EP2831298B1 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
EP2831298B1
EP2831298B1 EP13715919.0A EP13715919A EP2831298B1 EP 2831298 B1 EP2831298 B1 EP 2831298B1 EP 13715919 A EP13715919 A EP 13715919A EP 2831298 B1 EP2831298 B1 EP 2831298B1
Authority
EP
European Patent Office
Prior art keywords
contact material
oxide
contact
magnesium
magnesium stannate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13715919.0A
Other languages
German (de)
French (fr)
Other versions
EP2831298A1 (en
Inventor
Michael Bender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saxonia Technical Materials GmbH
Original Assignee
Saxonia Technical Materials GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saxonia Technical Materials GmbH filed Critical Saxonia Technical Materials GmbH
Priority to EP13715919.0A priority Critical patent/EP2831298B1/en
Publication of EP2831298A1 publication Critical patent/EP2831298A1/en
Application granted granted Critical
Publication of EP2831298B1 publication Critical patent/EP2831298B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • H01H1/02376Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2

Definitions

  • silver / metal and silver / metal oxide composites have proven themselves.
  • the silver / metal composite most commonly used is silver / nickel, which has its main application at lower currents.
  • the AgSnO 2 WO 3 / MoO 3 material is produced by powder metallurgy using the extrusion technique.
  • the powder metallurgical production has the advantage that additives of any kind and quantity can be used.
  • the material can be specifically optimized for certain properties, such as welding force or heating.
  • the combination of powder metallurgy with the extrusion technology allows a particularly high efficiency in the production of the contact pieces.
  • An internally oxidized AgSnO 2 / In 2 O 3 material is also used. This material, described in DE-OS 24 28 147 , contains 5-10% SnO 2 and 1-6% In 2 O 3 .
  • a targeted change in the concentrations of the oxide additives to influence certain switching properties is often not always possible due to the oxidation kinetics.
  • a contact material which contains 1.6 to 6.5 Bi 2 O 3 and 0.1 to 7.5 SnO 2 in addition to silver.
  • This material can be produced both by internal oxidation and powder metallurgy.
  • Such high Bi 2 O 3 contents lead to embrittlement, so that the material can be produced only by individual sintering, but not by the more economical extrusion technology.
  • From the US 4,680,162 is an internally oxidized AgSnO 2 material is known, which may contain at tin contents of more than 4.5% additions of 0.1-5 indium and 0.01-5 bismuth.
  • the metal alloy powder is compacted and then internally oxidized. These additives inhibit the inhomogeneous oxide precipitations customary in internal oxidation. Optimal contact properties shows this Material not.
  • the powder metallurgical production of contact materials based on silver-tin oxide by mixing the powder, cold isostatic pressing, sintering and extrusion to semi-finished is, for example, from DE 43 19 137 and DE 43 31 526 known.
  • JP 50-19352 B1 shows a composite electrical contact material consisting of silver, cadmium oxide, magnesium oxide containing 0.1 to 0.3 wt .-% magnesium and tin oxide containing 2-4Gew .-% metallic tin, wherein a portion of magnesium and tin in the form of Mg 2 SnO 4 is present.
  • This object is achieved by a metal composite containing at least one metal and 5% to 60% by weight magnesium stannate, wherein the metal is silver or a silver alloy.
  • Magnesium stannate, Mg 2 SnO 4 is a compound known from the literature, the preparation of which is described, for example, in US Pat Materials in Electronics, 16 (2005), pages 193 to 196 .
  • the present patent application also relates to the use of a contact material containing at least one metal and magnesium stannate, wherein the metal is silver or a silver alloy, for the production of electrical contact pieces, as well as electrical contacts comprising such a contact material as further described.
  • the metal used is silver or silver alloys.
  • Silver alone also has excellent properties for many applications.
  • Cadmium on the other hand, is not included and may be present in the maximum range of unavoidable impurities.
  • at least 60% of the further oxide that is, for example, the tin oxide, particle sizes of 1 .mu.m or more, which is particularly advantageous in forming processes such as by extrusion.
  • the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.
  • the contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.
  • magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained.
  • Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products.
  • the further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof.
  • Suitable compounds are, for example, alkoxides of tin and magnesium, such as hexakis [ ⁇ - (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.
  • the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.
  • the contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.
  • magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained.
  • Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products.
  • the further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof.
  • Suitable compounds are, for example, alkoxides of tin and magnesium, such as, for example, hexakis [ ⁇ - (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.
  • too fine magnesium stannate or else other oxides can be coarsened by a heat treatment in which, for example, annealed at temperatures of about 700 ° C to about 1400 ° C until more than 60 wt.% Of magnesium stannate or other oxides have a particle size of more than 1 micron.
  • magnesium stannate (Mg 2 SnO 4 ) powders having smaller particle sizes may also be used, in which case additives such as sintering activators are advantageous, for example copper oxide CuO, nanoscale silver powder or other nanomaterials.
  • magnesium stannate can be used in which 60 wt.% Even before mixing with the metal powder have a particle size of at least 1 micron, but also magnesium stannate (Mg 2 SnO 4 ), in which 60% of magnesium stannate particle sizes of 50 nm to less than 1000 nm, in particular 60% of the magnesium stannate has particle sizes of 100 nm to 900 nm.
  • Mg 2 SnO 4 magnesium stannate
  • an alloy of silver with base metals is made pyrometallurgically and often heat-treated in pure oxygen under overpressure to form a contact material.
  • Such methods are known from the literature and described for example in EP 1505164 and EP 0508055 ,
  • a metal powder may be used which is e.g. contains further oxides which have been produced by internal oxidation, such as, for example, silver containing tin oxide.
  • the further processing then proceeds by powder metallurgy, that is to say by adding magnesium stannate and / or further oxides and / or metal powder, subsequent pressing, sintering and, if appropriate, shaping, such as, for example, Extrusion.
  • the contact material contains in particular silver and magnesium stannate and moreover only conventional impurities.
  • the contact material magnesium stannate in an amount of 0.2 to 20 wt .-% and ad 100 wt .-% silver and conventional impurities.
  • the contact material comprises magnesium stannate which has at least 60% of a particle size of 1 ⁇ m or more, in an amount of 0.2 to 20% by weight and ad 100% by weight of silver and conventional impurities.
  • the crushed powder mixture is calcined at 1400 ° C for 20 hours in air and then ground to a particle size (d50) of 2 microns (Fritsch Pulverisette 5, 2 mm ZrO 2 spheres, dry isopropanol).
  • d50 particle size of 2 microns
  • the resulting product was found to consist of 95.6% dimagnesium stannate (Mg 2 SnO 4 ) and 4.4% cassiterite (SnO 2 ).
  • FIG. 2 shows for both contact materials, which have an oxide content of 17.07 per cent by volume, the burnup in mg per switching operation.
  • the lower column shows the change at the fixed contact, the upper column at the moving contact. It can be seen that the magnesium stannate (Mg 2 SnO 4 ) and silver based contact material exhibits improved burn-off properties.
  • FIG. 3 shows the contact resistances in mOhms for both contact materials, which are given as mean values (in each case right column) and as 99% values. It can be seen that the averages are comparable but the 99% values are significantly lower for the magnesium stannate (Mg 2 SnO 4 ) and silver-based contact material and thus significantly improved over the silver-tin oxide material.
  • Mg 2 SnO 4 magnesium stannate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)

Description

Für die Herstellung von elektrischen Kontakten in Niederspannungsschaltgeräten haben sich Silber/Metall- und Silber/Metalloxid-Verbundwerkstoffe bewährt. Als Silber/Metall-Verbundwerkstoff wird am häufigsten Silber/Nickel eingesetzt, dessen Hauptanwendungsgebiet bei niedrigeren Strömen liegt.For the production of electrical contacts in low-voltage switchgear, silver / metal and silver / metal oxide composites have proven themselves. The silver / metal composite most commonly used is silver / nickel, which has its main application at lower currents.

Bestimmte Zusätze, wie WO3 oder MoO3, haben sich bei Schaltgeräten, die hohen thermischen Belastungen standhalten müssen, bewährt. Besonders gut bewährte sich AgSnO2 mit diesen Zusätzen in Schaltgeräten mit Nennströmen von mehr als 100 A und unter sogenannter AC4-Belastung. Bei geringeren Schaltströmen ist allerdings die Lebensdauer dieser Werkstoffe relativ kurz.Certain additives, such as WO 3 or MoO 3 , have been proven in switching devices that have to withstand high thermal loads. AgSnO 2 proved to be particularly suitable with these accessories in switchgear with rated currents of more than 100 A and under so-called AC4 load. At lower switching currents, however, the life of these materials is relatively short.

Der AgSnO2WO3/MoO3-Werkstoff wird pulvermetallurgisch über die Strangpresstechnik hergestellt. Die pulvermetallurgische Herstellung hat den Vorteil, dass Zusätze beliebiger Art und Menge verwendet werden können. Damit kann der Werkstoff gezielt auf bestimmte Eigenschaften hin, wie z.B. Verschweisskraft oder Erwärmung, optimiert werden. Zudem erlaubt die Kombination von Pulvermetallurgie mit der Strangpresstechnik eine besonders hohe Wirtschaftlichkeit bei der Herstellung der Kontaktstücke. Ein innerlich oxidierter AgSnO2/In2O3-Werkstoff findet ebenfalls Verwendung. Dieser Werkstoff, beschrieben in DE-OS 24 28 147 , enthält neben 5-10 % SnO2 noch 1-6 % In2O3. Eine gezielte Änderung der Konzentrationen der Oxidzusätze, um bestimmte Schalteigenschaften zu beeinflussen, ist häufig aufgrund der Oxidationskinetik nicht immer möglich.The AgSnO 2 WO 3 / MoO 3 material is produced by powder metallurgy using the extrusion technique. The powder metallurgical production has the advantage that additives of any kind and quantity can be used. Thus, the material can be specifically optimized for certain properties, such as welding force or heating. In addition, the combination of powder metallurgy with the extrusion technology allows a particularly high efficiency in the production of the contact pieces. An internally oxidized AgSnO 2 / In 2 O 3 material is also used. This material, described in DE-OS 24 28 147 , contains 5-10% SnO 2 and 1-6% In 2 O 3 . A targeted change in the concentrations of the oxide additives to influence certain switching properties is often not always possible due to the oxidation kinetics.

In der DE-OS 27 54 335 wird ein Kontaktwerkstoff beschrieben, der neben Silber 1,6 bis 6,5 Bi2O3 und 0,1 bis 7,5 SnO2 enthält. Dieser Werkstoff kann sowohl über die innere Oxidation als auch pulvermetallurgisch hergestellt werden. Derart hohe Bi2O3-Gehalte führen aber zu einer Versprödung, so dass der Werkstoff nur über Einzelsintern, nicht aber über die wirtschaftlichere Strangpresstechnik hergestellt werden kann. Aus der US 4,680,162 ist ein innerlich oxidierter AgSnO2-Werkstoff bekannt, der bei Zinngehalten von mehr als 4,5 % Zusätze an 0,1-5 Indium und 0,01-5 Wismut enthalten kann. Das Metallegierungspulver wird kompaktiert und anschliessend innerlich oxidiert. Durch diese Zusätze werden die bei innerlicher Oxidation üblichen inhomogenen Oxidausscheidungen unterbunden. Optimale Kontakteigenschaften zeigt dieser Werkstoff jedoch nicht.In the DE-OS 27 54 335 a contact material is described which contains 1.6 to 6.5 Bi 2 O 3 and 0.1 to 7.5 SnO 2 in addition to silver. This material can be produced both by internal oxidation and powder metallurgy. However, such high Bi 2 O 3 contents lead to embrittlement, so that the material can be produced only by individual sintering, but not by the more economical extrusion technology. From the US 4,680,162 is an internally oxidized AgSnO 2 material is known, which may contain at tin contents of more than 4.5% additions of 0.1-5 indium and 0.01-5 bismuth. The metal alloy powder is compacted and then internally oxidized. These additives inhibit the inhomogeneous oxide precipitations customary in internal oxidation. Optimal contact properties shows this Material not.

In der Veröffentlichung " Investigation into the Switching behaviour of new Silber-Tin-Oxide Contact materials in Proc. of the 14th Int. Conf. on EI. Contacts, Paris, 1988 June 20-24, S. 405-409 " wird über das Schaltverhalten pulvermetallurgisch hergestellter elektrischer Kontakte aus Silber-Zinnoxid berichtet, die weitere zwei Oxide aus der Reihe Wismutoxid, Indiumoxid, Kupferoxid, Molybdänoxid oder Wolframoxid enthalten können, wobei über die genaue Zusammensetzung dieser Werkstoffe nichts ausgesagt wird.In the publication " Investigation into the Switching behavior of new Silver-Tin-Oxide Contact materials in Proc. of the 14th Int. Conf. on EI. Contacts, Paris, 1988 June 20-24, pp. 405-409 "reported on the switching behavior of powder-metallurgical electrical contacts made of silver-tin oxide, which may contain two more oxides from the series bismuth oxide, indium oxide, copper oxide, molybdenum oxide or tungsten oxide, said nothing about the exact composition of these materials.

In der US 4,695,330 wird ein spezielles Verfahren zur Herstellung eines innerlich oxidierten Werkstoffes mit 0,5-12 Zinn, 0,5-15 Indium und 0,01-1,5 Wismut beschrieben.In the US 4,695,330 describes a special process for producing an internally oxidized material with 0.5-12 tin, 0.5-15 indium and 0.01-1.5 bismuth.

Die pulvermetallurgische Herstellung von Kontaktwerkstoffen auf Silber-Zinnoxid-Basis durch Mischen der Pulver, kaltisostatischem Pressen, Sintern und Strangpressen zu Halbzeug ist beispielsweise aus der DE 43 19 137 und DE 43 31 526 bekannt.The powder metallurgical production of contact materials based on silver-tin oxide by mixing the powder, cold isostatic pressing, sintering and extrusion to semi-finished is, for example, from DE 43 19 137 and DE 43 31 526 known.

Aus der US 4,141,727 sind Kontaktwerkstoffe aus Silber bekannt, die Wismut-Zinnoxid als Mischoxidpulver enthalten. Weiterhin wird in der DE 29 52 128 das Zinnoxidpulver vor dem Vermischen mit Silberpulver bei 900°C bis 1600° C geglüht.From the US 4,141,727 Contact materials are known from silver containing bismuth tin oxide mixed oxide powder. Furthermore, in the DE 29 52 128 annealed the Zinnoxidpulver before mixing with silver powder at 900 ° C to 1600 ° C.

JP 50-19352 B1 zeigt einen elektrischen Komposit-Kontaktwerkstoff bestehend aus Silber, Cadmiumoxid, Magnesiumoxid enthaltend 0,1 bis 0,3 Gew.-% Magnesium und Zinnoxid enthaltend 2-4Gew.-% metallisches Zinn, wobei ein Teil des Magnesiums und Zinns in Form von Mg2SnO4 vorliegt. JP 50-19352 B1 shows a composite electrical contact material consisting of silver, cadmium oxide, magnesium oxide containing 0.1 to 0.3 wt .-% magnesium and tin oxide containing 2-4Gew .-% metallic tin, wherein a portion of magnesium and tin in the form of Mg 2 SnO 4 is present.

Durch ansteigende Anforderungen an die Kontaktwerkstoffe genügen die bekannten Materialien den Anforderungen nicht immer oder für alle Anwendungen.Due to increasing demands on the contact materials, the known materials do not always meet the requirements or for all applications.

Beschreibungdescription

  1. 1. Elektrischer, cadmiumfreier Kontaktwerkstoff bestehend aus einem Metall und 5 Gew.-% bis 60 Gew.-% Magnesiumstannat Mg2SnO4, wobei optional zusätzlich wobei zusätzlich Oxide aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, indiumoxid, Wolframoxid, Molybdänoxid, deren Mischoxide oder deren Kombinationen in Mengen von 0,5 Gew.-% bis 30 Gew.-% enthalten sind und wobei das Metall Silber oder eine Silberlegierung ist.1. Electric, cadmium-free contact material consisting of a metal and 5 wt .-% to 60 wt .-% magnesium stannate Mg 2 SnO 4 , optionally optionally additionally wherein additionally oxides consisting of the group of magnesium oxide, copper oxide, bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide, their mixed oxides or combinations thereof are contained in amounts of 0.5 wt .-% to 30 wt .-% and wherein the metal is silver or a silver alloy.
  2. 2. Kontaktwerkstoff nach Punkt 1, wobei 0,2 bis 60 Vol.-% Magnesiumstannat enthalten sind.2. contact material according to item 1, wherein 0.2 to 60 vol .-% magnesium stannate are included.
  3. 3. Kontaktwerkstoff nach Punkt 1 bis 2, wobei mindestens 60 Gew.-% des im Kontaktwerkstoff vorhandenen Magnesiumstannats eine Teilchengröße von 1 µm oder mehr aufweist.3. Contact material according to item 1 to 2, wherein at least 60 wt .-% of the magnesium stannate present in the contact material has a particle size of 1 micron or more.
  4. 4. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 3, wobei das im Kontaktwerkstoff vorhandene Magnesiumstannat ganz oder teilweise eine Teilchengröße von 20 nm bis 1 µm aufweist.4. Contact material according to one or more of the items 1 to 3, wherein the magnesium stannate present in the contact material wholly or partially has a particle size of 20 nm to 1 micron.
  5. 5. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 4, wobei das im Kontaktwerkstoff vorhandene Magnesiumstannat ganz oder teilweise eine Teilchengröße von 100 nm bis 900 nm aufweist.5. Contact material according to one or more of the items 1 to 4, wherein the magnesium stannate present in the contact material wholly or partially has a particle size of 100 nm to 900 nm.
  6. 6. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 5, erhältlich durch pulvermetallurgischer Herstellung.6. Contact material according to one or more of items 1 to 5, obtainable by powder metallurgy production.
  7. 7. Verwendung eines Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 11 zur Herstellung von elektrischen Kontaktstücken.7. Use of a contact material according to one or more of the items 1 to 11 for the production of electrical contact pieces.
  8. 8. Elektrischer Kontakt enthaltend einen Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 11.8. An electrical contact containing a contact material according to one or more of the items 1 to 11.
  9. 9. Bewegliches Schaltstück eines Schaltgerätes oder elektrisches Schaltgerät, enthaltend einen elektrischen Kontakt nach Punkt 14.9. Moving contact piece of a switching device or electrical switching device, containing an electrical contact according to item 14.
  10. 10. Verfahren zur Herstellung eines Kontaktwerkstoffes aus dem Metall und Magnesiumstannat Mg2SnO4 durch Vermischen von pulverförmigem Magnesiumstannat Mg2SnO4 oder einer Magnesiumstannat-Vorläuferverbindung mit dem mindestens einem Metallpulver und gegebenenfalls den weiteren Oxiden, Pressen der Mischung um einen Preßling zu erhalten und Sintern des Preßlings um einen Sinterling zu erhalten.10. A process for producing a contact material from the metal and magnesium stannate Mg 2 SnO 4 by mixing powdered magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound with the at least one metal powder and optionally the further oxides, pressing the mixture to obtain a compact and sintering the compact around a sintered compact.
  11. 11. Verfahren nach Punkt 10, wobei der erhaltene Sinterling in einem weiteren Verfahrensschritt umgeformt, insbesondere stranggepreßt, wird,11. The method according to item 10, wherein the resulting sintered compact is shaped, in particular extruded, in a further process step,
  12. 12. Verfahren nach Punkt 10, wobei der Sinterling ein Kontaktstück ist.12. The method of item 10, wherein the sintered compact is a contact piece.
  13. 13. Verfahren nach Punkt 10, wobei der Sinterling zusätzlich Kupferoxid enthält.13. The method of item 10, wherein the sintered article additionally contains copper oxide.
  14. 14. Kontaktwerkstoff, erhältlich nach einem Verfahren der Punkte 10 oder 11.14. Contact material obtainable by a method of items 10 or 11.
Detaillierte BeschreibungDetailed description

Es war die Aufgabe, einen neuen Metall-Verbundwerkstoff bereit zu stellen, der beim Einsatz als Kontaktmaterial in elektrischen Schaltgeräten gegenüber verbreiteten silberbasierten Silber-Zinnoxid Verbundwerkstoffen ein verbessertes Abbrandverhalten und einen niedrigeren Kontaktwiderstand zeigt. Diese Aufgabe wird gelöst durch einen Metall-Verbundwerkstoff, welcher mindestens ein Metall und 5 Gew.-% bis 60 Gew.-% Magnesiumstannat enthält, wobei das Metall Silber oder eine Silberlegierung ist. Magnesiumstannat, Mg2SnO4, ist eine literaturbekannte Verbindung, deren Herstellung beispielsweise beschrieben ist in Materials in Electronics, 16 (2005), Seiten 193 bis 196 , Journal of Power Sources 97-98 (2001), Seiten 223-225 oder Ceramics International 27 (2001), Seiten 325 bis 334 . Zur Herstellung dieser Verbindung können Magnesiumoxid MgO und Zinnoxid SnO2 im entsprechenden molaren Verhältnis (also MgO:SnO2 = 2:1) intensiv vermischt werden (beispielsweise durch Nass- oder Trockenmahlung), optional getrocknet und dann für etwa 15 bis etwa 25 Stunden bei Temperaturen von etwa 1200°C bis etwa 1600°C kalziniert werden. An die Atmosphäre sind im Allgemeinen keine besonderen Anforderungen zu stellen, so daß an der Luft kalziniert werden kann. Auf diese Weise kann ein Gemisch aus Magnesiumstannat und Magnesiumoxid erhalten wie in Figur 1 dargestellt werden, wobei etwa 4,4% Magnesiumoxid mit etwa 95,6 % Magnesiumstannat vorliegen. Durch Einsetzen eines Überschusses von etwa 10% Magnesiumoxid können bis zu 98 % Magnesiumstannat Mg2SnO4 erreicht werden. Die vorliegende Patentanmeldung betrifft auch die Verwendung eines Kontaktwerkstoffs enthaltend mindestens ein Metall und Magnesiumstannat, wobei das Metall Silber oder eine Silberlegierung ist, zur Herstellung von elektrischen Kontaktstücken, sowie elektrische Kontakte enthaltend einen solchen Kontaktwerkstoff wie weiter beschrieben. Als Metall werden Silber oder Silberlegierungen eingesetzt. Gut geeignet sind beispielsweise Silber-Nickel-Legierungen. Silber alleine weist für viele Anwendungszwecke ebenfalls ausgezeichnete Eigenschaften auf. Cadmium ist hingegen nicht enthalten und darf maximal im Bereich unvermeidbarer Verunreinigungen vorhanden sein. Magnesiumstannat kann im Allgemeinen in Mengen von 0,02 bis 60 Vol.%, oder 0,02 Vol.%, insbesondere 0,2 Vol.%, bis 25 Vol.%, (= bis 13 Gew.%), insbesondere 2 Vol.%, bis 25 Vol.%, oder 0,02 Vol.%, insbesondere 0,2 Vol.%, bis 60 Vol.%. (= bis Gew.%), insbesondere 2 Vol.%, bis 60 Vol.%. oder 0,02 Vol.%, insbesondere 0,2 In einer Ausführungsform weisen mindestens 60% des weiteren Oxids, also z.B. des Zinnoxids, Teilchengrößen von 1 µm oder mehr auf, was insbesondere bei umformender Weiterverarbeitung wie beispielsweise durch Strangpressen vorteilhaft ist.It was the object to provide a new metal composite, which shows when used as contact material in electrical switching devices over common silver-based silver-tin oxide composite materials improved burn-off behavior and a lower contact resistance. This object is achieved by a metal composite containing at least one metal and 5% to 60% by weight magnesium stannate, wherein the metal is silver or a silver alloy. Magnesium stannate, Mg 2 SnO 4 , is a compound known from the literature, the preparation of which is described, for example, in US Pat Materials in Electronics, 16 (2005), pages 193 to 196 . Journal of Power Sources 97-98 (2001), pages 223-225 or Ceramics International 27 (2001), pages 325 to 334 , To prepare this compound, magnesium oxide MgO and tin oxide SnO 2 in the corresponding molar ratio (ie MgO: SnO 2 = 2: 1) can be intensively mixed (for example by wet or dry grinding), optionally dried and then at from about 15 to about 25 hours Temperatures of about 1200 ° C to about 1600 ° C calcined. In general, there are no special requirements for the atmosphere, so that it is possible to calcine in air. In this way, a mixture of magnesium stannate and magnesium oxide can be obtained as in FIG. 1 wherein about 4.4% magnesium oxide is present with about 95.6% magnesium stannate. By using an excess of about 10% magnesium oxide, up to 98% magnesium stannate Mg 2 SnO 4 can be achieved. The present patent application also relates to the use of a contact material containing at least one metal and magnesium stannate, wherein the metal is silver or a silver alloy, for the production of electrical contact pieces, as well as electrical contacts comprising such a contact material as further described. The metal used is silver or silver alloys. Well suited, for example, silver-nickel alloys. Silver alone also has excellent properties for many applications. Cadmium, on the other hand, is not included and may be present in the maximum range of unavoidable impurities. Magnesium stannate may generally be used in amounts of 0.02 to 60% by volume, or 0.02% by volume, in particular 0.2% by volume, to 25% by volume, (= up to 13% by weight), in particular 2% by volume .%, to 25 vol.%, or 0.02 vol.%, in particular 0.2 vol.%, To 60 vol.%. (= to% by weight), in particular 2% by volume, up to 60% by volume. or 0.02% by volume, in particular 0.2 In one embodiment, at least 60% of the further oxide, that is, for example, the tin oxide, particle sizes of 1 .mu.m or more, which is particularly advantageous in forming processes such as by extrusion.

In einer Ausführungsform kann das weitere Oxid auch Teilchengrößen von 20 nm bis 2 µm oder 50 nm bis kleiner 2000 nm, insbesondere 100 nm bis 1800 nm oder 200 nm bis 900 nm verwendet werden. In diesem Fall weisen vorteilhaft 60 % des weiteren Oxids Teilchengrößen von 100 nm bis 900 nm auf.In one embodiment, the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.

Der Kontaktwerkstoff kann durch eine Herstellungsweise ausgewählt aus pulvermetallurgischer Herstellung, innerer Oxidation oder deren Kombinationen erhalten werden.The contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.

Bei pulvermetallurgischer Herstellung des Werkstoffs wird durch Mischen eines Pulvers aus dem Metall oder einer Legierung mit Magnesiumstannat Mg2SnO4 oder einer Magnesiumstannat-Vorläuferverbindung und gegebenenfalls weiteren Oxiden, kaltisostatischem Pressen des Pulvergemischs, und Sintern bei Temperaturen von etwa 500°C bis etwa 940°C und gegebenenfalls Umformen des gesinterten Materials, etwa durch Strangpressen zu Drähten oder Profilen, der Kontaktwerkstoff erhalten. Als Magnesiumstannat-Vorläuferverbindung können von Magnesiumstannat verschiedene Verbnindungen eingesetzt werden, welche unter den Verfahrensbedingungen in Magnesiumstannat und gegebenenfalls weiteren Zersetzungsprodukten zerfallen. Die weiteren Zersetzungsprodukte müssen entweder bei den Verfahrensbedingungen flüchtig sein oder Stoffe sein, deren Anwesenheit die Eigenschaften des erhaltenen Produktes nicht stören, idealerweise Stoffe, deren Anwesenheit erwünscht ist, wie das verwendete Metall oder ein weiteres Oxid, aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid oder deren Kombinationen, deren Mischoxide oder Kombinationen daraus. Geeignete Verbindungen sind beispielsweise Alkoholate des Zinns und Magnesiums, wie beispielsweise Hexakis[µ-(2-methyl-2-propanolato)]bis[(2-methyl-2-propanolato)Zinn]di-Magnesium, CAS-Nr. 139731-82-1.In the powder metallurgy production of the material by mixing a powder of the metal or an alloy with magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides, cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained. As Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products. The further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof. Suitable compounds are, for example, alkoxides of tin and magnesium, such as hexakis [μ- (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.

Es ist sinnvoll, wenn das verwendete Magnesiumstannat bzw. die Magnesiumstannat-Vorläuferverbindung und/oder weitere Oxide bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, die gewünschte Teilchengröße bzw. Teilchengrößenverteilung aufweist, oder zu mehr als 60 Gew.% bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie In einer Ausführungsform weisen mindestens 60% des weiteren Oxids, also z.B. des Zinnoxids, Teilchengrößen von 1 µm oder mehr auf, was insbesondere bei umformender Weiterverarbeitung wie beispielsweise durch Strangpressen vorteilhaft ist.It is useful if the magnesium stannate used or the magnesium stannate precursor compound and / or other oxides already before mixing with the powder of the metal or an alloy such as silver powder, the desired particle size or particle size distribution, or more than 60 % By weight already before mixing with the powder of the metal or an alloy, such as In one embodiment, at least 60% of the further oxide, that is, for example, the tin oxide, particle sizes of 1 .mu.m or more, which is particularly advantageous in forming processes such as by extrusion.

In einer Ausführungsform kann das weitere Oxid auch Teilchengrößen von 20 nm bis 2 µm oder 50 nm bis kleiner 2000 nm, insbesondere 100 nm bis 1800 nm oder 200 nm bis 900 nm verwendet werden. In diesem Fall weisen vorteilhaft 60 % des weiteren Oxids Teilchengrößen von 100 nm bis 900 nm auf.In one embodiment, the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.

Der Kontaktwerkstoff kann durch eine Herstellungsweise ausgewählt aus pulvermetallurgischer Herstellung, innerer Oxidation oder deren Kombinationen erhalten werden.The contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.

Bei pulvermetallurgischer Herstellung des Werkstoffs wird durch Mischen eines Pulvers aus dem Metall oder einer Legierung mit Magnesiumstannat Mg2SnO4 oder einer Magnesiumstannat-Vorläuferverbindung und gegebenenfalls weiteren Oxiden, kaltisostatischem Pressen des Pulvergemischs, und Sintern bei Temperaturen von etwa 500°C bis etwa 940°C und gegebenenfalls Umformen des gesinterten Materials, etwa durch Strangpressen zu Drähten oder Profilen, der Kontaktwerkstoff erhalten. Als Magnesiumstannat-Vorläuferverbindung können von Magnesiumstannat verschiedene Verbnindungen eingesetzt werden, welche unter den Verfahrensbedingungen in Magnesiumstannat und gegebenenfalls weiteren Zersetzungsprodukten zerfallen. Die weiteren Zersetzungsprodukte müssen entweder bei den Verfahrensbedingungen flüchtig sein oder Stoffe sein, deren Anwesenheit die Eigenschaften des erhaltenen Produktes nicht stören, idealerweise Stoffe, deren Anwesenheit erwünscht ist, wie das verwendete Metall oder ein weiteres Oxid, aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid oder deren Kombinationen, deren Mischoxide oder Kombinationen daraus. Geeignete Vernindungen sind beispielsweise Alkoholate des Zinns und Magnesiums, wie beispielsweise Hexakis[µ-(2-methyl-2-propanolato)]bis[(2-methyl-2-propanolato)Zinn]di-Magnesium, CAS-Nr. 139731-82-1.In the powder metallurgy production of the material by mixing a powder of the metal or an alloy with magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides, cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained. As Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products. The further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof. Suitable compounds are, for example, alkoxides of tin and magnesium, such as, for example, hexakis [μ- (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.

Es ist sinnvoll, wenn das verwendete Magnesiumstannat bzw. die Magnesiumstannat-Vorläuferverbindung und/oder weitere Oxide bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, die gewünschte Teilchengröße bzw. Teilchengrößenverteilung aufweist, oder zu mehr als 60 Gew.% bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, eine Teilchengrösse von mehr als 1 µm aufweisen. Hierbei kann zu feines Magnesiumstannat oder auch andere Oxide durch eine Wärmebehandlung vergröbert werden in dem z.B. bei Temperaturen von etwa 700°C bis etwa 1400°C geglüht wird, bis mehr als 60 Gew.% des Magnesiumstannats bzw. der weiteren Oxide eine Teilchengrösse von mehr als 1 µm aufweisen. Die Verwendung dieser vergröberten Oxidpulver liefert nach dem Sintern der Presslinge einen Werkstoff, der duktiler ist als Werkstoffe mit geringeren Oxidteilchengrössen und kann daher leichter verformt werden, was bei weiterer umformender Behandlung vorteilhaft sein kann, wie zum Beispiel Strangpressen. Beim Einzelsintern von Kontakten können wie oben beschrieben auch Magnesiumstannat (Mg2SnO4) Pulver mit kleineren Teilchengrößen verwendet werden, wobei in diesem Fall Additive, wie Sinteraktivatoren vorteilhaft sind, zum Beispiel Kupferoxid CuO, nanoskaliges Silberpulver oder andere Nanomaterialien. In diesem Fall kann natürlich auch Magnesiumstannat verwendet werden, bei welchem 60 Gew.% bereits vor dem Vermischen mit dem Metallpulver eine Teilchengrösse von mindestens 1 µm aufweisen, aber auch Magnesiumstannat (Mg2SnO4), bei welchem 60 % des Magnesiumstannats Teilchengrößen von 50 nm bis weniger als 1000 nm, insbesondere 60 % des Magnesiumstannats Teilchengrößen von 100 nm bis 900 nm aufweist.It is useful if the magnesium stannate used or the magnesium stannate precursor compound and / or other oxides already before mixing with the powder of the metal or an alloy such as silver powder, the desired particle size or particle size distribution, or more than 60 % By weight already before mixing with the powder of the metal or an alloy, such as For example, silver powder, have a particle size of more than 1 micron. In this case, too fine magnesium stannate or else other oxides can be coarsened by a heat treatment in which, for example, annealed at temperatures of about 700 ° C to about 1400 ° C until more than 60 wt.% Of magnesium stannate or other oxides have a particle size of more than 1 micron. The use of these coarsened oxide powders, after sintering the compacts, provides a material which is more ductile than materials having smaller oxide particle sizes and therefore can be more easily deformed, which may be advantageous in further forming treatment, such as extrusion. In individual sintering of contacts, as described above, magnesium stannate (Mg 2 SnO 4 ) powders having smaller particle sizes may also be used, in which case additives such as sintering activators are advantageous, for example copper oxide CuO, nanoscale silver powder or other nanomaterials. In this case, of course, magnesium stannate can be used in which 60 wt.% Even before mixing with the metal powder have a particle size of at least 1 micron, but also magnesium stannate (Mg 2 SnO 4 ), in which 60% of magnesium stannate particle sizes of 50 nm to less than 1000 nm, in particular 60% of the magnesium stannate has particle sizes of 100 nm to 900 nm.

Bei der Herstellung durch innere Oxidation wird beispielsweise eine Legierung aus Silber mit unedlen Metallen pyrometallurgisch hergestellt und oft in reinem Sauerstoff unter Überdruck wärmebehandelt, so daß ein Kontaktwerkstoff entsteht. Derartige Verfahren sind literaturbekannt und beispielsweise beschrieben in EP 1505164 und EP 0508055 .For example, when produced by internal oxidation, an alloy of silver with base metals is made pyrometallurgically and often heat-treated in pure oxygen under overpressure to form a contact material. Such methods are known from the literature and described for example in EP 1505164 and EP 0508055 ,

Bei der Herstellung durch innere Oxidation in Kombination mit pulvermetallurgischer Herstellung kann beispielsweise als Pulvers aus dem Metall oder einer Legierung ein Metallpulver eingesetzt werden, welches z.B. weitere Oxide enthält, welche durch innere Oxidation erzeugt wurden, wie zum Beispiel Silber mit einem Gehalt an Zinnoxid. Die weitere Verarbeitung verläuft dann pulvermetallurgisch, also durch Zufügen von Magnesiumstannat und/oder weiteren Oxiden und/oder Metallpulver, anschließendem Pressen, Sintern und gegebenenfalls Umformwn, wie z.B. Strangpressen.In the production by internal oxidation in combination with powder metallurgy production, for example, as a powder of the metal or an alloy, a metal powder may be used which is e.g. contains further oxides which have been produced by internal oxidation, such as, for example, silver containing tin oxide. The further processing then proceeds by powder metallurgy, that is to say by adding magnesium stannate and / or further oxides and / or metal powder, subsequent pressing, sintering and, if appropriate, shaping, such as, for example, Extrusion.

In einer Ausführungsform enthält der Kontaktwerkstoff insbesondere Silber und Magnesiumstannat und darüber hinaus lediglich übliche Verunreinigungen. In einer Ausführungsform enthält der Kontaktwerkstoff Magnesiumstannat in einer Menge von 0,2 bis 20 Gew.-% und ad 100 Gew.-% Silber sowie übliche Verunreinigungen.In one embodiment, the contact material contains in particular silver and magnesium stannate and moreover only conventional impurities. In a Embodiment contains the contact material magnesium stannate in an amount of 0.2 to 20 wt .-% and ad 100 wt .-% silver and conventional impurities.

In einer weiteren Ausführungsform der Erfindung enthält der Kontaktwerkstoff Magnesiumstannat, welches zu mindestens 60% eine Teilchengröße von 1 µm oder mehr aufweist, in einer Menge von 0,2 bis 20 Gew.-% und ad 100 Gew.-% Silber sowie übliche Verunreinigungen.In a further embodiment of the invention, the contact material comprises magnesium stannate which has at least 60% of a particle size of 1 μm or more, in an amount of 0.2 to 20% by weight and ad 100% by weight of silver and conventional impurities.

BeispieleExamples Beispiel 1example 1 Herstellung von MagnesiumstannatProduction of magnesium stannate

13,03 g SnO2 und 6,97 g MgO wurden eingewogen und 2 x 5 Minuten bei 250 U/min nass vermahlen (Fritsch Pulverisette 5, 2 mm ZrO2-Kugeln, trockenes Isopropanol). Das Pulvergemisch wird im Trockenschrank (Temperatur) getrocknet und anschließend mit einem Mörser zerkleinert.13.03 g SnO 2 and 6.97 g MgO were weighed in and wet-ground for 2 × 5 minutes at 250 rpm (Fritsch Pulverisette 5, 2 mm ZrO 2 balls, dry isopropanol). The powder mixture is dried in a drying oven (temperature) and then comminuted with a mortar.

Die zerkleinerte Pulvermischung wird bei 1400°C 20 Stunden an Luft kalziniert und anschließend bis zu einer Partikelgröße (d50) von 2 µm gemahlen (Fritsch Pulverisette 5, 2 mm ZrO2-Kugeln, trockenes Isopropanol). Durch Röntgenbeugung am Reaktionsprodukt und Rietveld-Verfeinerung wurde festgestellt, daß das entstandene Produkt zu 95,6 % aus Dimagnesiumstannat (Mg2SnO4) und zu 4,4 % aus Cassiterite (SnO2) besteht.The crushed powder mixture is calcined at 1400 ° C for 20 hours in air and then ground to a particle size (d50) of 2 microns (Fritsch Pulverisette 5, 2 mm ZrO 2 spheres, dry isopropanol). By X-ray diffraction on the reaction product and Rietveld refinement, the resulting product was found to consist of 95.6% dimagnesium stannate (Mg 2 SnO 4 ) and 4.4% cassiterite (SnO 2 ).

Herstellung des Kontaktwerkstoffs enthaltend Mg2SnO4 Preparation of the Contact Material Containing Mg 2 SnO 4

914,4 g Silberpulver (Umicore, verdüstes Silberpulver, auf <42 µm abgesiebt) werden mit 17,07 Volumenprozent Mg2SnO4-Pulver (85,6 g) in einem Mischaggregat (MTI-Mischer 8 Min., 1000 U/min) gemischt. Die Pulvermischung wird in eine plastische zylinderförmige Form gefüllt und bei einem Druck von 800 bar kaltisostatisch zu einem Bolzen gepresst. Dieser Bolzen wird 2 h bei 820 °C gesintert und anschließend stranggepresst.914.4 g of silver powder (Umicore, atomized silver powder, sieved to <42 microns) with 17.07 volume percent Mg 2 SnO 4 powder (85.6 g) in a mixing unit (MTI mixer 8 min., 1000 U / min ) mixed. The powder mixture is filled into a plastic cylindrical shape and cold isostatically pressed into a bolt at a pressure of 800 bar. This stud is sintered for 2 h at 820 ° C and then extruded.

Vergleichsbeispiel 2: Herstellung des Kontaktwerkstoffs enthaltend SnO2 Comparative Example 2 Production of the Contact Material Containing SnO 2

880 g Silberpulver (gleiches Silberpulver wie in Beispiel 1) werden mit 120 g entsprechend 17,07 Vol.% SnO2-Pulver in einem Mischaggregat (MTI-Mischer, 8 Min., 1000 U/min) gemischt. Die Pulvermischung wird in eine plastische zylinderförmige Form gefüllt und bei einem Druck von 800 bar kaltisostatisch zu einem Bolzen gepresst. Dieser Bolzen wird 2 h bei 820 °C gesintert und anschließend stranggepresst.880 g of silver powder (same silver powder as in Example 1) are mixed with 120 g corresponding to 17.07% by volume SnO 2 powder in a mixing unit (MTI mixer, 8 min., 1000 U / min). The powder mixture is filled into a plastic cylindrical shape and cold isostatically pressed into a bolt at a pressure of 800 bar. This stud is sintered for 2 h at 820 ° C and then extruded.

Es wurden mit Proben beider Kontaktwerkstoffe Zugversuche gemäß EN ISO 6892-1 durchgeführt und die Bruchdehnung bei beiden Kontaktwerkstoffen zu 27% bestimmt.Tensile tests according to EN ISO 6892-1 were carried out with samples of both contact materials and the elongation at break for both contact materials was determined to be 27%.

Aus den hergestellten Kontaktwerkstoffen werden nach dem Strangpressen Kontaktstücke gefertigt (5 mm Draht, Halbzeug, wird aufgelötet und abgedreht, dann geschaltet) und mit diesen Kontaktstücken Schaltversuche in einem Ausschalter mit 500 Schaltungen, einer Stromstärke von 350 A und Blasfeld: 30 mT/kA durchgeführt. Die Ergebnisse sind in Figuren 2 und 3 dargestellt.From the contact materials produced contact pieces are made after extrusion (5 mm wire, semi-finished, soldered and turned off, then switched) and with these contacts switching experiments in a circuit breaker with 500 circuits, a current of 350 A and Blasfeld: 30 mT / kA performed , The results are in Figures 2 and 3 shown.

Figur 2 zeigt für beide Kontaktwerkstoffe, die einen Oxidgehalt von je 17,07 Volumenprozent aufweisen, den Abbrand in mg pro Schaltvorgang. Die jeweils untere Säule zeigt die Veränderung am festen Kontakt, die obere Säule am beweglichen Kontakt. Es ist erkennbar, daß der auf Magnesiumstannat (Mg2SnO4) und Silber basierende Kontaktwerkstoff verbesserte Abbrandeigenschaften zeigt. FIG. 2 shows for both contact materials, which have an oxide content of 17.07 per cent by volume, the burnup in mg per switching operation. The lower column shows the change at the fixed contact, the upper column at the moving contact. It can be seen that the magnesium stannate (Mg 2 SnO 4 ) and silver based contact material exhibits improved burn-off properties.

Figur 3 zeigt für beide Kontaktwerkstoffe die Kontaktwiderstände in mOhm, die als Mittelwerte (jeweils rechte Säule) und als 99%-Werte angegeben sind. Es ist ersichtlich, daß die Mittelwerte vergleichbar, die 99%-Werte jedoch bei dem auf Magnesiumstannat (Mg2SnO4) und Silber basierenden Kontaktwerkstoff deutlich niedriger und damit gegenüber dem Silber-Zinnoxid -Werkstoff erheblich verbessert sind. FIG. 3 shows the contact resistances in mOhms for both contact materials, which are given as mean values (in each case right column) and as 99% values. It can be seen that the averages are comparable but the 99% values are significantly lower for the magnesium stannate (Mg 2 SnO 4 ) and silver-based contact material and thus significantly improved over the silver-tin oxide material.

Claims (14)

  1. Electrical, cadmium-free contact material consisting of a metal and 5% by weight to 60% by weight of magnesium stannate Mg2SnO4 and optionally additionally oxides from the group consisting of magnesium oxide, copper oxide, bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide, mixed oxides thereof or combinations thereof in amounts of 0.5% by weight to 30% by weight, wherein the metal is silver or a silver alloy.
  2. Contact material according to Claim 1, wherein 0.2 to 60 percent by volume of magnesium stannate is present.
  3. Contact material according to either of Claims 1 and 2, wherein at least 60% by weight of the magnesium stannate present in the contact material has a particle size of 1 µm or more.
  4. Contact material according to one or more of Claims 1 to 3, wherein all or some of the magnesium stannate present in the contact material has a particle size of 20 nm to 1 µm.
  5. Contact material according to one or more of Claims 1 to 4, wherein 60% of the magnesium stannate in the contact material has a particle size of 100 nm to 900 nm.
  6. Contact material according to one or more of Claims 1 to 5, obtainable by powder metallurgy production.
  7. Use of a contact material according to one or more of Claims 1 to 5 for production of electrical contact parts.
  8. Electrical contact comprising a contact material according to one or more of Claims 1 to 5.
  9. Moving switch part of a switch device or electrical switch device, comprising an electrical contact according to Claim 8.
  10. Process for producing a contact material from the metal and magnesium stannate Mg2SnO4 according to one or more of Claims 1 to 5 by mixing pulverulent magnesium stannate Mg2SnO4 or a magnesium stannate precursor compound with the metal powder and optionally the further oxides, pressing the mixture in order to obtain a compact and sintering the compact to obtain a sintered body.
  11. Process according to Claim 10, wherein the sintered body obtained is formed, especially extruded, in a further process step.
  12. Process according to Claim 10, wherein the sintered body is a contact part.
  13. Process according to Claim 10, wherein the sintered body additionally comprises copper oxide.
  14. Contact material obtainable by a process according to either of Claims 10 and 11.
EP13715919.0A 2012-03-26 2013-03-26 Composite material Active EP2831298B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13715919.0A EP2831298B1 (en) 2012-03-26 2013-03-26 Composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12161247.7A EP2644723B1 (en) 2012-03-26 2012-03-26 Composite material
PCT/EP2013/056345 WO2013144112A1 (en) 2012-03-26 2013-03-26 Contact material
EP13715919.0A EP2831298B1 (en) 2012-03-26 2013-03-26 Composite material

Publications (2)

Publication Number Publication Date
EP2831298A1 EP2831298A1 (en) 2015-02-04
EP2831298B1 true EP2831298B1 (en) 2019-05-08

Family

ID=48092916

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12161247.7A Not-in-force EP2644723B1 (en) 2012-03-26 2012-03-26 Composite material
EP13715919.0A Active EP2831298B1 (en) 2012-03-26 2013-03-26 Composite material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12161247.7A Not-in-force EP2644723B1 (en) 2012-03-26 2012-03-26 Composite material

Country Status (4)

Country Link
US (1) US9928931B2 (en)
EP (2) EP2644723B1 (en)
CN (1) CN104245976B (en)
WO (1) WO2013144112A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613118B (en) * 2013-11-15 2015-08-19 广东光华科技股份有限公司 A kind of preparation method of high-purity magnesium stannate powder
CN103681015B (en) * 2013-11-28 2015-12-02 昆明理工大学 A kind of complex-phase metallic oxide strengthens the preparation method of Ag-based electrical contact material
CN103710556B (en) * 2013-12-27 2015-08-05 桂林电器科学研究院有限公司 A kind of powqder rolling process prepares the technique of sliver oxidized tin contactor materials
US10699851B2 (en) * 2016-06-22 2020-06-30 Teledyne Scientific & Imaging, Llc Sintered electrical contact materials
US10290434B2 (en) 2016-09-23 2019-05-14 Honeywell International Inc. Silver metal oxide alloy and method of making
CN115537594B (en) * 2022-10-28 2023-04-25 台州慧模科技有限公司 Silver-based electrical contact material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019352B1 (en) * 1970-12-28 1975-07-05

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811910A (en) * 1972-05-17 1974-05-21 Ford Motor Co Two-step method of making a color picture tube
JPS5526697B2 (en) * 1973-07-05 1980-07-15
US3933485A (en) 1973-07-20 1976-01-20 Chugai Denki Kogyo Kabushiki-Kaisha Electrical contact material
US4141727A (en) 1976-12-03 1979-02-27 Matsushita Electric Industrial Co., Ltd. Electrical contact material and method of making the same
DE2952128C2 (en) 1979-12-22 1984-10-11 Degussa Ag, 6000 Frankfurt Process for the pretreatment of the powder for sintered and extruded semifinished products made of silver-tin oxide for electrical contacts
US4647477A (en) * 1984-12-07 1987-03-03 Kollmorgen Technologies Corporation Surface preparation of ceramic substrates for metallization
US4680162A (en) 1984-12-11 1987-07-14 Chugai Denki Kogyo K.K. Method for preparing Ag-SnO system alloy electrical contact material
US4695330A (en) 1985-08-30 1987-09-22 Chugai Denki Kogyo K.K. Method of manufacturing internal oxidized Ag-SnO system alloy contact materials
JPH01312046A (en) * 1988-06-13 1989-12-15 Chugai Electric Ind Co Ltd Silver-oxide electrical contact material
JPH04311543A (en) * 1991-04-09 1992-11-04 Chugai Electric Ind Co Ltd Ag-sno-ino electrical contact material and production thereof
DE69219397T2 (en) 1991-04-12 1997-11-06 Mitsubishi Materials Corp Silver-based metal oxide material for electrical contacts
WO1993026021A1 (en) * 1992-06-10 1993-12-23 Doduco Gmbh + Co. Material for electrical contacts based on silver-tin oxide or silver-zinc oxide
DE4319137A1 (en) 1992-06-10 1993-12-16 Duerrwaechter E Dr Doduco Material for electrical contacts consisting of silver@ or silver@-alloy matrix - incorporate tin oxide and other oxide(s) and carbide(s), has longer service life but is less brittle than other materials
DE59303090D1 (en) 1992-09-16 1996-08-01 Duerrwaechter E Dr Doduco MATERIAL FOR ELECTRICAL CONTACTS BASED ON SILVER-TINNOXIDE OR SILVER-ZINCOXIDE AND METHOD FOR THE PRODUCTION THEREOF
DE19607183C1 (en) 1996-02-27 1997-04-10 Degussa Sintered silver@-iron@ alloy for making electrical contacts
CN1082235C (en) * 1999-05-10 2002-04-03 昆明理工大学 Synthesis method for preparing silver-tin dioxide electric contact materials
DE602004020844D1 (en) 2003-08-08 2009-06-10 Mitsubishi Materials C M I Corp A method of making an electrical contact of high electrical conductivity for an electromagnetic relay and electrical contact therewith
DE102009059690A1 (en) * 2009-12-19 2011-06-22 Umicore AG & Co. KG, 63457 oxidation process
DE102010014745B4 (en) 2010-01-15 2011-09-22 Tyco Electronics Amp Gmbh Electric contact element and method for producing an electrical contact element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019352B1 (en) * 1970-12-28 1975-07-05

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197531, Derwent World Patents Index; Class L03, AN 1975-51740W, XP002703252 *
SPIEKERMANN P: "LEGIERUNGEN - EIN BESONDERES PATENTRECHTLICHES PROBLEM? - LEGIERUNGSPRUEFUNG IM EUROPAEISCHEN PATENTAMT -", MITTEILUNGEN DER DEUTSCHEN PATENTANWAELTE, HEYMANN, KOLN, DE, 1 January 1993 (1993-01-01), pages 178 - 190, XP000961882, ISSN: 0026-6884 *

Also Published As

Publication number Publication date
CN104245976A (en) 2014-12-24
CN104245976B (en) 2017-06-09
EP2831298A1 (en) 2015-02-04
EP2644723A1 (en) 2013-10-02
WO2013144112A1 (en) 2013-10-03
US9928931B2 (en) 2018-03-27
EP2644723B1 (en) 2017-01-18
US20150060741A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
EP2831298B1 (en) Composite material
EP2600996A2 (en) Process for producing a cu-cr material by powder metallurgy
DE2929630A1 (en) MATERIAL POWDER FOR ELECTRICAL CONTACTS AND METHOD FOR THE PRODUCTION THEREOF
EP0440620B1 (en) Semifinished product for electrical contacts, made of a composite material based on silver and tin oxide, and powder metallurgical process for producing it
DE2932275A1 (en) MATERIAL FOR ELECTRICAL CONTACTS MADE OF INNER OXIDIZED AG-SN-BI ALLOY
DE3421758A1 (en) SINTER CONTACT MATERIAL FOR LOW VOLTAGE SWITCHGEAR IN ENERGY TECHNOLOGY AND METHOD FOR THE PRODUCTION THEREOF
EP0725154B1 (en) Sintered material based on silver-tinoxide for electrical contacts and process for its production
EP0586410A1 (en) Silver-based contact material for use in power-engineering switchgear, and a method of manufacturing contacts made of this material.
EP0586411B1 (en) Silver-based contact material for use in power-engineering switchgear, and a method of manufacturing contacts made of this material
DE19607183C1 (en) Sintered silver@-iron@ alloy for making electrical contacts
EP0152606A2 (en) Contact material and production of electric contacts
EP0369283B1 (en) Sintered contact material for low-tension switchgear, particularly for contactors
DE3911904A1 (en) Powder-metallurgical process for producing a semifinished product for electric contacts from a silver-based composite with iron
WO2007020006A1 (en) Use of indium-tin mixed oxide for silver-based materials
EP1043409B1 (en) Composite material prepared by powder metallurgy
DE3421759A1 (en) SINTER CONTACT MATERIAL FOR LOW VOLTAGE SWITCHGEAR OF ENERGY TECHNOLOGY
DE3405218C2 (en)
DE1930859A1 (en) Powder metal compositions and processes for their preparation
EP0916146B1 (en) Method of producing a product from a silver-based contact material, contact material and product produced therefrom
EP0338401A1 (en) Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron
DE10012250B4 (en) Contact materials based on silver-iron-copper
EP0311134A1 (en) Powder-metallurgically produced electrical contact material comprising silver and graphite, and process for producing it
EP0876670A2 (en) Method of producing a shaped part from a silver-based contact material
DE2260559B2 (en) PROCESS FOR PRODUCING A COMPOSITE MATERIAL FOR ELECTRICAL CONTACTS IN PARTICULAR FOR HIGH CURRENT TECHNOLOGY
DE2642690A1 (en) SINTER CONTACT MATERIAL FOR ELECTRICAL CONTACTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170307

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAXONIA TECHNICAL MATERIALS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012791

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012791

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200331

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200318

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200326

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200326

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1130225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013012791

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908