EP2815499A2 - Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage - Google Patents

Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage

Info

Publication number
EP2815499A2
EP2815499A2 EP13709412.4A EP13709412A EP2815499A2 EP 2815499 A2 EP2815499 A2 EP 2815499A2 EP 13709412 A EP13709412 A EP 13709412A EP 2815499 A2 EP2815499 A2 EP 2815499A2
Authority
EP
European Patent Office
Prior art keywords
pump
machine
turbine
frequency
frequency converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13709412.4A
Other languages
German (de)
English (en)
Inventor
Carl-Ernst STEPHAN
Christoph Schaub
Claes Hillberg
Georg TRAXLER-SAMEK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47844349&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2815499(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Technology AG filed Critical ABB Technology AG
Priority to EP13709412.4A priority Critical patent/EP2815499A2/fr
Publication of EP2815499A2 publication Critical patent/EP2815499A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/42Synchronising a generator for connection to a network or to another generator with automatic parallel connection when synchronisation is achieved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/52Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by progressive increase of frequency of supply to motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/14Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation with three or more levels of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a pumped storage power plant, in particular an electrical unit for this, comprising a frequency converter and a rotating electrical synchronous machine and method for operating the electrical unit.
  • renewable energy sources such as wind and solar energy provide a steadily increasing share of the electricity demand. These energy sources have unsteady operating times. Thus, a direct and permanent supply of consumers with electricity from these sources of energy can not be guaranteed. For this purpose, energy storage must be used, which allow rapid changes between electricity surplus and electricity deficit and their performance and energy flow direction can be changed quickly and continuously.
  • thermodynamic storage tanks compressed air storage tanks, electrothermal storage tanks
  • large amounts of energy typically over 100 MWh and usually over 1 GWh pumped storage are used.
  • Pumped storage or pumped storage power plants are particularly interesting due to the large amount of energy that can be stored.
  • water is pumped from a first natural or artificially created reservoir into a second, higher-lying reservoir.
  • the electrical energy is converted into potential energy.
  • water from the higher storage tanks are routed via a turbine back to the lower reservoir. Minimizing losses in the conversion processes is particularly important to this system.
  • variable-speed drives By decoupling the speed of the machines from a grid frequency, pump and turbine rotational speeds can be adjusted to operate close to optimum efficiency. In addition, it allows the variation of the speed in pumping mode, the power consumption freely. In particular, variable speed systems can be quickly connected from standstill to the network or synchronized.
  • Pumped storage according to the prior art have double-fed asynchronous machines and power electronic frequency converter, whereby a speed control of a pump and a turbine is possible.
  • a pumping power is controlled and on the other hand, if required, the efficiency of the system can be increased.
  • a synchronous machine In an embodiment for controlling the speed of the pump or the turbine, a synchronous machine is used whose stator is fed by means of a three-phase current with adjustable frequency.
  • the frequency conversion is generated by means of a combination of a rectifier and an inverter, which are connected to each other via a voltage or current link.
  • the pump is first dewatered.
  • additional auxiliary devices are often used. This is necessary because in the prior art not enough torque is available to start the pump under load.
  • the pump in addition to an auxiliary drive such as an auxiliary turbine or launch a power electronic starter. Only when the pump is in operation, water is left from the reservoir into the pump and a shut-off valve is opened. This also puts a significant load on the pump, because when the water is admitted, a strong pulse is transmitted to the pump, which increases wear on the pump parts.
  • pole switches are used to switch the orientation of the rotating field in the electrical machine. These are complicated and cost-intensive in production and maintenance.
  • the present invention is based on the object to simplify the operation of a pumped storage power plant and to accelerate change of operation.
  • the invention provides a method for starting up in turbine operation of an electric unit for a pumped storage power plant.
  • the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
  • the method provides that the frequency converter is used to start the turbine and power of the electric machine is fed directly, for example after starting up in the power grid.
  • a method for starting in the pumping operation of an electric unit for a pumped storage power plant is provided.
  • the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
  • the process provides that the frequency converter is used to start the pump and the pump is approached directly from the state and under load, for example, a flooded pump or a water column
  • the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
  • the method provides that the electrical machine is operated synchronously with the power supply system regardless of the operating state of the pump or turbine and supplies active power and reactive power.
  • the invention further relates to an electrical unit for a pumped storage power plant.
  • the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
  • the frequency converter consists of at least two electrically connectable elements, wherein depending on the operation of the machine one element each as a rectifier and an element as an inverter is used and the frequency converter as a self-commutated converter with a Voltage intermediate circuit or is formed with a current intermediate circuit.
  • one element each can be used as a rectifier and one element as an inverter, wherein the machine-side element is also called inverter unit INU and the network-side element is also called Active Rectifier Unit ARU.
  • Synchronous machine and a frequency converter Synchronous machine and a frequency converter.
  • FIG. 1 shows a schematic representation of an electrical unit 1 comprising a rotating electrical synchronous machine 2 and a frequency converter 3.
  • the machine 2 is housed in a cavern, for example due to local conditions or for protection.
  • the machine also has a stator, which is fed by means of a three-phase current with adjustable frequency.
  • the operation of the machine 2 with the frequency converter 3 in pumped storage plants allows an improvement of the dynamic behavior, so that start, stop and switching times can be reduced.
  • the invention provides a method for starting up in turbine operation of the electrical unit 1 for a pumped storage power plant.
  • the method provides that the frequency converter 3 is used to start the turbine and power of the electric machine 2 is fed directly, for example, after starting up in the power grid 6.
  • a method for starting in the pumping operation of the electric unit 1 for a pumped storage power plant is provided.
  • the method provides that the frequency converter 3 is used to start the pump 5 and the pump. 5 is approached directly from a stand and under load, for example, a flooded pump or a water column.
  • the frequency converter 3 can supply the pump 5 with sufficient torque to start directly from a state without prior dewatering of the pump 5.
  • the pump 5 can be operated immediately without delay and a start is possible without much effort.
  • the power drawn from the power grid 6 may increase in a ramped manner and it is not necessary to interrupt the supply for synchronization.
  • a method for operating the electric unit 1 for a pumped storage power plant is provided.
  • the method provides that the electric machine 2 is synchronized with a frequency of the power grid 6 and is operated synchronously with the power grid 6 irrespective of the operating state of the pump 5 or the turbine 4 and supplies active power and reactive power.
  • the methods for starting up and switching over the operation are significantly faster by using the frequency converter 3 than in the prior art.
  • no additional transformer between the frequency converter 3 and the machine 2 is provided in the electrical unit 1, thereby the method can be additionally accelerated compared to the prior art.
  • the frequency converter 3 is used to switch the rotational direction of a rotating field of the engine 2.
  • a Polwendeschalter from the prior art is no longer necessary.
  • the frequency converter 3 ensures that the power plant during the switching always on the power grid 6 and thus remains synchronized. It is therefore possible to control the switching time and the power gradient. Over the entire speed range while the machine 2 can be fed so that the speed reversal is supported by the torque of the machine 2.
  • switching between pumps and turbines can be done very quickly even if the water column has to come to a standstill in a pump turbine, since gravity additionally brakes the water column.
  • the frequency converter 3 and thus also the machine 2 need not be disconnected from the mains for this process.
  • the frequency converter 3 and the machine 2 remain connected to the power grid 6. Furthermore, a magnetization of a block transformer for connection to the power grid 6 via the frequency converter 3 for shock-free connection.
  • the frequency converter 3 comprises, for example, two elements which, depending on the operating mode of the machine, can be used, for example, in motor or generator operation as an inverter or rectifier.
  • a speed control is made possible by the fact that the machine 2 has a stator, which is fed by means of a three-phase current with adjustable frequency.
  • the machine-side element or inverter unit INU of the frequency converter 3 is operated as an inverter in pump mode and as a rectifier in turbine mode.
  • the grid-side element or Actife Rectifier Unit ARU of the frequency converter 3 is operated as a rectifier in pump mode and as an inverter in turbine mode.
  • the frequency conversion is generated by means of a combination of a rectifier and an inverter, which are connected to one another via a concentrated or distributed voltage intermediate circuit or current intermediate circuit.
  • the intermediate circuit furthermore has units for storing energy, for example, capacitors in the case of a voltage intermediate circuit and inductors in a current intermediate circuit.
  • the intermediate circuit is provided between the elements and can be formed concentrated or distributed.
  • the operation of the machine with a freely selectable speed has considerable advantages, in particular, in the embodiment with a frequency converter and a synchronous machine, an established, reliable and low-maintenance generator technology can be used. Furthermore, it is possible to operate a pump 5 and a turbine 4 independently of each other in their optimum speed range. By using the synchronous machine 2, high speeds can be realized, for example, for high gradients, especially at high powers. In addition, the operationally accessible speed range extends continuously from zero to the maximum speed and is limited only by the operational limits of the pump 5 and the turbine. 4

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Ac Motors In General (AREA)
  • Rectifiers (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Motor And Converter Starters (AREA)

Abstract

L'invention concerne une centrale hydraulique d'accumulation par pompage, en particulier une unité électrique (1) conçue pour une centrale hydraulique d'accumulation par pompage, comprenant une machine synchrone électrique rotative (2) et un convertisseur de fréquence (3), ainsi qu'un procédé pour faire fonctionner cette unité électrique (1). L'invention concerne un procédé de démarrage de fonctionnement de turbine de l'unité électrique (1) pour une centrale hydraulique d'accumulation par pompage. Selon ce procédé, le convertisseur de fréquence (3) est utilisé pour faire démarrer la turbine et la puissance de la machine électrique (2) est injectée dans le réseau électrique (6), directement, par exemple après le démarrage. L'invention concerne en outre un procédé de démarrage de fonctionnement de pompe de l'unité électrique (1) pour une centrale hydraulique d'accumulation par pompage. Selon ce procédé, le convertisseur de fréquence (3) est utilisé pour faire démarrer la pompe (5) et cette pompe (5) est démarrée directement sans préparation et sous l'effet de la charge d'une colonne d'eau ou d'une pompe noyée (5) par exemple. Cette invention concerne par ailleurs un procédé pour faire fonctionner l'unité électrique (1) pour une centrale hydraulique d'accumulation par pompage. Selon ce procédé, la machine électrique (2) est synchronisée avec une fréquence du réseau électrique (6) et fonctionne de manière synchrone indépendamment de l'état de fonctionnement de la pompe (5) ou de la turbine (4) avec le réseau électrique (6) et fournit une puissance active et une puissance réactive.
EP13709412.4A 2012-03-09 2013-03-11 Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage Withdrawn EP2815499A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13709412.4A EP2815499A2 (fr) 2012-03-09 2013-03-11 Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12158786 2012-03-09
PCT/EP2013/054884 WO2013132105A2 (fr) 2012-03-09 2013-03-11 Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage
EP13709412.4A EP2815499A2 (fr) 2012-03-09 2013-03-11 Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage

Publications (1)

Publication Number Publication Date
EP2815499A2 true EP2815499A2 (fr) 2014-12-24

Family

ID=47844349

Family Applications (4)

Application Number Title Priority Date Filing Date
EP13709408.2A Active EP2823557B2 (fr) 2012-03-09 2013-03-11 Unité électrique pour centrale de pompage
EP13710818.9A Revoked EP2823543B1 (fr) 2012-03-09 2013-03-11 Procédé d'utilisation d'un groupe électrique
EP13709412.4A Withdrawn EP2815499A2 (fr) 2012-03-09 2013-03-11 Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage
EP13709409.0A Withdrawn EP2815480A2 (fr) 2012-03-09 2013-03-11 Unité électrique conçue pour une centrale hydraulique d'accumulation par pompage

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP13709408.2A Active EP2823557B2 (fr) 2012-03-09 2013-03-11 Unité électrique pour centrale de pompage
EP13710818.9A Revoked EP2823543B1 (fr) 2012-03-09 2013-03-11 Procédé d'utilisation d'un groupe électrique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13709409.0A Withdrawn EP2815480A2 (fr) 2012-03-09 2013-03-11 Unité électrique conçue pour une centrale hydraulique d'accumulation par pompage

Country Status (5)

Country Link
US (4) US9657709B2 (fr)
EP (4) EP2823557B2 (fr)
JP (4) JP2015516790A (fr)
CN (4) CN104145390B (fr)
WO (7) WO2013132098A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657709B2 (en) * 2012-03-09 2017-05-23 Abb Schweiz Ag Method for using an electric unit
CN104600726B (zh) * 2014-11-28 2017-02-22 国家电网公司 一种基于轻型直流输电的抽水蓄能系统
CN104410172A (zh) * 2014-11-28 2015-03-11 国家电网公司 一种基于直流发电电动机的抽水蓄能系统
KR102573823B1 (ko) * 2017-06-29 2023-09-01 비에이치이 터보머시너리, 엘엘씨 개선된 가역 펌프-터빈 장치
DE102018107229A1 (de) * 2018-03-27 2019-10-02 Voith Patent Gmbh Verfahren zum Betrieb eines Pumpspeicherkraftwerks
DE102018109926B4 (de) * 2018-04-25 2019-12-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Anordnung
WO2021207588A1 (fr) * 2020-04-09 2021-10-14 RCAM Technologies, Inc. Stockage d'énergie hydroélectrique à pompage maritime
US11685604B2 (en) 2021-09-17 2023-06-27 William Taggart, IV Underground energy storage systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924508A (zh) * 2010-08-20 2010-12-22 上海交通大学 大功率抽水蓄能机组启动用变频调速系统

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1247520A (en) * 1907-06-07 1917-11-20 Reginald A Fessenden System of storing power.
US1217165A (en) * 1909-03-08 1917-02-27 Reginald A Fessenden Power plant.
CH490609A (fr) * 1969-04-24 1970-05-15 Vevey Atel Const Mec Installation hydro-électrique
US3648147A (en) 1970-11-12 1972-03-07 Gen Electric Starting control scheme for rectifier-inverter systems
CH589178A5 (en) 1973-03-05 1977-06-30 Von Rotz Arthur Hydroelectric power station turbine plant - incorporates pumps and turbines in circle with common pressure pipe
US3846698A (en) * 1973-09-25 1974-11-05 Westinghouse Electric Corp Overcurrent events monitoring system
US3939356A (en) * 1974-07-24 1976-02-17 General Public Utilities Corporation Hydro-air storage electrical generation system
DE2536447B2 (de) * 1974-09-16 1977-09-01 Gebruder Sulzer AG, Winterthur (Schweiz) Anlage zur speicherung von energie eines elektrischen versorgungsnetzes mittels druckluft und zur wiederverwertung derselben
US4182128A (en) * 1977-12-01 1980-01-08 Oros Company Underground pumped liquid energy storage system and method
US4607169A (en) * 1985-01-03 1986-08-19 Donnelly Jr Joseph R Artesian well generated power system
DE3770332D1 (de) 1986-04-30 1991-07-04 Hitachi Ltd Energiegeneratorsystem vom pumpen-aufschlagstyp mit veraenderlicher geschwindigkeit.
US4786852A (en) 1986-07-18 1988-11-22 Sundstrand Corporation Inverter operated turbine engine starting system
JPH0683593B2 (ja) 1987-08-14 1994-10-19 株式会社日立製作所 発電電動装置及び制御方法
US5015941A (en) 1989-10-30 1991-05-14 Sundstrand Corporation Power conversion system with bi-directional power converter having prime mover start capability
US5047654A (en) * 1990-02-05 1991-09-10 Edwin Newman Solar powered electricity mine system
DE4026955C2 (de) 1990-08-25 1994-08-18 Semikron Elektronik Gmbh Umrichter
US5864183A (en) * 1996-08-28 1999-01-26 Voith Hydro, Inc. Method and apparatus for optimizing performance of a pump-turbine
DE19845903A1 (de) 1998-10-05 2000-04-06 Aloys Wobben Elektrische Energieübertragungsanlage
DK199901436A (da) * 1999-10-07 2001-04-08 Vestas Wind System As Vindenergianlæg
EP1130764B1 (fr) * 2000-02-23 2007-05-02 ALSTOM Technology Ltd Installation d'une centrale d'énergie
DE10044261C2 (de) * 2000-09-07 2003-01-09 Nsg Sanierungsgesellschaft In Vorrichtung und Verfahren zur Stabilisierung der Wasserqualität fremdwassergefluteter Restlochseen von Braunkohlentagebauen
DE10044262A1 (de) * 2000-09-07 2002-03-21 Stephan Joeckel Getriebelose Windkraftanlage mit Blattwinkelverstellung zur aktiven Schwingungsdämpfung im Antriebsstrang
CN1501564A (zh) * 2002-11-12 2004-06-02 徐甫荣 交流电动机变频器供电与电网供电的同步切换控制装置
FI20030525A0 (fi) * 2003-04-08 2003-04-08 Abb Oy Suuntaajavälineiden suojauskokoonpano
FI116174B (fi) 2003-04-08 2005-09-30 Abb Oy Kokoonpano ja menetelmä suuntaajavälineiden suojaamiseksi
DE10357292B4 (de) * 2003-12-05 2006-02-02 Voith Turbo Gmbh & Co. Kg Verfahren für die Steuerung eines Antriebsstrangs für eine Strömungskraftmaschine mit Drehzahlführung, Kraftstoßreduktion und Kurzzeitenergiespeicherung
DE102004005191A1 (de) 2004-02-02 2005-09-01 Voith Siemens Hydro Power Generation Gmbh & Co. Kg Verfahren und Vorrichtung zum Anfahren der Pumpturbine eines Pumpspeicherkraftwerkes
KR101117250B1 (ko) * 2005-08-18 2012-03-16 삼성전자주식회사 삼상 전력 제어 시스템 및 그 제어방법
US7239035B2 (en) * 2005-11-18 2007-07-03 General Electric Company System and method for integrating wind and hydroelectric generation and pumped hydro energy storage systems
US7281371B1 (en) * 2006-08-23 2007-10-16 Ebo Group, Inc. Compressed air pumped hydro energy storage and distribution system
FR2908481B1 (fr) * 2006-11-10 2008-12-26 Joseph Paoli Adaptateur debit-pression convertisseur hydroelectrique sur une conduite
US7843076B2 (en) * 2006-11-29 2010-11-30 Yshape Inc. Hydraulic energy accumulator
US7656050B2 (en) * 2007-09-27 2010-02-02 William Riley Hydroelectric pumped-storage
JP2009137322A (ja) * 2007-12-03 2009-06-25 Mazda Motor Corp ハイブリッド車両の制御方法およびハイブリッド車両
WO2009082204A1 (fr) * 2007-12-21 2009-07-02 2-B Energy Holding B.V. Parc d'éoliennes, éolienne
DE102008007659A1 (de) 2008-02-06 2009-02-19 Siemens Aktiengesellschaft Umrichter
DE102008022618A1 (de) * 2008-05-07 2009-12-31 Siemens Aktiengesellschaft Stromversorgungseinrichtung
US7940537B2 (en) * 2008-12-31 2011-05-10 Teco-Westinghouse Motor Company Partial regeneration in a multi-level power inverter
US20100253255A1 (en) * 2009-04-02 2010-10-07 Indian Institute Of Science Wound field synchronous motor drive
US7863766B2 (en) * 2009-06-30 2011-01-04 Teco-Westinghouse Motor Company Power converter for use with wind generator
EP2290799A1 (fr) * 2009-08-25 2011-03-02 Converteam Technology Ltd Arrangements de convertisseur bidirectionnel alternatif-continu
CN201584856U (zh) * 2009-12-22 2010-09-15 西安久和能源科技有限公司 一种笼型异步风力发电机组
US8018083B2 (en) * 2010-08-05 2011-09-13 General Electric Company HVDC connection of wind turbine
EP2649306B1 (fr) * 2010-12-10 2016-03-23 Vestas Wind Systems A/S Procédé d'actionnement d'une éolienne et système associé
NO332201B1 (no) 2011-01-07 2012-07-23 Smartmotor As Energiomformingssystem
CN202059333U (zh) * 2011-06-10 2011-11-30 北京康拓科技有限公司 一种变频器
US9657709B2 (en) * 2012-03-09 2017-05-23 Abb Schweiz Ag Method for using an electric unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924508A (zh) * 2010-08-20 2010-12-22 上海交通大学 大功率抽水蓄能机组启动用变频调速系统

Also Published As

Publication number Publication date
EP2815480A2 (fr) 2014-12-24
WO2013132103A1 (fr) 2013-09-12
CN104145390B (zh) 2018-04-10
EP2823557B8 (fr) 2016-09-28
JP2015516790A (ja) 2015-06-11
WO2013132099A2 (fr) 2013-09-12
WO2013132099A3 (fr) 2014-04-24
WO2013132101A3 (fr) 2014-04-24
WO2013132101A2 (fr) 2013-09-12
US9657709B2 (en) 2017-05-23
EP2823543B1 (fr) 2016-10-05
JP2015512244A (ja) 2015-04-23
US20150035285A1 (en) 2015-02-05
US20150035499A1 (en) 2015-02-05
WO2013132100A3 (fr) 2014-09-12
US20150048623A1 (en) 2015-02-19
US20150292469A1 (en) 2015-10-15
EP2823557B2 (fr) 2019-08-28
CN104145416A (zh) 2014-11-12
CN104145416B (zh) 2018-04-10
CN104145395A (zh) 2014-11-12
EP2823557A2 (fr) 2015-01-14
US9683540B2 (en) 2017-06-20
WO2013132098A3 (fr) 2014-07-03
CN104145390A (zh) 2014-11-12
JP2015509698A (ja) 2015-03-30
JP2015511108A (ja) 2015-04-13
WO2013132098A2 (fr) 2013-09-12
EP2823557B1 (fr) 2016-08-10
WO2013132100A2 (fr) 2013-09-12
WO2013132102A3 (fr) 2014-01-16
WO2013132102A2 (fr) 2013-09-12
CN104145415A (zh) 2014-11-12
WO2013132105A2 (fr) 2013-09-12
WO2013132105A3 (fr) 2014-05-08
EP2823543A1 (fr) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2013132105A2 (fr) Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage
WO2013135592A1 (fr) Procédé de commande d'un système pour alimenter un réseau d'alimentation en courant électrique
EP2944019B1 (fr) Unité électrique pour une centrale hydraulique d'accumulation par pompage
WO2010121783A1 (fr) Installation de production d'énergie électrique à vitesse de rotation variable, à fréquence de sortie constante, en particulier une éolienne
EP2696464B1 (fr) Centrale photovoltaïque
EP2986846B1 (fr) Mécanisme d'entraînement et procédé servant à faire fonctionner un mécanisme d'entraînement de ce type
AT511782A1 (de) Energiegewinnungsanlage, insbesondere windkraftanlage
DE102015014117A1 (de) Verfahren und Anordnung zur Bereitstellung von elektrischer Regelleistung zur Stabilisierung eines Wechselstromnetzes
EP3688860B1 (fr) Procédé pour alimenter en énergie des composants d'éolienne, dispositif d'alimentation en énergie et éolienne comprenant ce dispositif
WO2012104333A1 (fr) Procédé de fourniture de courant réactif au moyen d'un convertisseur et ensemble convertisseur et installation d'alimentation en énergie
EP2157676A2 (fr) Procédé et dispositif de commutation d'une installation photovoltaïque sur un réseau d'alimentation
EP2926003A1 (fr) Procédé d'exploitation d'une installation de production d'énergie et d'un système de production d'énergie équipé d'installations de production d'énergie de ce type
DE102013014830A1 (de) Elektrische Einheit für ein Pumpspeicherkraftwerk
EP2689531B1 (fr) Système d'accumulation par pompage
DE102004005191A1 (de) Verfahren und Vorrichtung zum Anfahren der Pumpturbine eines Pumpspeicherkraftwerkes
WO2019110090A1 (fr) Dispositif comportant une machine asynchrone et procédé permettant son fonctionnement
EP3759338B1 (fr) Centrale électrique combinée et procédé pour son fonctionnement
EP3349350A1 (fr) Procédé de fonctionnement d'une machine asynchrone en mode générateur
DE102010040613A1 (de) Inselnetz und Verfahren zum Betreiben eines Inselnetzes
DE102012208946A1 (de) Vorrichtung und Verfahren zum Anfahren eines Generators
DE102010034120A1 (de) Modularer Umrichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140917

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20150410

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150821