EP2819757B1 - Wärmeleitelement für klimatisierbare skisprung-anlaufspuren und klimatisierbares skisprung-anlaufspursystem - Google Patents

Wärmeleitelement für klimatisierbare skisprung-anlaufspuren und klimatisierbares skisprung-anlaufspursystem Download PDF

Info

Publication number
EP2819757B1
EP2819757B1 EP13718093.1A EP13718093A EP2819757B1 EP 2819757 B1 EP2819757 B1 EP 2819757B1 EP 13718093 A EP13718093 A EP 13718093A EP 2819757 B1 EP2819757 B1 EP 2819757B1
Authority
EP
European Patent Office
Prior art keywords
track
heat
conducting element
heat conducting
inrun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13718093.1A
Other languages
English (en)
French (fr)
Other versions
EP2819757A2 (de
Inventor
Peter Riedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peter Riedel Patent UG Haftungsbeschraenkt
Original Assignee
Peter Riedel Patent UG Haftungsbeschraenkt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peter Riedel Patent UG Haftungsbeschraenkt filed Critical Peter Riedel Patent UG Haftungsbeschraenkt
Publication of EP2819757A2 publication Critical patent/EP2819757A2/de
Application granted granted Critical
Publication of EP2819757B1 publication Critical patent/EP2819757B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C19/00Design or layout of playing courts, rinks, bowling greens or areas for water-skiing; Covers therefor
    • A63C19/10Ice-skating or roller-skating rinks; Slopes or trails for skiing, ski-jumping or tobogganing
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C13/00Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
    • E01C13/10Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds for artificial surfaces for outdoor or indoor practice of snow or ice sports
    • E01C13/12Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds for artificial surfaces for outdoor or indoor practice of snow or ice sports for snow sports, e.g. skiing or ski tow track
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2201/00Use of skates, skis, roller-skates, snowboards and courts
    • A63C2201/04Ski jumping
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/12Electrically powered or heated

Definitions

  • the invention relates to a heat-conducting element for use in air-conditioned ski-jump start-up tracks and an air-conditioned ski-jump start-up track system using such a heat-conducting element.
  • Such air-conditioned ski jump inrun track systems have a run-up track channel extending along a run-up track channel extension direction and a defined track width perpendicular to the run-up track channel extension direction.
  • an air-conditioning device for cooling and / or heating of the inrun track channel extends.
  • a run-track system in which further in the run-up tracks a substantially constructed of a polymer material heat conducting element is mounted in the form of a sliding plate.
  • the heat-conducting element has mounting means for fixing the heat-conducting element in the run-up track of the air-conditioned ski-jump inrun track and a heat coupling area for thermal coupling of the heat-conducting element with a defined thermal conductivity to the air-conditioning device in the inrun track.
  • the heat-conducting element itself is made of plastic and often a thermal paste is used to improve the thermal coupling between the sliding plate and the air conditioning device.
  • the heat conducting element designed as a sliding plate made of a material with good heat conduction.
  • the heat-conducting element used in this ski track is preferably designed in the form of a flat sliding plate made of aluminum.
  • the sliding plate is therefore designed such that the thermal conductivity of the thermal coupling region for thermal coupling to the air conditioning device more than 10 W / m ° K, preferably more than 50 W / m ° K and more preferably more than 100 W / m ° K.
  • a thermal conductivity of more than 10 W / m ° K have all metals and metal alloys.
  • the heat-conducting element will be constructed of metallic materials.
  • the highest thermal conductivity at comparatively manageable material and manufacturing costs offers aluminum.
  • the heat-conducting elements can be manufactured particularly economically as one-piece aluminum castings.
  • the scope of protection also encompasses embodiments in which the heat-conducting element is formed in several pieces. It is conceivable that individual components of the heat-conducting element have a thermal conductivity of less than 10 W / m ° K. It is decisive whether the heat coupling region of the heat conducting element responsible for the heat transfer from the air conditioning device to the heat conducting element has a heat conduction in the claimed parameter range.
  • a friction layer for example made of quartz sand, arranged. This friction layer should serve the purpose that the ice, which is frozen on the slide plate, does not detach and slips down on a jump.
  • the present invention is therefore based on the object to provide a heat conduction plate, which allows for a similarly good thermal properties a secure and robust anchoring of the ice in the ski jump inrun track.
  • the heat coupling region of the heat-conducting element merges thermally coupled into at least one start-track coupling region, which is arranged perpendicular to the run-up track extension direction spaced from the heat coupling region, wherein the heat coupling region and the run-track coupling region are formed substantially flat and are arranged offset from one another that these lie in different levels.
  • the heat coupling region and the at least one start-track coupling region form a surface which inevitably has one or more edges, steps and / or depressions. Due to the high thermal conductivity of the heat-conducting element, ice forms during growth in these areas. Thus, it is firmly anchored in these edges, steps and / or depressions.
  • thermal coupling is meant that a heat conduction transition is ensured, which does not rely solely on radiant heat and / or on a macroscopic material flow. This is preferably ensured by a one-piece construction of the heat-conducting element made of a material with sufficient heat conduction.
  • the feature of the planar configuration of the heat coupling region and the starting track coupling regions is to be understood as meaning a multiplicity of geometries.
  • the surfaces can be formed repeatedly curved or periodically structured.
  • the heat coupling region is formed with one of its surfaces in such a way that it is possible to produce a tight-fitting, ideally form-fitting, mechanical contact with the components of the air-conditioning device in which an air-conditioning medium is guided.
  • the heat coupling region is defined by the region of the surface of the heat conducting element, in which the mechanical contact can be made with said components of the air conditioning device.
  • the remaining sections of the heat-conducting element which are thermally coupled to the heat coupling region are run-up coupling regions.
  • Two of the run-track coupling regions are preferably designed as run-up track flanks, the run-up track flanks, viewed in the run-up track channel extension direction, respectively forming outer edges of the heat-conducting element that extend in the run-up track extension direction.
  • These run-up track flanks depending on the structural conditions of the run-up track, have different geometry.
  • the outer edges are spaced apart from each other at the spacing of the track width.
  • the heat-conducting element extends transversely to the run-up track channel extension direction over the entire track width of the run-up track channel.
  • the area-shaped run-up track flanks together with the areal heat coupling area form a depression in the heat-conducting element in the form of a shell or half shell.
  • a further start-track coupling region in the form of a transverse section is arranged between the two start-up track flanks.
  • This transverse section is also offset from the heat coupling region in another plane spaced from the heat coupling region, but thermally coupled to the heat coupling region.
  • the transverse section preferably extends between the two starting track flanks.
  • the transverse section occupies the entire track width of the run-up track channel.
  • the outer edges each form a vertically curved in the direction of the run-up track channel extension direction and away from the heat coupling region edge region. These edge regions are also thermally coupled to the heat conducting element and preferably formed integrally therewith. As a result, cooling of the inrun track over its entire track width including the approaches of the inrun track laterally limiting flanks is ensured.
  • the heat-conducting element has a plurality of sliding-knob fixing means for mounting a plurality of summer-track sliding nubs on the heat-conducting element.
  • the sliding knob fixing means allow the preferably releasable attachment of summer track sliding nubs, which are constructed in particular of ceramic material, on the heat conducting element.
  • the heat-conducting element thus serves as a carrier for the summer-track sliding nubs, which can preferably be fixed on the inrun track coupling regions formed as a transverse section and / or as a run-up track flanks.
  • the heat-conducting element forms a sliding plate in the sense of the German patent application filed by the same applicant and inventor on 12.08.2011 DE 10 2011 052662 , This patent application claims a special storage of Gleitnoppen in the sliding plate / heat conduction.
  • the sliding knob fixing means are formed according to this earlier application as Gleitnoppen recordings having arranged in the sauceleitelement Gleitnoppenö Maschinenen, the Gleitnoppenö Morrisen through the Pass through the heat conduction therethrough. Furthermore, spring means are provided, which are designed such that they exert a restoring force on a relative movement between the sliding nubs and the plate-shaped element.
  • the spring means are arranged between Gleitnoppenfederungsabroughen the Gleitnoppen and Plattenfederungsabroughen the plate-shaped element.
  • a particularly space-saving preferred construction is that the plate-spring portions are formed within the Gleitnoppenö réelleen and / or adjacent to the Gleitnoppenö réelleen in the surface contour of Gleitnoppenabilityn. As a result, in particular the space below the Gleitnoppen remain free.
  • the plate spring portions extend transversely to the slide stud openings.
  • the sliding stud openings extend in the plate-shaped element along an extension axis.
  • the feature transverse to the Gleitnoppenö réelleen is then according to transverse to the extension axis of the Meant sliding nip opening.
  • a special case of this arrangement of plate spring portions is that they extend at right angles to the sliding knob opening.
  • the feature transverse is not construed to be limited to rectangular.
  • the plate suspension sections enclose the slide button openings on the upper side of the plate-shaped element and / or on the underside of the plate-shaped element opposite the upper side. Due to the enclosing arrangement results in a uniform recording and initiation of the force acting on the Gleitnoppe force in the plate-shaped element.
  • the sliding nubs have releasable fastening means by means of which the sliding nubs are fixed in the sliding nub openings. In this way, damaged or worn Gleitnoppen easier to replace.
  • the spring means extend in areas between the fastening means and the plate-shaped element.
  • the Gleitnoppenfederungsabitese are in this preferred embodiment usually on the fastening means forming part of the Gleitnoppe.
  • the suspension means preferably comprise a polymer element in the form of a polymer adhesive, a polymer O-ring or a polymer piece.
  • An adhesive has the advantage of flowing into the existing geometry and also To be able to absorb tensile stresses.
  • O-rings are inexpensive and easily available with the desired elasticity properties.
  • a polymer piece for example in the form of a small wedge or block, represents a simple variant for the formation of the spring means.
  • metallic spring elements or natural materials would also be conceivable. All variants have in common that the desired elasticity and long-term stability properties should be ensured over a fairly broad temperature range of -40 ° C to + 60 ° C. Corresponding polymers and polymer adhesives are readily available on the market.
  • the sliding studs at least on its surface made of natural stone (here offer very hard natural stone such as granites and basalts because of the abrasion resistance) or ceramic, preferably made of porcelain or an oxide ceramic are. Ceramics, especially porcelain, can be produced economically with tolerances just under one millimeter.
  • a particularly advantageous variant consists of producing the sliding knobs made of aluminum oxide without surface glaze. This material absorbs water to a certain extent and makes it available on its surface. Since the Gleitnoppen are usually washed over in jumping with a water film, this property contributes to even better sliding properties. Basically, all material-technical advantages of this material with regard to its durable weathering and abrasion resistance in the sliding plate can be realized by the use of ceramics.
  • the heat-conducting element has a depression with a depression bottom surface, the heat coupling region forming the depression bottom surface at least in sections.
  • This depression fulfills a number of functions. On the one hand, it ensures that snow, which falls into the inrun channel, stays better on the track and does not slip off so easily. This is especially true when a plurality of heat-conducting elements is mounted one behind the other in the run-up track channel. Then there are also a plurality of depressions which together provide the said functionality. On the other hand, the depressions serve as a catch basin when icing the track with water, which is given in the run-up track.
  • the depression forms a first boundary edge with a first boundary edge height on a first side of the depression in the run-up track extension direction and on a second side opposite the first side the recess has a second boundary edge with a smaller compared to the first boundary edge height second boundary edge height.
  • the Recess is formed on a first side opposite the second side of the recess without a first side opposite the second boundary edge. Both variants form a depression that is easier to fill from one side.
  • the depression of the heat-conducting element can be formed advantageously if the first boundary edge is formed by a transition from the depression bottom surface into the run-track coupling regions.
  • the second boundary edge surface is then - as described above - either lower or not formed.
  • the transition from the recess bottom surface into the run-track coupling regions is preferably formed stepwise.
  • the heat-conducting element has an extension, viewed in the run-up track channel extension direction, which is smaller than the track width.
  • a plurality of heat conduction members are required to equip a run-up track passage therewith.
  • a plurality of depressions occurs at a shorter distance in a row of the embodiments of the heat-conducting element described above, or a large number of intermediate spaces ensue between adjacent heat-conducting elements. In this way, a particularly well-anchored ice layer in the run-up track can be realized after icing.
  • a variant which is similarly advantageous to the previously described variant consists in that the heat coupling region, viewed along the run-up track channel extension direction, has an extension which is smaller than the track width.
  • the present invention further relates to an air-conditioned ski-jump start-up track system having two run-up track channels extending along a run-in track extension direction, each having a track width and in each of which an air conditioning device is arranged for heating and / or cooling the runway track, wherein in each run-up track a plurality is arranged by varnishleitmaschinen according to the variants described above.
  • the heat-conducting elements When viewed along the run-up track channel extension direction, the heat-conducting elements are preferably fixed at a distance from one another in the run-up track channels such that gaps between adjacent heat-conducting elements remain in which the air-conditioning device is exposed.
  • the air-conditioned ski-jump start-up track system is characterized in that at least two heat-conducting elements spaced apart from one another are arranged along the run-up track channel extension direction over a length corresponding to the track width. This dimensioning of the heat-conducting elements and their distance from one another ensure optimum anchoring of the ice in the run-up track channel.
  • the heat-conducting elements are preferably of identical design and are periodically spaced equidistantly along the run-up track passage direction fixed to each other in the inrun track channels.
  • the heat coupling regions of the heat conducting elements are formed in such a way that a positive connection of the heat coupling regions with heat coupling sections of the air conditioning device is formed.
  • the characteristic of the positive connection is not to be interpreted in a microscopic sense. Even if gaps in the millimeter range should occur due to dimensional tolerances and different thermal expansion coefficients, a sufficient heat transfer is usually still given via the convection that occurs.
  • heat transfer pastes or gel which are arranged between the modules of the air conditioning device and the heat conducting element to optimize the heat transfer.
  • the air-conditioned ski-jump start-up track system can be configured with sensor devices for metrological detection of the jump characteristic of a skijumper.
  • FIG. 2 shows a perspective view of a run-up track 2 in a ski-jump start-up track system with a plurality of heat-conducting elements 1 according to the invention.
  • the run-up track 2 is bounded laterally by two upper run-up track edge profiles 8 extending along a run-up track passage direction E spaced apart from each other in the track width B.
  • These upper run-up channel edge profiles 8 rest on lower run-up track edge profiles 7, which extend according to the upper profiles and are also spaced apart in track width B.
  • a thermal insulation layer 5 is disposed between the two lower run-track channel edge profiles 7, which extends across the entire track width B and also along the run-up track extension direction E.
  • air conditioning devices 3 are arranged in the form of six tubes. These tubes 3 also extend along the run-track channel extension direction E.
  • a multiplicity of identically designed heat-conducting elements 1 are arranged equidistant from one another along the run-up track channel extension direction E and fixed to the run-up track edge profiles via mounting means 10 for fixing the heat-conducting elements.
  • Summer heat slide nubs 6 can be fastened to the heat-conducting elements 1. Therefore, this ski-jump start-up track system is a combination track that enables summer operation with winter operation in the same lane (lane-in-lane).
  • the heat-conducting element 1 has on its underside facing the tubes 3 a heat coupling region 11.
  • This heat coupling region 11 is designed in such a way that it is possible to produce a connection which is as positive as possible between the heat coupling region 11 and the tubes 3. Therefore, the heat coupling region 11 has an inverse planar structure compared to the surfaces of the tubes 3, which meshes with the upwardly facing portions of the tubes 3 in a comb-like manner.
  • the tubes 3 facing away from the surface of the heat coupling region 11 forms a recess bottom surface 130 of a not limited to one side recess 13 of the heat conducting element 1.
  • the Recess bottom surface 130 bounded by an upwardly extending first edge region 131 such that the recess 13 is formed in a half-shell shape.
  • the geometry of the recess 13 will be described in more detail below.
  • FIG. 2 shows a cross section along the line II-II FIG. 1 , Identical components are provided with the same reference numerals. To avoid repetition, reference is therefore made to the preceding statements.
  • the two lower run-track channel edge profiles 7 each have an inwardly cantilevered mounting receptacle 70 with a groove. In this groove, a corresponding projection of the heat-conducting element 1 engages in the region of both outer edges of the starting track flanks 1120, 1130 of the heat-conducting element 1.
  • the recess 13 of the heat-conducting element 1 merges laterally over run-up track flanks 112, 113 into the outer edges of the run-up track flanks 1120, 1130.
  • the recess 13 transitions stepwise over the first edge region 131 into a transverse region 111 which extends between the two outer edges of the run-up track flanks 1120, 1130.
  • the outer edges of the starting track flanks 1120, 1130 each terminate outwardly in high-arched edge regions 1121, 1131.
  • fixing means 12 for fixing the summer track slide nubs 6 in the form of depressions are formed with a plurality of bores for passing a screw or a bolt.
  • the summer track slide nubs 6 have a threaded sleeve 60 in their interior.
  • spring means 61 are still provided between the summer track sliding nubs 6 and acting as a sliding plate heat conducting element 1 spring means 61 are still provided. These suspension means 61 ensure, within certain limits, an elastic mobility between summer track sliding nubs 6 and the heat conducting element 1. These limits depend on the structure and material functionality of the spring means 61.
  • FIG. 3 shows a further perspective view of the run-track channel 2 of the ski-jump starting track system FIG. 1 , Identical components are provided with the same reference numerals. To avoid repetition, reference is therefore made to the preceding statements.
  • gaps 4 can be seen, which remain free between the along the run-up channel extension direction E equidistant from each other mounted heat conducting elements 1.
  • the air-conditioning devices in the form of the tubes 3 are open to the run-up track channel 2.
  • the forming ice can anchor mechanically optimally in the structures during icing of the run-up track 2 and the thermal coupling is simultaneously improved.
  • each heat-conducting element has the fixing means 12 for the assembly of summer track sliding nubs in the form of six recesses distributed over the starting track width B. If the heat-conducting elements 1 - as shown here - are equipped with summer track sliding nubs 6, the starting track channel 2 can be used as a so-called combined track both in summer and in winter operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)
  • Tires In General (AREA)

Description

  • Die Erfindung betrifft ein Wärmeleitelement für den Einsatz in klimatisierbaren Skisprung-Anlaufspuren und ein klimatisierbares Skisprung-Anlaufspursystem unter Einsatz eines derartigen Wärmeleitelementes.
  • Solche klimatisierbare Skisprung-Anlaufspur-Systeme weisen einen sich entlang einer Anlaufspurkanal-Erstreckungsrichtung erstreckenden Anlaufspurkanal und senkrecht zur Anlaufspurkanal-Erstreckungsrichtung eine definierte Spurbreite auf. Im Anlaufspurkanal der klimatisierbaren Skisprung-Anlaufspur erstreckt sich eine Klimatisierungseinrichtung zur Kühlung und/oder Heizung des Anlaufspurkanals.
  • Aus der DE 10 2007 060755 A1 ist ein solches Anlaufspur-System bekannt, bei dem weiterhin in den Anlaufspuren ein im Wesentlichen aus einem Polymermaterial aufgebautes Wärmeleitelement in Form einer Gleitplatte montiert ist. Dazu weist das Wärmeleitelement Montagemittel zur Fixierung des Wärmeleitelements im Anlaufspurkanal der klimatisierbaren Skisprung-Anlaufspur und einen Wärmekoppelbereich zur thermischen Kopplung des Wärmeleitelements mit einer definierten Wärmeleitfähigkeit an die Klimatisierungseinrichtung in der Anlaufspur auf. Das Wärmeleitelement selbst ist aus Kunststoff gefertigt und es kommt oftmals eine Wärmeleitpaste zum Einsatz, um die thermische Kopplung zwischen der Gleitplatte und der Klimatisierungseinrichtung zu verbessern.
  • Wenn die Systeme mit den bekannten Gleitplatten für einen Winterbetrieb vereist werden, lässt man Wasser über die Gleitplatten rinnen und kühlt diese von unten mit der thermisch daran gekoppelten Klimatisierungseinrichtung derart dass das über die Gleitplatte rinnende Wasser gefriert.
  • Dieser Vorgang benötigt nicht unerhebliche Wassermengen und Energie, was für den Betrieb von Sportanlagen nicht unerhebliche Kosten darstellt.
  • Aus diesem Grund ist es von Vorteil, das als Gleitplatte ausgebildete Wärmeleitelement aus einem Material mit einer guten Wärmeleitung auszubilden. Aus der DE 30 03 069 A1 ist ein klimatisierbare Skispur für Skilauf und Skisprung bekannt. Das bei dieser Skispur zum Einsatz kommende Wärmeleitelement ist bevorzugt in Form einer ebenen Gleitplatte aus Aluminium ausgeführt. Die Gleitplatte ist daher derart ausgebildet, dass die Wärmeleitfähigkeit des Wärmekoppelbereichs zur thermischen Kopplung an die Klimatisierungseinrichtung mehr als 10 W/m°K, bevorzugt mehr als 50 W/m°K und besonders bevorzugt mehr als 100 W/m°K beträgt. Eine Wärmeleitfähigkeit von mehr als 10 W/m°K weisen sämtliche Metalle und Metalllegierungen auf. Von den klassischen Nicht-Metallen wäre Graphit ein geeigneter Werkstoff. Üblicherweise wird das Wärmeleitelement jedoch aus metallischen Werkstoffen aufgebaut sein. Die höchste thermische Leitfähigkeit bei vergleichsweise überschaubaren Material- und Herstellungskosten bietet Aluminium. Die Wärmeleitelemente lassen sich besonders wirtschaftlich als einstückige Aluminium-Gussteile fertigen. Vom Schutzbereich umfasst sind jedoch auch Ausführungsformen, bei denen das Wärmeleitelement mehrstückig ausgebildet ist. Dabei ist es denkbar, dass einzelne Bauelemente des Wärmeleitelementes eine Wärmeleitfähigkeit von weniger als 10 W/m°K aufweisen. Entscheidend ist, ob der für den Wärmeübergang von der Klimatisierungseinrichtung zum Wärmeleitelement verantwortliche Wärmekoppelbereich des Wärmeleitelements eine Wärmeleitung im beanspruchten Parameterbereich aufweist.
  • Auf der Oberseite der Gleitplatte aus der DE 30 03 069 A1 ist eine Reibungsschicht, beispielsweise aus Quarzsand, angeordnet. Diese Reibungsschicht soll den Zweck erfüllen, dass sich das Eis, das auf der Gleitplatte gefroren ist, nicht ablöst und auf einer Schanze nach unten abrutscht.
  • Es hat sich gezeigt, dass trotz der guten thermischen Eigenschaften der bekannten Aluminium-Gleitplatten die mechanische Verankerung des Eises in der Spur nicht optimal gewährleistet ist.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zu Grunde eine Wärmeleitplatte bereit zu stellen, die bei ähnlich guten thermischen Eigenschaften eine sichere und robuste Verankerung des Eises in der Skisprung-Anlaufspur ermöglicht.
  • Diese Aufgabe wird durch eine Wärmeleitplatte mit den Merkmalen des Anspruchs 1 gelöst.
  • Erfindungsgemäß ist vorgesehen, dass der Wärmekoppelbereich des Wärmeleitelements thermisch gekoppelt in mindestens einen Anlaufspur-Koppelbereich übergeht, der senkrecht zur Anlaufspurkanal-Erstreckungsrichtung beabstandet zum Wärmekoppelbereich angeordnet ist, wobei der Wärmekoppelbereich und der Anlaufspur-Koppelbereich im Wesentlichen flächig ausgebildet sind und derart versetzt zueinander angeordnet sind, dass diese in unterschiedlichen Ebenen liegen. Durch diese Struktur bilden der Wärmekoppelbereich und der mindestens eine Anlaufspur-Koppelbereich eine Oberfläche, die zwangsläufig eine oder mehrere Kanten, Stufen und/oder Vertiefungen aufweist. In diesen Bereichen entsteht aufgrund der hohen thermischen Leitfähigkeit des Wärmeleitelementes das Eis beim Aufwachsen. Somit wird es in diesen Kanten, Stufen und/oder Vertiefungen fest verankert. Auch bei starker mechanischer Beanspruchung beispielsweise durch dein Einsatz von Eisfräsen tritt ein Ausbrechen und Ablösen von Eisabschnitten nicht statt. Außerdem wird sichergestellt, dass der Fluss der thermischen Energie zwischen Wärmekoppelbereich des Wärmeleitelements und dem davon beabstandeten Anlaufspur-Koppelbereich durch die thermische Kopplung der Bereiche erfolgt. Mit thermischer Kopplung ist gemeint, dass ein Wärmeleitungsübergang sichergestellt ist, der nicht allein auf Strahlungswärme und/oder auf einen makroskopischen Materialstrom abstellt. Bevorzugt wird dies durch einen einstückigen Aufbau des Wärmeleitelementes aus einem Werkstoff mit hinreichender Wärmeleitung gewährleistet. Unter dem Merkmal der flächigen Ausbildung des Wärmekoppelbereiches und der Anlaufspur-Koppelbereiche ist eine Vielzahl von Geometrien zu verstehen. Die Flächen können mehrfach gekrümmt oder auch periodisch strukturiert ausgebildet sein. Der Wärmekoppelbereich ist mit einer seiner Oberflächen derart ausgeformt ist, dass sich ein eng anschmiegender, im Idealfall formschlüssiger, mechanischer Kontakt zu den Bauelementen der Klimatisierungseinrichtung herstellen lässt, in denen ein Klimatisierungsmedium geführt ist. Der Wärmekoppelbereich ist durch den Bereich der Oberfläche des Wärmeleitelementes definiert, in dem sich der mechanische Kontakt zu den genannten Bauelementen der Klimatisierungseinrichtung herstellen lässt. Die übrigen mit dem Wärmekoppelbereich thermisch gekoppelten Abschnitte des Wärmeleitelements sind Anlaufspur-Koppelbereiche.
  • Zwei der Anlaufspur-Koppelbereiche sind bevorzugt als Anlaufspurflanken ausgebildet, wobei die Anlaufspurflanken in Anlaufspurkanal-Erstreckungsrichtung betrachtet jeweils Außenkanten des Wärmeleitelements ausbilden, die sich in Anlaufspurkanal-Erstreckungsrichtung erstrecken. Diese Anlaufspurflanken können, abhängig von den baulichen Gegebenheiten des Anlaufspurkanals, unterschiedliche Geometrie aufweisen. Bevorzugt sind deren Außenkanten im Abstand der Spurbreite voneinander beabstandet. Dadurch erstreckt sich das Wärmeleitelement quer zur Anlaufspurkanal-Erstreckungsrichtung betrachtet über die gesamte Spurbreite des Anlaufspurkanals. Weiterhin bilden die flächig ausgebildeten Anlaufspurflanken zusammen mit dem flächigen Wärmekoppelbereich eine Vertiefung im Wärmeleitelement in Form einer Schale oder Halbschale.
  • Es ist von Vorteil, dass zwischen den beiden Anlaufspurflanken ein weiterer Anlaufspur-Koppelbereich in Form eines Querabschnitts angeordnet ist. Auch dieser Querabschnitt ist versetzt zum Wärmekoppelbereich in einer anderen zum Wärmekoppelbereich beabstandeten Ebene angeordnet, jedoch thermisch mit dem Wärmekoppelbereich gekoppelt. Zur Auslegung des Merkmals der thermischen Kopplung wird auf die vorangehend gemachten Ausführungen verwiesen, um Wiederholungen zu vermeiden.
  • Der Querabschnitt erstreckt sich bevorzugt zwischen den beiden Anlaufspurflanken. Bei einer bevorzugten Ausführungsform nimmt der Querabschnitt die gesamte Spurbreite des Anlaufspurkanals ein. Dadurch bildet der Querabschnitt zusammen mit den Anlaufspurflanken die Bereiche, die der Gleitoberfläche der Anlaufspur räumlich am nächsten kommen.
  • Mit Vorteil bilden die Außenkanten jeweils einen in Richtung senkrecht zur Anlaufspurkanal-Erstreckungsrichtung und weg vom Wärmekoppelbereich hochgewölbten Randbereich aus. Diese Randbereiche sind ebenfalls thermisch mit dem Wärmeleitelement gekoppelt und bevorzugt einstückig mit diesem ausgebildet. Dadurch wird eine Kühlung der Anlaufspur über deren gesamte Spurbreite einschließlich der Ansätze der die Anlaufspur seitlich begrenzenden Flanken gewährleistet.
  • Von besonderem Vorteil ist es, wenn das Wärmeleitelement eine Mehrzahl Gleitnoppen-Fixiermittel für die Montage einer Mehrzahl an Sommerspur-Gleitnoppen am Wärmeleitelement aufweist. Dadurch lässt sich in ein und derselben Anlaufspur- ein Sommer- und ein Winterbetrieb realisieren (Spur-in-Spur-Aufbau). Die Gleitnoppen-Fixiermittel ermöglichen die bevorzugt lösbare Befestigung von Sommerspur-Gleitnoppen, die insbesondere aus keramischem Material aufgebaut sind, am Wärmeleitelement. Im Sommerbetrieb dient somit das Wärmeleitelement als Träger für die Sommerspur-Gleitnoppen, die bevorzugt auf den als Querabschnitt und/oder als Anlaufspurflanken ausgebildeten Anlaufspur-Koppelbereichen fixierbar sind. Bei diesem bevorzugten Ausführungsbeispiel bildet das Wärmeleitelement eine Gleitplatte im Sinne der vom gleichen Anmelder und Erfinder am 12.08.2011 eingereichten deutschen Patentanmeldung DE 10 2011 052662 . Diese Patentanmeldung beansprucht eine besondere Lagerung der Gleitnoppen in der Gleitplatte/Wärmeleitelement.
  • Die Gleitnoppen-Fixiermittel sind gemäß dieser früheren Anmeldung als Gleitnoppen-Aufnahmen ausgebildet, die im Wärmeleitelement angeordnete Gleitnoppenöffnungen aufweisen, wobei die Gleitnoppenöffnungen durch das Wärmeleitelement hindurch reichen. Weiterhin sind Federungsmittel vorgesehen, die derart ausgebildet sind, dass diese auf eine Relativbewegung zwischen den Gleitnoppen und dem plattenförmigen Element eine Rückstellkraft ausüben.
  • Bevorzugt sind die Federungsmittel zwischen Gleitnoppenfederungsabschnitten der Gleitnoppen und Plattenfederungsabschnitten des plattenförmigen Elements angeordnet.
  • Durch diese Anordnung der Federungsmittel ist es möglich, eine hinreichende Federungs-Funktionalität bereit zu stellen und gleichzeitig eine möglichst hohe konstruktionstechnische Freiheit für die Integration weiterer Funktionalitäten zu realisieren. Letztlich findet die elastische Verformung der Federungsmittel im Bereich zwischen der Gleitnoppe und dem plattenförmigen Element statt. Dabei sind die die Relativbewegung an die Federungsmittel mechanisch weiter gebenden Abschnitte der Gleitnoppe als Gleitnoppenfederungsabschnitte bezeichnet. Durch die Federungsmittel wird die Verformungskraft an den Plattenfederungsabschnitten des als Wärmeleitelement ausgebildeten plattenförmigen Elements aufgenommen. Für die räumliche Anordnung dieser Federungsabschnitte und der Federungsmittel gibt es unterschiedliche Varianten, die nachfolgend näher diskutiert werden.
  • Eine besonders platzsparende bevorzugte Bauweise besteht darin, dass die Plattenfederungsabschnitte innerhalb der Gleitnoppenöffnungen und/oder angrenzend an die Gleitnoppenöffnungen in der Oberflächenkontur der Gleitnoppenaufnahmen ausgebildet sind. Dadurch kann insbesondere der Bauraum unterhalb der Gleitnoppen frei bleiben.
  • Für die vorangehend genannte Bauweise ist es weiterhin von Vorteil, dass sich die Plattenfederungsabschnitte quer zu den Gleitnoppenöffnungen erstrecken. Üblicherweise erstrecken sich die Gleitnoppenöffnungen im plattenförmigen Element entlang einer Erstreckungsachse. Mit dem Merkmal quer zu den Gleitnoppenöffnungen ist dann entsprechend quer zur Erstreckungsachse der Gleitnoppenöffnung gemeint. Ein Spezialfall für diese Anordnung der Plattenfederungsabschnitte besteht darin, dass diese sich rechtwinklig zur Gleitnoppenöffnung erstrecken. Das Merkmal quer ist jedoch nicht auf rechtwinklig beschränkt auszulegen.
  • Für die vorangehend beschriebene Bauweise der Gleitplatte ist es weiterhin von Vorteil, dass die Plattenfederungsabschnitte die Gleitnoppenöffnungen auf der Oberseite des plattenförmigen Elements und/oder auf der der Oberseite gegenüber liegenden Unterseite des plattenförmigen Elements umschließen. Durch die umschließende Anordnung ergibt sich eine gleichmäßige Aufnahme und Einleitung der auf die Gleitnoppe wirkenden Kraft in das plattenförmige Element.
  • Unabhängig von den vorangehend beschriebenen Bauweisen ist es von Vorteil, dass die Gleitnoppen lösbare Befestigungsmittel aufweisen, mittels denen die Gleitnoppen in den Gleitnoppenöffnungen fixiert sind. Auf diese Weise lassen sich beschädigte oder abgenutzte Gleitnoppen einfacher ersetzen.
  • Bei der Variante, die Gleitnoppen mit lösbaren Befestigungsmitteln auszubilden ist es vorteilhaft, dass sich die Federungsmittel in Bereiche zwischen den Befestigungsmitteln und dem plattenförmigen Element erstrecken. Die Gleitnoppenfederungsabschnitte befinden sich bei dieser bevorzugten Ausführungsform üblicherweise an den Befestigungsmitteln, die einen Teil der Gleitnoppe bilden.
  • Es ist von Vorteil, wenn sich die Gleitnoppenfederungsabschnitte quer zu den Gleitnoppenöffnungen erstrecken. Diese Anordnung der Gleitnoppenfederungsabschnitte impliziert meist die entsprechende Quer-Anordnung der korrespondierenden Plattenfederungsabschnitte.
  • Die Federungsmittel weisen bevorzugt ein Polymerelement in Form eines Polymerklebers, eines Polymer-O-Rings oder eines Polymerstücks auf. Ein Kleber hat den Vorteil in die vorhandene Geometrie hineinzufließen und auch Zugspannungen aufnehmen zu können. O-Ringe sind preiswert und mit den gewünschten Elastizitätseigenschaften einfach erhältlich. Ein Polymerstück, beispielsweise in Form eines kleinen Keils oder Klotzes stellt eine einfache Variante zur Ausbildung der Federungsmittel dar. Als weitere Varianten wären auch metallisch ausgebildete Federelemente oder Naturmaterialien denkbar. Allen Varianten gemeinsam ist, dass die gewünschten Elastizitäts- und Langzeit-Stabilitätseigenschaften über einen recht breiten Temperaturbereich von -40°C bis +60°C gewährleistet sein sollten. Entsprechende Polymere und Polymerkleber sind am Markt einfach erhältlich.
  • Für alle der vorangehend beschriebenen Varianten der Gleitplatte gilt bevorzugt, dass die Gleitnoppen zumindest auf ihrer Oberfläche aus Naturstein (hier bieten sich wegen der Abriebfestigkeit sehr harte Naturstein wie zum Beispiel Granite und Basalte an) oder aus Keramik, bevorzugt aus Porzellan oder aus einer Oxidkeramik aufgebaut sind. Keramiken, insbesondere Porzellan, lassen sich mit Toleranzen knapp unter einem Millimeter wirtschaftlich herstellen. Eine besonders vorteilhafte Variante besteht darin, die Gleitnoppen aus Aluminiumoxid ohne Oberflächenglasur herzustellen. Dieses Material nimmt zu einem gewissen Maß Wasser auf und stellt es an seiner Oberfläche zur Verfügung. Da die Gleitnoppen üblicherweise im Sprungbetrieb mit einem Wasserfilm überspült werden, trägt diese Eigenschaft zu noch besseren Gleiteigenschaften bei. Grundsätzlich sind durch den Einsatz von Keramiken alle werkstofftechnischen Vorteile dieses Materials hinsichtlich seiner dauerhaften Witterungs- und Abriebbeständigkeit in der Gleitplatte realisierbar.
  • Die vorangehend beschriebenen Varianten der Gleitnoppen-Lagerung in der als Wärmeleitplatte ausgebildeten Gleitplatte sind unter dem Gesichtspunkt eines geräuscharmen Betriebs der Sommerspur von Bedeutung. Bisher sind hauptsächlich Gleitplatten aus Polymeren zum Einsatz gekommen, weil diese einerseits eine einfache Fixierung von Sommerspur-Gleitnoppen ermöglichen und andererseits vibrationsdämpfende und damit geräuschmindernde Eigenschaften haben. Wenn das Wärmeleitelement in Form einer Gleitplatte aus einem metallischen Werkstoff gefertigt ist, so sind im Bereich der Gleitnoppen-Fixiermittel durch die Federungsmittel Vorkehrungen zu treffen, um die Geräuschentwicklung bei der Nutzung als Sommerspur zu reduzieren.
  • Für alle vorangehend beschriebenen Bauformen des Wärmeleitelements ist es von Vorteil, dass das Wärmeleitelement eine Vertiefung mit einer Vertiefungsbodenfläche aufweist, wobei der Wärmekoppelbereich zumindest abschnittsweise die Vertiefungsbodenfläche ausbildet. Diese Vertiefung erfüllt eine Reihe von Funktionen. Zum einen sorgt sie dafür, dass Schnee, der in den Anlaufspurkanal fällt, besser auf der Spur liegen bleibt und nicht so leicht abrutscht. Dies gilt insbesondere dann, wenn eine Vielzahl von Wärmeleitelementen hintereinander im Anlaufspurkanal montiert ist. Dann ist auch eine Vielzahl von Vertiefungen vorhanden, die gemeinsam die genannte Funktionalität bereitstellen. Zum anderen dienen die Vertiefungen beim Vereisen der Spur mit Wasser, das in den Anlaufspurkanal gegeben wird, als Auffangbecken. Bei der bereits erwähnten seriellen Kombination von Wärmeleitelementen entlang der Anlaufspurkanal-Erstreckungsrichtung hat dies den Effekt, das Wasser, das im oberen Bereich in den Anlaufspurkanal gegeben wird, zunächst die erste Vertiefung auffüllt, bevor diese überläuft und die dem Gefälle der Anlaufspur folgende nächste Vertiefung zu füllen beginnt. Auf diese Weise lässt sich zum einen bei einer geschickten Einstellung von Wasserzufuhr und Kühlleistung der Wasserverbrauch beim Vereisen minimieren und zum anderen verankert sich die entstehende Eisschicht in den entlang der Anlaufspurkanal-Erstreckungsrichtung hintereinander folgenden Vertiefungen.
  • Im Hinblick auf die bevorzugte Ausgestaltung mit einer Vertiefung ist es für das Wärmeleitelement weiterhin von Vorteil, wenn die Vertiefung in Anlaufspurkanal-Erstreckungsrichtung betrachtet auf einer ersten Seite der Vertiefung eine erste Begrenzungskante mit einer ersten Begrenzungskantenhöhe ausbildet und auf einer zur ersten Seite gegenüber liegenden zweiten Seite der Vertiefung eine zweite Begrenzungskante mit einer im Vergleich zur ersten Begrenzungskantenhöhe geringeren zweiten Begrenzungskantenhöhe aufweist. Alternativ dazu wäre vorzusehen, dass die Vertiefung auf einer zur ersten Seite gegenüber liegenden zweiten Seite der Vertiefung ohne eine zur ersten Seite gegenüber liegende zweite Begrenzungskante ausgebildet ist. Beide Varianten bilden eine Vertiefung, die von einer Seite her einfacher befüllbar ist. Dies gilt insbesondere dann, wenn die Wärmeleitelemente durch Zwischenräume beabstandet zueinander (also nicht bündig hintereinander aufgereiht) im Anlaufspurkanal montiert sind. Bei dieser Montagevariante liegt die unterhalb des Wärmeleitelements befindliche Klimatisierungseinrichtung in den Zwischenräumen frei. In den Zwischenräumen würde Wasser, das mit der Klimatisierungseinrichtung in Kontakt, tritt schlagartig gefrieren und auf diese Weise die Vereisung des Anlaufspurkanals beginnen. Abwärts dem Gefälle folgend würde ein Wärmeleitelement mit einer Vertiefung folgen, die aufwärts betrachtet entweder keine oder eine niedrigere Begrenzungskantenhöhe aufweist als abwärts dem Gefälle folgend betrachtet.
  • Die Vertiefung des Wärmeleitelements lässt sich vorteilhaft ausbilden, wenn die erste Begrenzungskante durch einen Übergang von der Vertiefungsbodenfläche in die Anlaufspur-Koppelbereiche gebildet ist. Die zweite Begrenzungskantenfläche ist dann - wie vorangehend beschrieben - entweder niedriger oder gar nicht ausgebildet. Der der Übergang von der Vertiefungsbodenfläche in die Anlaufspur-Koppelbereiche ist dabei bevorzugt stufenartig ausgebildet.
  • Eine weitere für alle vorangehend beschriebenen Bauformen vorteilhafte Variante besteht darin, dass das Wärmeleitelement in der Anlaufspurkanal-Erstreckungsrichtung betrachtet eine Ausdehnung aufweist, die kleiner als die Spurbreite ist. Mit dieser beschränkten Ausdehnung in Anlaufspurkanal-Erstreckungsrichtung ist eine Vielzahl von Wärmeleitelementen erforderlich, um einen Anlaufspurkanal damit auszustatten. Dadurch tritt in kürzerem Abstand bei einer Reihe der vorangehend beschriebenen Ausführungsformen des Wärmeleitelementes eine Vielzahl von Vertiefungen auf oder es folgt eine Vielzahl von Zwischenräumen zwischen benachbarten Wärmeleitelementen. Auf diese Weise lässt sich nach dem Vereisen eine besonders gut verankerte Eisschicht im Anlaufspurkanal realisieren.
  • Eine zur vorangehend beschriebenen Variante ähnlich vorteilhafte Variante besteht darin, dass der Wärmekoppelbereich entlang der Anlaufspurkanal-Erstreckungsrichtung betrachtet eine Ausdehnung aufweist, die kleiner als die Spurbreite ist.
  • Weiterhin betrifft die vorliegende Erfindung ein klimatisierbares Skisprung-Anlaufspursystem mit zwei sich entlang einer Anlaufspurkanal-Erstreckungsrichtung erstreckenden Anlaufspurkanälen, die jeweils eine Spurbreite aufweisen und in denen jeweils eine Klimatisierungseinrichtung zum Beheizen und/oder zum Kühlen des Anlaufspurkanals angeordnet ist, wobei in jedem Anlaufspurkanal eine Mehrzahl von Wärmeleitelementen gemäß den vorangehend beschriebenen Varianten angeordnet ist.
  • Bevorzugt sind die Wärmeleitelemente entlang der Anlaufspurkanal-Erstreckungsrichtung betrachtet derart beabstandet voneinander in den Anlaufspurkanälen fixiert, dass zwischen benachbarten Wärmeleitelementen Zwischenräume bleiben, in denen die Klimatisierungseinrichtung offen liegt. Der funktionale Vorteil der Zwischenräume ist bereits vorangehend beschrieben worden. Um Wiederholungen zu vermeiden wird auf die dortigen Ausführungen verwiesen.
  • Das klimatisierbare Skisprung-Anlaufspursystem ist als vorteilhafte Variante dadurch gekennzeichnet, dass entlang der Anlaufspurkanal-Erstreckungsrichtung auf einer Länge betrachtet, die der Spurbreite entspricht, mindestens zwei voneinander beabstandete Wärmeleitelemente angeordnet sind. Diese Dimensionierung der Wärmeleitelemente und deren Abstand zueinander sorgen für eine optimale Verankerung des Eises im Anlaufspurkanal.
  • Bevorzugt sind die Wärmeleitelemente identisch ausgebildet und entlang der Anlaufspurkanal-Erstreckungsrichtung periodisch mit gleichem Abstand zueinander in den Anlaufspurkanälen fixiert. Durch die Vereinheitlichung der Bauelemente und deren periodische Anordnung lassen sich die Bauelemente einfacher und somit kostengünstiger herstellen.
  • Es ist von Vorteil, wenn die Wärmekoppelbereiche der Wärmeleitelemente derart ausgeformt sind, dass sich eine formschlüssige Verbindung der Wärmekoppelbereiche mit Wärmekoppelabschnitten der Klimatisierungseinrichtung ausbildet. Das Merkmal des Formschlusses ist nicht im mikroskopischen Sinne auszulegen. Auch wenn aufgrund von Maßtoleranzen und unterschiedlichen thermischen Ausdehnungskoeffizienten Spalte im Millimeterbereich auftreten sollten, so ist üblicherweise dennoch über die auftretende Konvektion ein hinreichender Wärmeübergang gegeben. Weiterhin besteht die Möglichkeit zur Optimierung des Wärmeübergangs Wärmeleitpasten oder -gels einzusetzen, die zwischen den Baugruppen der Klimatisierungseinrichtung und dem Wärmeleitelement angeordnet sind.
  • Es versteht sich von selbst, dass sich das klimatisierbare Skisprung-Anlaufspursystem mit Sensor-Einrichtungen zur messtechnischen Erfassung der Absprungcharakteristik eines Skispringers ausgestalten lässt.
  • Nachfolgend wird eine bevorzugte Ausführungsform der Erfindung anhand der Figuren 1 bis 3 beschrieben.
  • Es zeigt:
  • Figur 1
    eine perspektivische Ansicht eines Anlaufspurkanals 2 in einem Skisprung-Anlaufspursystem mit einer Mehrzahl erfindungsgemäßer Wärmeleitelemente 1;
    Figur 2
    einen Querschnitt entlang der Linie II-II aus Figur 1 und
    Figur 3
    eine weitere perspektivische Ansicht des Anlaufspurkanals 2 des Skisprung-Anlaufspursystems aus Figur 1.
  • Figur 1 zeigt eine perspektivische Ansicht eines Anlaufspurkanals 2 in einem Skisprung-Anlaufspursystem mit einer Mehrzahl erfindungsgemäßer Wärmeleitelemente 1. Der Anlaufspurkanal 2 wird durch zwei sich entlang einer Anlaufspurkanal-Erstreckungsrichtung E erstreckende, in der Spurbreite B beabstandet voneinander angeordnete obere Anlaufspurkanal-Kantenprofile 8 lateral begrenzt. Diese oberen Anlaufspurkanal-Kantenprofile 8 liegen auf unteren Anlaufspurkanal-Kantenprofilen 7 auf, die sich entsprechend den oberen Profilen erstrecken und ebenfalls in Spurbreite B voneinander beabstandet sind. Also Boden des Anlaufspurkanals 2 ist zwischen den beiden unteren Anlaufspurkanal-Kantenprofilen 7 eine thermische Isolationsschicht 5 angeordnet, die sich quer über die gesamte Spurbreite B und ebenfalls entlang der Anlaufspurkanal-Erstreckungsrichtung E erstreckt. Auf dieser thermischen Isolationsschicht 5 sind Klimatisierungseinrichtungen 3 in Form von sechs Röhren angeordnet. Diese Röhren 3 erstrecken sich ebenfalls entlang der Anlaufspurkanal-Erstreckungsrichtung E. Auf den Röhren 3 ist entlang der Anlaufspurkanal-Erstreckungsrichtung E betrachtet eine Vielzahl gleich ausgebildeter Wärmeleitelemente 1 äquidistant zueinander angeordnet und über Montagemittel 10 zur Fixierung der Wärmeleitelemente an den Anlaufspur-Kantenprofilen fixiert. An den Wärmeleitelementen 1 lassen sich Sommerspur-Gleitnoppen 6 befestigen. Daher handelt es sich bei diesem Skisprung-Anlaufspursystem um eine Kombispur, die einen Sommerbetrieb mit einem Winterbetrieb in der gleichen Spur ermöglicht (Spur-in-Spur).
  • Das Wärmeleitelement 1 weist auf seiner den Röhren 3 zugewandten Unterseite einen Wärmekoppelbereich 11 auf. Dieser Wärmekoppelbereich 11 ist derart ausgestaltet, dass sich eine möglichst formschlüssige Verbindung zwischen dem Wärmekoppelbereich 11 und den Röhren 3 herstellen lässt. Daher weist der Wärmekoppelbereich 11 eine im Vergleich zu den Oberflächen der Röhren 3 inverse flächige Struktur auf, die in die nach oben gewandten Abschnitte der Röhren 3 kammartig eingreift. Die den Röhren 3 abgewandte Oberfläche des Wärmekoppelbereichs 11 bildet eine Vertiefungsbodenfläche 130 einer auf einer Seite nicht begrenzten Vertiefung 13 des Wärmeleitelements 1. Auf der anderen Seite ist die Vertiefungsbodenfläche 130 durch einen sich nach oben erstreckenden ersten Randbereich 131 derart begrenzt, dass die Vertiefung 13 halbschalenförmig ausgebildet ist. Im Zusammenhang mit Figur 2 wird die Geometrie der Vertiefung 13 nachfolgend näher beschrieben.
  • Figur 2 zeigt einen Querschnitt entlang der Linie II-II aus Figur 1. Gleiche Bauelemente sind mit gleichen Bezugszeichen versehen. Zur Vermeidung von Wiederholungen wird daher auf die vorangehenden Ausführungen verwiesen. Die beiden unteren Anlaufspurkanal-Kantenprofile 7 weisen jeweils eine nach innen kragende Montageaufnahme 70 mit einer Nut auf. In diese Nut greift ein korrespondierender Vorsprung des Wärmeleitelementes 1 im Bereich beider Außenkanten der Anlaufspurflanken 1120,1130 des Wärmeleitelementes 1 ein. Die Vertiefung 13 des Wärmeleitelementes 1 geht seitlich über Anlaufspurflanken 112,113 in die Außenkanten der Anlaufspurflanken 1120,1130 über. Entlang der Anlaufspurkanal-Erstreckungsrichtung E betrachtet geht die Vertiefung 13 stufenartig über den ersten Randbereich 131 in einen Querbereich 111 über, der sich zwischen den beiden Außenkanten der Anlaufspurflanken 1120,1130 erstreckt. Die Außenkanten der Anlaufspurflanken 1120,1130 enden jeweils nach außen in hochgewölbten Randbereichen 1121,1131. Im Querbereich 111 sind Fixiermittel 12 zum Fixieren der Sommerspur-Gleitnoppen 6 in Form von Vertiefungen mit einer Mehrzahl von Bohrungen zum Durchführen einer Schraube oder eines Bolzens ausgebildet. Die Sommerspur-Gleitnoppen 6 weisen in Ihrem Innern eine Gewindehülse 60 auf. Zwischen den Sommerspur-Gleitnoppen 6 und dem als Gleitplatte wirkenden Wärmeleitelement 1 sind weiterhin Federungsmittel 61 vorgesehen. Diese Federungsmittel 61 stellen in gewissen Grenzen eine elastische Beweglichkeit zwischen Sommerspur-Gleitnoppen 6 und dem Wärmeleitelement 1 sicher. Diese Grenzen hängen von Struktur und Werkstofffunktionalität der Federungsmittel 61 ab.
  • Figur 3 zeigt eine weitere perspektivische Ansicht des Anlaufspurkanals 2 des Skisprung-Anlaufspursystems aus Figur 1. Gleiche Bauelemente sind mit gleichen Bezugszeichen versehen. Zur Vermeidung von Wiederholungen wird daher auf die vorangehenden Ausführungen verwiesen. In dieser Perspektive sind Zwischenräume 4 erkennbar, die zwischen den entlang der Anlaufkanal-Erstreckungsrichtung E äquidistant voneinander montierten Wärmeleitelementen 1 frei bleiben. In diesen Zwischenbereichen 4 liegen die Klimatisierungseinrichtungen in Form der Röhren 3 zum Anlaufspurkanal 2 hin offen. Dadurch kann sich das bildende Eis beim Vereisen des Anlaufspurkanals 2 mechanisch optimal in den Strukturen verankern und die thermische Kopplung ist gleichzeitig verbessert. Weiterhin ist erkennbar, wie der Querbereich 111 jedes Wärmeleitelementes die Fixiermittel 12 für die Montage von Sommerspur-Gleitnoppen in Form von sechs über die Anlaufspurbreite B verteilte Vertiefungen aufweist. Wenn die Wärmeleitelemente 1 - wie hier dargestellt - mit Sommerspur-Gleitnoppen 6 ausgestattet sind, kann der Anlaufspurkanal 2 als so genannte Kombispur sowohl im Sommer- als auch im Winterbetrieb genutzt werden.
  • Abschließend sei betont, dass in den Figuren nur eine von vielen Varianten für die Ausgestaltung des Wärmeleitelementes gezeigt ist. Ebenso wäre es denkbar das Wärmeleitelement in Erstreckungsrichtung E betrachtet deutlich länger auszugestalten und darauf mehrere Querbereiche und/oder Vertiefungen vorzusehen.
  • Bezugszeichenliste:
  • 1
    Wärmeleitelement
    10
    Montagemittel zur Fixierung des Wärmeleitelements
    11
    Wärmekoppelbereich
    111
    Anlaufspur-Koppelbereich als Querabschnitt
    112
    Anlaufspur-Koppelbereich als Anlaufspurflanke
    1120
    Außenkante der Anlaufspurflanke
    1121
    hochgewölbter Randbereich
    113
    Anlaufspur-Koppelbereich als Anlaufspurflanke
    1130
    Außenkante der Anlaufspurflanke
    1131
    hochgewölbter Randbereich
    12
    Fixiermittel für die Montage von Sommerspur-Gleitnoppen
    13
    Vertiefung des Wärmeleitelements
    130
    Vertiefungsbodenfläche
    131
    erste Begrenzungskante
    2
    Anlaufspurkanal
    3
    Klimatisierungseinrichtung
    4
    Zwischenräume zwischen benachbarten Wärmeleitelementen
    5
    thermische Isolationsschicht
    6
    Sommerspur-Gleitnoppen
    60
    Schraubgewinde
    61
    Federungsmittel
    7
    untere Anlaufspurkanal-Kantenprofile
    70
    Montageaufnahme
    8
    obere Anlaufspurkanal-Kantenprofile
    E
    Anlaufspurkanal-Erstreckungsrichtung
    B
    Spurbreite des Anlaufspurkanals

Claims (15)

  1. Wärmeleitelement (1) für klimatisierbare Skisprung-Anlaufspuren, die einen sich entlang einer Anlaufspurkanal-Erstreckungsrichtung (E) erstreckenden Anlaufspurkanal (2) und senkrecht zur Anlaufspurkanal-Erstreckungsrichtung (E) eine Spurbreite (B) aufweisen,
    mit folgenden Merkmalen:
    • Montagemittel (10) zur Fixierung des Wärmeleitelements (1) im Anlaufspurkanal (2) der klimatisierbaren Skisprung-Anlaufspur und
    • einen Wärmekoppelbereich (11) zur thermischen Kopplung des Wärmeleitelements (1) mit einer definierten Wärmeleitfähigkeit an eine sich im Anlaufspurkanal (2) der klimatisierbaren Skisprung-Anlaufspur erstreckende Klimatisierungseinrichtung (3), wobei die Wärmeleitfähigkeit des Wärmekoppelbereichs (11) mehr als 10 W/m°K, bevorzugt mehr als 50 W/m°K und besonders bevorzugt mehr als 100 W/m°K beträgt,
    dadurch gekennzeichnet, dass
    der flächig ausgebildete Wärmekoppelbereich (11) des Wärmeleitelements thermisch gekoppelt in mindestens einen flächig ausgebildeten Anlaufspur-Koppelbereich (111,112,113) übergeht, der senkrecht zur Anlaufspurkanal-Erstreckungsrichtung (E) beabstandet zum Wärmekoppelbereich (11) angeordnet ist, wobei der Wärmekoppelbereich (11) und der Anlaufspur-Koppelbereich (111,112,113) derart versetzt zueinander angeordnet sind, dass diese in unterschiedlichen Ebenen liegen, so dass der Wärmekoppelbereich (11) und der mindestens eine Anlaufspur-Koppelbereich (111, 112, 113) eine Oberfläche bilden, die zwangsläufig eine oder mehrere Kanten, Stufen und/oder Vertiefungen aufweist.
  2. Wärmeleitelement (1) gemäß Anspruch 1, dadurch gekennzeichnet, dass das Wärmeleitelement (1) zwei als Anlaufspurflanken (112,113) ausgebildete Anlaufspur-Koppelbereiche aufweist, wobei die Anlaufspurflanken (112,113) in Anlaufspurkanal-Erstreckungsrichtung (E) betrachtet jeweils Außenkanten (1120,1130) des Wärmeleitelements (1) ausbilden, die sich in Anlaufspurkanal-Erstreckungsrichtung (E) erstrecken.
  3. Wärmeleitelement (1) gemäß Anspruch 2, dadurch gekennzeichnet, dass die Außenkanten (1120,1130) im Abstand der Spurbreite (B) voneinander beabstandet sind.
  4. Wärmeleitelement (1) gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass zwischen den beiden Anlaufspurflanken (112,113) ein weiterer Anlaufspur-Koppelbereich in Form eines Querabschnitts (111) angeordnet ist.
  5. Wärmeleitelement (1) gemäß Anspruch 4, dadurch gekennzeichnet, dass sich der Querabschnitt (111) zwischen den beiden Anlaufspurflanken (112,113) erstreckt.
  6. Wärmeleitelement (1) gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Wärmeleitelement (1) eine Mehrzahl Gleitnoppen-Fixiermittel (12) für die Montage einer Mehrzahl Sommerspur-Gleitnoppen (5) am Wärmeleitelement (1) aufweist.
  7. Wärmeleitelement (1) gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Wärmeleitelement (1) eine Vertiefung (13) mit einer Vertiefungsbodenfläche (130) aufweist, wobei der Wärmekoppelbereich (11) zumindest abschnittsweise die Vertiefungsbodenfläche (130) ausbildet.
  8. Wärmeleitelement (1) gemäß Anspruch 7, dadurch gekennzeichnet, dass die Vertiefung (13) in Anlaufspurkanal-Erstreckungsrichtung (E) betrachtet auf einer ersten Seite der Vertiefung eine erste Begrenzungskante (131) mit einer ersten Begrenzungskantenhöhe ausbildet und
    auf einer zur ersten Seite gegenüber liegenden zweiten Seite der Vertiefung (13) eine zweite Begrenzungskante mit einer im Vergleich zur ersten Begrenzungskantenhöhe geringeren zweiten Begrenzungskantenhöhe aufweist oder
    auf einer zur ersten Seite gegenüber liegenden zweiten Seite der Vertiefung (13) ohne eine zur ersten Seite gegenüber liegende zweite Begrenzungskante ausgebildet ist.
  9. Wärmeleitelement (1) gemäß Anspruch 8, dadurch gekennzeichnet, dass die erste Begrenzungskante (131) durch einen Übergang von der Vertiefungsbodenfläche (130) in die Anlaufspur-Koppelbereiche (111,112,113) gebildet ist.
  10. Wärmeleitelement (1) gemäß Anspruch 9, dadurch gekennzeichnet, dass der Übergang von der Vertiefungsbodenfläche (130) in die Anlaufspur-Koppelbereiche (111,112,113) stufenartig ausgebildet ist.
  11. Wärmeleitelement (1) gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Wärmeleitelement (1) und/oder der Wärmekoppelbereich (11) in der Anlaufspurkanal-Erstreckungsrichtung (E) betrachtet eine Ausdehnung aufweist, die kleiner als die Spurbreite (B) ist.
  12. Klimatisierbares Skisprung-Anlaufspursystem mit zwei sich entlang einer Anlaufspurkanal-Erstreckungsrichtung (E) erstreckenden Anlaufspurkanälen (2), die jeweils eine Spurbreite (B) aufweisen und in denen jeweils eine Klimatisierungseinrichtung (3) zum Beheizen und/oder zum Kühlen des Anlaufspurkanals (2) angeordnet ist,
    dadurch gekennzeichnet, dass
    in jedem Anlaufspurkanal (2) eine Mehrzahl von Wärmeleitelementen (1) gemäß einem der Ansprüche 1 bis 11 angeordnet ist.
  13. Klimatisierbares Skisprung-Anlaufspursystem gemäß Anspruch 12, dadurch gekennzeichnet, dass entlang der Anlaufspurkanal-Erstreckungsrichtung (E) auf einer Länge betrachtet, die der Spurbreite (B) entspricht, mindestens zwei voneinander beabstandete Wärmeleitelemente (1) angeordnet sind.
  14. Klimatisierbares Skisprung-Anlaufspursystem gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Wärmeleitelemente (1) entlang der Anlaufspurkanal-Erstreckungsrichtung (E) betrachtet derart beabstandet voneinander in den Anlaufspurkanälen (2) fixiert sind, dass zwischen benachbarten Wärmeleitelementen (1) Zwischenräume (4) bleiben, in denen die Klimatisierungseinrichtung (3) offen liegt.
  15. Klimatisierbares Skisprung-Anlaufspursystem gemäß einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Wärmekoppelbereiche (11) der Wärmeleitelemente (1) derart ausgeformt sind, dass sich eine formschlüssige Verbindung der Wärmekoppelbereiche (11) mit Wärmekoppelabschnitten der Klimatisierungseinrichtung (3) ausbildet.
EP13718093.1A 2012-02-27 2013-02-27 Wärmeleitelement für klimatisierbare skisprung-anlaufspuren und klimatisierbares skisprung-anlaufspursystem Not-in-force EP2819757B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012101562 2012-02-27
PCT/DE2013/100077 WO2013127396A2 (de) 2012-02-27 2013-02-27 Wärmeleitelement für klimatisierbare skisprung-anlaufspuren und klimatisierbares skisprung-anlaufspursystem

Publications (2)

Publication Number Publication Date
EP2819757A2 EP2819757A2 (de) 2015-01-07
EP2819757B1 true EP2819757B1 (de) 2017-01-11

Family

ID=48170385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13718093.1A Not-in-force EP2819757B1 (de) 2012-02-27 2013-02-27 Wärmeleitelement für klimatisierbare skisprung-anlaufspuren und klimatisierbares skisprung-anlaufspursystem

Country Status (2)

Country Link
EP (1) EP2819757B1 (de)
WO (1) WO2013127396A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013018409B3 (de) * 2013-10-25 2014-12-31 Peter Riedel Patent UG (haftungsbeschränkt) Anlaufspurbearbeitungssystem und Verfahren zum Präparieren einer Anlaufspur für den Wintersprungbetrieb
PL2902081T3 (pl) * 2014-02-03 2017-07-31 Peter Riedel Patent UG (haftungsbeschränkt) System pasów rozbiegu do skoczni narciarskiej
CN108144290A (zh) 2018-01-24 2018-06-12 北京奔流野外运动服装有限公司 滑毯组件及滑毯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI62223C (fi) * 1979-01-29 1982-12-10 Porkka Oy Pentti Element
EP1283399A1 (de) * 2001-08-09 2003-02-12 Axima Refrigeration GmbH Einrichtung und Verfahren für eine Skischanze zum Aufbringen einer Eisdecke
DE102007060755A1 (de) * 2007-12-17 2009-06-18 ETEC Gesellschaft für technische Keramik mbH Gleitflächenelement für Schisprunganlagen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013127396A3 (de) 2013-10-24
WO2013127396A2 (de) 2013-09-06
EP2819757A2 (de) 2015-01-07

Similar Documents

Publication Publication Date Title
DE3814145C2 (de) Vorrichtung zum Zuführen oder Abführen von Wärme
DE3203369C1 (de) Flächenheizkörper für Fahrzeuge
EP2819757B1 (de) Wärmeleitelement für klimatisierbare skisprung-anlaufspuren und klimatisierbares skisprung-anlaufspursystem
DE202007017424U1 (de) Aufhängevorrichtung für eine Fassade und Fassade
DE102010029854A1 (de) Anordnung zur Beheizung von Schienenweichen
WO2008003109A2 (de) Solarmodul
EP2702206B1 (de) Wärmedämmung für eisenbahnschienen
DE102004023086B4 (de) Gleitflächenelement für Schisprunganlagen
EP2742183B1 (de) Gleitplatte und gleitplatten-system für eine skisprunganlage
WO2013068004A1 (de) Kühlkörpersystem für ein elektrisches gerät
DE112006000165T5 (de) PTC-Stangenanordnung und Vorwärmer welcher eine solche umfasst
EP2777368A1 (de) Formteil zum einpressen in eine leiterplatte
EP2266823A1 (de) Elektrische Heizvorrichtung
EP3052702B1 (de) Heiz- oder kühlvorrichtung für ein schienenprofil
DE19803114C2 (de) Wärmetauscherdecke mit Wärmeleitelementen
EP1124094A1 (de) Feuerfeste keramische Platte und zugehöriger Wandaufbau für einen Verbrennungsofen
DE10114720A1 (de) Kühlplatte
EP3319741B1 (de) Wärmedämmvorrichtung
DE102016101439A1 (de) Temperiereinheit
DE9214061U1 (de) Kühlkörper
DE4209059C1 (en) Cover for sewage settling tank - comprises inner and outer chromium@-nickel@ steel plates, with space for rail for wheels of rake, and compensating and fitting layer
DE19713738C1 (de) Gitterartiges Deckenelement als Kühleinrichtung
DE202009003121U1 (de) Befliesbare Stützvorrichtung
DE102019210190A1 (de) Thermoelektrische kühleinheit
DE19500670C1 (de) Kühlvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140926

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160802

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 860728

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006070

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013006070

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

26N No opposition filed

Effective date: 20171012

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170313

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170411

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180126

Year of fee payment: 6

Ref country code: CH

Payment date: 20180221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180220

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013006070

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 860728

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190227

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111