EP2807281A1 - Method for producing forged components from a tial alloy and component produced thereby - Google Patents
Method for producing forged components from a tial alloy and component produced therebyInfo
- Publication number
- EP2807281A1 EP2807281A1 EP13705380.7A EP13705380A EP2807281A1 EP 2807281 A1 EP2807281 A1 EP 2807281A1 EP 13705380 A EP13705380 A EP 13705380A EP 2807281 A1 EP2807281 A1 EP 2807281A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- tial
- heat treatment
- temperature
- solvus line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 20
- 239000000956 alloy Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 35
- 229910010038 TiAl Inorganic materials 0.000 claims abstract description 31
- 238000005242 forging Methods 0.000 claims abstract description 7
- 238000010275 isothermal forging Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 229910006281 γ-TiAl Inorganic materials 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 2
- 238000011105 stabilization Methods 0.000 claims description 2
- 238000001513 hot isostatic pressing Methods 0.000 claims 1
- 238000005495 investment casting Methods 0.000 claims 1
- 239000012071 phase Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 239000010955 niobium Substances 0.000 description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/25—Manufacture essentially without removing material by forging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/40—Heat treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/40—Heat treatment
- F05D2230/41—Hardening; Annealing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/174—Titanium alloys, e.g. TiAl
Definitions
- the present invention relates to a method for producing a component from a TiAl alloy, in which the component is formed by forging, in particular by isothermal forging and subsequently subjected to a heat treatment. Moreover, the present invention relates to a correspondingly manufactured component.
- TiAl alloys whose main constituents are titanium and aluminum are characterized by the fact that they have a high strength due to the formation of intermetallic phases, such as ⁇ -TiAl, which have a high proportion of covalent bonding forces within the metallic bond, with sufficient ductility. especially high-temperature strength. In addition, they have a low specific weight, so that the use of Titanalumi- nide or TiAl alloys as in high-temperature applications, for example in turbomachines, especially gas turbines or aircraft engines, is suitable.
- the property profile of the TiAl alloys can be further optimized.
- Such alloys with niobium and molybdenum content are also referred to as so-called TNM alloys.
- alloys are used in aircraft engines, for example, as guide or moving blades and are brought by forging in the appropriate component form.
- isothermal forging can be used with subsequent heat treatment for adjusting the microstructure and the property profile.
- blisk art word for blade and disk
- a forged component made of a TiAl alloy ie an alloy in which the alloying constituents with the highest proportion of the alloy composition are titanium and aluminum, at least one first heat treatment after forging, in which at least in one step, the component is at a temperature between 1100 ° C and 1200 ° C for 6 to 10 hours and then cooled.
- the TiAl material undergoes partial segregation.
- This first heat treatment is referred to as homogenization annealing, as it does the material composition is homogenized over the component and existing concentration point are dissolved.
- the cooling rate can be between 1 ° C / s and 5 ° C / s.
- the component is heated in a second heat treatment over the solvus line of ⁇ -TiAl.
- a second heat treatment in the microstructure, the contained ⁇ -TiAl is at least partially converted to another solid phase, such as e.g. a TiAl converted, so that a desired or adapted phase composition in the TiAl alloy is made possible and in particular depending on the chemical composition of the component by varying the phase composition adjustment of optimum mechanical properties, in particular with respect to the total elongation and creep resistance is possible.
- the heat treatment can be tailored specifically to the specific chemical composition and its scattering in the component.
- the component may be rapidly cooled after the second heat treatment above the solvus line of the ⁇ -TiAl to substantially freeze the phase composition set at the heat treatment temperature.
- Quick cooling can be done, for example, by quenching in water or oil, or by air cooling with a blower.
- the cooling can take place so quickly that a conversion of ⁇ -TiAl additionally formed in the second heat treatment into a lamellar structure of ⁇ -TiAl and ⁇ -TiAl is avoided.
- the second heat treatment may be performed at a temperature that avoids entering a single-phase phase field of the TiAl phase diagram, such as the ⁇ -TiAl phase field, by the risk of coarse grain growth associated with heat treatment in a single-phase phase field prevention.
- the second heat treatment can be carried out for a period of time which ensures sufficient conversion of the ⁇ -TiAl to another phase, in particular a-TiAl, so that the desired phase composition can be achieved.
- the temperature in the second heat treatment over the ⁇ -TiAl solvus line can at a temperature of 20 ° C to 50 ° C, in particular 25 ° C to 35 ° C, preferably about 30 ° C above the ⁇ -TiAl solvus Line can be selected.
- the method can be used in particular for components which consist of a TiAl alloy with 42 to 45 at.% Titanium, in particular 42.5 to 54.5 at.% Titanium, 3.5 to 4.5 at.%. Niobium, in particular 4.0 to 4.2 at.% Niobium, 0.75 to 1.5 at.% Molybdenum, in particular 0.9 to 1.2 at.% Molybdenum, and 0.05 to 0, 15 at.% Boron, in particular 0.1 to 0.12 at.% Boron, and the balance aluminum and unavoidable impurities.
- a phase composition with corresponding proportions of the ⁇ -TiAl is present, which makes the use of the method according to the invention particularly advantageous.
- the second heat treatment may be carried out at a temperature below the solvus line ⁇ -TiAl, the temperature being in particular between 12 ° C and 18 ° C below the solvus line.
- a third heat treatment in the temperature range from 800 ° C. to 950 ° C. for 5 to 7 hours may additionally be carried out in order to stabilize the material charge in the component (stabilization annealing).
- a turbomachine in particular a gas turbine or an aircraft engine, in particular blades, vanes, or turbine blades, which have a variably adjustable property profile due to an adapted phase composition.
- a material for a component produced according to the invention can be, for example, a composition in the range of 42 to 45 at.% Titanium, 3.5 to 4.5 at.% Niobium, 0.75 to 1.5 at.% Molybdenum, and 0.05 to 0.15 at.% Boron with balance aluminum and unavoidable impurities.
- a corresponding component can for example be forged isothermally until it has the rough contour of the final component to be produced.
- the material of the component is homogenized by a first heat treatment at, for example, 1150 ° C for 8 hours.
- the component may then be annealed in a first first alternative of a second heat treatment then at a temperature of, for example, 1290 ° C (ie, above the solvus line (l)) for a predetermined period of time to permit partial conversion of the ⁇ -TiAl to ⁇ -TiAl cause ⁇ -TiAl and ⁇ -TiAl to coexist in the microstructure.
- the temperature treatment can be carried out until a sufficient amount of ⁇ -TiAl has been converted to ⁇ -TiAl for the desired phase composition.
- the component is cooled rapidly, for example by quenching in water (10 min) or in oil or by cooling with a blower. This fan cooling takes place in an oven, the temperature is lowered to 850 ° C and held for 6 hours.
- the ⁇ and ⁇ -TiAl microstructure set at the temperature of the second heat treatment are largely frozen and a conversion of the ⁇ phase into ⁇ / ⁇ fins is avoided.
- the choice of the heat treatment temperature of 1290 ° C also avoids that the ⁇ -TiAl is completely converted into ⁇ -TiAl, which would lead to the risk of coarse grain growth with a corresponding temperature treatment.
- the component is heated below the solvus line (1). For example, the component is heated at 1235 ° C for one hour, then cooled the component (with water, oil or Ofenkkühlung). During the oven cooling, the temperature is lowered to 850 ° C and held for 6 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Forging (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012201082.3A DE102012201082B4 (en) | 2012-01-25 | 2012-01-25 | Method for producing forged components from a TiAl alloy and correspondingly manufactured component |
PCT/DE2013/000037 WO2013110260A1 (en) | 2012-01-25 | 2013-01-19 | Method for producing forged components from a tial alloy and component produced thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2807281A1 true EP2807281A1 (en) | 2014-12-03 |
EP2807281B1 EP2807281B1 (en) | 2021-06-02 |
Family
ID=47747265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13705380.7A Active EP2807281B1 (en) | 2012-01-25 | 2013-01-19 | Method for producing forged components from a tial alloy and component produced thereby |
Country Status (5)
Country | Link |
---|---|
US (1) | US10107112B2 (en) |
EP (1) | EP2807281B1 (en) |
DE (1) | DE102012201082B4 (en) |
ES (1) | ES2877557T3 (en) |
WO (1) | WO2013110260A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2851445B1 (en) | 2013-09-20 | 2019-09-04 | MTU Aero Engines GmbH | Creep-resistant TiAl alloy |
ES2719706T3 (en) * | 2015-01-28 | 2019-07-12 | MTU Aero Engines AG | Component element with protective layer and procedure for manufacturing it |
DE102015115683A1 (en) * | 2015-09-17 | 2017-03-23 | LEISTRITZ Turbinentechnik GmbH | A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines |
EP3239468A1 (en) | 2016-04-27 | 2017-11-01 | MTU Aero Engines GmbH | Method for producing a rotor blade for a fluid flow engine |
EP3238863A1 (en) | 2016-04-27 | 2017-11-01 | MTU Aero Engines GmbH | Method for producing a rotor blade for a fluid flow engine |
EP3326746A1 (en) * | 2016-11-25 | 2018-05-30 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Method for joining and/or repairing substrates of titanium aluminide alloys |
DE102018209881A1 (en) * | 2018-06-19 | 2019-12-19 | MTU Aero Engines AG | Process for producing a forged component from a TiAl alloy |
US11807911B2 (en) * | 2021-12-15 | 2023-11-07 | Metal Industries Research & Development Centre | Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2386663A1 (en) * | 2010-05-12 | 2011-11-16 | Böhler Schmiedetechnik GmbH & Co KG | Method for producing a component and component from a gamma-titanium-aluminium base alloy |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558729A (en) | 1995-01-27 | 1996-09-24 | The United States Of America As Represented By The Secretary Of The Air Force | Method to produce gamma titanium aluminide articles having improved properties |
GB9714391D0 (en) * | 1997-07-05 | 1997-09-10 | Univ Birmingham | Titanium aluminide alloys |
DE19756354B4 (en) * | 1997-12-18 | 2007-03-01 | Alstom | Shovel and method of making the blade |
EP1341945B1 (en) * | 2000-12-15 | 2008-01-09 | Leistritz Aktiengesellschaft | Method for producing components with a high load capacity from tial alloys |
AT508323B1 (en) * | 2009-06-05 | 2012-04-15 | Boehler Schmiedetechnik Gmbh & Co Kg | METHOD FOR PRODUCING A FORGING PIECE FROM A GAMMA TITANIUM ALUMINUM BASE ALLOY |
-
2012
- 2012-01-25 DE DE102012201082.3A patent/DE102012201082B4/en not_active Expired - Fee Related
-
2013
- 2013-01-19 US US14/374,260 patent/US10107112B2/en active Active
- 2013-01-19 EP EP13705380.7A patent/EP2807281B1/en active Active
- 2013-01-19 WO PCT/DE2013/000037 patent/WO2013110260A1/en active Application Filing
- 2013-01-19 ES ES13705380T patent/ES2877557T3/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2386663A1 (en) * | 2010-05-12 | 2011-11-16 | Böhler Schmiedetechnik GmbH & Co KG | Method for producing a component and component from a gamma-titanium-aluminium base alloy |
Non-Patent Citations (1)
Title |
---|
See also references of WO2013110260A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20140369822A1 (en) | 2014-12-18 |
WO2013110260A1 (en) | 2013-08-01 |
DE102012201082A1 (en) | 2013-07-25 |
DE102012201082B4 (en) | 2017-01-26 |
EP2807281B1 (en) | 2021-06-02 |
ES2877557T3 (en) | 2021-11-17 |
US10107112B2 (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012201082B4 (en) | Method for producing forged components from a TiAl alloy and correspondingly manufactured component | |
DE102015103422B3 (en) | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines | |
EP2956562B1 (en) | Nickel-cobalt alloy | |
EP2227571B1 (en) | Material for a gas turbine component, method for producing a gas turbine component and gas turbine component | |
EP3581668B1 (en) | Method for producing a component from gamma tial and correspondingly manufactured component | |
DE102011110740B4 (en) | Process for producing forged TiAl components | |
EP3530763B1 (en) | Method forproducing a blade of a turbomachine from a graded tial alloy, and correspondingly produced component | |
EP2851445B1 (en) | Creep-resistant TiAl alloy | |
EP3269838B1 (en) | High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy | |
EP2905350A1 (en) | High temperature TiAl alloy | |
DE102014226805A1 (en) | Turbine wheel and method for its production | |
WO2018083065A1 (en) | Superalloy without titanium, powder, method and component | |
CH709882B1 (en) | Process for the metallurgical solid state bonding of various high temperature materials and articles produced therewith. | |
EP3211111A2 (en) | Heat treatment method for components made of nickel base superalloys | |
EP2196550B1 (en) | High temperature and oxidation resistant material on the basis of NiAl | |
EP3091095B1 (en) | Low density rhenium-free nickel base superalloy | |
EP3427858A1 (en) | Forging at high temperatures, in particular of titanium aluminides | |
DE2649529A1 (en) | FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING | |
DE112015000354T5 (en) | TiAl alloy, in particular for turbocharger applications, turbocharger component, turbocharger and process for producing the TiAl alloy | |
EP2927336A1 (en) | Nickel base alloy with optimised matrix properties | |
EP3584334A1 (en) | Method for producing a forged component from a tial alloy and correspondingly manufactured component | |
WO2012041276A2 (en) | Heat-resistant tial alloy | |
EP4032997A1 (en) | Nickel-based alloy and component made from same | |
DE102021131094A1 (en) | PROCESS FOR THE MANUFACTURE OF AN IMPACT RESISTANT COMPONENT AND A CORRESPONDING IMPACT RESISTANT COMPONENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140711 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170217 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210104 |
|
INTG | Intention to grant announced |
Effective date: 20210113 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1398475 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013015745 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210902 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2877557 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210903 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210902 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211004 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013015745 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
26N | No opposition filed |
Effective date: 20220303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220216 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220119 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1398475 Country of ref document: AT Kind code of ref document: T Effective date: 20220119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230123 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230124 Year of fee payment: 11 Ref country code: DE Payment date: 20230119 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130119 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230120 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502013015745 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |