EP2812649A1 - Vorrichtung zum erfassen der dreidimensionalen geometrie von objekten und verfahren zum betreiben derselben - Google Patents
Vorrichtung zum erfassen der dreidimensionalen geometrie von objekten und verfahren zum betreiben derselbenInfo
- Publication number
- EP2812649A1 EP2812649A1 EP13708646.8A EP13708646A EP2812649A1 EP 2812649 A1 EP2812649 A1 EP 2812649A1 EP 13708646 A EP13708646 A EP 13708646A EP 2812649 A1 EP2812649 A1 EP 2812649A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- handpiece
- camera
- power supply
- operated
- projector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 11
- 238000004146 energy storage Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000001454 recorded image Methods 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C9/00—Impression cups, i.e. impression trays; Impression methods
- A61C9/004—Means or methods for taking digitized impressions
- A61C9/0046—Data acquisition means or methods
- A61C9/0053—Optical means or methods, e.g. scanning the teeth by a laser or light beam
- A61C9/006—Optical means or methods, e.g. scanning the teeth by a laser or light beam projecting one or more stripes or patterns on the teeth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1076—Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1077—Measuring of profiles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1079—Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4538—Evaluating a particular part of the muscoloskeletal system or a particular medical condition
- A61B5/4542—Evaluating the mouth, e.g. the jaw
- A61B5/4547—Evaluating teeth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/022—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2513—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
- G01B21/042—Calibration or calibration artifacts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/189—Recording image signals; Reproducing recorded image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/194—Transmission of image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/221—Image signal generators using stereoscopic image cameras using a single 2D image sensor using the relative movement between cameras and objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/254—Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0204—Operational features of power management
- A61B2560/0209—Operational features of power management adapted for power saving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2213/00—Details of stereoscopic systems
- H04N2213/001—Constructional or mechanical details
Definitions
- the invention relates to a device for detecting the
- a handpiece having an optical device with at least one camera and at least one light source.
- the invention further relates to a method for operating a device for detecting the three-dimensional geometry of objects, in particular teeth, with a handpiece, the at least one position sensor for detecting the change in the spatial position of the handpiece and an optical device with at least one camera for recording Images and having at least one light source for a projector.
- a device of the type mentioned is known for example from AT 508 563 B.
- the scope of the invention extends to the inclusion of digital dental and Kieferabrange, the help in the diagnosis, the
- a position sensor is for example from the
- the object of the invention is to improve such devices so that they are to operate with the lowest possible power supply.
- the aim is a value of 500mA or 900mA, for example.
- This object is achieved in a method of the type mentioned in that is determined by the position sensor in the handpiece, how large a change in the spatial position of the device, and it is determined from how many shots are made by the camera in a defined time unit.
- Fiber optic cable or many deflecting mirrors avoided. It will be between the light source, so anything that can emit light, for example, the end of a fiber optic cable, and the means for generating the light, such as a laser or the
- a means for generating the light with a lower power can be used to illuminate the object sufficiently, which is a
- the rigid mounting of all elements of the optical device means that it is not possible to focus the optics of the camera. All calibrations of the optical device thus take place in advance. It is particularly important to achieve an optimal adjustment of the aperture. A smaller aperture is good for a larger depth of field, with larger aperture less illumination is needed for a sufficiently good recording.
- Depth information can be obtained.
- the blurred areas can therefore be used as another source of information.
- blurred dots, areas, lines or the like can be drawn sharply and thus incorporated into the regular, for example stereometric, process of obtaining three-dimensional data.
- the scanner is arranged in the course of calibration, for example, over a plane plane at various known distances. Distances that change in increments of 50 ⁇ m have proven to be particularly suitable for this purpose. However, other distances can be used for calibration. In general, the expert in the choice of distances or their changes to the resolution of the means used to capture the two-dimensional images oriented. The better changes in the captured two-dimensional image can be detected, the less changes in the distances between scanner and plane are useful in the course of calibration.
- Calibration recordings are made of a preferably flat surface.
- the distances hereby change in steps of preferably 50 ⁇ m.
- the center axes of the field angles of the cameras are preferably in the calibration recordings
- Brightness history stored from brightest to darkest areas of points, areas, lines or the like therefore, it is no longer necessary to assume a statistical brightness curve in order to sharpen the images, but one can read off probable edges from an empirical table created during the calibration.
- the edges selected at the sharpening mark therefore have a much greater accuracy than edges selected by conventional methods.
- Table is chosen, even before the actual evaluation of the two-dimensional images are estimated how far the subject area was away from the camera, as for
- the power supply is interrupted on the recording side. So be
- the handpiece has at least one position sensor, in particular one
- Acceleration sensor, a magnetic field sensor and / or a tilt sensor determines how large the change in the spatial position of the device is, and determines from this how many pictures are to be taken by the camera in a defined time unit. This avoids the need for more images to be taken from one and the same place with less movement than is necessary for optimal detection of the geometry.
- the frame rate of the recorded images can be changed, preferably the image rate is between 1 and 30 images per second. Additionally or alternatively, according to a preferred embodiment of the method, the frame rate may also be adjusted depending on whether a larger or smaller power supply is available. This means that more light pulses can be emitted and recorded with a larger power supply than with a lower power supply.
- optical element in a preferred embodiment form, the optical
- Setup at least one projector for the projection of patterns.
- the projection of patterns enhances the possibilities for Capture of the three-dimensional geometry.
- the field angle of the camera and the field angle of the projector cover each other to at least 50%, preferably at least 80%, more preferably at least 90%.
- the field angle is the cone-shaped area in which the projection or the recording takes place.
- the device has an optionally rechargeable electrical energy store. This can fulfill several functions according to the invention.
- the device can serve as the sole energy source of the device.
- the device makes sense if the device further has a data memory or a possibility of wireless data transmission. So the device can be moved completely freely without cables.
- the data is stored, it is expedient to connect the subsequent transmission of the data, for example via a USB connection, with a charging of the energy store.
- the energy storage a Alternatively, according to the invention, the energy storage a
- Be auxiliary power source of the device This can be switched on if necessary.
- it is first determined how much current of the device is available.
- it is provided in particular that it is determined whether 500mA or 900mA are available to the device, ie whether the device is connected to a USB 2.0 or a USB 3.0 port. If you want to operate the device in a mode that requires 900mA power supply, but has only a power supply of 500mA available, the energy storage system is drawn according to the method as an additional source of energy.
- a Power supply can be realized for example 500mA or 900mA.
- two cameras are preferred in one
- the data captured by the camera become without further
- Processing or processing forwarded to a processing unit or a storage medium.
- a processing unit or a storage medium For a processor or chip that usually performs this processing or processing.
- the further processing in the arithmetic unit can be carried out at least partially in the CPU, but it has been shown that it is particularly with regard to the speed of the
- Data processing makes sense to process part of the data collected for the acquisition or calculation of the three-dimensional geometry in the GPU. So it is possible the data,
- Three-dimensional representation on a display or a file available on a storage medium for example, a 3D file in STL format
- the device may comprise a thermovoltaic element according to a preferred embodiment. With this can be obtained in accordance with a preferred embodiment of the method from the heat which arises during operation, electrical energy. This can then directly to the operation of the
- Device can be used, on the other hand but, in particular when cooling the device and an energy storage with the energy obtained are fed.
- Fig. 1 shows a schematic representation of a
- Fig. 2 shows a schematic view of the underside of a
- Fig. 1 shows an exemplary embodiment of the
- a handpiece 1 in which an optical device 2 is located, which contains a light source 3, a projector 4, a first camera 5, a second camera 6 and a mirror 7.
- a light source 3 In front of the mirror is located in the housing 15 of the handpiece 1, a recess. This is for hygienic reasons and to protect the handpiece in the first
- the light source 3 is an LED.
- a means of producing light (not in the drawing).
- the projector 4 is used to project patterns onto the object. Depending on how the geometry is detected, it can be either regular patterns, such as stripes, or irregular patterns, such as irregular shapes
- Point pattern, act After the projector 4, the light beam 8 strikes the mirror 7 and is deflected via this onto the object 9 whose geometry is to be detected.
- the object 9 is a tooth.
- Object are aligned can also be on the mirror 7
- the cameras 5, 6 pick up the pattern projected onto the tooth 9, from which the geometry of the tooth 9 is later calculated.
- the device may be physically connected both to a cable 14 and wirelessly.
- a wireless connection for example, Bluetooth or WLAN
- an optionally rechargeable energy store 11 is provided in the handpiece 1. Im dargestellen
- the drawing also shows a position sensor 12. With this can be determined, how large the spatial movement of the handpiece 1 is.
- the position sensor 12 for example, an acceleration sensor, a geomagnetic sensor or a
- Fig. 2 shows a schematic view of the underside of an embodiment of the invention. In this case, two areas 17 are shown, in which a thermovoltai cal element could be placed.
- thermovoltaic element is arranged directly on the underside, ie the side on which the cover 13 is located, in the vicinity of the optical device 2. This is advantageous because the optical device 2, in particular the projector 4, produces the most heat during operation and this can be used with the least possible losses.
- this has the advantage that it can be sized larger, but then a heat conductor, which conducts the heat from the optical device 2 to the thermovoltaic element, necessary. Even with a positioning of the
- thermovoltaic element in the second region 17 is a thermovoltaic element
- thermovoltaic element Mounting on the underside of the handpiece 1 makes sense, so that according to a preferred embodiment of the invention facing outward, heat-emitting side of the thermovoltaic element is not covered by the hand of the user.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- Epidemiology (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Electromagnetism (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
Abstract
Eine Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten (9), insbesondere Zähnen, weist ein Handstück (1) auf, das wenigstens einen Lagesensor (12) zum Erfassen der Änderung der räumlichen Lage des Handstücks (1) und eine optische Einrichtung (2) mit wenigstens einer Kamera (5, 6) zum Aufnehmen von Bildern und mit wenigstens einer Lichtquelle (3) für wenigstens einen Projektor (4) aufweist. Zunächst wird vom Lagesensor (12) im Handstück (1) ermittelt, wie groß eine Änderung der räumlichen Lage der Vorrichtung ist. Daraus wird bestimmt, wie viele Aufnahmen von der Kamera (5,6) in einer definierten Zeiteinheit gemacht werden.
Description
Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten und Verfahren zum Betreiben derselben
Die Erfindung betrifft eine Vorrichtung zum Erfassen der
dreidimensionalen Geometrie von Objekten, insbesondere Zähnen, mit einem Handstück, das eine optische Einrichtung mit wenigstens einer Kamera und mit wenigstens einer Lichtquelle aufweist.
Die Erfindung betrifft des Weiteren ein Verfahren zum Betreiben einer Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten, insbesondere Zähnen, mit einem Handstück, das wenigstens einen Lagesensor zum Erfassen der Änderung der räumlichen Lage des Handstücks und eine optische Einrichtung mit wenigstens einer Kamera zum Aufnehmen von Bildern und mit wenigstens einer Lichtquelle für einen Projektor aufweist.
Eine Vorrichtung der Eingangs genannten Art ist beispielsweise aus der AT 508 563 B bekannt. Der Anwendungsbereich der Erfindung erstreckt sich dabei auf die Aufnahme von digitalen Zahn- und Kieferabdrücken, die Hilfestellung bei der Diagnose, die
Überwachung von Zahnbehandlungen sowie die zuverlässige Kontrolle von eingesetzten Implantaten. Neben weiteren Einsatzgebieten im Bereich der Medizin- und Industrietechnik, beispielsweise im Bereich der Endoskopie, können auch Objekte stereometrisch vermessen werden, die schwer zugänglich sind.
Die Verwendung eines Lagesensors ist beispielsweise aus der
US 5,661,519 A bekannt.
Aufgabe der Erfindung ist es, solche Vorrichtungen derart zu verbessern, dass sie mit möglichst geringen Stromversorgung zu betreiben sind. Angestrebt wird dabei ein Wert von zum Beispiel 500mA bzw. 900mA.
Bei einer Vorrichtung der eingangs genannten Art wird diese
Aufgabe dadurch gelöst, dass die optische Einrichtung
ausschließlich starr befestigte Teile aufweist und dass ein
Mittel zum Erzeugen von Licht der Lichtquelle im Handstück angeordnet ist.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass vom Lagesensor im Handstück ermittelt wird, wie groß eine Änderung der räumlichen Lage der Vorrichtung ist, und daraus bestimmt wird, wie viele Aufnahmen von der Kamera in einer definierten Zeiteinheit gemacht werden.
Durch die Anordnung des Mittels zum Erzeugen des Lichts direkt im Handstück werden lange optische Wege, beispielweise über
Glasfaserkabel oder viele Umlenkspiegel, vermieden. Es wird dabei zwischen der Lichtquelle, also allem was Licht aussenden kann, beispielsweise das Ende eines Glasfaserkabels, und dem Mittel zum Erzeugen des Lichts, beispielsweise einem Laser oder dem
Halbleiter einer LED, unterschieden.
Durch den Verzicht auf lange optische Wege kann ein Mittel zum Erzeugen des Lichts mit einer geringeren Leistung verwendet werden um das Objekt ausreichend auszuleuchten, was eine
bemerkenswerte Energieersparnis bedeutet.
Die starre Montage aller Elemente der optischen Einrichtung bedeutet, dass es nicht möglich ist, die Optik der Kamera zu fokussieren. Alle Kalibrierungen der optischen Einrichtung erfolgen also im Vorfeld. Dabei ist es insbesondere wichtig eine optimale Einstellung der Blende zu erreichen. Eine kleinere Blende ist dabei gut für eine größere Schärfentiefe, bei größerer Blende wird eine geringere Ausleuchtung für eine ausreichend gute Aufnahme benötigt.
Mit unscharfen Bereichen in den 2D-Aufnahmen wird dabei auf zweierlei Art verfahren. Zum einen liefern Bereiche, in denen die 2D-Aufnahmen unscharf werden, Informationen über die Entfernung. So können anhand von bereits ermittelten Informationen über die Oberflächenkrümmung aus dem Grad der Unschärfe
Tiefeninformationen gewonnen werden. Die unscharfen Bereiche
können also als weitere Informationsquelle verwertet werden. Zum anderen können unscharfe Punkte, Flächen, Linien oder dergleichen scharf gezeichnet werden und so in den regulären, beispielsweise stereometrischen, Prozess der Gewinnung von dreidimensionalen Daten einfließen.
Hierfür wird der Scanner im Zuge des Kalibrierens beispielsweise über einer planen Ebene in verschiedenen bekannten Abständen angeordnet. Abstände die sich, die sich in Schritten von jeweils 50μm ändern, haben sich hierfür als besonders geeignet erwiesen. Es können aber auch andere Abstände zum Kalibrieren verwendet werden. Generell kann sich der Fachmann bei der Wahl der Abstände bzw. deren Änderungen an der Auflösung der verwendeten Mittel zum Erfassen der zweidimensionalen Bilder orientieren. Je besser Änderungen im erfassten zweidimensionalen Bild erkannt werden können, umso geringere Änderungen der Abstände zwischen Scanner und Ebene sind im Zuge des Kalibrierens sinnvoll.
Vor dem eigentlichen Erfassen der dreidimensionalen Geometrie von Objekten folgt daher bevorzugt der Verfahrensschritt, dass aus verschiedenen bekannten Abständen mit dem Scanner
Kalibrieraufnahmen einer vorzugsweise planen Fläche gemacht werden. Die Abstände ändern sich dabei sich dabei in Schritten von bevorzugt 50μm. Weiters sind die Mittelachsen der Feldwinkel der Kameras während der Kalibrieraufnahmen bevorzugt im
wesentlichen normal zu der planen Fläche ausgerichtet.
Für jeden Abstand wird dabei jeweils ein mittlerer
Helligkeitsverlauf von hellsten zu dunkelsten Bereichen der Punkte, Flächen, Linien oder dergleichen gespeichert. Bei einem späteren Aufbereiten von unscharfen zweidimensionalen Aufnahmen muss daher nicht mehr von einem statistischen Helligkeitsverlauf ausgegangen werden, um die Aufnahmen scharf zu zeichnen, sondern man kann wahrscheinliche Ränder aus einer beim Kalibrieren erstellten empirischen Tabelle ablesen. Die beim Scharfzeichen gewählten Ränder haben daher eine sehr viel größere Genauigkeit als aufgrund von herkömmlichen Verfahren gewählte Ränder. Weiters
kann, da für einen Helligkeitsverlauf in einer zweidimensionalen Aufnahme ein möglichst ähnlicher Helligkeitsverlauf in der
Tabelle gewählt wird, bereits vor der eigentlichen Auswertung der zweidimensionalen Aufnahmen abgeschätzt werden, wie weit der betreffende Bereich von der Kamera entfernt war, da für
verschiedene Helligkeitsverläufe beim Kalibrieren verschiedene Abstände in der Tabelle hinterlegt wurden.
Kalibrieraufnahmen bei denen die Mittelachsen der Feldwinkel der Kameras um bekannte Winkel zur Fläche geneigt sind, sind ebenso denkbar .
In einer besonders bevorzugten Ausführungsform weist die
Vorrichtung eine Einrichtung zum Synchronisieren der
Energieversorgung von Lichtquelle und Kamera auf. So werden
Kamera und Lichtquelle entsprechend einer bevorzugten
Durchführungsform des Verfahrens synchron betrieben. Durch das Pulsen von Licht können punktuell große Leistungen bei
verhältnismäßig geringem Energieaufwand erreicht werden. Bei dieser Ausführungsform der Erfindung wird auch auf Seiten der Aufnahme die Energieversorgung unterbrochen. So werden
unbeleuchtete Aufnahmen vermieden und weiter Energie eingespar
In einer weiters bevorzugten Aus führungs form weist das Handstück wenigstens einen Lagesensor, insbesondere einen
Beschleunigungssensor, einen Magnetfeldsensor und/oder einen Neigungssensor auf. Mit diesem wird verfahrensgemäß ermittelt, wie groß die Änderung der räumlichen Lage der Vorrichtung ist, und daraus bestimmt, wie viele Aufnahmen von der Kamera in einer definierten Zeiteinheit gemacht werden sollen. So kann vermieden werden, dass bei geringer Bewegung mehr Bilder von ein und der selben Stelle gemacht werden, als für eine optimale Erfassung der Geometrie notwendig ist.
In diesem. Sinne kann in einer bevorzugten Durchführungsform die Bildrate der aufgenommenen Bilder verändert werden, bevorzugt liegt die Bildrate zwischen 1 und 30 Bildern pro Sekunde.
Zusätzlich oder alternativ kann gemäß einer bevorzugten Durchführungsform des Verfahrens die Bildrate auch abhängig davon angepasst werden, ob eine größere oder geringere Stromversorgung zur Verfügung steht . So können bei größerer Stromversorgung mehr Lichtpulse ausgesendet und aufgenommen werden als bei niedrigerer Stromversorgung .
In einer möglichen Aus führungs form der Erfindung kann zusätzlich bestimmt werden, wie viele Bilder von einem definierten Bereich erfasst wurden. Aus diesem Wert kann einem aufgenommenen Bereich des Objektes eine Qualität zugeordnet werden, die gegebenenfalls in der 3D-Darstellung der Geometrie des Objektes wiedergegeben werden kann, so dass der Nutzer darauf reagieren kann. Bereiche, von denen nur wenige Daten erfasst wurden, die also eine größere Gefahr von Abweichungen von der Geometrie des Objektes aufweisen, können beispielsweise rot dargestellt werden. Bereiche, in denen die Anzahl der Aufnahmen bereits bei einem für die gewünschte Qualität ausreichenden Wert liegt, können beispielsweise grün dargestellt werden. Weitere Farben für Zwischenstufen sind ebenso denkbar wie für Bereiche, in denen bereits ein optimaler Wert erreicht ist, also weitere Aufnahmen keine wesentliche
Verbesserung der erfassten Daten mehr bringen. Man kann natürlich auch nur Bereiche, die eine mindere Qualität haben, einfärben.
Im Sinne einer Energieersparnis kann nach einem zusätzlichen oder alternativen Verfahrensschritt für einen definierten Bereich ermittelt werden, wie viele Aufnahmen von diesem Bereich bereits gemacht wurden und ab Erreichen einer definierten Anzahl von Aufnahmen keine weiteren Aufnahmen dieses Bereiches machen.
Dieses Maßnahme eignet sich außerdem dazu, die benötigten
Verarbeitungsschritte in einer Recheneinheit, welche die
aufgenommenen Daten verarbeitet, zu optimieren, bzw. benötigte Rechenleistung einzusparen.
In einer bevorzugten Ausführungs form weist die optische
Einrichtung wenigstens einen Projektor zur Projektion von Mustern auf. Die Projektion von Mustern verbessert die Möglichkeiten zur
Erfassung der dreidimensionalen Geometrie.
In einer weiters bevorzugten Ausführungsform überdecken der Feldwinkel der Kamera und der Feldwinkel des Projektors einander zu wenigstens 50%, bevorzugt zu wenigstens 80%, besonders bevorzugt zu wenigstens 90%. Der Feldwinkel ist der kegelförmige Bereich, in dem die Projektion bzw. die Aufnahme erfolgt. Durch eine möglichst große Überschneidung wird ein möglichst großer Anteil der aufgewendeten Energie genutzt.
In einer bevorzugten Ausführungsform weist die Vorrichtung einen gegebenenfalls wieder aufladbaren elektrischen Energiespeicher auf. Dieser kann erfindungsgemäß mehrere Funktionen erfüllen.
Zum einen kann er in einer bevorzugten Ausführungsform als alleinige Energiequelle der Vorrichtung dienen. In diesem Fall ist es sinnvoll, wenn die Vorrichtung weiters einen Datenspeicher oder eine Möglichkeit der kabellosen Datenübertragung aufweist. So kann das Gerät vollkommen frei ohne Kabel bewegt werden. In einer Ausführungs form , bei der die Daten gespeichert werden, ist es zweckmäßig, die spätere Übertragung der Daten, beispielsweise über einen USB-Anschluss , mit einem Aufladen des Energiespeichers zu verbinden.
Alternativ kann erfindungsgemäß der Energiespeicher eine
Hilfsstromquelle der Vorrichtung sein. Diese kann bei Bedarf zugeschalten werden. Dazu wird nach einem bevorzugten Verfahren zunächst ermittelt, wie viel Strom der Vorrichtung zur Verfügung steht. Im Ausführungsbeispiel ist im Speziellen vorgesehen, dass ermittelt wird, ob dem Gerät 500mA oder 900mA zur Verfügung stehen, also ob das Gerät an einem USB 2.0 oder einem USB 3.0 Port angeschlossen ist. Möchte man das Gerät also in einem Modus betreiben, der 900mA Stromversorgung benötigt, hat aber nur eine Stromversorgung von 500mA zur Verfügung, wird der Energiespeicher verfahrensgemäß als zusätzliche Energiequelle hinzu gezogen.
Ähnlich kann analog dazu auch beim Anschluss an einen Low Power USB-Port, der üblicherweise mit 100mA betrieben wird, eine
Stromversorgung beispielsweise 500mA oder 900mA realisiert werden .
Alternativ oder zusätzlich kann in einer weiteren bevorzugten Durchführungs form der Erfindung aus dem ermittelten Wert der zur Verfügung stehenden Stromversorgung bestimmt werden, ob das Gerät gegebenenfalls mit zwei oder drei oder mehr Kameras betrieben werden soll. So werden für unterschiedliche Leistungen der
Stromversorgung unterschiedliche Betriebsmodi geschaffen.
Bevorzugt werden dabei zum Beispiel zwei Kameras in einem
Betriebsmodus für 500mA und drei oder mehr Kameras in einem
Betriebsmodus für 900mA betrieben.
In einer besonders bevorzugten Durchführungsform des Verfahrens werden die von der Kamera erfassten Daten ohne weitere
Verarbeitung bzw. Aufbereitung an eine Recheneinheit oder ein Speichermedium weitergeleitet. So wird der Energieaufwand, der sonst für einen Prozessor bzw. Chip, der diese Verarbeitung bzw. Aufbereitung üblicherweise durchführt, vollkommen vermieden. Die weitere Verarbeitung in der Recheneinheit kann wenigstens teilweise in der CPU erfolgen, allerdings hat es sich gezeigt, dass es insbesondere im Hinblick auf die Schnelligkeit der
Datenverarbeitung sinnvoll ist, einen Teil der für die Erfassung bzw. Berechnung der dreidimensionalen Geometrie erhobenen Daten in der GPU zu verarbeiten. So ist es möglich die Daten,
insbesondere mittels der Kameras aufgenommene zweidimensionale Bilder ohne nennenswerten Zeitverlust direkt in eine
dreidimensionale Darstellung auf einem Display bzw. eine auf einem Speichermedium verfügbare Datei (beispielsweise ein 3D-File im STL- Format) umzuwandeln.
Die Vorrichtung kann nach einer bevorzugten Ausführungsform ein thermovoltaisches Element aufweisen. Mit diesem kann gemäß einer bevorzugten Durchführungsform des Verfahrens aus der Wärme, welche beim Betrieb entsteht, elektrische Energie gewonnen werden. Diese kann dann zum Einen direkt zum Betreiben der
Vorrichtung verwendet werden, zum Anderen kann aber, insbesondere
beim Auskühlen des Gerätes auch ein Energiespeicher mit der gewonnenen Energie gespeist werden.
Weitere bevorzugte Aus- und Durchführungsformen der Erfindung sind Gegenstand der übrigen ünteransprüche.
Die Erfindung wird in der Folge unter Bezugnahme auf die
Zeichnungen weiter erläutert.
Fig. 1 zeigt eine schematisierte Darstellung einer
Ausführungs form der Erfindung und
Fig. 2 zeigt eine schematische Ansicht der Unterseite einer
Ausführungs form der Erfindung.
Die Fig. 1 zeigt eine beispielhafte Ausführungsform der
Vorrichtung, bestehend aus einem Handstück 1, in welchem sich eine optische Einrichtung 2 befindet, welche eine Lichtquelle 3, einen Projektor 4, eine erste Kamera 5, eine zweite Kamera 6 sowie einen Spiegel 7 enthält. Vor dem Spiegel befindet sich im Gehäuse 15 des Handstücks 1 eine Ausnehmung. Diese ist aus hygienischen Gründen und zum Schutz der im Handstück 1
befindlichen Bauteile mit einer transparenten Abdeckung 13 versehen .
In dieser Ausführungsform ist die Lichtquelle 3 eine LED. Ein Mittel zum erzeugen des Lichts (in der Zeichnung nicht
dargestellt) befindet sich in diesem Ausführungsbeispiel also in Form eines Halbleiters direkt in der Lichtquelle 3. Der weitere Verlauf des Lichts innerhalb und außerhalb der Vorrichtung ist durch einen beispielhaften Lichtstrahl 8 dargestellt.
Dieser durchläuft dabei zunächst den Projektor 4. Der Projektor 4 dient dabei der Projektion von Mustern auf das Objekt. Dabei kann es sich, abhängig von der Art der Erfassung der Geometrie, sowohl um regelmäßige Muster, wie beispielsweise Streifen, als auch um unregelmäßige Muster, wie beispielsweise unregelmäßige
Punktemuster, handeln.
Nach dem Projektor 4 trifft der Lichtstrahl 8 auf den Spiegel 7 und wird über diesen auf das Objekt 9, dessen Geometrie erfasst werden soll, umgelenkt. Im dargestellten Ausführungsbeispiel handelt es sich bei dem Objekt 9 um einen Zahn. In einer in der Zeichnung nicht dargestellten Ausführungsform, bei der die
Lichtquelle 3 und der Projektor 4 bereits in Richtung des
Objektes ausgerichtet sind, kann auch auf den Spiegel 7
verzichtet werden.
Die Kameras 5,6 nehmen das auf den Zahn 9 projiziere Muster auf, aus welchem später die Geometrie des Zahns 9 errechnet wird.
Gemäß einer bevorzugten Durchführungsform finden alle
diesbezüglichen Berechnungen in einer Außerhalb des Handstücks 1 befindlichen Recheneinheit statt, wodurch der Stromverbrauch interner Chipsätze bzw. Prozessoren minimiert wird. Zu dieser Recheneinheit kann die Vorrichtung sowohl physisch mit einem Kabel 14 als auch drahtlos verbunden sein. Im Ausführungsbeispiel ist eine drahtlose Verbindung (beispielsweise Bluetooth oder WLAN) vorgesehen. Zu diesem Zweck befindet sich im Handstück ein Mittel zur dratlosen Datenübertragung 10, insbesondere ein Sender und gegebenenfalls ein Empfänger.
Weiters ist im Handstück 1 ein gegebenenfalls wieder aufladbarer Energiespeicher 11 vorgesehen. Im dargestellen
Aus führungsbeispiel dient sie als Hilfsstromquelle der
Vorrichtung. Es kann aber auch vollständig auf ein Kabel am Handstück 1 verzichtet werden, wodurch optimale Bewegungsfreiheit gegeben ist .
Die Zeichnung zeigt außerdem einen Lagesensor 12. Mit diesem kann ermittelt werden, wie groß die räumliche Bewegung des Handstücks 1 ist. Zu diesem Zweck kann der Lagesensor 12 beispielsweise ein Beschleunigungssensor, ein Erdmagnetfeldsensor oder ein
Neigungssensor sein. Kombinationen unterschiedlicher Sensortypen erhöhen dabei die Genauigkeit mit der die Änderung der räumlichen Lage bzw. die Bewegung des Handstücks 1 ermittelt wird.
Die Fig. 2 zeigt eine schematische Ansicht der Unterseite auf eine Ausführungsforrm der Erfindung. Dabei sind zwei Bereiche 1 17 gezeigt, in denen ein thermovoltai sches Element platziert werden könnte.
Im ersten Bereich 16, wird das thermovoltaische Element direkt an der Unterseite, also der Seite auf welcher sich die Abdeckung 13 befindet, in der Nähe der optischen Einrichtung 2 angeordnet. Dies ist vorteilhaft, da die optische Einrichtung 2, insbesondere der Projektor 4, während des Betriebs am meisten Wärme produziert und diese so mit möglichst geringen Verlusten genutzt werden kann .
Wird das thermovoitaische Element im zweiten Bereich 17
platziert, hat dies den Vorteil, dass es größer dimensioniert werden kann, allerdings wird dann ein Wärmeleiter, der die Wärme von der optischen Einrichtung 2 zum thermovoltaischen Element leitet, notwendig. Auch bei einer Positionierung des
thermovoltaischen Elements im zweiten Bereich 17 ist eine
Anbringung an der Unterseite des Handstücks 1 sinnvoll, damit eine gemäß einer bevorzugten Ausführungsform der Erfindung nach außen zeigende, Wärme abgebende Seite des thermovoltaischen Elementes nicht von der Hand des Nutzers abgedeckt wird.
Claims
1. Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten (9) , insbesondere Zähnen, mit einem Handstück (!) , das eine optische Einrichtung (2) mit wenigstens einer
Kamera (5, 6) und mit wenigstens einer Lichtquelle (3) aufweist, dadurch gekennzeichnet, dass die optische
Einrichtung (2) ausschließlich starr befestigte Teile aufweist und dass ein Mittel zum Erzeugen von Licht der Lichtquelle (3) im Handstück (1) angeordnet ist.
2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass die optische Einrichtung (2) wenigstens einen Projektor (4) zur Projektion von Mustern aufweist.
3. Vorrichtung nach einem der Ansprüche 1 oder 2 dadurch
gekennzeichnet, dass eine transparente Abdeckung (13) in einer Ausnehmung in einem Gehäuse (15} des Handstücks (1) vorgesehen ist, welche die optische Einrichtung (2) abdeckt.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, gekennzeichnet durch eine Einrichtung zum Synchronisieren der
Energieversorgung von Lichtquelle (3) und Kamera (5 ,6).
5. Vorrichtung nach einem der Ansprüche 1 bis 4 dadurch
gekennzeichnet, dass das Handstück (1) wenigstens einen Lagesensor (12) , insbesondere einen Beschleunigungssensor, einen Magnetfeldsensor und/oder einen Neigungssensor
aufweist .
6. Vorrichtung nach einem der Ansprüche 1 bis 5 dadurch
gekennzeichnet, dass der Feldwinkel der Kamera (5, 6) und der Feldwinkel des Projektors (4) einander zu wenigstens 50%, bevorzugt zu wenigstens 80% überdecken, besonders bevorzugt zu wenigstens 90%.
7. Vorrichtung nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass die Vorrichtung einen gegebenenfalls wieder aufladbaren elektrischen Energiespeicher (11) aufweist .
8. Vorrichtung nach Anspruch 7 dadurch gekennzeichnet, dass der gegebenenfalls wieder aufladbare elektrische Energiespeicher (11) alleinige Stromquelle der Vorrichtung ist.
9. Vorrichtung nach Anspruch 7 dadurch gekennzeichnet, dass der gegebenenfalls wieder aufladbare elektrische Energiespeicher (11) eine Hilfsstroraquelle der Vorrichtung ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9 dadurch
gekennzeichnet, dass die Vorrichtung ein Mittel (10) zur drahtlosen Datenübertragung aufweist.
11. Vorrichtung nach einem der Ansprüche 1 bis 10 dadurch
gekennzeichnet, dass die Vorrichtung ein thermovoltaisches Element aufweist.
12. Vorrichtung nach Anspruch 11 dadurch gekennzeichnet, dass eine Wärme aufnehmende Seite des thermovoltaischen Elements dem Innenraum des Handstücks (1), insbesondere den
elektrischen Einbauten im Handstück (1) zugewandt ist, und dass eine Wärme abgebende Seite des thermovoltaischen
Elements der Außenseite des Handstücks (1), zugewandt ist.
13. Vorrichtung nach einem der Ansprüche 11 oder 12 dadurch
gekennzeichnet, dass die wärmeabgebende Seite des
thermovoltaischen Elements mit dem Gehäuse (15) des
Handstücks (1) thermisch leitend verbunden ist.
14. Vorrichtung nach einem der Ansprüche 11 bis 13 dadurch
gekennzeichnet, dass das thermovoltaische Element mit einer Stromversorgung des Handstücks (1) und/oder mit dem
Energiespeicher (11) verbunden ist.
15. Verfahren zum Betreiben einer Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten (9), insbesondere Zähnen, mit einem Handstück (1) , das wenigstens einen
Lagesensor (12) zum Erfassen der Änderung der räumlichen Lage des Handstücks (1) und eine optische Einrichtung (2) mit wenigstens einer Kamera {5, 6) zum Aufnehmen von Bildern und mit wenigstens einer Lichtquelle (3) für wenigstens einen Projektor (4) aufweist, dadurch gekennzeichnet, dass vom Lagesensor (12) im Handstück (1) ermittelt wird, wie groß eine Änderung der räumlichen Lage der Vorrichtung ist, und daraus bestimmt wird, wie viele Aufnahmen von der Kamera (5 ,6) in einer definierten Zeiteinheit gemacht werden.
16. Verfahren nach Anspruch 15 dadurch gekennzeichnet, dass die Kamera (5, 6) synchron zur Lichtquelle (3) des Projektors (4) betrieben wird.
17. Verfahren nach einem der Ansprüche 15 oder 16 dadurch
gekennzeichnet, dass die von der Kamera (5, 6) erfassten Daten ohne weitere Verarbeitung bzw. Aufbereitung an eine Recheneinheit oder ein Speichermedium weitergeleitet werden.
18. Verfahren nach einem der Ansprüche 15 bis 17 dadurch
gekennzeichnet, dass ermittelt wird, wie viel Strom der Vorrichtung zur Verfügung steht .
19. Verfahren nach Anspruch 18 dadurch gekennzeichnet, dass
abhängig von der Stromversorgung der Vorrichtung zwei, drei oder mehr Kameras (5, 6) betrieben werden.
20. Verfahren nach Anspruch 19 dadurch gekennzeichnet, dass zwei Kameras (5, 6) betrieben werden, wenn eine geringere
Stromversorgung beispielsweise von 500mA zur Verfügung steht, und dass drei oder mehr Kameras (5, 6) betrieben werden, wenn eine höhere Stromversorgung beispielsweise von 900mA zur Verfügung steht.
21. Verfahren nach einem der Ansprüche 18 bis 20 dadurch
gekennzeichnet, dass abhängig von der Stromversorgung der Vorrichtung ein, zwei oder mehr Projektoren (4) betrieben werden .
22. Verfahren nach Anspruch 121 dadurch gekennzeichnet, dass ein Projektor betrieben wird, wenn eine geringere
Stromversorgung beispielsweise von 500mA zur Verfügung steht, und dass zwei oder mehr Projektoren {4) betrieben werden, wenn eine höhere Stromversorgung beispielsweise von 900mA zur Verfügung steht
23. Verfahren nach einem der Ansprüche 18 bis 22 dadurch
gekennzeichnet, dass abhängig von der Stromversorgung der Vorrichtung eine Batterie (11) als zusätzlicher Hilfsstrom verwendet wird.
24. Verfahren nach einem der Ansprüche 15 bis 23 dadurch
gekennzeichnet, dass die Bildrate der aufgenommenen Bilder zwischen 1 und 30 Bildern pro Sekunde liegt.
25. Verfahren nach einem der Ansprüche 15 bis 24 dadurch
gekennzeichnet, dass für einen definierten
Oberflächenbereich des Objektes (9) ermittelt wird, wie viele Aufnahmen von diesem Bereich bereits gemacht wurden, und dass ab Erreichen einer definierten Anzahl von Aufnahmen keine weiteren Aufnahmen dieses Bereiches mehr gemacht werden .
26. Verfahren nach einem der Ansprüche 18 bis 25 dadurch
gekennzeichnet, dass bei einer höheren Stromversorgung
Bilder mit einer höheren Bildrate aufgenommen werden und bei einer geringeren Stromversorgung Bilder mit einer geringeren Bildrate aufgenommen werden.
27. Verfahren nach einem der Ansprüche 15 bis 26 dadurch
gekennzeichnet, dass aus Wärme, welche beim Betrieb der Vorrichtung entsteht, mittels eines thermovoltaischen
Elementes elektrische Energie gewonnen wird.
28. Verfahren nach Anspruch 27 dadurch gekennzeichnet, dass die mittels des thermovoltaischen Elements gewonnene Energie zum Betreiben der Vorrichtung verwendet wird.
29. Verfahren nach Anspruch 27 dadurch gekennzeichnet, dass die mittels des thermovoltaischen Elements gewonnene Energie im Energiespeicher {11) gespeichert wird.
30. Verfahren nach einem der Ansprüche 15 bis 29, dadurch
gekennzeichnet, dass vor dem Erfassen der dreidimensionalen Geometrie von Objekten aus verschiedenen bekannten Abständen Kalibrieraufnahmen eines Musters auf einer vorzugsweise ebenen Fläche gemacht werden, dass dabei ermittelte, von den Abständen abhängige Helligkeitsverläufe gemeinsam mit empirischen Werten von Rändern des Musters in einer Tabelle hinterlegt werden und dass die Tabelle bei einem
Scharfzeichnen zweidimensionaler Aufnahmen im Zuge des Erfassens der dreidimensionalen Geometrie verwendet wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18199891.5A EP3467432B1 (de) | 2012-02-06 | 2013-02-04 | Verfahren zum betreiben einer vorrichtung zum erfassen der dreidimensionalen geometrie von objekten |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012100953.8A DE102012100953B4 (de) | 2012-02-06 | 2012-02-06 | Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten und Verfahren zum Betreiben derselben |
PCT/AT2013/000017 WO2013116880A1 (de) | 2012-02-06 | 2013-02-04 | Vorrichtung zum erfassen der dreidimensionalen geometrie von objekten und verfahren zum betreiben derselben |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18199891.5A Division EP3467432B1 (de) | 2012-02-06 | 2013-02-04 | Verfahren zum betreiben einer vorrichtung zum erfassen der dreidimensionalen geometrie von objekten |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2812649A1 true EP2812649A1 (de) | 2014-12-17 |
Family
ID=47845657
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18199891.5A Active EP3467432B1 (de) | 2012-02-06 | 2013-02-04 | Verfahren zum betreiben einer vorrichtung zum erfassen der dreidimensionalen geometrie von objekten |
EP13708647.6A Active EP2812650B1 (de) | 2012-02-06 | 2013-02-04 | Verfahren zum betreiben einer vorrichtung zum erfassen der dreidimensionalen geometrie von objekten |
EP13708646.8A Withdrawn EP2812649A1 (de) | 2012-02-06 | 2013-02-04 | Vorrichtung zum erfassen der dreidimensionalen geometrie von objekten und verfahren zum betreiben derselben |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18199891.5A Active EP3467432B1 (de) | 2012-02-06 | 2013-02-04 | Verfahren zum betreiben einer vorrichtung zum erfassen der dreidimensionalen geometrie von objekten |
EP13708647.6A Active EP2812650B1 (de) | 2012-02-06 | 2013-02-04 | Verfahren zum betreiben einer vorrichtung zum erfassen der dreidimensionalen geometrie von objekten |
Country Status (7)
Country | Link |
---|---|
US (3) | US20150002649A1 (de) |
EP (3) | EP3467432B1 (de) |
KR (1) | KR20140128336A (de) |
BR (1) | BR112014018895A8 (de) |
CA (1) | CA2863798A1 (de) |
DE (1) | DE102012100953B4 (de) |
WO (2) | WO2013116881A1 (de) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012100953B4 (de) * | 2012-02-06 | 2020-01-09 | A.Tron3D Gmbh | Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten und Verfahren zum Betreiben derselben |
US9433476B2 (en) | 2012-03-01 | 2016-09-06 | Align Technology, Inc. | Interproximal reduction planning |
US9220580B2 (en) | 2012-03-01 | 2015-12-29 | Align Technology, Inc. | Determining a dental treatment difficulty |
US9414897B2 (en) | 2012-05-22 | 2016-08-16 | Align Technology, Inc. | Adjustment of tooth position in a virtual dental model |
DE102014101070A1 (de) | 2014-01-29 | 2015-07-30 | A.Tron3D Gmbh | Verfahren zum Kalibrieren und Betreiben einer Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten |
EP2904988B1 (de) | 2014-02-05 | 2020-04-01 | Sirona Dental Systems GmbH | Verfahren zur intraoralen dreidimensionalen Vermessung |
KR101611415B1 (ko) * | 2014-03-25 | 2016-04-12 | (주) 스틱옵틱스 | 3차원 스캐너 |
EP2944288B1 (de) * | 2014-05-12 | 2020-04-08 | Ivoclar Vivadent AG | Lichthärtgerät, insbesondere dentales Lichthärtgerät |
US10772506B2 (en) | 2014-07-07 | 2020-09-15 | Align Technology, Inc. | Apparatus for dental confocal imaging |
US9675430B2 (en) | 2014-08-15 | 2017-06-13 | Align Technology, Inc. | Confocal imaging apparatus with curved focal surface |
KR101505785B1 (ko) | 2014-09-05 | 2015-03-25 | 남윤 | 치과 핸드피스용 드릴의 3차원 공간적 각도의 보정 장치 및 보정 방법 |
US9610141B2 (en) | 2014-09-19 | 2017-04-04 | Align Technology, Inc. | Arch expanding appliance |
US10449016B2 (en) | 2014-09-19 | 2019-10-22 | Align Technology, Inc. | Arch adjustment appliance |
US9744001B2 (en) | 2014-11-13 | 2017-08-29 | Align Technology, Inc. | Dental appliance with cavity for an unerupted or erupting tooth |
US10504386B2 (en) | 2015-01-27 | 2019-12-10 | Align Technology, Inc. | Training method and system for oral-cavity-imaging-and-modeling equipment |
EP3280350B1 (de) | 2015-04-10 | 2019-01-23 | 3M Innovative Properties Company | Zahnärztliche lichtbestrahlungsvorrichtung |
US10248883B2 (en) | 2015-08-20 | 2019-04-02 | Align Technology, Inc. | Photograph-based assessment of dental treatments and procedures |
US11554000B2 (en) | 2015-11-12 | 2023-01-17 | Align Technology, Inc. | Dental attachment formation structure |
US11931222B2 (en) | 2015-11-12 | 2024-03-19 | Align Technology, Inc. | Dental attachment formation structures |
US11103330B2 (en) | 2015-12-09 | 2021-08-31 | Align Technology, Inc. | Dental attachment placement structure |
US11596502B2 (en) | 2015-12-09 | 2023-03-07 | Align Technology, Inc. | Dental attachment placement structure |
US10470847B2 (en) | 2016-06-17 | 2019-11-12 | Align Technology, Inc. | Intraoral appliances with sensing |
EP3988048B1 (de) | 2016-06-17 | 2024-01-17 | Align Technology, Inc. | Leistungsüberwachung einer kieferorthopädischen vorrichtung |
US10507087B2 (en) | 2016-07-27 | 2019-12-17 | Align Technology, Inc. | Methods and apparatuses for forming a three-dimensional volumetric model of a subject's teeth |
JP2019523064A (ja) | 2016-07-27 | 2019-08-22 | アライン テクノロジー, インコーポレイテッド | 歯科診断機能を有する口腔内スキャナ |
DE102016221040A1 (de) * | 2016-10-26 | 2018-04-26 | Robert Bosch Gmbh | Verfahren zur Lokalisierung einer Vorrichtung in einem System |
CN117257492A (zh) | 2016-11-04 | 2023-12-22 | 阿莱恩技术有限公司 | 用于牙齿图像的方法和装置 |
US11026831B2 (en) | 2016-12-02 | 2021-06-08 | Align Technology, Inc. | Dental appliance features for speech enhancement |
CN113440273A (zh) | 2016-12-02 | 2021-09-28 | 阿莱恩技术有限公司 | 一系列腭扩张器及其形成方法和形成设备 |
EP3547952B1 (de) | 2016-12-02 | 2020-11-04 | Align Technology, Inc. | Palatalexpander |
WO2018102770A1 (en) | 2016-12-02 | 2018-06-07 | Align Technology, Inc. | Force control, stop mechanism, regulating structure of removable arch adjustment appliance |
US10548700B2 (en) | 2016-12-16 | 2020-02-04 | Align Technology, Inc. | Dental appliance etch template |
US10456043B2 (en) | 2017-01-12 | 2019-10-29 | Align Technology, Inc. | Compact confocal dental scanning apparatus |
US10779718B2 (en) | 2017-02-13 | 2020-09-22 | Align Technology, Inc. | Cheek retractor and mobile device holder |
EP3375405A1 (de) * | 2017-03-17 | 2018-09-19 | a.tron3d GmbH | Vorrichtung zum betreiben eines intraoralscanners |
US12090020B2 (en) | 2017-03-27 | 2024-09-17 | Align Technology, Inc. | Apparatuses and methods assisting in dental therapies |
US10613515B2 (en) | 2017-03-31 | 2020-04-07 | Align Technology, Inc. | Orthodontic appliances including at least partially un-erupted teeth and method of forming them |
US11045283B2 (en) | 2017-06-09 | 2021-06-29 | Align Technology, Inc. | Palatal expander with skeletal anchorage devices |
WO2018232299A1 (en) | 2017-06-16 | 2018-12-20 | Align Technology, Inc. | Automatic detection of tooth type and eruption status |
US10639134B2 (en) | 2017-06-26 | 2020-05-05 | Align Technology, Inc. | Biosensor performance indicator for intraoral appliances |
US10885521B2 (en) | 2017-07-17 | 2021-01-05 | Align Technology, Inc. | Method and apparatuses for interactive ordering of dental aligners |
WO2019018784A1 (en) | 2017-07-21 | 2019-01-24 | Align Technology, Inc. | ANCHOR OF CONTOUR PALATIN |
EP3658067B1 (de) | 2017-07-27 | 2023-10-25 | Align Technology, Inc. | System und verfahren zur verarbeitung eines orthodontischen ausrichters mittels optischer kohärenztomographie |
CN110996842B (zh) | 2017-07-27 | 2022-10-14 | 阿莱恩技术有限公司 | 牙齿着色、透明度和上釉 |
US20190046297A1 (en) * | 2017-08-11 | 2019-02-14 | Align Technology, Inc. | Devices and systems for creation of attachments for use with dental appliances and changeable shaped attachments |
US11116605B2 (en) | 2017-08-15 | 2021-09-14 | Align Technology, Inc. | Buccal corridor assessment and computation |
WO2019036677A1 (en) | 2017-08-17 | 2019-02-21 | Align Technology, Inc. | SURVEILLANCE OF CONFORMITY OF DENTAL DEVICE |
US10813720B2 (en) | 2017-10-05 | 2020-10-27 | Align Technology, Inc. | Interproximal reduction templates |
WO2019084326A1 (en) | 2017-10-27 | 2019-05-02 | Align Technology, Inc. | OTHER BORE ADJUSTMENT STRUCTURES |
CN111295153B (zh) | 2017-10-31 | 2023-06-16 | 阿莱恩技术有限公司 | 具有选择性牙合负荷和受控牙尖交错的牙科器具 |
EP3703607A2 (de) | 2017-11-01 | 2020-09-09 | Align Technology, Inc. | Automatische behandlungsplanung |
US11534974B2 (en) | 2017-11-17 | 2022-12-27 | Align Technology, Inc. | Customized fabrication of orthodontic retainers based on patient anatomy |
US11219506B2 (en) | 2017-11-30 | 2022-01-11 | Align Technology, Inc. | Sensors for monitoring oral appliances |
WO2019118876A1 (en) | 2017-12-15 | 2019-06-20 | Align Technology, Inc. | Closed loop adaptive orthodontic treatment methods and apparatuses |
US10980613B2 (en) | 2017-12-29 | 2021-04-20 | Align Technology, Inc. | Augmented reality enhancements for dental practitioners |
KR20200115580A (ko) | 2018-01-26 | 2020-10-07 | 얼라인 테크널러지, 인크. | 구강 내 진단 스캔 및 추적 |
US11937991B2 (en) | 2018-03-27 | 2024-03-26 | Align Technology, Inc. | Dental attachment placement structure |
EP3773320B1 (de) | 2018-04-11 | 2024-05-15 | Align Technology, Inc. | Lösbarer palatalexpander |
US20230157799A1 (en) * | 2019-06-30 | 2023-05-25 | Perimetrics, Llc | Determination of structural characteristics of an object |
WO2023229834A1 (en) * | 2022-05-26 | 2023-11-30 | Align Technology, Inc. | Intraoral scanner with waveguide pattern projector |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH672722A5 (de) | 1986-06-24 | 1989-12-29 | Marco Brandestini | |
DE4226990C3 (de) | 1992-08-14 | 1999-04-29 | Sirona Dental Systems Gmbh | Videokamera zum Betrachten von Objekten im Munde eines Patienten |
DE19524855A1 (de) * | 1995-07-07 | 1997-01-09 | Siemens Ag | Verfahren und Vorrichtung zur rechnergestützten Restauration von Zähnen |
DE19636354A1 (de) * | 1996-09-02 | 1998-03-05 | Ruedger Dipl Ing Rubbert | Verfahren und Vorrichtung zur Durchführung von optischen Aufnahmen |
IL125659A (en) * | 1998-08-05 | 2002-09-12 | Cadent Ltd | Method and device for three-dimensional simulation of a structure |
US7068825B2 (en) * | 1999-03-08 | 2006-06-27 | Orametrix, Inc. | Scanning system and calibration method for capturing precise three-dimensional information of objects |
US6648640B2 (en) * | 1999-11-30 | 2003-11-18 | Ora Metrix, Inc. | Interactive orthodontic care system based on intra-oral scanning of teeth |
US7625335B2 (en) * | 2000-08-25 | 2009-12-01 | 3Shape Aps | Method and apparatus for three-dimensional optical scanning of interior surfaces |
WO2003012368A1 (fr) * | 2001-07-30 | 2003-02-13 | Topcon Corporation | Appareil de mesure d'une forme superficielle, procede de mesure d'une forme superficielle et appareil graphique destine a l'etat superficiel |
DE10304111B4 (de) * | 2003-01-31 | 2011-04-28 | Sirona Dental Systems Gmbh | Aufnahmeverfahren für ein Bild eines Aufnahmeobjekts |
US7184150B2 (en) * | 2003-03-24 | 2007-02-27 | D4D Technologies, Llc | Laser digitizer system for dental applications |
US20040218792A1 (en) * | 2003-04-29 | 2004-11-04 | Eastman Kodak Company | Probe position measurement to facilitate image registration and image manipulation in a medical application |
DE102006007170B4 (de) * | 2006-02-08 | 2009-06-10 | Sirona Dental Systems Gmbh | Verfahren und Anordnung zur schnellen und robusten chromatisch konfokalen 3D-Messtechnik |
US8463364B2 (en) * | 2009-07-22 | 2013-06-11 | Accuvein Inc. | Vein scanner |
WO2008067334A2 (en) * | 2006-11-27 | 2008-06-05 | Rejuvedent Llc | A method and apparatus for hard tissue treatment and modification |
DE102007060263A1 (de) | 2007-08-16 | 2009-02-26 | Steinbichler Optotechnik Gmbh | Vorrichtung zur Ermittlung der 3D-Koordinaten eines Objekts, insbesondere eines Zahns |
DE102007054907A1 (de) * | 2007-11-15 | 2009-05-28 | Sirona Dental Systems Gmbh | Verfahren zur optischen Vermessung von Objekten unter Verwendung eines Triangulationsverfahrens |
DE102008040947B4 (de) * | 2008-08-01 | 2014-02-06 | Sirona Dental Systems Gmbh | 3D-Dentalkamera zur Erfassung von Oberflächenstrukturen eines Messobjekts mittels Triangulation |
DE102008047816B4 (de) | 2008-09-18 | 2011-08-25 | Steinbichler Optotechnik GmbH, 83115 | Vorrichtung zur Ermittlung der 3D-Koordinaten eines Objekts, insbesondere eines Zahns |
DE102009030319A1 (de) * | 2009-06-24 | 2011-02-03 | Enocean Gmbh | Versorgungsenergieanordnung und Verfahren zum Bereitstellen einer Versorgungsenergie |
DE102009043413B3 (de) * | 2009-09-29 | 2011-06-01 | Siemens Aktiengesellschaft | Thermo-elektrischer Energiewandler mit dreidimensionaler Mikro-Struktur, Verfahren zum Herstellen des Energiewandlers und Verwendung des Energiewandlers |
AT508563B1 (de) | 2009-10-07 | 2011-02-15 | Ait Austrian Inst Technology | Verfahren zur aufnahme dreidimensionaler abbilder |
DE102010016113A1 (de) * | 2010-03-24 | 2011-09-29 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Verfahren zur Ausbildung eines Besatzungsmitglieds eines insbesondere militärischen Fahrzeugs |
FR2960962B1 (fr) * | 2010-06-08 | 2014-05-09 | Francois Duret | Dispositif de mesures tridimensionnelles et temporelles par empreinte optique en couleur. |
EP2400261A1 (de) * | 2010-06-21 | 2011-12-28 | Leica Geosystems AG | Optisches Messverfahren und Messsystem zum Bestimmen von 3D-Koordinaten auf einer Messobjekt-Oberfläche |
EP2651344A4 (de) * | 2010-12-17 | 2015-08-19 | Intellijoint Surgical Inc | Verfahren und system zur ausrichtung eines prothese während eines chirurgischen eingriffes |
CN103347436B (zh) * | 2011-01-11 | 2016-06-22 | 爱德芳世株式会社 | 口腔内拍摄显示系统 |
AT511223B1 (de) * | 2011-03-18 | 2013-01-15 | A Tron3D Gmbh | Vorrichtung zum aufnehmen von bildern von dreidimensionalen objekten |
DE102011077564B4 (de) * | 2011-06-15 | 2016-08-25 | Sirona Dental Systems Gmbh | Verfahren zur optischen dreidimensionalen Vermessung eines dentalen Objekts |
CN103945756A (zh) * | 2011-07-12 | 2014-07-23 | 戴维·赖恩·安德森 | 口内成像系统 |
DE102012201193B3 (de) * | 2012-01-27 | 2013-06-13 | Sirona Dental Systems Gmbh | Verfahren und Referenzmodell zur Überprüfung eines Vermessungssystems |
DE102012100953B4 (de) * | 2012-02-06 | 2020-01-09 | A.Tron3D Gmbh | Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten und Verfahren zum Betreiben derselben |
US9314188B2 (en) * | 2012-04-12 | 2016-04-19 | Intellijoint Surgical Inc. | Computer-assisted joint replacement surgery and navigation systems |
DE102012221374A1 (de) * | 2012-11-22 | 2014-05-22 | Sirona Dental Systems Gmbh | Verfahren zur Planung einer dentalen Behandlung |
DK2941220T3 (da) * | 2012-12-24 | 2022-02-07 | Dentlytec G P L Ltd | Anordning og fremgangsmåde til subgingival måling |
US9808148B2 (en) * | 2013-03-14 | 2017-11-07 | Jan Erich Sommers | Spatial 3D sterioscopic intraoral camera system |
US10098713B2 (en) * | 2013-03-14 | 2018-10-16 | Ormco Corporation | Scanning sequence for an intra-oral imaging system |
JP6576005B2 (ja) * | 2013-03-15 | 2019-09-18 | コンバージェント デンタル, インコーポレイテッド | レーザ歯科治療における撮像のためのシステムおよび方法 |
US9247998B2 (en) * | 2013-03-15 | 2016-02-02 | Intellijoint Surgical Inc. | System and method for intra-operative leg position measurement |
-
2012
- 2012-02-06 DE DE102012100953.8A patent/DE102012100953B4/de not_active Expired - Fee Related
-
2013
- 2013-02-02 US US14/376,187 patent/US20150002649A1/en not_active Abandoned
- 2013-02-04 US US14/377,030 patent/US9861456B2/en active Active
- 2013-02-04 CA CA2863798A patent/CA2863798A1/en not_active Abandoned
- 2013-02-04 EP EP18199891.5A patent/EP3467432B1/de active Active
- 2013-02-04 EP EP13708647.6A patent/EP2812650B1/de active Active
- 2013-02-04 EP EP13708646.8A patent/EP2812649A1/de not_active Withdrawn
- 2013-02-04 KR KR1020147022907A patent/KR20140128336A/ko not_active Application Discontinuation
- 2013-02-04 WO PCT/AT2013/000018 patent/WO2013116881A1/de active Application Filing
- 2013-02-04 BR BR112014018895A patent/BR112014018895A8/pt not_active IP Right Cessation
- 2013-02-04 WO PCT/AT2013/000017 patent/WO2013116880A1/de active Application Filing
-
2016
- 2016-06-08 US US15/176,206 patent/US10166090B2/en active Active
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2013116880A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP3467432A1 (de) | 2019-04-10 |
KR20140128336A (ko) | 2014-11-05 |
CA2863798A1 (en) | 2013-08-15 |
BR112014018895A2 (de) | 2017-06-20 |
BR112014018895A8 (pt) | 2017-07-11 |
EP2812650A1 (de) | 2014-12-17 |
DE102012100953B4 (de) | 2020-01-09 |
US9861456B2 (en) | 2018-01-09 |
WO2013116880A1 (de) | 2013-08-15 |
EP3467432B1 (de) | 2020-04-22 |
WO2013116881A1 (de) | 2013-08-15 |
US20150282902A1 (en) | 2015-10-08 |
DE102012100953A1 (de) | 2013-08-08 |
US20160287358A1 (en) | 2016-10-06 |
EP2812650B1 (de) | 2019-07-24 |
US20150002649A1 (en) | 2015-01-01 |
US10166090B2 (en) | 2019-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3467432B1 (de) | Verfahren zum betreiben einer vorrichtung zum erfassen der dreidimensionalen geometrie von objekten | |
DE102012112322B4 (de) | Verfahren zum optischen Abtasten und Vermessen einer Umgebung | |
DE102012112321B4 (de) | Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung | |
DE102014013678B3 (de) | Verfahren zum optischen Abtasten und Vermessen einer Umgebung mit einem Handscanner und Steuerung durch Gesten | |
DE102014013677B4 (de) | Verfahren zum optischen Abtasten und Vermessen einer Umgebung mit einem Handscanner und unterteiltem Display | |
DE69826753T2 (de) | Optischer Profilsensor | |
EP2467051B1 (de) | Bildverarbeitungssystem mit einer zusätzlichen zusammen mit der bildinformation zu verarbeitenden massstabsinformation | |
EP2786696B1 (de) | Dentalkamerasystem | |
WO2012156448A1 (de) | Optisches messverfahren und messsystem zum bestimmen von 3d-koordinaten auf einer messobjekt-oberfläche | |
DE102011114674C5 (de) | Verfahren und Vorrichtung zum Bestimmen der 3D-Koordinaten eines Objekts | |
DE112013004369T5 (de) | Laserscanner mit zusätzlicher Erfassungsvorrichtung | |
DE112014007236T5 (de) | Zweidimensionales Zwischenscannen mit einem dreidimensionalen Scanner zur Beschleunigung der Registrierung | |
DE102005010390A1 (de) | Transparentes Kamerakalibrierungswerkzeug zur Kamerakalibrierung und dessen Kalibrierungsverfahren | |
DE102012023623A1 (de) | Verfahren zum Zusammensetzen von Teilaufnahmen einer Oberfläche eines Objektes zu einer Gesamtaufnahme des Objektes und System zum Erstellen einer Gesamtaufnahme eines Objektes | |
DE102015106837B4 (de) | Verfahren zur Steuerung einer 3D-Messvorrichtung mittels Gesten und Vorrichtung hierzu | |
WO2013068521A1 (de) | Vorrichtung und verfahren zum mechanischen ausdünnen von blüten | |
EP3049757B1 (de) | Fahrwerksvermessung bei umgebungslicht | |
DE102014113015B4 (de) | Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung, umfassend einen Handscanner mit Tragestruktur | |
DE102020127797B4 (de) | Sensorverfahren zum optischen Erfassen von Nutzungsobjekten zur Detektion eines Sicherheitsabstandes zwischen Objekten | |
DE102013012939B4 (de) | Aufsatz und Vorrichtung zum berührungslosen Vermessen einer Oberfläche | |
DE10203992A1 (de) | Eingabeeinrichtung | |
DE102014117172A1 (de) | Vorrichtung und Verfahren zum Bestimmen eines Fußes sowie mobile Messvorrichtung für ein Podoskop | |
WO2023237408A1 (de) | Vorrichtung zur unterstützung der erzeugung von bildaufnahmen, verwendung der vorrichtung und verfahren zum erzeugen einer bildaufnahme | |
DE102017215045A1 (de) | Forensische drei-dimensionale messvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140811 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20180813 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20181113 |