EP2798224B2 - Pump unit - Google Patents

Pump unit Download PDF

Info

Publication number
EP2798224B2
EP2798224B2 EP12813319.6A EP12813319A EP2798224B2 EP 2798224 B2 EP2798224 B2 EP 2798224B2 EP 12813319 A EP12813319 A EP 12813319A EP 2798224 B2 EP2798224 B2 EP 2798224B2
Authority
EP
European Patent Office
Prior art keywords
rotor
axial
impeller
pump assembly
rotor shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12813319.6A
Other languages
German (de)
French (fr)
Other versions
EP2798224B1 (en
EP2798224A1 (en
Inventor
Thomas Blad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47552982&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2798224(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Priority to EP12813319.6A priority Critical patent/EP2798224B2/en
Publication of EP2798224A1 publication Critical patent/EP2798224A1/en
Publication of EP2798224B1 publication Critical patent/EP2798224B1/en
Application granted granted Critical
Publication of EP2798224B2 publication Critical patent/EP2798224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/042Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0473Bearings hydrostatic; hydrodynamic for radial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/049Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel

Definitions

  • the invention relates to a pump unit with the features specified in the preamble of claim 1.
  • the electric drive motors are often designed as permanent magnet rotors, d. H. they have a permanent magnet rotor which rotates inside a stator. At least one pump impeller, which rotates in a pump housing, is connected to this permanent magnet rotor via a rotor shaft. During operation of the pump unit, an axial force acts on the shaft, which axial force is absorbed by a thrust bearing on the rotor shaft or the rotor.
  • These pump units are designed as wet-running pump units, d. H.
  • the rotor runs inside a canned or canned pot in the liquid to be pumped.
  • the bearings which store the rotor or the rotor shaft are usually lubricated by the liquid to be conveyed.
  • impurities contained in the liquid to be pumped can set the bearings, so that the motor can no longer start due to an insufficient starting torque.
  • the pump unit according to the invention has, as known pump units on an electric drive motor, which is preferably designed as a wet-running electric drive motor.
  • the electric drive motor has a stator and a rotor designed as a permanent magnet rotor.
  • the rotor is arranged inside a canned or canned pot, which separates the wet rotor space from the dry stator space in which the stator is arranged.
  • the pump unit has at least one impeller, which is connected via a rotor shaft to the rotor.
  • the impeller is preferably arranged in the interior of a pump housing, as defined in conventional centrifugal pump units, which defines the suction and pressure-side flow paths.
  • a thrust bearing is provided which receives the axial forces acting on the impeller and the rotor shaft during operation of the pump assembly. These are hydraulic axial forces which, in operation, are generally directed opposite to the inflow direction in which the liquid to be conveyed flows into the suction mouth of the impeller. The flow typically enters the impeller axially and radially out of the impeller.
  • the axial bearing is preferably arranged or formed on the rotor shaft or on the rotor.
  • at least one radial bearing is arranged on the rotor shaft. This radial bearing may be a separate component which is connected to the rotor shaft.
  • the inner bearing surface may be formed by the outer peripheral surface of the rotor shaft itself, which is on a fixed outer bearing surface in abutment.
  • the permanent magnet rotor and the stator are designed such that a magnetic axial force is generated between the rotor and the stator which acts in the direction of the axis of rotation of the rotor and which is directed in the opposite direction from the rotor to the stator of the inflow direction. Ie. Conversely, this additional axial force acts on the rotor in the direction of the inflow direction. Ie. this magnetic axial force counteracts the hydraulic axial force which occurs in normal operation and acts on the rotor.
  • the arrangement of permanent magnet rotor and stator is designed so that this magnetic axial force occurs even when the pump unit is not in operation, d. H. that the permanent magnetic force acts permanently, both during operation and during standstill of the drive motor.
  • this permanent magnetic axial force results from the arrangement of the permanent magnet rotor and the stator relative to each other. Ideally, therefore, no additional permanent magnetic or soft magnetic components are required. However, it is also conceivable, on the rotor and / or the stator an additional hard magnetic, d. H. Permanent magnetic or soft magnetic element or more such elements to be arranged, which generate the magnetic axial force or contribute to their generation.
  • the rotor shaft is slidably mounted with the rotor relative to the stator in the axial direction.
  • This arrangement makes it possible, by the additional magnetic axial force, to cause a displacement of the rotor shaft in the axial direction in certain operating conditions or in the idle state of the pump unit.
  • This makes it possible, as will be described below, at least partially disengage the bearings when the pump unit is not in operation, whereby a setting of the bearings can be avoided.
  • a seal of the rotor space as described below, can be achieved in the idle state to prevent ingress of impurities in the rotor space.
  • the rotor shaft is movable so that it can move axially in the inflow of the impeller in the idle state of the pump unit. Ie. at rest, the rotor shaft would move axially in the direction in which the liquid flows axially into the impeller due to the permanent magnetic force, since an opposing hydraulic force is absent. This is the direction which is directed opposite to the axial force acting in normal operation of the pump unit.
  • the hydraulic axial force is preferably greater than the magnetic force, so that due to the opposing action of the axial hydraulic force, the rotor shaft is again in the reverse direction, i. H. is moved against the inflow direction.
  • an axial force acting on the impeller and the rotor shaft during operation of the pump assembly is greater than the oppositely directed magnetic axial force.
  • the hydraulic axial force is greater than the oppositely directed magnetic axial force in the entire operating range or at least in the normal operating range of the pump unit. This ensures that the thrust bearing is held in a defined abutment on the rotor shaft or on the rotor by the hydraulic axial force during operation.
  • the hydraulic axial force falls away and it only acts the described permanent magnetic axial force, which then leads to a displacement of the rotor, wherein the at least one radial bearing at least partially disengaged.
  • the permanent magnetic axial force can then be reduced or canceled in the rest position. It is essential that the permanent magnetic axial force acts in operation of the pump unit against the hydraulic axial force, that the elimination of the hydraulic axial force, the magnetic axial force can cause a displacement of the rotor in the axial direction. Ie. According to the invention, the permanent magnetic axial force does not have to act on the rotor in all states of the pump unit, but only at least when the pump unit is switched off, in order then to displace the rotor shaft as desired in the axial direction. When restarting the pump unit can then be displaced by the occurring hydraulic axial force, the rotor shaft back into a position in which the at least radial thrust bearing is fully engaged.
  • the at least one radial bearing is configured in such a way that, when axial displacement of the rotor shaft in the inflow direction of the impeller caused by the magnetic axial force occurs, the opposing bearing surfaces of the radial bearing at least partially disengage.
  • the bearing surfaces of the radial bearing are opposite to each other and to each other. Due to the axial displacement is achieved that the bearing surfaces are moved axially relative to each other so that they overlap only in a smaller area, ie the overlap of the bearing surfaces is reduced, the bearing surfaces are partially disengaged.
  • the stator preferably surrounds the rotor circumferentially.
  • the permanent magnets in the rotor are usually magnetized in the radial direction or cause a radial magnetic field of the rotor.
  • the permanent magnetic magnetic field of the permanent magnet in the rotor interacts with the iron parts of the stator, whereby an additional axial force can be generated with a corresponding arrangement and design.
  • the additional magnetic axial force can be generated in that the rotor and the stator are designed and arranged such that at least during operation of the pump unit, the axial center of the rotor, d. H. the axial center of the magnetically active part of the rotor, in the direction opposite to the inflow direction, in which the liquid enters the impeller, is spaced from the axial center of the stator.
  • the rotor is arranged offset relative to the stator to the inlet opening or to the suction mouth. Due to the permanent magnetic magnetic field of the rotor, however, this endeavors to center in the interior of the iron core of the stator in the axial direction.
  • the axial offset thus generates a magnetic force which tends to pull the rotor into the centered position.
  • an additional axial force can be generated in the desired direction.
  • the at least one impeller is preferably fixed in the axial direction on the rotor shaft. This ensures that the magnetic axial force acting on the rotor, also acts on the impeller and beyond the impeller is fixed in the axial direction by the rotor.
  • the thrust bearing is designed such that its bearing surfaces when moving the rotor shaft in the inflow direction into the impeller out of engagement.
  • the at least one radial bearing is designed as a sliding bearing, of which a first bearing surface on the outer circumference of the rotor shaft and an opposite second bearing surface is formed in a fixed bearing ring.
  • the fixed bearing ring is preferably formed as a ceramic bearing ring.
  • the rotor shaft may preferably be formed as a ceramic shaft or at least preferably have ceramic bearing surfaces.
  • the diameter of the rotor shaft relative to the diameter of this bearing surface is reduced at least one side facing the impeller of a formed on the rotor shaft bearing surface of the radial bearing. This ensures that when the rotor shaft by the magnetic axial force in the direction away from the wheel, d. H. the inflow direction of the impeller is displaced, the diameter reduced surface of the rotor shaft enters the radial bearing or the bearing ring, so that in this area the bearing surface on the inner circumference of the bearing ring is no longer applied to the outer circumference of the rotor shaft. In this way, the bearing surfaces of the radial bearing at least partially disengaged, so that the friction when starting and the risk of setting the radial bearing is reduced.
  • two radial bearings are arranged on the rotor shaft, which are designed in the manner described above, wherein the two bearings are preferably located on opposite axial sides of the rotor.
  • a radial bearing is preferably located on the side facing away from the rotor of the rotor.
  • This radial bearing is preferably arranged in the vicinity of the bottom of a canned pot.
  • the second radial bearing is arranged on the side facing the impeller of the rotor and may be part of a combined radial thrust bearing, which is arranged between the rotor and impeller on the rotor shaft.
  • the opposing bearing surfaces of the radial bearing are dimensioned in their axial extent and arranged relative to each other such that they are disengaged by more than 50%, preferably more than 75% in the axial displacement of the rotor shaft.
  • the bearing surfaces are out of engagement, so that the friction is significantly reduced and the risk of settling of the bearing is minimized by contamination between the bearing surfaces.
  • the impeller is preferably sealed at its suction mouth via a suction seal against the pump housing.
  • the suction seal forms a stationary component on the pump housing.
  • the suction seal is arranged to the impeller such that upon an axial displacement of the rotor shaft in the inflow direction of the impeller, the suction seal and the impeller at least partially, preferably completely disengage.
  • the flowability of the pump assembly is improved at standstill, since so fluid can flow past the impeller through the pump housing and the impeller for this flow forms no or only a significantly reduced resistance.
  • this embodiment in which the suction of the impeller at standstill of the impeller out of engagement, in combination with the bearings, in which the bearing surfaces at least partially disengage at standstill used.
  • this arrangement of the suction seal on the impeller can also be realized independently of the corresponding design of the bearing.
  • the rotor shaft is displaceable by a degree which is smaller than or equal to an existing during operation of the pump assembly axial distance between the axial center of the rotor and the axial center of the stator. Ie. the axial mobility of the rotor shaft is limited and to a degree which is less than or equal to the axial displacement occurring between rotor and stator in operation. This ensures that a sufficient magnetic axial force always acts on the rotor shaft in order to be able to shift it by the desired amount.
  • an emergency bearing surface which faces a fixed thrust bearing surface, is formed on the at least one impeller on an axial side facing the rotor.
  • the hydraulic axial force acting on the impeller against the inflow direction can decrease so much that the thrust bearing receiving this force during operation is relieved. So it can happen that the bearing surfaces of this thrust bearing are no longer held in this operating condition in abutment.
  • the oppositely directed emergency bearing is provided.
  • the emergency is preferably used when the Rotor shaft is displaced in the manner described above by the magnetic force in the axial direction.
  • the emergency bearing serves as a stop which limits the movement of the rotor shaft in the axial direction. In the opposite direction, the movement is limited by the actual thrust bearing. Thus, the emergency bearing comes then also when starting the drive motor from the idle state, if the actual thrust bearing is not yet in abutment to effect.
  • the thrust bearing surface on which the emergency bearing surface comes to rest is preferably formed by an axial end face of a stationary bearing ring, a radial and / or thrust bearing of the rotor shaft.
  • this bearing ring is preferably a ceramic component whose front side preferably forms the actual axial bearing surface. This front side is the side facing away from the impeller and the rotor facing side of the bearing ring.
  • the radial bearing surface is formed by the inner peripheral surface of the bearing ring.
  • the bearing gap between the rotor shaft and the inner circumference of the bearing ring is simultaneously closed towards the pump chamber, in which the impeller is arranged, so that contaminants are prevented from entering the bearing gap can.
  • the impeller is arranged relative to the bearing ring such that the emergency bearing surface can be brought into contact with the fixed thrust bearing surface by the axial displacement of the rotor shaft.
  • the emergency bearing can be brought to bear against the bearing ring, so that in the idle state, when the pump unit is stationary, the bearing gap is closed by the emergency bearing surface.
  • the emergency bearing surface is further preferably formed by an axially projecting annular projection on the impeller.
  • the impeller is preferably made in one piece with this projection made of plastic.
  • the emergency bearing surface is preferably axially spaced from the fixed thrust bearing surface.
  • the normal thrust bearing is engaged to receive the axial hydraulic forces acting on the impeller and rotor.
  • the normal operating state is that in which such a hydraulic force acts opposite to the direction of inflow into the impeller.
  • the distance of the emergency bearing surface of the fixed thrust bearing surface is smaller than or equal to an existing in operation of the pump assembly axial distance between the axial center of the rotor and the axial center of the stator.
  • This arrangement ensures that when the rotor shaft is moved to bring the emergency bearing into and out of engagement with the thrust bearing surface, the offset is not greater than the offset between the rotor and the stator, so that there is always a magnetic axial force, which is the emergency bearing surface holds in abutment with the thrust bearing surface, as long as no oppositely acting hydraulic axial force leads to a displacement of the rotor shaft in the opposite direction and brings the emergency bearing surface of the thrust bearing surface disengaged.
  • At least one sealing element can be arranged between the rotor shaft or the impeller on the one side and a stationary bearing ring or a bearing holder on the other side, which can be brought into sealing engagement by the axial displacement of the rotor shaft. So can on the impeller z.
  • an annular sealing element may be arranged, which is also sealingly engageable with the end face of a fixed bearing ring to the plant.
  • the sealing element on the impeller could also be arranged or formed so that it is on the surface of a bearing or the bearing ring surrounding bearing support can come to the plant.
  • such a sealing element could also be arranged on the axial bearing surface of the bearing ring and the impeller come to rest there with a suitable sealing surface during axial movement of the rotor shaft. It would also be possible to arrange such an annular seal not on the impeller but on the rotor shaft so that it can come into contact, for example, with the stationary bearing ring. In all these arrangements, the seal can thus seal the bearing gap between the bearing ring and the rotor shaft in the idle state of the pump unit to prevent flow through the bearing and the ingress of contaminants.
  • this sealing of the bearing gap by axial displacement of the rotor shaft could also be realized independently of the configuration in which the bearings are at least partially disengaged by the axial displacement of the shaft. If the axial displacement of the rotor shaft is only used to bring the sealing element in and out of engagement, a much smaller axial displacement of the rotor shaft may be sufficient to effect this. This has the advantage that the rotor only has to be displaced axially relative to the stator by a small amount so that the magnetic efficiency is substantially not impaired.
  • the pump unit according to the invention has a pump housing 2, in which an impeller 4 is arranged.
  • the impeller 4 has an axially directed central suction mouth 6, through which the liquid to be conveyed enters the impeller 4.
  • the suction mouth 6 is located in the interior of the pump housing 2 against a flow channel, which opens into a suction nozzle 8.
  • a pressure port 10 is arranged on the pump housing 2, which is connected via a flow channel with the peripheral region of the impeller 4, which forms a spiral channel, in connection.
  • the impeller 4 is connected via a rotor shaft 12 with a permanent magnet rotor 14.
  • the rotor shaft 12 is preferably made of ceramic.
  • permanent magnets 16 are arranged, which generate a radially directed magnetic field of the rotor 14.
  • the permanent magnet rotor 14 is arranged in the interior of a split tube 18 or a canned pot 18.
  • the can 18 is surrounded by the stator 20.
  • the impeller 4 is rotationally fixed and fixed in the axial direction X fixed to the rotor shaft 12.
  • the rotor shaft 12 is slidably mounted in two ceramic bearing rings 22 and 24.
  • the bearing ring 22 is a pure radial bearing.
  • the bearing ring 24 simultaneously assumes the function of the thrust bearing.
  • the impeller 4 facing away from the axial end face of the bearing ring 24 is formed as a thrust bearing surface on which a connected to the rotor shaft 12 Axiallagering 26 comes to rest.
  • the thrust bearing 26 is fixed in the axial direction X on the rotor shaft 12.
  • the ceramic shaft 12 With its outer peripheral surfaces on the inner circumference of the bearing rings 22 and 24 slidably.
  • the rotor shaft 12 is movable in the axial direction X and is in the normal operation of the pump unit by the hydraulic axial force in the in Fig. 2 shown held state in which the rotor shaft 12 is moved counter to the inflow E so far that the thrust bearing ring on the axial side 28 of the bearing ring 24 slidably abuts.
  • the axial center MR of the rotor ie the magnetically active part of the rotor, is displaced from the axial center MS of the stator 20 or the iron part 30 by a dimension a in the axial direction.
  • the pump unit or the drive motor is designed so that this magnetic force in normal operation, ie preferably in most operating areas of the pump unit is smaller than the hydraulic force, so that the Axiallagerring 26 is held on the axial side 28 of the bearing ring 24 in abutment.
  • recesses 32 Adjacent to the regions of the rotor shaft 12, which form the bearing surfaces 22 and 24 cooperating radial bearing surfaces 34, recesses 32 are formed on the outer circumference of the rotor shaft, in the region of the outer diameter of the rotor shaft 12 is reduced.
  • the indentations 32 adjoin the side of the bearing surfaces 34 facing the impeller 4.
  • these recesses 32 are of reduced diameter in the bearing rings 22 and 24 and simultaneously enters a portion of the bearing surfaces 34 at the opposite axial end of the bearing rings 22 and 24 from. Ie. the bearing surfaces 34 are partially disengaged from the inner peripheral surfaces of the bearing rings 22 and 24, which form their radial bearing surfaces. In this way, the friction in the radial bearings 22 and 24 is reduced at rest and minimizes the risk of setting in the camps.
  • the impeller 4 is sealed at its suction mouth 6 via a suction seal 35 relative to the pump housing 2.
  • the suction seal 35 is fixed to the pump housing 2 and engages in the suction mouth 6 a.
  • the inner circumference of the suction mouth 6 thus overlaps the outer circumference of the suction seal 35, wherein the suction mouth 6 rotates relative to the suction seal 35.
  • the suction seal may be formed in a conventional manner as a collar-shaped sheet metal component.
  • the pump unit can be flowed through at a better standstill, since the flow through the gap between the suction seal 35 and the end face of the impeller 4 on the impeller can be done by the pump housing 2 to the discharge nozzle 10. This reduces the flow resistance at standstill.
  • the impeller 4 has on its end remote from the suction mouth 6 an annular projection 36 which faces the bearing ring 24.
  • the projection 36 is made in one piece with the impeller 4 made of plastic and forms an emergency bearing surface.
  • the rotor shaft 12 In operating states in which the hydraulic axial force is insufficient to hold the thrust bearing in abutment, ie to hold the thrust bearing ring 26 in abutment against the axial side 28 of the bearing ring 24, it may happen that the rotor shaft 12 also engages in the inoperative position during operation Fig. 3 shown position moves. Then, the projection 36 as an emergency bearing axial bearing in the opposite direction, in which it comes to rest on the impeller 4 facing axial side of the bearing ring 24, which is the axial side 28, which forms the actual thrust bearing surface, facing away.
  • Such an operating state can occur, in particular, when the pump unit starts up.
  • penetration of dirt into the bearing gap and the rotor space can be prevented.
  • annular seal 38 is shown, which is arranged circumferentially in this embodiment on the rotor shaft 12.
  • the seal 38 is arranged substantially in the region of the rotor 14 facing the axial end of the impeller 4 on the outer circumference of the rotor shaft 12.
  • this seal 38 comes in the region of the bearing gap on the bearing ring 24 sealingly to the plant.
  • Such a seal 38 could also be formed in the peripheral region of the rotor shaft 12 on the impeller 4, in particular be cast directly to the impeller 4 made of an elastic plastic.
  • Such a seal 38 could also be used as an alternative to the projection 36, as well as the projection 36 could be used without the seal 38.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft ein Pumpenaggregat mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.The invention relates to a pump unit with the features specified in the preamble of claim 1.

Insbesondere als Heizungsumwälzpumpenaggregate sind Pumpenaggregate bekannt, welche eine Baueinheit aus einer Pumpe und einem elektrischen Antriebsmotor bilden. Die elektrischen Antriebsmotoren sind häufig als Permanentmagnetrotoren ausgebildet, d. h. sie weisen einen Permanentmagnetrotor auf, welcher im Inneren eines Stators rotiert. Zumindest ein Pumpenlaufrad, welches in einem Pumpengehäuse rotiert, ist über eine Rotorwelle mit diesem Permanentmagnetrotor verbunden. Im Betrieb des Pumpenaggregates wirkt auf die Welle eine Axialkraft, welche von einem Axiallager an der Rotorwelle oder dem Rotor aufgenommen wird.In particular, as Heizungsumwälzpumpenaggregate pump units are known, which form a structural unit of a pump and an electric drive motor. The electric drive motors are often designed as permanent magnet rotors, d. H. they have a permanent magnet rotor which rotates inside a stator. At least one pump impeller, which rotates in a pump housing, is connected to this permanent magnet rotor via a rotor shaft. During operation of the pump unit, an axial force acts on the shaft, which axial force is absorbed by a thrust bearing on the rotor shaft or the rotor.

Diese Pumpenaggregate sind als nasslaufende Pumpenaggregate ausgebildet, d. h. der Rotor läuft im Inneren eines Spaltrohres oder Spaltrohrtopfes in der zu fördernden Flüssigkeit. Die Lager, welche den Rotor bzw. die Rotorwelle lagern, werden in der Regel durch die zu fördernde Flüssigkeit geschmiert. Bei diesen Pumpenaggregaten besteht, während längerer Stillstandzeiten das Problem, dass Verunreinigungen, welche in der zu fördernden Flüssigkeit enthalten sind, die Lager festsetzen können, sodass der Motor aufgrund eines zu geringen Startmomentes dann nicht mehr anlaufen kann.These pump units are designed as wet-running pump units, d. H. The rotor runs inside a canned or canned pot in the liquid to be pumped. The bearings which store the rotor or the rotor shaft are usually lubricated by the liquid to be conveyed. In the case of these pump sets, there is the problem, during prolonged downtimes, that impurities contained in the liquid to be pumped can set the bearings, so that the motor can no longer start due to an insufficient starting torque.

Aus US 4,072,446 ist ein Pumpenaggregat mit einem Kugelmotor bekannt, welches ein kugelförmiges Lager aufweist. Bei diesem Pumpenaggregat werden von dem Stator auf den Rotor wirkende Axialkräfte erzeugt, welche von diesem Lager im Betrieb aufgenommen werden. Diese Axialkräfte wirken den im Betrieb auftretenden hydraulischen Axialkräften entgegen. Die kugelförmige Lagerung bildet eine kombinierte Axial- und Radiallagerung. Auch bei dieser Lagerung besteht die Gefahr, dass sich das Lager im Stillstand festsetzt.Out U.S. 4,072,446 a pump unit with a spherical motor is known, which has a spherical bearing. In this pump unit axial forces are generated by the stator acting on the rotor, which are absorbed by this bearing in operation. These axial forces counteract the hydraulic axial forces occurring during operation. The spherical bearing forms a combined axial and radial bearing. Even with this storage, there is a risk that the camp is stuck at a standstill.

Im Hinblick auf diese Problematik ist es Aufgabe der Erfindung, ein Pumpenaggregat dahingehend zu verbessern, dass dasIn view of this problem, it is an object of the invention to improve a pump unit to the effect that the

Pumpenaggregat auch nach längeren Stillstandszeigen problemlos anlaufen kann.Pump unit can start even after long standstill problems.

Diese Aufgabe wird durch ein Pumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This object is achieved by a pump unit having the features specified in claim 1. Preferred embodiments will become apparent from the subclaims, the following description and the accompanying figures.

Das erfindungsgemäße Pumpenaggregat weist wie bekannte Pumpenaggregate einen elektrischen Antriebsmotor auf, welcher vorzugsweise als nasslaufender elektrischer Antriebsmotor ausgebildet ist. Der elektrische Antriebsmotor weist einen Stator und einen als Permanentmagnetrotor ausgebildeten Rotor auf. Im Falle eines nasslaufenden Rotors ist der Rotor im Inneren eines Spaltrohres oder Spaltrohrtopfes angeordnet, welcher den nassen Rotorraum von dem trockenen Statorraum, in welchem der Stator angeordnet ist, trennt. Ferner weist das Pumpenaggregat zumindest ein Laufrad auf, welches über eine Rotorwelle mit dem Rotor verbunden ist. Das Laufrad ist wie bei herkömmlichen Kreiselpumpenaggregaten vorzugsweise im Inneren eines Pumpengehäuses angeordnet, welches die saug- und druckseitigen Strömungswege definiert. Ferner ist ein Axiallager vorgesehen, welches die im Betrieb des Pumpenaggregates auf das Laufrad und die Rotorwelle wirkenden Axialkräfte aufnimmt. Dies sind hydraulische Axialkräfte, welche im Betrieb in der Regel entgegengesetzt der Einströmrichtung, in welcher die zu fördernde Flüssigkeit in den Saugmund des Laufrades einströmt, gerichtet sind. Die Strömung tritt üblicherweise axial in das Laufrad ein und radial aus dem Laufrad aus. Das Axiallager ist vorzugsweise an der Rotorwelle oder am Rotor angeordnet oder ausgebildet. Zusätzlich zu dem Axiallager ist an der Rotorwelle zumindest ein Radiallager angeordnet. Diese Radiallager kann ein separates Bauteil sein, welches mit der Rotorwelle verbunden ist. Alternativ kann die innere Lagerfläche von der Außenumfangsfläche von der Rotorwelle selber gebildet sein, welche an einer feststehenden äußeren Lagerfläche in Anlage ist.The pump unit according to the invention has, as known pump units on an electric drive motor, which is preferably designed as a wet-running electric drive motor. The electric drive motor has a stator and a rotor designed as a permanent magnet rotor. In the case of a wet-running rotor, the rotor is arranged inside a canned or canned pot, which separates the wet rotor space from the dry stator space in which the stator is arranged. Furthermore, the pump unit has at least one impeller, which is connected via a rotor shaft to the rotor. The impeller is preferably arranged in the interior of a pump housing, as defined in conventional centrifugal pump units, which defines the suction and pressure-side flow paths. Furthermore, a thrust bearing is provided which receives the axial forces acting on the impeller and the rotor shaft during operation of the pump assembly. These are hydraulic axial forces which, in operation, are generally directed opposite to the inflow direction in which the liquid to be conveyed flows into the suction mouth of the impeller. The flow typically enters the impeller axially and radially out of the impeller. The axial bearing is preferably arranged or formed on the rotor shaft or on the rotor. In addition to the axial bearing, at least one radial bearing is arranged on the rotor shaft. This radial bearing may be a separate component which is connected to the rotor shaft. Alternatively, the inner bearing surface may be formed by the outer peripheral surface of the rotor shaft itself, which is on a fixed outer bearing surface in abutment.

Erfindungsgemäß sind der Permanentmagnetrotor und der Stator derart ausgestaltet, dass zwischen Rotor und Stator eine magnetische Axialkraft erzeugt wird, welche in Richtung der Drehachse des Rotors wirkt und welche von dem Rotor auf den Stator der Einströmrichtung in das Laufrad entgegengesetzt gerichtet ist. D. h. umgekehrt gesehen wirkt diese zusätzliche Axialkraft auf den Rotor in Richtung der Einströmrichtung. D. h. diese magnetische Axialkraft wirkt der im normalen Betrieb auftretenden, auf den Rotor wirkenden hydraulischen Axialkraft entgegen. Insbesondere ist die Anordnung von Permanentmagnetrotor und Stator so ausgebildet, dass diese magnetische Axialkraft auch dann auftritt, wenn das Pumpenaggregat nicht in Betrieb ist, d. h. dass die permanentmagnetische Kraft dauerhaft wirkt, sowohl im Betrieb als auch beim Stillstand des Antriebsmotors. Dadurch wird eine Entlastung des Axiallagers im Stillstand erreicht, sodass die Gefahr eines unerwünschten Blockierens des Lagers im Stillstand verringert wird. Darüber hinaus ist das Lager auch beim Anlaufen des Motors entlastet, sodass die Reibung reduziert wird und so das erforderliche Startmoment verringert ist. Vorzugsweise resultiert diese permanentmagnetische Axialkraft aus der Anordnung des Permanentmagnetrotors und des Stators relativ zueinander. Idealerweise sind somit keine zusätzlichen permanentmagnetischen oder weichmagnetischen Bauteile erforderlich. Es ist jedoch auch denkbar, an dem Rotor und/oder dem Stator ein zusätzliches hartmagnetisches, d. h. permanentmagnetisches oder weichmagnetisches Element oder mehrere solche Elemente anzuordnen, welche die magnetische Axialkraft erzeugen oder zu deren Erzeugung beitragen.According to the invention, the permanent magnet rotor and the stator are designed such that a magnetic axial force is generated between the rotor and the stator which acts in the direction of the axis of rotation of the rotor and which is directed in the opposite direction from the rotor to the stator of the inflow direction. Ie. Conversely, this additional axial force acts on the rotor in the direction of the inflow direction. Ie. this magnetic axial force counteracts the hydraulic axial force which occurs in normal operation and acts on the rotor. In particular, the arrangement of permanent magnet rotor and stator is designed so that this magnetic axial force occurs even when the pump unit is not in operation, d. H. that the permanent magnetic force acts permanently, both during operation and during standstill of the drive motor. As a result, a relief of the thrust bearing is achieved at a standstill, so that the risk of unwanted locking of the bearing is reduced at a standstill. In addition, the bearing is relieved even when starting the engine, so that the friction is reduced and so the required starting torque is reduced. Preferably, this permanent magnetic axial force results from the arrangement of the permanent magnet rotor and the stator relative to each other. Ideally, therefore, no additional permanent magnetic or soft magnetic components are required. However, it is also conceivable, on the rotor and / or the stator an additional hard magnetic, d. H. Permanent magnetic or soft magnetic element or more such elements to be arranged, which generate the magnetic axial force or contribute to their generation.

Ferner ist die Rotorwelle mit dem Rotor relativ zu dem Stator in axialer Richtung verschiebbar gelagert. Diese Anordnung ermöglicht es, durch die zusätzliche magnetische Axialkraft, eine Verschiebung der Rotorwelle in axialer Richtung in bestimmten Betriebszuständen bzw. im Ruhezustand des Pumpenaggregates zu bewirken. Dies ermöglicht es, wie nachfolgend beschrieben wird, die Lager zumindest teilweise außer Eingriff zu bringen, wenn das Pumpenaggregat nicht in Betrieb ist, wodurch ein Festsetzen der Lager vermieden werden kann. Darüber hinaus kann auch eine Abdichtung des Rotorraums, wie unten beschrieben wird, im Ruhezustand erreicht werden, um ein Eindringen von Verunreinigungen in den Rotorraum zu verhindern.Further, the rotor shaft is slidably mounted with the rotor relative to the stator in the axial direction. This arrangement makes it possible, by the additional magnetic axial force, to cause a displacement of the rotor shaft in the axial direction in certain operating conditions or in the idle state of the pump unit. This makes it possible, as will be described below, at least partially disengage the bearings when the pump unit is not in operation, whereby a setting of the bearings can be avoided. In addition, a seal of the rotor space, as described below, can be achieved in the idle state to prevent ingress of impurities in the rotor space.

Besonders bevorzugt ist die Rotorwelle derart beweglich, dass sie sich im Ruhezustand des Pumpenaggregates in der Einströmrichtung des Laufrades axial verschieben kann. D. h. im Ruhezustand würde sich die Rotorwelle aufgrund der permanentmagnetischen Kraft, da eine entgegensetzte hydraulische Kraft fehlt, axial in derjenigen Richtung verschieben, in welcher die Flüssigkeit in das Laufrad axial einströmt. Dies ist die Richtung, welche der im Normalbetrieb des Pumpenaggregates wirkenden Axialkraft entgegengesetzt gerichtet ist. Wenn das Pumpenaggregat in Betrieb genommen wird, ist die hydraulische Axialkraft vorzugsweise größer als die magnetische Kraft, sodass aufgrund der entgegengesetzt gerichteten Wirkung der hydraulischen Axialkraft die Rotorwelle wieder in die umgekehrte Richtung, d. h. entgegen der Einströmrichtung verschoben wird.Particularly preferably, the rotor shaft is movable so that it can move axially in the inflow of the impeller in the idle state of the pump unit. Ie. at rest, the rotor shaft would move axially in the direction in which the liquid flows axially into the impeller due to the permanent magnetic force, since an opposing hydraulic force is absent. This is the direction which is directed opposite to the axial force acting in normal operation of the pump unit. When the pump unit is put into operation, the hydraulic axial force is preferably greater than the magnetic force, so that due to the opposing action of the axial hydraulic force, the rotor shaft is again in the reverse direction, i. H. is moved against the inflow direction.

Vorzugsweise ist eine im Betrieb des Pumpenaggregates auf das Laufrad und die Rotorwelle wirkende Axialkraft größer als die entgegensetzt gerichtete magnetische Axialkraft. Bevorzugt ist im gesamten Betriebsbereich oder zumindest im normalen Betriebsbereich des Pumpenaggregates die hydraulische Axialkraft größer als die entgegengesetzt gerichtete magnetische Axialkraft. Dadurch wird erreicht, dass durch die hydraulische Axialkraft im Betrieb das Axiallager an der Rotorwelle bzw. am Rotor in definierter Anlage gehalten wird. Wenn das Pumpenaggregat außer Betrieb genommen wird, fällt die hydraulische Axialkraft weg und es wirkt lediglich noch die beschriebene permanentmagnetische Axialkraft, welche dann zu einer Verlagerung des Rotors führt, bei welcher das zumindest eine Radiallager zumindest teilweise außer Eingriff tritt. Je nach Ausgestaltung der magnetischen Anordnung, welche die permanentmagnetische Kraft verursacht, kann dann in der Ruhelage die permanentmagnetische Axialkraft verringert oder aufgehoben sein. Wesentlich ist, dass die permanentmagnetische Axialkraft im Betrieb des Pumpenaggregates so gegen die hydraulische Axialkraft wirkt, dass beim Wegfall der hydraulischen Axialkraft die magnetische Axialkraft eine Verlagerung des Rotors in axialer Richtung verursachen kann. D. h. erfindungsgemäß muss die permanentmagnetische Axialkraft nicht in allen Zuständen des Pumpenaggregates auf den Rotor wirken, sondern lediglich zumindest beim Abschalten des Pumpenaggregates, um dann die Rotorwelle wie gewünscht in axialer Richtung zu verlagern. Beim Wiederanlaufen des Pumpenaggregates kann dann durch die auftretende hydraulische Axialkraft die Rotorwelle wieder in eine Position verlagert werden, in welcher das zumindest radiale Axiallager vollständig in Eingriff ist.Preferably, an axial force acting on the impeller and the rotor shaft during operation of the pump assembly is greater than the oppositely directed magnetic axial force. Preferably, the hydraulic axial force is greater than the oppositely directed magnetic axial force in the entire operating range or at least in the normal operating range of the pump unit. This ensures that the thrust bearing is held in a defined abutment on the rotor shaft or on the rotor by the hydraulic axial force during operation. When the pump set is taken out of service, the hydraulic axial force falls away and it only acts the described permanent magnetic axial force, which then leads to a displacement of the rotor, wherein the at least one radial bearing at least partially disengaged. Depending on the configuration of the magnetic arrangement, which causes the permanent magnetic force, the permanent magnetic axial force can then be reduced or canceled in the rest position. It is essential that the permanent magnetic axial force acts in operation of the pump unit against the hydraulic axial force, that the elimination of the hydraulic axial force, the magnetic axial force can cause a displacement of the rotor in the axial direction. Ie. According to the invention, the permanent magnetic axial force does not have to act on the rotor in all states of the pump unit, but only at least when the pump unit is switched off, in order then to displace the rotor shaft as desired in the axial direction. When restarting the pump unit can then be displaced by the occurring hydraulic axial force, the rotor shaft back into a position in which the at least radial thrust bearing is fully engaged.

Das zumindest eine Radiallager ist derart ausgestaltet ist, dass bei einer durch die magnetische Axialkraft verursachten axialen Verschiebung der Rotorwelle in der Einströmrichtung des Laufrades die einander gegenüberliegenden Lagerflächen des Radiallagers zumindest teilweise außer Eingriff treten. Im normalen Betrieb des Pumpenaggregates liegen die Lagerflächen des Radiallagers einander gegenüber und aneinander an. Durch die axiale Verschiebung wird erreicht, dass die Lagerflächen axial relativ so zu einander verschoben werden, dass sie sich nur noch in einem kleineren Bereich überdecken, d. h. die Überlappung der Lagerflächen wird reduziert, die Lagerflächen treten teilweise außer Eingriff. So wird die Reibung in dem Radiallager reduziert und die Gefahr eines Festsetzens im Stillstand wird verringert.
Der Stator umgibt den Rotor vorzugsweise umfänglich. Bei dieser Anordnung sind die Permanentmagneten im Rotor üblicherweise in radialer Richtung magnetisiert bzw. bewirken ein radiales Magnetfeld des Rotors. Das permanentmagnetische Magnetfeld der Permanentmagneten im Rotor tritt in Wechselwirkung mit den Eisenteilen des Stators, wodurch bei entsprechender Anordnung und Ausgestaltung eine zusätzliche axiale Kraft erzeugt werden kann.
The at least one radial bearing is configured in such a way that, when axial displacement of the rotor shaft in the inflow direction of the impeller caused by the magnetic axial force occurs, the opposing bearing surfaces of the radial bearing at least partially disengage. In normal operation of the pump unit, the bearing surfaces of the radial bearing are opposite to each other and to each other. Due to the axial displacement is achieved that the bearing surfaces are moved axially relative to each other so that they overlap only in a smaller area, ie the overlap of the bearing surfaces is reduced, the bearing surfaces are partially disengaged. Thus, the friction is reduced in the radial bearing and the risk of immobilizing at a standstill is reduced.
The stator preferably surrounds the rotor circumferentially. In this arrangement, the permanent magnets in the rotor are usually magnetized in the radial direction or cause a radial magnetic field of the rotor. The permanent magnetic magnetic field of the permanent magnet in the rotor interacts with the iron parts of the stator, whereby an additional axial force can be generated with a corresponding arrangement and design.

Beispielsweise kann die zusätzliche magnetische Axialkraft dadurch erzeugt werden, dass der Rotor und der Stator derart ausgebildet und angeordnet sind, dass zumindest im Betrieb des Pumpenaggregates die axiale Mitte des Rotors, d. h. die axiale Mitte des magnetisch wirksamen Teils des Rotors, in Richtung entgegengesetzt der Einströmrichtung, in welcher die Flüssigkeit in das Laufrad eintritt, von der axialen Mitte des Stators beabstandet ist. D. h. der Rotor wird relativ zum Stator zur Einströmöffnung bzw. zum Saugmund hin versetzt angeordnet. Aufgrund des permanentmagnetischen Magnetfeldes des Rotors ist dieser jedoch bestrebt, sich im Inneren des Eisenkerns des Stators in axialer Richtung zu zentrieren. Durch den axialen Versatz wird somit eine magnetische Kraft erzeugt, welche bestrebt ist, den Rotor in die zentrierte Position zu ziehen. D. h. idealerweise kann bei einem sonst in herkömmlicher Weise ausgebildeten Permanentmagnetrotor und einem zugehörigen Stator allein durch axialen Versatz des Rotors im Betrieb des Pumpenaggregates eine zusätzliche Axialkraft in der gewünschten Richtung erzeugt werden.For example, the additional magnetic axial force can be generated in that the rotor and the stator are designed and arranged such that at least during operation of the pump unit, the axial center of the rotor, d. H. the axial center of the magnetically active part of the rotor, in the direction opposite to the inflow direction, in which the liquid enters the impeller, is spaced from the axial center of the stator. Ie. the rotor is arranged offset relative to the stator to the inlet opening or to the suction mouth. Due to the permanent magnetic magnetic field of the rotor, however, this endeavors to center in the interior of the iron core of the stator in the axial direction. The axial offset thus generates a magnetic force which tends to pull the rotor into the centered position. Ie. Ideally, in an otherwise conventionally formed permanent magnet rotor and an associated stator solely by axial displacement of the rotor during operation of the pump unit an additional axial force can be generated in the desired direction.

Das zumindest eine Laufrad ist bevorzugt in axialer Richtung an der Rotorwelle fixiert. Dadurch wird erreicht, dass die magnetische Axialkraft, welche auf den Rotor wirkt, auch auf das Laufrad wirkt und darüber hinaus das Laufrad in axialer Richtung durch den Rotor fixiert wird.The at least one impeller is preferably fixed in the axial direction on the rotor shaft. This ensures that the magnetic axial force acting on the rotor, also acts on the impeller and beyond the impeller is fixed in the axial direction by the rotor.

Das Axiallager ist derart ausgebildet, dass dessen Lagerflächen bei Verschiebung der Rotorwelle in der Einströmrichtung in das Laufrad außer Anlage treten. So wird erreicht, dass im Ruhezustand, wenn die hydraulische Axialkraft nicht wirkt und die Rotorwelle durch die magnetische Kraft in der Einströmrichtung, d. h. entgegen der im Normalbetrieb wirkenden Axialkraft verschoben wird, das Axiallager außer Eingriff tritt. So kann ein Festsetzen des Lagers im Ruhezustand verhindert werden. Darüber hinaus ist bei erneutem Anlaufen die Reibung reduziert.The thrust bearing is designed such that its bearing surfaces when moving the rotor shaft in the inflow direction into the impeller out of engagement. Thus it is achieved that in the idle state, when the hydraulic axial force does not act and the rotor shaft by the magnetic force in the inflow direction, d. H. is moved against the axial force acting in normal operation, the thrust bearing is disengaged. Thus, a setting of the bearing can be prevented at rest. In addition, the friction is reduced when restarting.

Besonders bevorzugt ist das zumindest eine Radiallager als Gleitlager ausgebildet, von welchem eine erste Lagerfläche am Außenumfang der Rotorwelle und eine gegenüberliegende zweite Lagerfläche in einem feststehenden Lagerring ausgebildet ist. Der feststehende Lagerring ist vorzugsweise als Keramiklagering ausgebildet. Auch die Rotorwelle kann vorzugsweise als Keramikwelle ausgebildet sein oder zumindest bevorzugt keramische Lagerflächen aufweisen.Particularly preferably, the at least one radial bearing is designed as a sliding bearing, of which a first bearing surface on the outer circumference of the rotor shaft and an opposite second bearing surface is formed in a fixed bearing ring. The fixed bearing ring is preferably formed as a ceramic bearing ring. Also, the rotor shaft may preferably be formed as a ceramic shaft or at least preferably have ceramic bearing surfaces.

Weiter bevorzugt ist an zumindest einer dem Laufrad zugewandten Seite einer an der Rotorwelle ausgebildete Lagerfläche des Radiallagers der Durchmesser der Rotorwelle gegenüber dem Durchmesser dieser Lagerfläche reduziert. Dadurch wird erreicht, dass, wenn die Rotorwelle durch die magnetische Axialkraft in die dem Laufrad abgewandte Richtung, d. h. die Einströmrichtung des Laufrades verschoben wird, die im Durchmesser reduzierte Fläche der Rotorwelle in das Radiallager bzw. den Lagerring eintritt, sodass in diesem Bereich die Lagerfläche am Innenumfang des Lagerringes nicht mehr am Außenumfang der Rotorwelle anliegt. Auf diese Weise treten die Lagerflächen des Radiallagers zumindest teilweise außer Eingriff, sodass die Reibung beim Anlaufen und die Gefahr des Festsetzens des Radiallagers reduziert wird.More preferably, the diameter of the rotor shaft relative to the diameter of this bearing surface is reduced at least one side facing the impeller of a formed on the rotor shaft bearing surface of the radial bearing. This ensures that when the rotor shaft by the magnetic axial force in the direction away from the wheel, d. H. the inflow direction of the impeller is displaced, the diameter reduced surface of the rotor shaft enters the radial bearing or the bearing ring, so that in this area the bearing surface on the inner circumference of the bearing ring is no longer applied to the outer circumference of the rotor shaft. In this way, the bearing surfaces of the radial bearing at least partially disengaged, so that the friction when starting and the risk of setting the radial bearing is reduced.

Besonders bevorzugt sind zwei Radiallager an der Rotorwelle angeordnet, welche in der vorangehend beschrieben Weise ausgestaltet sind, wobei die beiden Lager vorzugsweise an entgegengesetzten Axialseiten des Rotors gelegen sind. D. h. ein Radiallager ist vorzugsweise an der dem Laufrad abgewandten Seite des Rotors gelegen. Dieses Radiallager ist vorzugsweise in der Nähe des Bodens eines Spaltrohrtopfes angeordnet. Das zweite Radiallager ist an der dem Laufrad zugewandten Seite des Rotors angeordnet und kann Teil eines kombinierten Radial-Axiallagers sein, welches zwischen Rotor und Laufrad an der Rotorwelle angeordnet ist.Particularly preferably, two radial bearings are arranged on the rotor shaft, which are designed in the manner described above, wherein the two bearings are preferably located on opposite axial sides of the rotor. Ie. a radial bearing is preferably located on the side facing away from the rotor of the rotor. This radial bearing is preferably arranged in the vicinity of the bottom of a canned pot. The second radial bearing is arranged on the side facing the impeller of the rotor and may be part of a combined radial thrust bearing, which is arranged between the rotor and impeller on the rotor shaft.

Gemäß einer besonders bevorzugten Ausführungsform sind die einander gegenüberliegenden Lagerflächen des Radiallagers in ihrer axialen Erstreckung derart dimensioniert und relativ zueinander derart angeordnet, dass sie bei der axialen Verschiebung der Rotorwelle um mehr als 50 % vorzugsweise um mehr als 75 % außer Eingriff treten. D. h. vorzugsweise bleibt nur noch ein sehr schmaler Bereich der Lagerflächen in Anlage bzw. Eingriff, um Rotor und Laufrad positioniert zu halten und eine Lagerung beim Anlaufen des Antriebsmotors zu gewährleisten. Der größte Teil der Lagerflächen tritt jedoch außer Anlage, sodass die Reibung erheblich reduziert wird und die Gefahr des Festsetzens des Lagers durch Verunreinigungen zwischen de Lagerflächen minimiert wird.According to a particularly preferred embodiment, the opposing bearing surfaces of the radial bearing are dimensioned in their axial extent and arranged relative to each other such that they are disengaged by more than 50%, preferably more than 75% in the axial displacement of the rotor shaft. Ie. Preferably, only a very narrow area of the bearing surfaces still remains in contact or engagement in order to keep the rotor and the impeller positioned and to ensure storage when the drive motor starts up. However, the majority of the bearing surfaces are out of engagement, so that the friction is significantly reduced and the risk of settling of the bearing is minimized by contamination between the bearing surfaces.

Das Laufrad ist an seinem Saugmund vorzugsweise über eine Saugdichtung gegenüber dem Pumpengehäuse abgedichtet. Dabei bildet die Saugdichtung ein feststehendes Bauteil an dem Pumpengehäuse. Bevorzugt ist die Saugdichtung zu dem Laufrad derart angeordnet, dass bei einer axialen Verschiebung der Rotorwelle in der Einströmrichtung des Laufrades die Saugdichtung und das Laufrad zumindest teilweise, vorzugsweise vollständig außer Eingriff treten. Durch diese Ausgestaltung wird erreicht, dass bei Stillstand des Pumpenaggregates, wenn der Rotor aufgrund der magnetischen Kraft in den Stator hineingezogen wird, vorzugsweise die Dichtung am Laufrad außer Eingriff treten kann. So wird zum einen verhindert, dass diese Dichtung sich während des Stillstandes festsetzt. Zum anderen wird die Durchströmbarkeit des Pumpenaggregates im Stillstand verbessert, da so Flüssigkeit am Laufrad vorbei durch das Pumpengehäuse fließen kann und das Laufrad für diese Strömung keinen oder nur einen deutlich verringerten Widerstand bildet. Besonders bevorzugt wird diese Ausgestaltung, bei welcher die Saugdichtung des Laufrades im Stillstand von dem Laufrad außer Eingriff tritt, in Kombination mit den Lagern, in welchen im Stillstand die Lagerflächen zumindest teilweise außer Eingriff treten, eingesetzt. Es ist jedoch zu verstehen, dass diese Anordnung der Saugdichtung am Laufrad auch unabhängig von der entsprechenden Ausgestaltung der Lager realisiert werden kann.The impeller is preferably sealed at its suction mouth via a suction seal against the pump housing. The suction seal forms a stationary component on the pump housing. Preferably, the suction seal is arranged to the impeller such that upon an axial displacement of the rotor shaft in the inflow direction of the impeller, the suction seal and the impeller at least partially, preferably completely disengage. By this configuration it is achieved that at standstill of the pump unit, when the rotor is pulled into the stator due to the magnetic force, preferably the seal on the impeller can disengage. This prevents, on the one hand, that this seal settles during standstill. On the other hand, the flowability of the pump assembly is improved at standstill, since so fluid can flow past the impeller through the pump housing and the impeller for this flow forms no or only a significantly reduced resistance. Particularly preferred is this embodiment, in which the suction of the impeller at standstill of the impeller out of engagement, in combination with the bearings, in which the bearing surfaces at least partially disengage at standstill used. However, it is to be understood that this arrangement of the suction seal on the impeller can also be realized independently of the corresponding design of the bearing.

Weiter bevorzugt ist die Rotorwelle um ein Maß verschiebbar, welches kleiner oder gleich einem im Betrieb des Pumpenaggregates bestehenden axialen Abstand zwischen der axialen Mitte des Rotors und der axialen Mitte des Stators ist. D. h. die axiale Beweglichkeit der Rotorwelle ist begrenzt und zwar auf ein Maß, welches kleiner oder gleich dem in Betrieb auftretenden axialen Versatz zwischen Rotor und Stator ist. Dadurch wird sichergestellt, dass stets eine ausreichende magnetische Axialkraft auf die Rotorwelle wirkt, um diese um das gewünschte Maß verschieben zu können.More preferably, the rotor shaft is displaceable by a degree which is smaller than or equal to an existing during operation of the pump assembly axial distance between the axial center of the rotor and the axial center of the stator. Ie. the axial mobility of the rotor shaft is limited and to a degree which is less than or equal to the axial displacement occurring between rotor and stator in operation. This ensures that a sufficient magnetic axial force always acts on the rotor shaft in order to be able to shift it by the desired amount.

Gemäß einer weiteren bevorzugten Ausführungsform ist an dem zumindest einen Laufrad an einer dem Rotor zugewandten Axialseite eine Notlagerfläche ausgebildet, welche einer feststehenden Axiallagerfläche zugewandt ist. In bestimmten Betriebszuständen, insbesondere bei hohem Durchfluss und geringem Druck kann die auf das Laufrad entgegen der Einströmrichtung wirkende hydraulische Axialkraft so stark abnehmen, dass das diese Kraft im Betrieb aufnehmende Axiallager entlastet wird. So kann es passieren, dass die Lagerflächen dieses Axiallagers in diesem Betriebszustand nicht mehr in Anlage gehalten werden. Um in diesem Betriebszustand auch eine Axiallagerung in der entgegengesetzten Richtung zu gewährleisten, ist das entgegengesetzt gerichtete Notlager vorgesehen. Darüber hinaus kommt das Notlager vorzugsweise dann zum Einsatz, wenn die Rotorwelle in der vorangehend beschrieben Weise durch die magnetische Kraft in axialer Richtung verschoben wird. In diesem Fall dient das Notlager als Anschlag, welcher die Bewegung der Rotorwelle in axialer Richtung begrenzt. In der entgegengesetzten Richtung wird die Bewegung durch das eigentliche Axiallager begrenzt. So kommt das Notlager dann auch beim Anlaufen des Antriebsmotors aus dem Ruhezustand, wenn das eigentliche Axiallager noch nicht in Anlage ist, zur Wirkung.According to a further preferred embodiment, an emergency bearing surface, which faces a fixed thrust bearing surface, is formed on the at least one impeller on an axial side facing the rotor. In certain operating conditions, in particular at high flow and low pressure, the hydraulic axial force acting on the impeller against the inflow direction can decrease so much that the thrust bearing receiving this force during operation is relieved. So it can happen that the bearing surfaces of this thrust bearing are no longer held in this operating condition in abutment. In order to ensure an axial bearing in the opposite direction in this operating state, the oppositely directed emergency bearing is provided. In addition, the emergency is preferably used when the Rotor shaft is displaced in the manner described above by the magnetic force in the axial direction. In this case, the emergency bearing serves as a stop which limits the movement of the rotor shaft in the axial direction. In the opposite direction, the movement is limited by the actual thrust bearing. Thus, the emergency bearing comes then also when starting the drive motor from the idle state, if the actual thrust bearing is not yet in abutment to effect.

Die Axiallagerfläche, an welcher die Notlagerfläche zur Anlage kommt, wird vorzugsweise von einer axialen Stirnseite eines feststehenden Lagerringes, eines Radial- und/oder Axiallagers der Rotorwelle gebildet. Dieser Lagerring ist, wie oben beschrieben, vorzugsweise ein Keramikbauteil, dessen Vorderseite bevorzugt die eigentliche Axiallagerfläche bildet. Diese Vorderseite ist die dem Laufrad abgewandte und dem Rotor zugewandte Seite des Lagerringes. Die Radiallagerfläche wird von der Innenumfangsfläche des Lagerringes gebildet. Die Axiallagerfläche, an welcher das Notlager zur Anlage kommt, ist dann die axiale Rückseite, welche dem Laufrad zugewandt ist. Wenn die Notlagerfläche des Laufrades an dieser Rückseite des Lagerringes zur Anlage kommt, wird dadurch gleichzeitig der Lagerspalt zwischen der Rotorwelle und dem Innenumfang des Lagerringes zum Pumpenraum hin, in welchem das Laufrad angeordnet ist, verschlossen, sodass ein Eindringen von Verunreinigungen in den Lagerspalt verhindert werden kann. Bevorzugt ist das Laufrad relativ zu dem Lagerring derart angeordnet, dass durch die axiale Verschiebung der Rotorwelle die Notlagerfläche in Anlage mit der feststehenden Axiallagerfläche bringbar ist. So kann bei axialer Verschiebung der Rotorwelle im Ruhezustand, das Notlager an dem Lagerring zur Anlage gebracht werden, sodass im Ruhezustand, wenn das Pumpenaggregat stillsteht, der Lagerspalt durch die Notlagerfläche verschlossen ist.The thrust bearing surface on which the emergency bearing surface comes to rest is preferably formed by an axial end face of a stationary bearing ring, a radial and / or thrust bearing of the rotor shaft. As described above, this bearing ring is preferably a ceramic component whose front side preferably forms the actual axial bearing surface. This front side is the side facing away from the impeller and the rotor facing side of the bearing ring. The radial bearing surface is formed by the inner peripheral surface of the bearing ring. The thrust bearing surface on which the emergency bearing comes to rest, then the axial back, which faces the impeller. If the emergency bearing surface of the impeller comes to rest on this rear side of the bearing ring, the bearing gap between the rotor shaft and the inner circumference of the bearing ring is simultaneously closed towards the pump chamber, in which the impeller is arranged, so that contaminants are prevented from entering the bearing gap can. Preferably, the impeller is arranged relative to the bearing ring such that the emergency bearing surface can be brought into contact with the fixed thrust bearing surface by the axial displacement of the rotor shaft. Thus, with axial displacement of the rotor shaft in the idle state, the emergency bearing can be brought to bear against the bearing ring, so that in the idle state, when the pump unit is stationary, the bearing gap is closed by the emergency bearing surface.

Die Notlagerfläche wird weiter bevorzugt von einem in axialer Richtung vorstehenden ringförmigen Vorsprung an dem Laufrad gebildet. Das Laufrad ist vorzugsweise einstückig mit diesem Vorsprung aus Kunststoff gefertigt.The emergency bearing surface is further preferably formed by an axially projecting annular projection on the impeller. The impeller is preferably made in one piece with this projection made of plastic.

Im normalen Betrieb des Pumpenaggregates ist die Notlagerfläche von der feststehenden Axiallagerfläche bevorzugt axial beabstandet. In diesem Zustand ist vorzugsweise das normale Axiallager im Eingriff, um die hydraulischen Axialkräfte, welche auf Laufrad und Rotor wirken, aufzunehmen. D. h. der normale Betriebszustand ist derjenige, in welchem eine derartige hydraulische Kraft entgegengesetzt der Einströmrichtung in das Laufrad wirkt. Bevorzugt ist der Abstand der Notlagerfläche von der feststehenden Axiallagerfläche kleiner oder gleich einem in Betrieb des Pumpenaggregates bestehenden axialen Abstand zwischen der axialen Mitte des Rotors und der axialen Mitte des Stators. Durch diese Anordnung wird sichergestellt, dass bei der Verschiebung der Rotorwelle, um das Notlager in und außer Eingriff mit der Axiallagerfläche zu bringen, der Versatz nicht größer ist als der Versatz zwischen Rotor und Stator, sodass stets eine magnetische Axialkraft gegeben ist, welche die Notlagerfläche in Anlage mit der Axiallagerfläche hält, so lange keine entgegengesetzt wirkenden hydraulische Axialkraft zu einer Verschiebung der Rotorwelle in der entgegengesetzten Richtung führt und die Notlagerfläche von der Axiallagerfläche außer Eingriff bringt.During normal operation of the pump assembly, the emergency bearing surface is preferably axially spaced from the fixed thrust bearing surface. In this condition, preferably, the normal thrust bearing is engaged to receive the axial hydraulic forces acting on the impeller and rotor. Ie. the normal operating state is that in which such a hydraulic force acts opposite to the direction of inflow into the impeller. Preferably, the distance of the emergency bearing surface of the fixed thrust bearing surface is smaller than or equal to an existing in operation of the pump assembly axial distance between the axial center of the rotor and the axial center of the stator. This arrangement ensures that when the rotor shaft is moved to bring the emergency bearing into and out of engagement with the thrust bearing surface, the offset is not greater than the offset between the rotor and the stator, so that there is always a magnetic axial force, which is the emergency bearing surface holds in abutment with the thrust bearing surface, as long as no oppositely acting hydraulic axial force leads to a displacement of the rotor shaft in the opposite direction and brings the emergency bearing surface of the thrust bearing surface disengaged.

Gemäß einer weiteren bevorzugten Ausführungsform kann zwischen der Rotorwelle oder dem Laufrad auf der einen Seite und einem feststehenden Lagerring oder einem Lagerhalter auf der anderen Seite zumindest ein Dichtelement angeordnet sein, welches durch die axiale Verschiebung der Rotorwelle in dichtende Anlage bringbar ist. So kann an dem Laufrad z. B. ein ringförmiges Dichtelement angeordnet sein, welches ebenfalls mit der Stirnseite eines feststehenden Lagerringes dichtend zur Anlage bringbar ist. Anstatt einer Anordnung des Dichtelementes an dem Laufrad so, dass es an der Stirnseite eines feststehendes Lagerringes zur Anlage bringbar ist, könnte das Dichtelement an dem Laufrad auch so angeordnet oder ausgebildet sein, dass es an der Oberfläche eines das Lager bzw. den Lagerring umgebenden Lagerträgers zur Anlage kommen kann. Alternativ könnte ein solches Dichtelement auch an der Axiallagerfläche des Lagerringes angeordnet sein und das Laufrad mit einer geeigneten Dichtfläche bei Axialbewegung der Rotorwelle dort zur Anlage kommen. Auch wäre es möglich, eine solche ringförmige Dichtung nicht am Laufrad sondern an der Rotorwelle so anzuordnen, dass sie beispielsweise mit dem feststehenden Lagerring zur Anlage kommen kann. Bei allen diesen Anordnungen kann die Dichtung so den Lagerspalt zwischen Lagerring und Rotorwelle im Ruhezustand des Pumpenaggregates dicht verschließen, um eine Durchströmung des Lagers und ein Eindringen von Verunreinigungen zu verhindern.According to a further preferred embodiment, at least one sealing element can be arranged between the rotor shaft or the impeller on the one side and a stationary bearing ring or a bearing holder on the other side, which can be brought into sealing engagement by the axial displacement of the rotor shaft. So can on the impeller z. B. an annular sealing element may be arranged, which is also sealingly engageable with the end face of a fixed bearing ring to the plant. Instead of an arrangement of the sealing element on the impeller so that it can be brought to bear against the end face of a stationary bearing ring, the sealing element on the impeller could also be arranged or formed so that it is on the surface of a bearing or the bearing ring surrounding bearing support can come to the plant. Alternatively, such a sealing element could also be arranged on the axial bearing surface of the bearing ring and the impeller come to rest there with a suitable sealing surface during axial movement of the rotor shaft. It would also be possible to arrange such an annular seal not on the impeller but on the rotor shaft so that it can come into contact, for example, with the stationary bearing ring. In all these arrangements, the seal can thus seal the bearing gap between the bearing ring and the rotor shaft in the idle state of the pump unit to prevent flow through the bearing and the ingress of contaminants.

Es ist zu verstehen, dass diese Abdichtung des Lagerspaltes durch axiale Verschiebung der Rotorwelle auch unabhängig von der Ausgestaltung, bei welcher durch die axiale Verschiebung der Welle die Lager zumindest teilweise außer Eingriff treten, realisiert werden könnte. Wenn die axiale Verschiebung der Rotorwelle nur dazu ausgenutzt wird, das Dichtelement in und außer Anlage zu bringen, kann ein wesentlich kleinerer axialer Versatz der Rotorwelle ausreichen, um dies zu bewirken. Dies hat den Vorteil, dass der Rotor relativ zu dem Stator nur um ein geringes Maß axial versetzt werden muss, sodass der magnetische Wirkungsgrad im Wesentlichen nicht beeinträchtigt wird.It is to be understood that this sealing of the bearing gap by axial displacement of the rotor shaft could also be realized independently of the configuration in which the bearings are at least partially disengaged by the axial displacement of the shaft. If the axial displacement of the rotor shaft is only used to bring the sealing element in and out of engagement, a much smaller axial displacement of the rotor shaft may be sufficient to effect this. This has the advantage that the rotor only has to be displaced axially relative to the stator by a small amount so that the magnetic efficiency is substantially not impaired.

Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:

Fig. 1
eine teilweise geschnittene Gesamtansicht eines erfindungsgemäßen Pumpenaggregates,
Fig. 2
eine Schnittansicht des Pumpenaggregates mit entferntem Pumpengehäuse im Betriebszustand und
Fig. 3
eine Ansicht gemäß Fig. 3 im Ruhezustand.
The invention will now be described by way of example with reference to the accompanying drawings. In these shows:
Fig. 1
a partially sectioned overall view of a pump unit according to the invention,
Fig. 2
a sectional view of the pump unit with removed pump housing in the operating state and
Fig. 3
a view according to Fig. 3 at rest.

Das erfindungsgemäße Pumpenaggregat weist ein Pumpengehäuse 2 auf, in welchem ein Laufrad 4 angeordnet ist. Das Laufrad 4 hat einen axial gerichteten zentralen Saugmund 6, durch den die zu fördernde Flüssigkeit in das Laufrad 4 eintritt. Der Saugmund 6 liegt im Inneren des Pumpengehäuses 2 einem Strömungskanal gegenüber, welcher in einen Saugstutzen 8 mündet. Entgegengesetzt zu dem Saugstutzen 8 ist am Pumpengehäuse 2 darüber hinaus ein Druckstutzen 10 angeordnet, welcher über einen Strömungskanal mit dem Umfangsbereich des Laufrades 4, welcher einen Spiralkanal bildet, in Verbindung steht. Das Laufrad 4 ist über eine Rotorwelle 12 mit einem Permanentmagnetrotor 14 verbunden. Die Rotorwelle 12 ist vorzugsweise aus Keramik gefertigt. In dem Rotor 14 sind Permanentmagnete 16 angeordnet, welche ein radial gerichtetes magnetisches Feld des Rotors 14 erzeugen. Der Permanentmagnetrotor 14 ist im Inneren eines Spaltrohres 18 bzw. eines Spaltrohrtopfes 18 angeordnet. Das Spaltrohr 18 ist von dem Stator 20 umgeben.The pump unit according to the invention has a pump housing 2, in which an impeller 4 is arranged. The impeller 4 has an axially directed central suction mouth 6, through which the liquid to be conveyed enters the impeller 4. The suction mouth 6 is located in the interior of the pump housing 2 against a flow channel, which opens into a suction nozzle 8. Opposite to the suction nozzle 8, a pressure port 10 is arranged on the pump housing 2, which is connected via a flow channel with the peripheral region of the impeller 4, which forms a spiral channel, in connection. The impeller 4 is connected via a rotor shaft 12 with a permanent magnet rotor 14. The rotor shaft 12 is preferably made of ceramic. In the rotor 14 permanent magnets 16 are arranged, which generate a radially directed magnetic field of the rotor 14. The permanent magnet rotor 14 is arranged in the interior of a split tube 18 or a canned pot 18. The can 18 is surrounded by the stator 20.

Das Laufrad 4 ist drehfest und auch in axialer Richtung X fest mit der Rotorwelle 12 verbunden. Die Rotorwelle 12 ist in zwei keramischen Lagerringen 22 und 24 gleitend gelagert. Dabei ist der Lagerring 22 ein reines Radiallager. Der Lagerring 24 übernimmt gleichzeitig die Funktion des Axiallagers. Dazu ist die dem Laufrad 4 abgewandte axiale Stirnseite des Lagerringes 24 als Axiallagerfläche ausgebildet, an welcher ein mit der Rotorwelle 12 verbundener Axiallagering 26 zur Anlage kommt. Der Axiallagering 26 ist in axialer Richtung X auf der Rotorwelle 12 fixiert.The impeller 4 is rotationally fixed and fixed in the axial direction X fixed to the rotor shaft 12. The rotor shaft 12 is slidably mounted in two ceramic bearing rings 22 and 24. The bearing ring 22 is a pure radial bearing. The bearing ring 24 simultaneously assumes the function of the thrust bearing. For this purpose, the impeller 4 facing away from the axial end face of the bearing ring 24 is formed as a thrust bearing surface on which a connected to the rotor shaft 12 Axiallagering 26 comes to rest. The thrust bearing 26 is fixed in the axial direction X on the rotor shaft 12.

Im Normalbetrieb des Pumpenaggregates wirkt auf das Laufrad 4 und die Rotorwelle 12 eine in Richtung der Längs- bzw. Drehachse X gerichtete Axialkraft, welcher der Einströmrichtung E in den Saugmund 6 des Laufrades 4 entgegengesetzt gerichtet ist. Diese hydraulische Axialkraft wird von dem Axiallagerring 26 auf die dem Laufrad 4 abgewandte Axialseite 28 des Lageringes 24, welche eine feststehende Axiallagerfläche bildet, übertragen.In normal operation of the pump assembly acts on the impeller 4 and the rotor shaft 12 directed in the direction of the longitudinal or rotational axis X axial force, which is the inlet direction E directed in the suction mouth 6 of the impeller 4 opposite. This hydraulic axial force is transmitted from the axial bearing ring 26 to the axial side 28 of the bearing ring 24 which faces away from the rotor 4 and forms a fixed axial bearing surface.

Zur radialen Lagerung liegt die keramische Welle 12 mit ihren Außenumfangsflächen am Innenumfang der Lagerringe 22 und 24 gleitend an.For radial mounting, the ceramic shaft 12 with its outer peripheral surfaces on the inner circumference of the bearing rings 22 and 24 slidably.

Die Rotorwelle 12 ist in axialer Richtung X beweglich und wird im normalen Betrieb des Pumpenaggregates durch die hydraulische Axialkraft in dem in Fig. 2 gezeigten Zustand gehalten, in welchem die Rotorwelle 12 entgegen der Einströmrichtung E soweit verschoben ist, dass der Axiallagerring an der Axialseite 28 des Lagerringes 24 gleitend anliegt. In diesem zustand ist die axiale Mitte MR des Rotors, d. h. des magnetisch wirksamen Teils des Rotors, gegenüber der axialen Mitte MS des Stators 20 bzw. des Eisenteils 30 um ein Maß a in axialer Richtung verschoben. Aufgrund der magnetischen Kräfte, welche zwischen den Permanentmagneten 16 und dem Eisenteil 30 des Stators 20 wirken, ist der Rotor 12 jedoch bestrebt, sich bezüglich des Eisenteils 30 zu zentrieren, sodass die axiale Mitte MR des Rotors 12 deckungsgleich zur axialen Mitte MS des Eisenteils 30 ist. Dadurch wird eine in Richtung der Einströmrichtung E wirkende magnetische Axialkraft erzeugt, welche auf die Rotorwelle 12 wirkt und der hydraulischen Axialkraft, welche auf das Laufrad 4 im Betrieb des Pumpenaggregates wirkt, entgegengesetzt ist. Das Pumpenaggregat bzw. der Antriebsmotor ist so ausgelegt, dass diese magnetische Kraft im normalen Betrieb, d. h. vorzugsweise in den meisten Betriebsbereichen des Pumpenaggregates kleiner als die hydraulische Kraft ist, sodass der Axiallagerring 26 an der Axialseite 28 des Lagerringes 24 in Anlage gehalten wird.The rotor shaft 12 is movable in the axial direction X and is in the normal operation of the pump unit by the hydraulic axial force in the in Fig. 2 shown held state in which the rotor shaft 12 is moved counter to the inflow E so far that the thrust bearing ring on the axial side 28 of the bearing ring 24 slidably abuts. In this state, the axial center MR of the rotor, ie the magnetically active part of the rotor, is displaced from the axial center MS of the stator 20 or the iron part 30 by a dimension a in the axial direction. However, due to the magnetic forces acting between the permanent magnets 16 and the iron portion 30 of the stator 20, the rotor 12 tends to center with respect to the iron portion 30 so that the axial center MR of the rotor 12 is congruent with the axial center MS of the iron portion 30 is. As a result, a magnetic axial force acting in the direction of the inflow direction E is produced, which acts on the rotor shaft 12 and is opposite to the axial hydraulic force acting on the impeller 4 during operation of the pump unit. The pump unit or the drive motor is designed so that this magnetic force in normal operation, ie preferably in most operating areas of the pump unit is smaller than the hydraulic force, so that the Axiallagerring 26 is held on the axial side 28 of the bearing ring 24 in abutment.

Wenn das Pumpenaggregat abgeschaltet wird, fällt die hydraulische Axialkraft, welche auf die Rotorwelle 12 wirkt, weg und es wirkt lediglich noch die magnetische Axialkraft, welche dann den Rotor in Richtung der Längsachse X in seine zentrierte Position zieht, in welcher die axiale Mitte MR des Rotors 12 deckungsgleich zur axialen Mitte MS des Eisenteils 30 des Stators 20 ist, wie in Fig. 3 gezeigt. In diesem Zustand ist der Axiallagerring 26 von der Axialseite 28 des Lagerringes 24 beabstandet und das Axiallager somit außer Eingriff.When the pump set is turned off, the hydraulic axial force acting on the rotor shaft 12 drops away and only the magnetic axial force acts, which then pulls the rotor in the direction of the longitudinal axis X to its centered position, in which the axial center MR of FIG Rotor 12 is congruent with the axial center MS of the iron part 30 of the stator 20, as in Fig. 3 shown. In this state, the thrust bearing ring 26 is spaced from the axial side 28 of the bearing ring 24 and thus the thrust bearing is disengaged.

Angrenzend an die Bereiche der Rotorwelle 12, welche die mit den Lagerringen 22 und 24 zusammenwirkenden Radiallagerflächen 34 bilden, sind am Außenumfang der Rotorwelle Einstiche 32 ausgebildet, in deren Bereich der Außendurchmesser der Rotorwelle 12 verkleinert ist. Die Einstriche 32 grenzen an die dem Laufrad 4 zugewandten Seite der Lagerflächen 34 an. Wenn die Rotorwelle im Ruhezustand in den in Fig. 3 gezeigten Zustand verschoben ist, treten diese Einstiche 32 mit verringertem Durchmesser in die Lagerringe 22 und 24 ein und gleichzeitig tritt ein Abschnitt der Lagerflächen 34 am entgegengesetzten Axialende aus den Lagerringen 22 und 24 aus. D. h. die Lagerflächen 34 kommen teilweise von den Innenumfangsflächen der Lagerringe 22 und 24, welche deren Radiallagerflächen bilden, außer Eingriff. Auf diese Weise wird im Ruhezustand die Reibung in den Radiallagern 22 und 24 verringert und die Gefahr eines Festsetzens in den Lagern minimiert.Adjacent to the regions of the rotor shaft 12, which form the bearing surfaces 22 and 24 cooperating radial bearing surfaces 34, recesses 32 are formed on the outer circumference of the rotor shaft, in the region of the outer diameter of the rotor shaft 12 is reduced. The indentations 32 adjoin the side of the bearing surfaces 34 facing the impeller 4. When the rotor shaft at rest in the in Fig. 3 shown shifted, these recesses 32 are of reduced diameter in the bearing rings 22 and 24 and simultaneously enters a portion of the bearing surfaces 34 at the opposite axial end of the bearing rings 22 and 24 from. Ie. the bearing surfaces 34 are partially disengaged from the inner peripheral surfaces of the bearing rings 22 and 24, which form their radial bearing surfaces. In this way, the friction in the radial bearings 22 and 24 is reduced at rest and minimizes the risk of setting in the camps.

Das Laufrad 4 ist an seinem Saugmund 6 über eine Saugdichtung 35 gegenüber dem Pumpengehäuse 2 abgedichtet. Die Saugdichtung 35 ist am Pumpengehäuse 2 festgelegt und greift in den Saugmund 6 ein. Im Betrieb des Pumpenaggregates überlappt somit der Innenumfang des Saugmundes 6 den Außenumfang der Saugdichtung 35, wobei der Saugmund 6 relativ zu der Saugdichtung 35 rotiert. Die Saugdichtung kann in herkömmlicher Weise als kragenförmiges Blechbauteil ausgebildet sein.The impeller 4 is sealed at its suction mouth 6 via a suction seal 35 relative to the pump housing 2. The suction seal 35 is fixed to the pump housing 2 and engages in the suction mouth 6 a. During operation of the pump assembly, the inner circumference of the suction mouth 6 thus overlaps the outer circumference of the suction seal 35, wherein the suction mouth 6 rotates relative to the suction seal 35. The suction seal may be formed in a conventional manner as a collar-shaped sheet metal component.

Wenn die Rotorwelle 12 im Stillstand des Pumpenaggregates in die in Fig. 3 gezeigte Axiallage verschoben ist, bewegt sich das Laufrad 4 mit der Rotorwelle 12 in Richtung des Stators 20. Dabei ist dieser axiale Versatz bei dem hier gezeigten Beispiel so groß, dass der Saugmund 6 des Laufrades von der Saugdichtung 35 vollständig außer Eingriff tritt, sodass ein Spalt zwischen der dem Rotor 14 abgewandten Axialseite des Laufrades 4 und der Stirnseite der Saugdichtung 35 entsteht. Durch das vollständige Außereingrifftreten der Saugdichtung 35 von dem Saugmund 6 wird verhindert, dass die Saugdichtung 35 sich an dem Saugmund 6 während des Stillstandes festsetzt. Darüber hinaus kann das Pumpenaggregat im Stillstand so besser durchströmt werden, da die Strömung durch den Spalt zwischen Saugdichtung 35 und Stirnseite des Laufrades 4 am Laufrad vorbei durch das Pumpengehäuse 2 zum Druckstutzen 10 erfolgen kann. So wird der Strömungswiderstand im Stillstand verringert.When the rotor shaft 12 at standstill of the pump unit in the in Fig. 3 shown axial position is shifted, the impeller 4 moves with the rotor shaft 12 in the direction of the stator 20. In this case, this axial offset is so great in the example shown here that the suction mouth 6 of the impeller completely disengages from the suction seal 35, so that a gap exists between the axial side of the impeller 4 facing away from the rotor 14 Front side of the suction seal 35 is formed. The complete disengagement of the suction seal 35 from the suction mouth 6 prevents the suction seal 35 from settling on the suction mouth 6 during standstill. In addition, the pump unit can be flowed through at a better standstill, since the flow through the gap between the suction seal 35 and the end face of the impeller 4 on the impeller can be done by the pump housing 2 to the discharge nozzle 10. This reduces the flow resistance at standstill.

Das Laufrad 4 weist an seiner dem Saugmund 6 abgewandten Stirnseite einen ringförmigen Vorsprung 36 auf, welcher dem Lagerring 24 zugewandt ist. Der Vorsprung 36 ist einstückig mit dem Laufrad 4 aus Kunststoff gefertigt und bildet eine Notlagerfläche. In Betriebszuständen, in welchen die hydraulische Axialkraft nicht ausreicht, das Axiallager in Anlage zu halten, d. h. den Axiallagerring 26 in Anlage an der Axialseite 28 des Lagerringes 24 zu halten, kann es passieren, dass auch während des Betriebes die Rotorwelle 12 sich in die in Fig. 3 gezeigte Position bewegt. Dann bietet der Vorsprung 36 als Notlager eine axiale Lagerung in entgegengesetzter Richtung, in dem er an der dem Laufrad 4 zugewandten Axialseite des Lagerringes 24 zur Anlage kommt, welche der Axialseite 28, welche die eigentliche Axiallagerfläche bildet, abgewandt ist. Ein solcher Betriebszustand kann insbesondere auch beim Anlaufen des Pumpenaggregates auftreten. Darüber hinaus liegt bei dieser Ausführungsform somit auch bei Stillstand des Pumpenaggregates der Vorsprung 36 an der rückwärtigen Axialseite des Lagerringes 24 an, sodass der Lagerspalt zwischen dem Lagerring 24 und der Rotorwelle 12 zum Pumpenraum hin, in welchem das Laufrad 4 angeordnet ist, abgedichtet ist. So kann ein Eindringen von Verschmutzungen in den Lagerspalt und den Rotorraum verhindert werden.The impeller 4 has on its end remote from the suction mouth 6 an annular projection 36 which faces the bearing ring 24. The projection 36 is made in one piece with the impeller 4 made of plastic and forms an emergency bearing surface. In operating states in which the hydraulic axial force is insufficient to hold the thrust bearing in abutment, ie to hold the thrust bearing ring 26 in abutment against the axial side 28 of the bearing ring 24, it may happen that the rotor shaft 12 also engages in the inoperative position during operation Fig. 3 shown position moves. Then, the projection 36 as an emergency bearing axial bearing in the opposite direction, in which it comes to rest on the impeller 4 facing axial side of the bearing ring 24, which is the axial side 28, which forms the actual thrust bearing surface, facing away. Such an operating state can occur, in particular, when the pump unit starts up. In addition, in this embodiment is thus at standstill of the pump unit, the projection 36 on the rear axial side of the bearing ring 24, so that the bearing gap between the bearing ring 24 and the rotor shaft 12 toward the pump chamber out, in which the impeller 4 is arranged, is sealed. Thus, penetration of dirt into the bearing gap and the rotor space can be prevented.

In diesem Ausführungsbeispiel ist darüber hinaus noch eine ringförmige Dichtung 38 gezeigt, welche in diesem Ausführungsbeispiel an der Rotorwelle 12 umfänglich angeordnet ist. Dabei ist die Dichtung 38 im Wesentlichen im Bereich des dem Rotor 14 zugewandten Axialendes des Laufrades 4 am Außenumfang der Rotorwelle 12 angeordnet. Wenn sich die Rotorwelle 12 in der in Fig. 3 gezeigten Axialposition befindet, in welcher sie in der Einströmrichtung E axial verschoben ist, kommt diese Dichtung 38 im Bereich des Lagerspaltes an dem Lagerring 24 dichtend zur Anlage. Eine solche Dichtung 38 könnte auch im Umfangsbereich der Rotorwelle 12 am Laufrad 4 ausgebildet sein, insbesondere direkt an das Laufrad 4 aus einem elastischen Kunststoff angegossen sein. Eine solche Dichtung 38 könnte auch alternativ zu dem Vorsprung 36 Verwendung finden, wie auch der Vorsprung 36 ohne die Dichtung 38 verwendet werden könnte.In this embodiment, moreover, an annular seal 38 is shown, which is arranged circumferentially in this embodiment on the rotor shaft 12. Here, the seal 38 is arranged substantially in the region of the rotor 14 facing the axial end of the impeller 4 on the outer circumference of the rotor shaft 12. When the rotor shaft 12 in the in Fig. 3 shown axial position in which it is axially displaced in the inflow direction E, this seal 38 comes in the region of the bearing gap on the bearing ring 24 sealingly to the plant. Such a seal 38 could also be formed in the peripheral region of the rotor shaft 12 on the impeller 4, in particular be cast directly to the impeller 4 made of an elastic plastic. Such a seal 38 could also be used as an alternative to the projection 36, as well as the projection 36 could be used without the seal 38.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
Pumpengehäusepump housing
44
LaufradWheel
66
Saugmundsaugmund
88th
Saugstutzensuction
1010
Druckstutzenpressure port
1212
Rotorwellerotor shaft
1414
PermanentmagnetrotorPermanent magnet rotor
1616
Permanentmagnetepermanent magnets
1818
Spaltrohr bzw. SpaltrohrtopfCanned or canned pot
2020
Statorstator
22, 2422, 24
Lagerringebearing rings
2626
Axiallagerringthrust bearing
2828
Axialseiteaxial
3030
Eisenteiliron part
3232
Einstichepunctures
3434
Lagerflächenstorage areas
3535
Saugdichtungsuction seal
3636
ringförmiger Vorsprungannular projection
3838
Dichtungpoetry
XX
Längs- bzw. DrehachseLongitudinal or rotary axis
Ee
Einströmrichtunginflow
MSMS
axiale Mitte des Eisenteilsaxial center of the iron part
MRMR
axiale Mitte des Permanentmagnetrotorsaxial center of the permanent magnet rotor
aa
Abstanddistance

Claims (17)

  1. A pump assembly with
    an electric drive motor which comprises a stator (20) and a rotor designed as a permanent magnet rotor (14),
    with at least one impeller (4) which is connected to the rotor (14) via a rotor shaft (12),
    with a thrust bearing (26, 28) which is designed in a manner such that it accommodates the axial forces acting on the impeller (4) and the rotor shaft (12) on operation of the pump assembly,
    and with at least one radial bearing (22, 24) which is arranged on the rotor shaft (12)
    wherein
    the rotor (14) and the stator (20) are designed in a manner such that a magnetic axial force acting in the direction of the rotation axis (X) of the rotor (14) and acting on the rotor in the direction of the inflow direction (E) into the impeller (4) is produced between the rotor (14) and the stator (20), characterised in that the rotor shaft (12) with the rotor (14) is mounted in a displaceable manner in the axial direction (X) relative to the stator (20), wherein the rotor shaft (12) is movable in a manner such that it can axially displace in the direction of the inflow direction (E) into the impeller (4) in the idle condition of the pump assembly and the at least one radial bearing (22, 24) is designed in a manner such that given an axial displacement of the rotor shaft (12) in the inflow direction (E) into the impeller, the bearing surfaces (34) of the radial bearing (22, 24) which lie opposite one another at least partly disengage.
  2. A pump assembly according to claim 1, characterised in that a hydraulic axial force acting on the impeller (4) and the rotor shaft (12) on operation of the pump assembly is larger than the oppositely directed magnetic axial force.
  3. A pump assembly according to claim 1 or 2, characterised in that the stator (20) peripherally surrounds the rotor (14).
  4. A pump assembly according to one of the preceding claims, characterised in that at least one additional hard-magnetic or soft-magnetic element which contributes to the production of the magnetic axial force is arranged on the rotor (14) and/or the stator (20).
  5. A pump assembly according to one of the preceding claims, characterised in that the rotor (14) and the stator (20) are designed and arranged in a manner such that at least on operation of the pump assembly, the axial middle (MR) of the rotor (14) is distanced to the axial middle (MS) of the stator (20) in a direction opposite to the inflow direction (E) into the impeller, at least on operation of the pump assembly.
  6. A pump assembly according to one of the preceding claims, characterised in that the at least one impeller is fixed on the rotor shaft (12) in the axial direction.
  7. A pump assembly according to one of the preceding claims, characterised in that the thrust bearing (26, 28) is designed in a manner such that its bearing surfaces (26, 28) come out of contact on displacement of the rotor shaft (12) in the inflow direction (E) into the impeller.
  8. A pump assembly according to one of the preceding claims, characterised in that the radial bearing (22, 24) is designed as a sliding bearing, of which a first bearing surface (34) is formed on the outer periphery of the rotor shaft (12), and an oppositely lying second bearing surface is formed in a stationary bearing ring (22, 24).
  9. A pump assembly according to one of the preceding claims, characterised in that at least on one side of a bearing surface (34) of the radial bearing, said side facing the impeller (4) and said bearing surface formed on the rotor shaft (12), the diameter of the rotor shaft (12) is reduced compared to the diameter of this bearing surface (34).
  10. A pump assembly according to one of the preceding claims, characterised in that the bearing surfaces which lie opposite one another are dimensioned with regard to their axial extension in such a manner and are arranged relative to one another in such a manner, that given the axial displacement of the rotor shaft (12) they disengage by more than 50%, preferably by more than 75%.
  11. A pump assembly according to one of the preceding claims, characterised in that a suction seal is arranged adjacently to the impeller (4) in a manner such that given an axial displacement of the rotor shaft (12) in the inflow direction (E) into the impeller (4), the suction seal (35) and the impeller (4) at least partly disengage.
  12. A pump assembly according to one of the preceding claims, characterised in that the rotor shaft (12) is displaceable by an amount which is smaller or equal to an axial distance (a) between the axial middle (MR) of the rotor and the axial middle (MS) of the stator (20), said axial distance existing on operation of the pump assembly.
  13. A pump assembly according to one of the preceding claims, characterised in that an emergency bearing surface (36) which faces a stationary thrust bearing surface is formed on the at least one impeller (4) on an axial side which faces the rotor (12).
  14. A pump assembly according to claim 13, characterised in that the thrust bearing surface is formed by an axial face side of a stationary bearing ring (24) of a radial bearing and/or thrust bearing of the rotor shaft (12).
  15. A pump assembly according to claim 13 or 14 and one of the claims 7 to 15, characterised in that the impeller (4) is arranged relative to the bearing ring (24) in a manner such that the emergency bearing surface (36) can be brought into contact with the stationary thrust bearing surface by way of the axial displacement of the rotor shaft (12), wherein on operation of the pump assembly the emergency bearing surface (36) is preferably axially distanced to the stationary thrust bearing surface.
  16. A pump assembly according to claim 15 characterised in that the distance of the emergency bearing surface (36) to the stationary thrust bearing surface is smaller or equal to an axial distance (a) between the axial middle (MR) of the rotor and the axial middle (MS) of the stator (20), said axial distance existing on operation of the pump assembly.
  17. A pump assembly according to one of the preceding claims, characterised in that at least one sealing element (38) is arranged between the rotor shaft (12) or the impeller (4) on the one hand, and a stationary bearing ring (24) on the other hand, and this sealing element (38) can be brought into sealing contact by way of the axial displacement of the rotor shaft (12).
EP12813319.6A 2011-12-27 2012-12-19 Pump unit Active EP2798224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12813319.6A EP2798224B2 (en) 2011-12-27 2012-12-19 Pump unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11195804 2011-12-27
PCT/EP2012/076060 WO2013098142A1 (en) 2011-12-27 2012-12-19 Pump unit
EP12813319.6A EP2798224B2 (en) 2011-12-27 2012-12-19 Pump unit

Publications (3)

Publication Number Publication Date
EP2798224A1 EP2798224A1 (en) 2014-11-05
EP2798224B1 EP2798224B1 (en) 2016-03-23
EP2798224B2 true EP2798224B2 (en) 2019-10-09

Family

ID=47552982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12813319.6A Active EP2798224B2 (en) 2011-12-27 2012-12-19 Pump unit

Country Status (4)

Country Link
US (1) US10024324B2 (en)
EP (1) EP2798224B2 (en)
CN (1) CN104024647B (en)
WO (1) WO2013098142A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462218B (en) * 2017-01-27 2021-09-10 雷勃美国公司 Centrifugal pump assembly with axial flux motor and method of assembling the same
US10584739B2 (en) 2017-01-27 2020-03-10 Regal Beloit Australia Pty Ltd Centrifugal pump assemblies having an axial flux electric motor and methods of assembly thereof
US10830252B2 (en) 2017-01-27 2020-11-10 Regal Beloit Australia Pty Ltd Centrifugal pump assemblies having an axial flux electric motor and methods of assembly thereof
US10865794B2 (en) 2017-01-27 2020-12-15 Regal Beloit Australia Pty Ltd Centrifugal pump assemblies having an axial flux electric motor and methods of assembly thereof
US10731653B2 (en) 2017-01-27 2020-08-04 Regal Beloit Australia Pty Ltd Centrifugal pump assemblies having an axial flux electric motor and methods of assembly thereof
EP3376051B1 (en) * 2017-03-14 2022-08-24 Grundfos Holding A/S Pump unit
EP3376050A1 (en) * 2017-03-14 2018-09-19 Grundfos Holding A/S Centrifugal pump assembly
IT201700103807A1 (en) * 2017-09-18 2019-03-18 Dab Pumps Spa QUICK ASSEMBLY PUMP ASSEMBLED
DE102018105732A1 (en) * 2018-03-13 2019-09-19 Nidec Gpm Gmbh Modular system of an axially integrated pump construction
EP3667090B1 (en) * 2018-12-13 2021-07-07 Grundfos Holding A/S Pump assembly
BE1030312B1 (en) * 2022-02-23 2023-10-02 Miele & Cie Fluid machine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE759538C (en) 1939-03-23 1954-04-22 Siemens Ag Arrangement to compensate for the axial thrust in centrifugal pumps
US3073248A (en) * 1961-01-12 1963-01-15 Henning G Bartels Fluid moving apparatus
US3329095A (en) * 1965-11-16 1967-07-04 Henning G Bartels Booster pump
US4072446A (en) * 1976-01-20 1978-02-07 R. E. Dupont Research And Investment Services Limited Electromagnetically driven pumps
DE3210761C1 (en) * 1982-03-24 1983-09-29 Grundfos As Pump unit for water-carrying systems, especially for heating and industrial water systems
US4569638A (en) * 1982-11-30 1986-02-11 International Telephone And Telegraph Corporation Pump with resiliently mounted impeller
DE4143492C2 (en) * 1991-08-23 1995-08-03 Grundfos As Pump unit
KR970001995A (en) 1995-06-29 1997-01-24 배순훈 Hot Water Circulation Pump
JP2001020895A (en) 1999-07-05 2001-01-23 Shimadzu Corp Motor-driven turbomachine
US7048495B2 (en) 2003-11-19 2006-05-23 Itt Manufacturing Enterprises, Inc. Rotating machine having a shaft including an integral bearing surface
ATE402343T1 (en) 2005-05-07 2008-08-15 Grundfos Management As PUMP UNIT
DE102006024997A1 (en) 2006-05-30 2007-12-06 Wilo Ag rotary pump
CN201162705Y (en) * 2008-03-18 2008-12-10 江苏新腾宇流体设备制造有限公司 Magnetic transmission petroleum chemical flow-process pump
DE102009060549A1 (en) 2009-12-23 2011-06-30 Wilo Se, 44263 EC motor centrifugal pump

Also Published As

Publication number Publication date
EP2798224B1 (en) 2016-03-23
US20150017031A1 (en) 2015-01-15
WO2013098142A1 (en) 2013-07-04
US10024324B2 (en) 2018-07-17
CN104024647B (en) 2016-08-24
EP2798224A1 (en) 2014-11-05
CN104024647A (en) 2014-09-03

Similar Documents

Publication Publication Date Title
EP2798224B2 (en) Pump unit
WO2008119404A1 (en) Arrangement for delivering fluids
DE102008031618A1 (en) Fluid-dynamic storage system for spindle motor, has fixed components and rotary component, which is pivoted relative to fixed components around rotational axis
EP1725775A1 (en) Arrangement with an electronically commutated external rotor motor
EP1767786A1 (en) Submersible pump assembly
WO2007033818A1 (en) Can
EP3540233A1 (en) Centrifugal pump assembly with rotatable valve
DE102015106610A1 (en) pump device
EP2818725B1 (en) Centrifugal pump with axially shiftable and closable impeller
DE202015103751U1 (en) pump device
EP2228891B1 (en) Electric motor for actuating a valve
EP3088745B1 (en) Rotor assembly for a vacuum pump and vacuum pump
DE102018201841B3 (en) Pump impeller, method of manufacturing a pump impeller and pump with impeller
DE102015106640A1 (en) Electric compressor for an internal combustion engine
WO2016173799A1 (en) Pump device
DE102006020136B4 (en) Fluid coupling device
EP3830931A1 (en) Rotor tube for an electric machine of a vehicle
WO2007144228A1 (en) Vehicle brake system piston pump
DE102019214279A1 (en) Side channel compressor for a fuel cell system for conveying and / or compressing a gaseous medium
WO2019238353A1 (en) Blocking device of a fan
DE102018203177A1 (en) Side channel compressor for a fuel cell system for conveying and / or compressing a gaseous medium
WO2020020408A1 (en) Hybrid module with actuating cylinder formed by rotor carrier
DE102021133447A1 (en) Magnetic drive pump assembly
DE202018103845U1 (en) pump device
DE102012215181A1 (en) Seal element for clutch assembly in drive train of motor vehicle, has receiving opening arranged in hub region of clutch housing, where seal element is able to be installed in biased manner, and is received in groove

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012006465

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04D0029041000

Ipc: F04D0013060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/047 20060101ALI20150624BHEP

Ipc: F04D 29/042 20060101ALI20150624BHEP

Ipc: F04D 13/06 20060101AFI20150624BHEP

Ipc: F04D 29/041 20060101ALI20150624BHEP

INTG Intention to grant announced

Effective date: 20150728

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006465

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012006465

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

26 Opposition filed

Opponent name: WILO SE

Effective date: 20161223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161219

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 783449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171219

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171219

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BLAD, THOMAS

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20191009

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502012006465

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012006465

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 12

Ref country code: FR

Payment date: 20231221

Year of fee payment: 12

Ref country code: DE

Payment date: 20231214

Year of fee payment: 12