieva et al. Study of the thermochemical surface treatment effect on the phase precipitation and degradation behavior of DSS and SDSS
Milella Surface Treatments and Temperature Effects
Mohd Khairul Munir B Kamaruzaman Improvement on Wear Resistance of 316 Austenitic Stainless Steel by High Temperature Nitriding Technique
Park et al. Development of New Modified “Super Saturated NitroCarburizing” for Modern High Pressure Injector in Powertrain
Casteletti et al. Ionic Technologies Inc.
PILCH ANALYSIS OF PROCESSES AND PROPERTIES OF PLASMA NITRIDING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151021

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170109

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170623

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 954435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013030752

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180305

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 954435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013030752

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130425

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240314

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240314

Year of fee payment: 12