EP3376051B1 - Pump unit - Google Patents

Pump unit Download PDF

Info

Publication number
EP3376051B1
EP3376051B1 EP17160834.2A EP17160834A EP3376051B1 EP 3376051 B1 EP3376051 B1 EP 3376051B1 EP 17160834 A EP17160834 A EP 17160834A EP 3376051 B1 EP3376051 B1 EP 3376051B1
Authority
EP
European Patent Office
Prior art keywords
coupling
valve
valve element
drive motor
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17160834.2A
Other languages
German (de)
French (fr)
Other versions
EP3376051A1 (en
Inventor
Thomas Blad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Priority to EP17160834.2A priority Critical patent/EP3376051B1/en
Priority to US16/492,717 priority patent/US20210140435A1/en
Priority to PCT/EP2018/056086 priority patent/WO2018166975A1/en
Priority to CN201880018444.4A priority patent/CN110431314B/en
Publication of EP3376051A1 publication Critical patent/EP3376051A1/en
Application granted granted Critical
Publication of EP3376051B1 publication Critical patent/EP3376051B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0016Control, e.g. regulation, of pumps, pumping installations or systems by using valves mixing-reversing- or deviation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/48Fluid-guiding means, e.g. diffusers adjustable for unidirectional fluid flow in reversible pumps
    • F04D29/486Fluid-guiding means, e.g. diffusers adjustable for unidirectional fluid flow in reversible pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0207Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/105Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system pumps combined with multiple way valves

Definitions

  • the invention relates to a pump unit, in particular a centrifugal pump unit, with an electric drive motor and at least one valve device located in a flow path through the pump unit, which valve device can be moved at least between a first and a second switching position.
  • Pump units which contain a valve device which makes it possible to switch between two possible flow paths through which the pump unit delivers.
  • Valve devices are known which switch over depending on the direction of rotation of the centrifugal pump unit or direct the flow into different flow paths depending on the direction of rotation.
  • off DE 9013992 U1 such a pump unit is known, which has a switching device, with the help of which it is possible to switch between two inputs of the pump unit in order to selectively suck in liquid from one of the two inputs.
  • the pump unit disclosed there has a relatively complex mechanism, which has an inflow element located on the pressure side, which is subjected to the flow generated by the centrifugal pump unit on the output side and can be moved into two different positions depending on the direction of rotation and thus the direction of flow.
  • a valve element on the suction side of the pump unit is switched between two inlets via a lever system connected to the inflow element.
  • a pump unit with an integrated valve element in which the valve element surrounds the impeller in a ring shape and can be moved into two different switching positions by the flow generated by the impeller, depending on the direction of rotation.
  • a cooling water pump unit with an integrated valve element is known, the valve element being movable via an actuating piston.
  • the actuating piston can be pressurized under the control of solenoid valves.
  • the pump unit according to the invention is a centrifugal pump unit.
  • the pump unit has an electric drive motor, which is preferably designed as a wet-running electric drive motor, ie as a canned motor.
  • the pump unit according to the invention can, for example, be designed as a circulating pump for use in a heating and/or air conditioning system.
  • the pump assembly is designed in particular to pump water.
  • the pump unit has at least one impeller which is driven by the drive motor. Furthermore, a valve device is integrated into the pump unit, which can be moved at least between a first and a second switching position.
  • the valve device is designed in such a way that it provides a valve function for the flow of liquid conveyed through the pump unit.
  • the valve device is designed in such a way that it can be moved via the electric drive motor of the pump unit, ie the drive motor driving the impeller.
  • the valve device is connected to the drive motor via a first clutch coupled in that the valve device can be moved from the first to the second switching position by a rotary movement of the drive motor.
  • the movement of the drive motor can be transmitted to the valve device by the first clutch, so that the valve device is moved directly or indirectly by the drive motor.
  • the drive motor is designed so that it can be driven in two directions of rotation, it would be possible according to a preferred embodiment of the invention to also move the valve device back from the second to the first switching position via the corresponding rotary movement of the drive motor.
  • the first clutch is also designed such that it can be released by increasing the speed of the drive motor and/or increasing the pressure on the output side of the impeller and/or slip in such a way that the clutch effect between the drive motor and the valve device is reduced or eliminated.
  • This makes it possible to use the drive motor specifically in certain operating conditions to move the valve device, while in other operating conditions, when z. B. the increased pressure or the increased speed is provided, but not to move the valve device.
  • the valve device is expediently designed such that in the normal operating state of the pump unit, ie when liquid is conveyed by the impeller in normal operation, the clutch is released so that the valve element remains in an assumed switching position in this state.
  • a gear can be provided between the drive motor and the valve device, which changes or converts the direction of movement and/or the speed of movement between the drive motor and the valve device.
  • the gear can be designed as a reduction gear, which counteracts a rotational speed of the valve device or of a valve element of the valve device the speed of the drive motor is reduced.
  • a rotary movement of the drive motor could be converted into a linear movement of the valve element by a gear, such as a spindle drive.
  • the drive motor is preferably electronically controlled or regulated so that it can be driven at different speeds and/or in different directions of rotation.
  • a control device can be provided which regulates or controls the drive motor in a corresponding manner.
  • the control device can be equipped with a frequency converter for changing the speed of the drive motor.
  • the control device is designed so that it not only controls the drive motor in such a way that the drive motor runs at different speeds, but also different acceleration profiles can be implemented when accelerating and/or braking the drive motor.
  • the configuration according to the invention has the advantage that on the one hand a separate drive motor for the valve device can be dispensed with, but on the other hand complex mechanisms for transmitting a force generated by the flow to a valve element can also be dispensed with. Rather, the power can be transmitted by the first clutch. In addition, the efficiency of the pump unit can be improved since the valve device essentially does not impair normal operation.
  • At least one stop can be provided which holds the valve device in a defined switching position, for example the first or the second switching position. More preferably, two stops can be provided, each of the two stops having a switching position defined by the valve device and the valve device can be moved between the two switching positions. This movement takes place via the first clutch and by appropriate control of the drive motor, in particular via the control device described.
  • the valve device preferably has no further electrically actuated switching elements for switching and/or holding the valve device. Rather, the valve device is moved between the switching positions solely by the drive motor.
  • the pump unit has at least one second releasable coupling between at least one movable part of the valve device and a valve housing surrounding the impeller.
  • This second releasable clutch can be moved from a released first clutch position into a holding clutch position by the pressure on the output side of the impeller.
  • the at least one releasable coupling does not have to act directly on the pump housing, but rather can also act indirectly on the pump housing in a holding manner, in that the coupling engages with a component connected to the pump housing. What is essential in the design of the second releasable coupling is that it prevents movement of the valve device in its holding second coupling position.
  • the second releasable clutch preferably enters into holding engagement in an operating state of the pump assembly, ie into its holding second clutch position, in which the first clutch reaches its released position.
  • the valve device in an operating state of the drive motor, in particular an operating state with a lower speed and/or lower acceleration, the valve device can be moved into a desired switching position. It can then be achieved by increasing the speed and/or, in particular, strong acceleration of the drive motor that the second releasable clutch engages in a holding manner occurs, so that the valve device remains and is held in the switching position reached.
  • the first clutch preferably disengages or slips, which allows the second rotation of the drive motor with the impeller.
  • the first and the second clutch are preferably designed in such a way that the first clutch has a lower holding force in its released position than the second clutch in its holding second clutch position. Conversely, the first clutch preferably has a greater holding force in its engaged position than the second clutch in its released first clutch position. This means that the first clutch, when engaged, can transmit greater force or torque than the second clutch in its released first clutch position. In this switching state, the valve element can be moved between the switching positions. If the first clutch is in its released position and the second clutch is in its holding clutch position, the second clutch can transmit a greater force or torque than the first clutch, so that the valve device is held in the switching position it has reached and not by the Drive motor can be moved via the first clutch.
  • the drive motor is also preferably designed in such a way that during operation of the pump assembly it generates a torque which is greater than the holding force of the first clutch in its coupled position. This prevents the first clutch from preventing the drive motor and thus the impeller from rotating during normal operation of the pump assembly.
  • the valve device can preferably be embodied as a switching valve, which enables switching between two flow paths.
  • the valve device Be mixing device, in which fluid is mixed from two flow paths, wherein the mixing device is designed such that the mixing ratio is different in the two switching positions of the valve device.
  • the valve device When configured as a mixing device, the valve device preferably has more than two switching positions, and can be movable, for example, between two switching positions that define the end positions, in a number of stages or continuously.
  • the use as a switching valve can be used, for example, in a heating system in which a switching valve is required to switch a heat transfer medium flow between a heat exchanger for heating service water and at least one heating circuit for heating a building.
  • a mixing device can also be used in a heating system, for example in order to reduce the temperature of a heat transfer medium by admixing liquid from a return of the heating system.
  • This can e.g. B. be useful for use for underfloor heating, in which it is usually necessary to reduce the flow temperature provided by a boiler by adding heat carrier from the return.
  • the valve means can preferably provide a valve function in a flow path on the suction side of the impeller and/or a valve function in a flow path on the pressure side of the impeller.
  • the valve device can be arranged in particular as a switching device on the suction side, so that depending on the switching position of the valve device, the impeller sucks in liquid from a first or a second flow path on the suction side.
  • a switchover device could be arranged on the pressure side, so that the pump assembly pumps into a first or a second flow path on the pressure side, depending on the switching position of the valve device.
  • valve device is designed as a mixing device, it can be arranged, for example, on the pressure side in such a way that on the pressure side, two flow paths in the mixing device open into a mixing point and that the mixing ratio between the two flow paths is changed depending on the switching position of the valve device.
  • one of the two flow paths preferably runs downstream of the pump unit through a heat exchanger of a heating or cooling device in order to temper the liquid delivered by the pump unit, ie to heat or cool it.
  • the other flow path there is preferably non-temperature-controlled liquid, which can then be mixed with the temperature-controlled liquid in the mixing device.
  • a mixing device could also be arranged on the suction side of the pump unit, so that the pump unit z. B. draws in a liquid mixed from two flow paths.
  • the valve device has at least one movable valve element and stop elements which define the first and the second switching position and of which at least one is preferably adjustable in its position.
  • the adjustability of one or more stop elements makes it possible to regulate the end positions or the switching positions of the valve device.
  • the stop elements prevent the valve device or the valve element from being moved beyond the desired switching position. The stop element thus leads to a positive engagement between the valve element and the stop element, so that further movement of the valve element is prevented.
  • the valve device has at least one movable valve element which interacts with two valve openings in such a way that a first valve opening is more covered by the valve element in the first switching position of the valve device than in the second Switching position and a second valve opening is covered by the valve element in the second switching position more than in the first switching position.
  • the valve element is designed as a switching valve
  • the second valve opening is open and the first valve opening is closed in the first switching position.
  • the second valve opening is closed and the first valve opening is open.
  • the valve device is designed as a mixing device, intermediate positions or intermediate switching positions are preferably possible, in which the two valve openings are open simultaneously, but to different extents.
  • a mixing ratio can be changed by changing the degree of opening of the two valve openings.
  • the at least one movable valve element is preferably designed in such a way that when one valve opening is opened by a certain amount, the other valve opening is simultaneously closed by the same amount.
  • Such an interaction of the closing of the two valve openings can be realized with one valve element, but also with two valve elements if these are mechanically coupled to one another.
  • the valve device has a movable valve element, which has at least one sealing surface and one pressure surface, the pressure surface being connected to a pressure chamber surrounding the impeller in such a way that the valve element is counteracted by the pressure acting on the pressure surface with the sealing surface a contact surface is pressed, the contact surface preferably forming a valve seat.
  • the valve element together with the contact surface, can assume the function of the second clutch described above.
  • the sealing surface preferably disengages from the contact surface or preferably from a valve seat, so that easy mobility of the valve element with reduced friction is ensured.
  • the valve seats may preferably surround valve openings as previously described. The contact of the at least one sealing surface then seals off the flow paths to the outside. Furthermore, a sealing surface can also be pressed against a contact surface or a valve seat in such a way that the contact achieves a seal between the suction chamber and the pressure chamber of the pump assembly.
  • valve seats can be provided, on which one or more sealing surfaces of the valve element come into contact with a sufficiently high pressure in the pressure chamber in order to achieve the necessary sealing of the flow paths.
  • a restoring element for example a restoring spring, can preferably be provided, which disengages the valve element from the contact surface with the sealing surface when the pressure in the pressure chamber falls below a predetermined value, i.e. the force generated by the pressure in the pressure chamber on the pressure surface is lower becomes the restoring force generated by the restoring element. This ensures easy mobility of the valve element at low pressure.
  • the valve device can more preferably have a rotatable valve element. That is to say, the valve element is moved between the switch positions by a rotating movement, with the axis of rotation more preferably being aligned with the axis of rotation of the impeller or of the drive motor aligned, which allows a particularly simple coupling without additional transmission means.
  • the rotatable valve element is preferably releasably coupled to a rotor of the drive motor via the first coupling, with the coupling not having to act on the actual magnet rotor but also on a component connected to the magnet rotor, such as a shaft or the impeller. When the first clutch is engaged, the rotatable valve element is rotated by the rotor of the drive motor.
  • the drive motor can preferably be driven in two directions of rotation and the valve device is designed such that its first switch position is reached by driving the drive motor in a first direction of rotation and its second switch position is reached by driving the drive motor in a second direction of rotation.
  • a restoring means or force-generating means can also be provided, which rotates the valve element back into a predetermined starting position or switching position when the drive motor is switched off.
  • This can be, for example, a magnetic restoring means, a restoring means acting by spring force or by gravity.
  • the first and/or the second clutch can preferably be a friction clutch, a magnetic clutch and/or a hydraulic clutch, which more preferably exhibit slip. If the first clutch slips, this allows the drive motor to continue rotating after a predetermined switching position has been reached, when the valve element of the valve device or the valve device is fixed in the switching position, without being blocked by the fixing of the valve device. For example, a valve element can hit a stop, whereupon the clutch then slips or the drive motor can continue to turn due to the slippage in the clutch. Especially preferred a hydraulic coupling can be realized via the liquid conveyed by the impeller.
  • the liquid can be set in rotation by the impeller inside a pump housing in the direction of rotation of the impeller and can move this via the friction on a part of the valve device, in particular directly on the valve element.
  • the valve element or the valve device reaches a switching position and is fixed there, the hydraulic flow continues, with the usual hydraulic friction losses occurring only on the surfaces.
  • to move the valve device it is essentially possible to use energy loss which is present anyway and is converted into a movement of the valve device or the valve element.
  • the first clutch has at least one clutch element that can be moved between a clutched and a released position, the direction of movement between the clutched and the released position preferably running transversely to a force direction of the force to be transmitted from the clutch to the valve device.
  • the coupled position there is a non-positive and/or positive engagement between the coupling element and an opposite coupling surface.
  • the clutch element can be moved in such a way that it can disengage from the clutch surface, so that the valve element is then no longer moved or carried along and remains in its switched position.
  • the direction of movement between the coupled and released position is preferably in a direction deviating from the direction of force transmission, which ensures that the coupling element is not moved out of engagement by the force to be transmitted.
  • the direction of movement particularly preferably runs normal to the direction of force or to a plane in which the direction of force runs.
  • the latter can be the case, for example, when the clutch is used to transmit torque.
  • the direction of movement runs preferably along the axis of rotation and thus transverse and in particular normal to the plane in which the force is transmitted.
  • a valve element of the valve device can particularly preferably form the movable coupling element at the same time.
  • the valve element can have a coupling surface, which can engage with an opposite coupling surface, which is preferably arranged on the rotor or impeller, in order to move the valve element, in particular to move it in rotation.
  • a non-positive and/or positive engagement can be provided.
  • the coupling element can expediently be acted upon by a prestressing force, which forces the coupling element into the coupled position. This means that in the rest position the first clutch is engaged. This engagement is then preferably disengaged by the pressure occurring in the pressure chamber or by a higher speed of the drive motor. When the drive motor is switched off, this force disengaging the clutch is removed, so that the biasing force forces the clutch back into the engaged position.
  • the coupling element has a pressure surface which is connected to a pressure chamber surrounding the impeller and is arranged in such a way that a pressure acting on the pressure surface generates a force which is directed in the opposite direction to the prestressing force.
  • the clutch element is displaced, being arranged so that on this displacement it is moved to its released position, ie the first clutch engages disengaged and the valve element is no longer moved by the drive motor, but remains in its adopted switching position.
  • the pressure decreases, for example when the pump unit is switched off is released, the pushing force decreases and the preloading force becomes the larger force again, so that the clutch is moved to the coupled position again. The next time the drive motor starts up, the valve element or the valve device can then be moved back into another switching position.
  • the clutch element can have a clutch surface which, in the coupled position, is in frictional contact with a counter-coupling surface, the clutch surface and the counter-coupling surface being designed in such a way and being surrounded by a lubricant that between the clutch surface and the counter - When the speed of the drive motor increases, the clutch surface forms a lubricating film that eliminates the frictional contact.
  • the liquid conveyed by the pump unit for example water, is preferably used as the lubricant.
  • the clutch then functions in the manner of a slide bearing.
  • a lubricating film forms between the clutch surface and the mating clutch surface, so that the frictional contact between the surfaces is eliminated and they slide over one another in the manner of a sliding bearing.
  • a clutch can be created which is disengaged by increasing the speed. That is, when the drive motor is moved at a low speed, the valve element or the valve device is moved via the frictional contact between the coupling surface and the counter-coupling surface, which is located between the rotor and the valve device or the valve element, so that the switching position is changed can be. The speed of the drive motor can then be increased to such an extent that the frictional contact is eliminated as described and the valve device remains in the switching position that has been reached.
  • valve device is then preferably fixed in the desired switching position in the manner described above by a second clutch.
  • a second clutch it is possible to keep the valve element in its initial position when the drive motor accelerates accordingly, without it being moved by the hydraulic clutch. This can be achieved by accelerating the drive motor so quickly that a pressure build-up which moves the second clutch into the coupled clutch position occurs so quickly that the second clutch engages before there is displacement of the valve element and thus there is a change in the switching position of the valve device.
  • the exemplary embodiments of the pump unit according to the invention in the form of a centrifugal pump unit described in the following description relate to applications in heating and/or air-conditioning systems in which a liquid heat carrier, in particular water, is circulated by the centrifugal pump unit.
  • the centrifugal pump unit according to the first embodiment of the invention has a motor housing 2 in which an electric drive motor is arranged.
  • this has a stator 4 and a rotor 6 which is arranged on a rotor shaft 8 .
  • the rotor 6 rotates in a rotor space, which of the Stator space, in which the stator 4 is arranged, is separated by a can or a can 10 .
  • the motor housing 2 is connected to a pump housing 12 in which an impeller 14 rotatably connected to the rotor shaft 8 rotates.
  • An electronics housing 16 is arranged on the axial end of the motor housing 2 opposite the pump housing 12 and contains control electronics or a control device for controlling the electric drive motor in the pump housing 2 .
  • the electronics housing 16 could also be arranged on another side of the stator housing 2 in a corresponding manner.
  • a valve device with a movable valve element 18 is arranged in the pump housing 12 .
  • This valve element 18 is rotatably mounted on an axis 20 inside the pump housing 12 in such a way that the axis of rotation of the valve element 18 is aligned with the axis of rotation X of the impeller 14 .
  • the axis 20 is fixed in a rotationally fixed manner on the bottom of the pump housing 12 .
  • the valve element 18 is not only rotatable about the axis 20, but also movable to a certain extent in the longitudinal direction X. This linear mobility is limited in one direction by the pump housing 12, against which the valve element 18 abuts with its outer circumference.
  • the movability is limited by the nut 22, with which the valve element 18 is fastened on the axle 20. It is to be understood that instead of the nut 22, a different axial fastening of the valve element 18 on the axle 20 could also be selected.
  • the valve element 18 separates a suction chamber 24 from a pressure chamber 26 in the pump housing 12.
  • the pressure chamber 26 rotates the impeller 14.
  • the pressure chamber 26 is connected to the pressure connection or pressure connection 28 of the centrifugal pump unit, which forms the outlet of the centrifugal pump unit.
  • Two inlets 28 and 30 on the suction side open into the suction chamber 24 , of which the inlet 28 is connected to a first suction connection 32 and the inlet 30 is connected to a second suction connection 34 of the pump housing 12 .
  • the valve element 18 is disk-shaped and at the same time assumes the function of a conventional deflector plate, which separates the suction chamber 24 from the pressure chamber 26 .
  • the valve element 18 has a central suction opening 36 which has a projecting peripheral collar which engages the suction mouth 38 of the impeller 14 and is in substantial sealing abutment with the suction mouth 38 . Facing the impeller 14, the valve element 18 is designed to be essentially smooth.
  • the valve element On the side facing away from the impeller 14, the valve element has two ring-shaped sealing surfaces 40, which in this exemplary embodiment are located on closed tubular sockets.
  • the two annular sealing surfaces 40 are arranged in two diametrically opposite positions on the sealing element 18 with respect to its axis of rotation X, so that they can come into tight contact in the peripheral area of the inlets 28 and 30 on the bottom of the pump housing 12 in order to close the inlets 28 and 30.
  • Arranged in an angular position 90° offset from the sealing surfaces 40 are supporting elements 42, which can also come into contact with the peripheral area of the inlets 28, 30, but are spaced apart from one another in such a way that they then do not close the inlets 28, 30.
  • the inlets 28 and 30 do not lie on a diameter line with respect to the axis of rotation X, but rather on a radially offset straight line, so that when the valve element 18 rotates about the axis of rotation X in a first switching position, the inlet 38 is closed by a sealing surface 40, while the support elements 42 lie at the entrance 30 and open it.
  • the input 30 is of a Sealing surface 40 closed, while the support elements 42 rest in the peripheral area of the input 28 and open it.
  • the first switch position, in which inlet 38 is closed and inlet 30 is open is in figure 5 shown.
  • the second switch position, in which input 30 is closed and input 28 is open is in 6 shown. This means that by turning the valve element by 90° around the axis of rotation X, it is possible to switch between the two switch positions.
  • the two switching positions are limited by a stop element 44 which alternately strikes two stops 46 in the pump housing 12 .
  • a spring 48 presses the valve element 18 into a released position in which the outer circumference of the valve element 18 is not tight against the pump housing 12 and the sealing surfaces 40 are not tight in the peripheral area of the inlets 28 and 30 abut so that the valve element 18 can rotate about the axis 20.
  • the drive motor is rotated by the control device 17 in the electronics housing 16 so that the impeller 14 rotates, a circulating flow is generated in the pressure chamber 26 which rotates the valve element 18 in its direction of rotation via friction. This means that a first hydraulic clutch is formed between the drive motor and the valve element via the rotating flow.
  • the control device 17 is designed in such a way that it can selectively drive the drive motor in two directions of rotation.
  • the valve element 18 can also be moved about the axis of rotation X in two directions of rotation via the flow set in rotation by the impeller 14, since the flow in the peripheral region of the impeller 14 always runs in its direction of rotation.
  • the valve element 18 can thus be rotated between the two switch positions delimited by the stops 46 .
  • the support elements 42 come into contact with the other inlet, so that this inlet remains open and a flow path is provided from this inlet 28, 30 to the suction opening 36 and from there into the interior of the impeller 14.
  • the contact of the valve element 18 on the contact shoulder 50 and the sealing surface 40 in the peripheral area of one of the inlets 28, 30 creates a frictional contact between the valve element 18 and the pump housing 12 at the same time.
  • This frictional contact forms a second clutch which fixes the valve element.
  • This frictional contact ensures that the valve element 18 is held in the switching position it has reached. This makes it possible to take the drive motor out of operation again for a short time and to put it back into operation in the opposite direction of rotation without the valve element 18 being rotated.
  • the pressure in the pressure chamber 26 does not decrease to such an extent that the valve element 18 can move again in the axial direction into its released position.
  • this makes it possible to always drive the impeller in its preferred direction of rotation, for which the blades are designed, and to use the opposite direction of rotation only to move the valve element 18 in the opposite direction of rotation.
  • the impeller 14 can continue to rotate. The flow continues in the pressure chamber 26 without the valve element 18 also rotating. This means that the hydraulic first clutch formed between the impeller 14 and the valve element 18 is disengaged due to slippage.
  • the centrifugal pump unit described, according to the first embodiment of the invention, can be used, for example, in a heating system as shown in 7 is shown.
  • a heating system is usually used in apartments or residential buildings and is used to heat the building and to provide heated service water.
  • the heating system has a heat source 52, for example in the form of a gas boiler.
  • a heating circuit 54 which, for example, runs through various radiators in a building.
  • a secondary heat exchanger 56 is provided, via which process water can be heated.
  • a switching valve is usually required, which directs the flow of heat transfer medium either through the heating circuit 54 or the secondary heat exchanger 56 .
  • this valve function is taken over by the valve element 18 which is integrated into the centrifugal pump unit 1 .
  • the control is carried out by the control device 17 in the electronics housing 16.
  • the heat source 52 is connected to the pressure connection 27 of the pump housing 12.
  • a flow path 58 is connected to the suction port 32 , while a flow path 60 through the heating circuit 54 is connected to the suction port 34 .
  • the second embodiment according to Figures 8 to 10 differs from the first exemplary embodiment in the structure of the valve element 18'.
  • the valve element 18' separates the pressure chamber 26 from a suction chamber 24 of the pump housing 12.
  • the valve element 18 has a central suction opening 36', into which the suction mouth 38 of the impeller 14 engages in a sealing manner.
  • the valve element 18' has an opening 62 which, depending on the switching position of the valve element 18', can optionally be brought to coincide with one of the inlets 28, 30.
  • the inputs 28', 30' differ in their shape from the inputs 28, 30 according to the previous embodiment.
  • the valve element 18' has a central projection 64 which engages in a central hole 60 in the bottom of the pump housing 12 and is mounted there so as to rotate about the axis of rotation X.
  • the projection 64 in the hole 66 also allows an axial movement along the axis of rotation X, which is limited in one direction by the bottom of the pump housing 12 and in the other direction by the impeller 14.
  • the valve element 18 ′ On its outer circumference, the valve element 18 ′ has a pin 68 which engages in a semi-circular groove 70 on the bottom of the pump housing 12 .
  • the ends of the groove 70 serve as stop surfaces for the pin 68 in the two possible switching positions of the valve element 18', with the opening 62 being above the inlet 28' in a first switching position and the opening 62 being above the inlet 30' in a second switching position and the respective other input is closed by the base of the valve element 18'.
  • the rotational movement of the valve element 18' between the two switch positions also takes place in this exemplary embodiment by the flow caused by the impeller 14 in the pressure chamber 26, which flow forms a first hydraulic clutch.
  • projections 72 directed in the pressure chamber 26 .
  • the spring 48 presses the valve element 18' in the in 10 released position shown clear of the ground in the perimeter of the entrances 28' and 30'. Ie the second clutch is released. In this position, the valve element 18′ abuts axially with a central pin 74 on the end face of the motor shaft 8 and is limited in its axial movement by this stop. If the pressure in the pressure chamber 26 is sufficiently high, the valve element 18 'in the in 9 shown applied position, in which the valve element 18 'at the bottom of the pump housing 12 in the peripheral area of the inputs 28' and 30 'comes to rest and at the same time the pin 24 is lifted from the end face of the rotor shaft 8. Ie the second clutch is engaged. In this position, the impeller 14 then rotates during normal operation of the circulating pump assembly. Ie the hydraulic first clutch is disengaged due to slip.
  • the third embodiment according to Figures 11 to 13 shows another possible embodiment of the valve element 18".
  • This embodiment differs from the previous embodiments in the structure of the valve element 18".
  • This is designed as a valve drum.
  • the pump housing 12 essentially corresponds to the structure shown in FIG Figures 1 to 6 , wherein in particular the arrangement of the inputs 28 and 30 corresponds to the arrangement described with reference to the first exemplary embodiment.
  • the valve drum of the valve element 18" consists of a pot-shaped lower part, which is closed by a cover 78.
  • the cover 78 faces the pressure chamber 26 and has the central suction opening 36, which engages in the suction mouth 38 of the impeller 14 with its axially directed collar
  • the bottom of the lower part 36 has an inlet opening 80 which, depending on the switch position, is brought to coincide with one of the inlets 28, 30, while the respective other inlet 28, 30 is closed by the bottom of the lower part 26 .
  • the valve element 18" is rotatable on an axis 20 mounted, which is fixed in the bottom of the pump housing 12, wherein the axis of rotation, which is defined by the axis 20, the axis of rotation X of the impeller 14 corresponds.
  • valve element 18" can be displaced axially along the axis 20 by a certain amount, with a spring 48 also being provided here which, in the rest position, moves the valve element 18" into its in 13 shown released position presses. In this way, a releasable second coupling for holding the valve element 18" is also created here.
  • the released axial position is also limited in this exemplary embodiment by the nut 22.
  • the valve element 18" is, as described above, by the flow which caused by the impeller 14, rotatably, i.e. a hydraulic coupling (first coupling) is established between impeller 14 and valve element 18" as previously described.
  • the mounting of the valve element 18" on the axle 20 is also encapsulated by two sleeves 82 and 84, so that these areas are protected from contamination by the fluid being pumped and can be lubricated beforehand if necessary. to ensure the easy rotation of the valve element 18" by the flow caused by the impeller 14. It is to be understood that the bearing could also be correspondingly encapsulated in the other exemplary embodiments described here.
  • FIG. 14 and 15 12 show a fourth embodiment in which the structure of the pump housing 12 is the same as that of the pump housing 12 according to the first and third embodiments is equivalent to.
  • the rotational movement of the valve element 18c is supported by the flow on the suction side, ie the flow entering the suction mouth 38 of the impeller 14 . Since, in a circulatory system in which a centrifugal pump unit as described here is used, the suction-side flow is also generated by the centrifugal pump unit, an indirect coupling of the impeller 14 to the valve element 18c is also created via the suction-side flow, which represents the first hydraulic clutch.
  • the valve element 18c is essentially drum-shaped and has a cover 28 facing the pressure chamber 26 with the central suction opening 36, which engages with the suction mouth 38, as described above.
  • the lower part 76b shown here has two inlet openings 80 which, depending on the switching position, can be brought to overlap with one of the inlets 28, 30, the respective other inlet 28, 30 being sealed tightly by the bottom of the lower part 46b, as in the previous embodiment has been described.
  • a guide wheel 86 with vanes into which the flow from the inlet openings 80 enters radially and exits axially to the central suction opening 36 .
  • the vanes of the guide wheel 86 also generate a torque about the axis 20, by means of which the valve element 18c can be moved between the switching positions. This works essentially as described above.
  • a spring 48 as described above may also be additionally provided to move the valve element 18c to a released position. Since the shape of the blades of guide wheel 86 always generates a torque in the same direction, regardless of the direction in which impeller 14 rotates, in this exemplary embodiment the restoring movement is carried out by a weight 88. During operation, the centrifugal pump unit is always in the installed position , what a 15 is shown in which the axis of rotation X extends horizontally.
  • valve element 18c When the centrifugal pump unit is switched off, the valve element 18c always rotates about the axis 20 in such a way that the weight 88 is at the bottom.
  • the torque generated by the guide wheel 86 allows the valve element 18c to be rotated against this restoring force generated by the weight 88, and by very rapid activation of the drive motor in the pressure chamber 26 a pressure can be built up so quickly that the valve element 18c moves into its adjacent position occurs, as described above, in which it is held non-rotatably on the pump housing 12 without being moved out of its rest position.
  • a second clutch as described above, is also implemented here.
  • valve member 18c When the valve member 18c is in the applied position, the first clutch formed by the stator 86 slips out of engagement, i.e. flow continues through the stator but without being able to cause rotation of the valve member 18c.
  • the fifth embodiment according to Figures 16 to 18 differs from the preceding exemplary embodiments in turn in the structure of the valve element.
  • the valve element 18d is conical.
  • the valve element 18d has a conical pot-shaped lower part 76d, which is closed by a cover 78d, with a central suction opening 36 being formed in the cover 78d, which engages with the suction mouth 38 of the impeller 14 in the manner described above.
  • inlet openings 90 are formed, which can be made to overlap by rotating the valve element 18d with inlets which are connected to the suction ports 32 and 34 selectively flow path through the interior of the valve member 18d to the suction port 36 to establish.
  • Sealing surfaces 92 are formed on the conical lower part between the inlet openings 90 and can close the respective other inlet.
  • the valve element 18d has a pin-shaped projection 64 which engages in a recess on the bottom of the pump housing 12 and supports the valve element 18d there so that it can rotate about the axis of rotation X.
  • an axial movement between a released position, as shown in 18 is shown, and an abutting position as shown in 17 shown, is possible to form a releasable second coupling.
  • the lower part 76d of the valve element 18d is essentially not in contact with the pump housing 12, so that it can be rotated as a first hydraulic clutch by the flow in the pressure chamber 26, as was described in the exemplary embodiments described above.
  • a back and forth movement of the valve element 18d can be achieved, with the rotary movement of the valve element 18d again being able to be limited by stops (not shown).
  • the fitting position according to 17 on the one hand there is a tight contact of the valve element 18d, on the other hand it is held in a non-positive manner so that it is not moved between the switching positions even when the direction of rotation of the impeller 14 changes as long as the pressure in the pressure chamber 26 is sufficiently high.
  • the sixth embodiment according to Figures 19 to 22 is similar to the embodiment according to FIG Figures 8 to 10 .
  • the pump housing 12 essentially corresponds to the structure shown and described there.
  • the motor housing 2 with the electronics housing 16 and the can 10 correspond to the structure according to the second embodiment.
  • the valve element 18e has a very similar construction to the construction of the valve element 18'. It's just missing the projections 72 and the pin 74.
  • the opening 62 is formed in the same way.
  • the suction opening 36e also essentially corresponds to the structure of the suction opening 36'.
  • the valve element 18e is journaled for rotation on a hollow axle which is inserted in the hole 66 in the bottom of the pump housing 12. As shown in FIG. In this embodiment, the spring 48 is positioned inside the hollow axle 94 .
  • valve element 18e is additionally movable axially along the axis of rotation X, which is the axis of rotation of the impeller 14 and the valve element 18e, in order to form a second clutch.
  • valve element 18e In a rest position, in which the centrifugal pump unit is not in operation, the valve element 18e is pressed by the spring 48 into a released position in which the surface of the valve element 18e facing away from the impeller 14 is spaced from the bottom of the pump housing 12, so that the valve element 18e is substantially free to reciprocate about axis 94 between the stops formed by pin 68 and groove 70.
  • 21 shows the first switch position, in which the opening 62 is opposite the input 28'
  • 22 shows the second switching position, in which the opening 62 is opposite the second input 30'.
  • the rotation of the valve element 18e takes place via the impeller 14, but here a mechanical coupling is provided as the first coupling, which is implemented in that the impeller 14 frictionally engages with its area surrounding the suction mouth 38 on the circumference of the suction opening 36e comes.
  • the valve element 18e is rotated with the impeller 14 until the pin 68 reaches a stop. Then the clutch kicks in disengaged due to slippage.
  • the valve element 18e is then, as described above, moved axially into its abutting position, in which the second clutch is thus engaged and the first clutch is disengaged from the impeller 14, so that the impeller 14 then can rotate essentially without friction.
  • a tongue 96 which extends into the pressure chamber 26 and serves as an additional valve element in the pressure chamber 26 is arranged on the valve element 18f.
  • the pump housing 12 has an additional pressure connection 98 which opens into the pressure chamber 26 separately from the pressure connection 27 .
  • the tongue 96 can release the pressure connection 27 or the pressure connection 28 which the respective other pressure connection covers.
  • a pressure-side changeover is provided on the pressure side of the impeller 14 .
  • a mixing function can be implemented at the same time via the inputs 28' and 30', in which the opening 92 is positioned in such a way that it covers these two inputs 28', 30' in a first switch position, so that liquid flows out of the two inputs 28', 30'. through the opening 62 and further through the suction mouth 38 flows.
  • the opening 62 In the second switching position, on the other hand, the opening 62 only covers the inlet 28', while the inlet 30' is closed by the bottom of the valve element 18f in the manner described above.
  • the pressure port 27 is closed and the pressure port 98 is released.
  • valve element 18f The movement of the valve element 18f can be realized in the manner described above via the impeller 14 and a mechanical clutch, which disengages through axial displacement of the valve element 18f when the pressure in the pressure chamber 26 is sufficiently high will.
  • the valve element 18f is mounted on the rotor shaft 8.
  • the eighth embodiment according to Figures 25 to 28 differs from the sixth embodiment in the formation of the first mechanical coupling between the rotor shaft 8 and the valve element 18g.
  • the valve element 18g is mounted directly on the rotor shaft 8, which is elongated and extends into the hole 66 in the bottom of the pump housing 12.
  • Inside the valve element 18g are two ring segments 100 with plain bearing properties, in particular made of ceramic.
  • the ring segments 100 are held together by a clamping ring 102 and pressed against the rotor shaft 8 .
  • the two ring segments 100 essentially form a 2/3 ring.
  • valve element 18g engages with a projection 104 on its inner circumference, so that the two ring segments 100 are arranged in a rotationally fixed manner inside the valve element 18g.
  • a passage 106 remains in the valve element 18g, which causes the valve function.
  • the passage 106 can be in a first switch position, which is in 27 is shown, the input 30 'opposite and in a second switch position, which in 28 shown, opposite the entrance 28'.
  • the other entrance is locked.
  • the valve element 18g can be pressed by the pressure prevailing in the pressure chamber 26 in the axial direction against the base of the pump housing 2 surrounding the inlets 28' and 30'.
  • the valve element 18g is moved via a first clutch by driving the impeller 14.
  • the rotor shaft 8 rests non-positively on the inner circumference of the ring segments 10 and rotates them, and thus the valve element 18g as well. Stops can be formed in the pump housing 12 in the manner described above for the two switching positions. If the valve element 18g reaches one of these stops, the pump shaft 8 slips inside the ring segments 100, i.e. the clutch is disengaged.
  • a lubricating film in the manner of a slide bearing can also form between the outer circumference of the rotor shaft 8 and the inner surfaces of the ring segments 100, so that the rotor shaft 8 can then rotate essentially without friction inside the ring segments 100.
  • the drive motor is preferably moved by the control device 17 at a lower speed than the speed at which the impeller 14 is rotated during operation.
  • the drive motor can be driven in two directions of rotation, in the manner described above remains due to the pressure in the pressure chamber 26 and its system at the bottom of the pump housing 12 in the switching position previously reached.
  • a mechanical coupling is also provided between the drive motor and the valve element, with the drive motor being controllable by the control device 17 in two different operating modes in these embodiments.
  • a first operating mode which corresponds to the normal operation of the circulating pump unit
  • the drive motor rotates in the conventional manner Way with a desired, in particular by the control device 17 adjustable speed.
  • the second operating mode the drive motor is controlled in open-loop operation, so that the rotor can be rotated step by step in individual angular steps that are less than 360°.
  • the drive motor can thus be moved in individual steps in the manner of a stepping motor, which is used in these exemplary embodiments to move the valve element in small angular steps into a defined position, as will be described below.
  • a mixing valve is integrated in the pump housing 2, as can be used, for example, to set the temperature for underfloor heating.
  • the motor housing 2 with the electronics housing 16 corresponds to the embodiment described above.
  • the pump housing 12 has essentially the same structure as the pump housing according to the first embodiment Figures 1 to 6 , only the external configuration differs.
  • the valve element 18h is also drum-shaped in this ninth embodiment and consists of a pot-shaped lower part 76h, which is closed on its side facing the impeller 14 by a cover 78h.
  • a suction port 36 is formed in the central portion of the lid 78h.
  • the valve element 18h is rotatably mounted on an axle 20 which is arranged in the bottom of the pump housing 12.
  • the axis of rotation of the valve element 18h corresponds to the axis of rotation X of the rotor shaft 8h, as in the examples described above.
  • valve element 18h is also axially displaceable along the axis X to form a second releasable coupling and is pushed by a spring 48 into the in Figure 33 Pressed rest position shown, in which the valve element is 18h in a released position in which the lower part 76h does not rest against the bottom of the pump housing 12, so that the valve member 18h is substantially free to rotate about the axis 20.
  • the front end of the rotor shaft 8h which is designed as the first clutch 108, acts as an axial stop.
  • the clutch 108 engages a mating clutch 110 which is non-rotatably mounted on the valve member 18h.
  • the clutch 108 has beveled clutch surfaces which essentially describe a sawtooth profile along a peripheral line in such a way that a torque transmission from the clutch 108 to the mating clutch 110 is only possible in one direction of rotation, namely in the direction of rotation A in 31 .
  • the clutch slips, causing an axial movement of the valve element 18h.
  • Direction of rotation B is the direction of rotation in which the pump unit is driven during normal operation.
  • the direction of rotation A is used for the targeted adjustment of the valve element 18h. This means that a first clutch that is dependent on the direction of rotation is formed here.
  • the counter-coupling 110 is also disengaged from the clutch 108 by the pressure in the pressure chamber 26 in this embodiment. If the pressure in the pressure chamber 26 increases, a compressive force acts on the cover 78h, which is opposite to and exceeds the spring force of the spring 48, so that the valve element 18h is pressed into the abutting position, which is shown in 32 is shown. In this, the lower part 76h rests against the bottom side of the pump housing 12, so that on the one hand the valve element 18h is held in a non-positive manner and on the other hand a tight contact is achieved, which seals the pressure and suction sides against one another in the manner described below.
  • the pump housing 12 has two suction connections 32 and 34 , of which the suction connection 32 opens at an inlet 28h and the suction connection 34 at an inlet 30h in the bottom of the pump housing 12 into its interior, ie the suction chamber 24 .
  • the lower part 76h of the valve element 18h has a bottom in its base arcuate opening 112 extending substantially 90°. 34 shows a first switching position, in which the opening 112 only covers the inlet 30h, so that a flow path is only provided from the suction connection 34 to the suction opening 36 and thus to the suction mouth 38 of the impeller 14.
  • the second inlet 28h is tightly closed by the base of the valve element 18h lying in its peripheral area.
  • Figure 36 shows the second switching position, in which the opening 112 only covers the entrance 28h, while the entrance 30h is closed. In this switching position, only one flow path from the suction connection 32 to the suction mouth 38 is open.
  • Figure 35 12 now shows an intermediate position in which the opening 112 covers both entrances 28h and 30h, the entrance 30h being only partially uncovered.
  • the valve element 18h can also be adjusted in small steps via the stepwise adjustment of the rotor shaft 8h in order to change the mixing ratio.
  • the hydraulic circuit has a heat source 114 in the form of a gas boiler, for example, whose outlet opens into, for example, the suction connection 34 of the pump housing 12 .
  • a floor heating circuit 116 is connected to the pressure connection 37 of the centrifugal pump unit 1, the return of which is connected both to the input of the heat source 114 and to the suction connection 32 of the centrifugal pump unit.
  • a second circulating pump assembly 118 can be used to supply a further heating circuit 120 with a heat transfer medium, which Temperature of the heat source 114 has.
  • the flow temperature of underfloor heating circuit 116 can be regulated in such a way that cold water from the return is mixed with the hot water on the outlet side of heat source 114, with changing the opening ratios of inlets 28h and 30h in the manner described above Mixing ratio can be changed by rotating the valve element 18h.
  • the tenth embodiment according to Figures 38 to 47 shows a centrifugal pump unit which, in addition to the mixer functionality described above, also has a switchover functionality for the additional supply of a secondary heat exchanger for domestic water heating.
  • valve element 18i is mounted and driven in exactly the same way as in the ninth embodiment.
  • the valve element 18i has, in addition to the opening 112, a through channel 122 which extends from an opening 124 in the cover 78i to an opening in the bottom of the lower part 76i and thus connects the two axial ends of the valve element 18i to one another.
  • an arcuate bridging opening 126 is formed in the valve element 18i which is open only to the underside, ie to the bottom of the lower part 76i and thus to the suction chamber 24, which is closed to the pressure chamber 26 by the cover 78i.
  • the pump housing 12 has a further connection 128 .
  • the connection 128 opens into an inlet 130 in the base of the circulating pump unit 12 in addition to the inlets 28h and 30h into the suction chamber 24.
  • the cover 78i of the valve member 18i is shown partially open to show the position of the underlying openings.
  • Figure 43 shows a first switch position, in which the opening 112 is opposite the inlet 30h, so that a flow connection is established from the suction connection 34 to the suction mouth 38 of the impeller 14.
  • the opening 112 is above the inlet 130 so that a flow connection is created from the connection 128 to the suction opening 36 and via this into the suction mouth 38 of the impeller 14.
  • the opening 112 is above the inlet 30h, so that in turn there is a flow connection from the suction connection 34 to the suction mouth 38 of the impeller 14.
  • the opening 124 and the through hole 122 partially overlap with the inlet 28h, so that a connection is established between the pressure chamber 26 and the suction connection 32, which acts as a pressure connection here.
  • the bridging opening 126 simultaneously covers the inlet 130 and part of the inlet 28h, so that a connection from the connection 128 via the inlet 130, the bridging opening 126 and the inlet 28h to the connection 32 is also created.
  • Figure 46 12 shows a fourth switching position, in which the through-channel 122 completely covers the inlet 28h, so that the connection 32 is connected to the pressure chamber 26 via the through-channel 122 and the opening 124. At the same time, the bridging opening 126 only covers the entrance 130. The opening 112 continues to cover the entrance 30h.
  • centrifugal pump unit can be used, for example, in a heating system as described in Figure 47 is shown, find use. There the dashed line limits the centrifugal pump unit 1, as is just based on the Figures 38 to 46 was described.
  • the heating system in turn has a primary heat exchanger or a heat source 114, which can be a gas boiler, for example.
  • a first heating circuit 120 which can be formed, for example, by conventional heaters or radiators.
  • a flow path branches off to a secondary heat exchanger 56 for heating service water.
  • the heating system also has a floor heating circuit 116 .
  • the returns from the heating circuit 120 and the underfloor heating circuit 116 flow into the suction connection 34 on the pump housing 12.
  • the return from the secondary heat exchanger 56 flows into the connection 128 which, as will be described below, offers two functionalities.
  • the connection 32 of the pump housing 12 is connected to the flow of the underfloor heating circuit 116 .
  • valve element 18i When the valve element 18i is in the first in Figure 43 switching position shown, the impeller 14 conveys liquid from the suction connection 34 via the pressure connection 27 through the heat source 140 and the heating circuit 120 and back to the suction connection 34. If the valve element 18i is in the second switching position, which is shown in Figure 44 is shown, the system is switched to service water operation, in this state the pump unit or the impeller 14 conveys liquid from the connection 128, which serves as a suction connection, through the pressure connection 27, via the heat source 114 through the secondary heat exchanger 56 and back to the connection 128. If the valve element 18i is in the third switch position, which is in Figure 45 is shown, the underfloor heating circuit 116 is also supplied.
  • the water flows via the suction connection 34 into the suction mouth 38 of the impeller 14 and is conveyed through the first heating circuit 120 via the pressure connection 27 via the heat source 114 in the manner described.
  • the liquid exits the impeller 14 from the pressure chamber 26 into the opening 124 and through the through-channel 122 through and thus flows to connection 32 and via this into the underfloor heating circuit 116.
  • Switching position shown flows at the same time via the bridging opening 126 via the connection 128 and the inlet 130 into the connection 32.
  • the amount of warm water mixed in at connection 32 can be varied by changing the degree of opening via valve position 18i.
  • Figure 46 shows a switching position in which the admixture is switched off and the connection 32 is only directly connected to the pressure chamber 26 .
  • valve element is always arranged with the impeller in a common pump housing, which thus forms a combined valve and pump housing. It is to be understood that this pump housing can also be made in several parts.

Description

Die Erfindung betrifft ein Pumpenaggregat, insbesondere ein Kreiselpumpenaggregat mit einem elektrischen Antriebsmotor und zumindest einer in einem Strömungsweg durch das Pumpenaggregat gelegenen Ventileinrichtung, welche zumindest zwischen einer ersten und einer zweiten Schaltstellung bewegbar ist.The invention relates to a pump unit, in particular a centrifugal pump unit, with an electric drive motor and at least one valve device located in a flow path through the pump unit, which valve device can be moved at least between a first and a second switching position.

Es sind Pumpenaggregate bekannt, welche eine Ventileinrichtung beinhalten, die es ermöglicht, zwischen zwei möglichen Strömungswegen, durch welches das Pumpenaggregat fördert, umzuschalten. Dabei sind Ventileinrichtungen bekannt, welche abhängig von der Drehrichtung des Kreiselpumpenaggregates umschalten, bzw. abhängig von der Drehrichtung die Strömung in unterschiedliche Strömungswege lenken. Beispielsweise aus DE 9013992 U1 ist ein solches Pumpenaggregat bekannt, welches eine Umschalteinrichtung aufweist, mit deren Hilfe zwischen zwei Eingängen des Pumpenaggregates umgeschaltet werden kann, um wahlweise Flüssigkeit aus einem der beiden Eingänge anzusaugen. Das dort offenbarte Pumpenaggregat weist eine relativ aufwendige Mechanik auf, welche ein an der Druckseite gelegenes Anströmelement aufweist, das von der von dem Kreiselpumpenaggregat erzeugten ausgangsseitigen Strömung angeströmt wird und je nach Drehrichtung und damit Strömungsrichtung in zwei unterschiedliche Stellungen bewegt werden kann. Über ein mit dem Anströmelement verbundenes Hebelsystem wird ein Ventilelement auf der Saugseite des Pumpenaggregates zwischen zwei Eingängen umgeschaltet.Pump units are known which contain a valve device which makes it possible to switch between two possible flow paths through which the pump unit delivers. Valve devices are known which switch over depending on the direction of rotation of the centrifugal pump unit or direct the flow into different flow paths depending on the direction of rotation. For example off DE 9013992 U1 such a pump unit is known, which has a switching device, with the help of which it is possible to switch between two inputs of the pump unit in order to selectively suck in liquid from one of the two inputs. The pump unit disclosed there has a relatively complex mechanism, which has an inflow element located on the pressure side, which is subjected to the flow generated by the centrifugal pump unit on the output side and can be moved into two different positions depending on the direction of rotation and thus the direction of flow. A valve element on the suction side of the pump unit is switched between two inlets via a lever system connected to the inflow element.

Aus WO 2016/202723 A1 ist ein Pumpenaggregat mit einem integrierten Ventilelement bekannt, bei welchem das Ventilelement das Laufrad ringförmig umgibt und durch die vom Laufrad erzeugte Strömung in Abhängigkeit der Drehrichtung in zwei verschiedene Schaltstellungen bewegt werden kann.Out of WO 2016/202723 A1 a pump unit with an integrated valve element is known, in which the valve element surrounds the impeller in a ring shape and can be moved into two different switching positions by the flow generated by the impeller, depending on the direction of rotation.

Aus US 2016/0258340 A1 ist ein Kühlwasserpumpenaggregat mit einem integrierten Ventilelement bekannt, wobei das Ventilelement über einen Betätigungskolben bewegbar ist. Der Betätigungskolben ist durch Magnetventile gesteuert mit Druck beaufschlagbar.Out of U.S. 2016/0258340 A1 a cooling water pump unit with an integrated valve element is known, the valve element being movable via an actuating piston. The actuating piston can be pressurized under the control of solenoid valves.

Im Hinblick auf diesen Stand der Technik ist es Aufgabe der Erfindung, ein Pumpenaggregat mit einer integrierten Ventileinrichtung dahingehend zu verbessern, dass ein einfacherer Aufbau des Pumpenaggregates bei gleichzeitig erhöhter Zuverlässigkeit der Schaltfunktion der Ventileinrichtung erreicht wird.In view of this state of the art, it is the object of the invention to improve a pump unit with an integrated valve device in such a way that a simpler design of the pump unit is achieved while at the same time increasing the reliability of the switching function of the valve device.

Diese Aufgabe wird durch ein Pumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This object is achieved by a pump unit with the features specified in claim 1. Preferred embodiments result from the dependent claims, the following description and the attached figures.

Bei dem erfindungsgemäßen Pumpenaggregat handelt es sich um ein Kreiselpumpenaggregat. Das Pumpenaggregat weist einen elektrischen Antriebsmotor auf, welcher vorzugsweise als nasslaufender elektrischer Antriebsmotor, d. h., als Spaltrohrmotor ausgebildet ist. Das erfindungsgemäße Pumpenaggregat kann beispielsweise zur Verwendung in einer Heizungs- und/oder Klimaanlage als Umwälzpumpe ausgebildet sein. Das Pumpenaggregat ist insbesondere zur Förderung von Wasser ausgebildet.The pump unit according to the invention is a centrifugal pump unit. The pump unit has an electric drive motor, which is preferably designed as a wet-running electric drive motor, ie as a canned motor. The pump unit according to the invention can, for example, be designed as a circulating pump for use in a heating and/or air conditioning system. The pump assembly is designed in particular to pump water.

Das Pumpenaggregat weist zumindest ein Laufrad auf, welches von dem Antriebsmotor angetrieben wird. Ferner ist in das Pumpenaggregat eine Ventileinrichtung integriert, welche zumindest zwischen einer ersten und einer zweiten Schaltstellung bewegbar ist. Dabei ist die Ventileinrichtung so ausgebildet, dass sie für die durch das Pumpenaggregat geförderte Flüssigkeitsströmung eine Ventilfunktion bereitstellt.The pump unit has at least one impeller which is driven by the drive motor. Furthermore, a valve device is integrated into the pump unit, which can be moved at least between a first and a second switching position. The valve device is designed in such a way that it provides a valve function for the flow of liquid conveyed through the pump unit.

Erfindungsgemäß ist die Ventileinrichtung so ausgebildet, dass sie über den elektrischen Antriebsmotor des Pumpenaggregates, d. h., den das Laufrad antreibende Antriebsmotor bewegbar ist. Dazu ist die Ventileinrichtung über eine erste Kupplung derart mit dem Antriebsmotor gekoppelt, dass die Ventileinrichtung durch eine Drehbewegung des Antriebsmotors von der ersten in die zweite Schaltstellung bewegbar ist. Das bedeutet, die Bewegung des Antriebsmotors ist durch die erste Kupplung auf die Ventileinrichtung übertragbar, sodass die Ventileinrichtung durch den Antriebsmotor direkt oder indirekt bewegt wird. Sofern der Antriebsmotor so ausgebildet ist, dass er in zwei Drehrichtungen antreibbar ist, wäre es gemäß einer bevorzugten Ausführungsform der Erfindung möglich, über die entsprechende Drehbewegung des Antriebsmotors die Ventileinrichtung auch wieder zurück von der zweiten in die erste Schaltstellung zu bewegen. Die erste Kupplung ist erfindungsgemäß ferner so ausgebildet, dass sie durch Erhöhen der Drehzahl des Antriebsmotors und/oder Erhöhen des Druckes ausgangsseitig des Laufrades und/oder Schlupf derart lösbar ist, dass die Kupplungswirkung zwischen Antriebsmotor und Ventileinrichtung reduziert oder aufgehoben wird. Dadurch wird es möglich, den Antriebsmotor gezielt in bestimmten Betriebszuständen dazu zu nutzen, die Ventileinrichtung zu bewegen, während in anderen Betriebszuständen, wenn z. B. der erhöhte Druck bzw. die erhöhte Drehzahl bereitgestellt wird, jedoch die Ventileinrichtung nicht zu bewegen. Zweckmäßigerweise ist die Ventileinrichtung dabei so ausgebildet, dass im normalen Betriebszustand des Pumpenaggregates, d. h., wenn von dem Laufrad im normalen Betrieb Flüssigkeit gefördert wird, die Kupplung gelöst ist, sodass das Ventilelement in diesem Zustand in einer eingenommenen Schaltstellung verbleibt.According to the invention, the valve device is designed in such a way that it can be moved via the electric drive motor of the pump unit, ie the drive motor driving the impeller. For this purpose, the valve device is connected to the drive motor via a first clutch coupled in that the valve device can be moved from the first to the second switching position by a rotary movement of the drive motor. This means that the movement of the drive motor can be transmitted to the valve device by the first clutch, so that the valve device is moved directly or indirectly by the drive motor. If the drive motor is designed so that it can be driven in two directions of rotation, it would be possible according to a preferred embodiment of the invention to also move the valve device back from the second to the first switching position via the corresponding rotary movement of the drive motor. According to the invention, the first clutch is also designed such that it can be released by increasing the speed of the drive motor and/or increasing the pressure on the output side of the impeller and/or slip in such a way that the clutch effect between the drive motor and the valve device is reduced or eliminated. This makes it possible to use the drive motor specifically in certain operating conditions to move the valve device, while in other operating conditions, when z. B. the increased pressure or the increased speed is provided, but not to move the valve device. The valve device is expediently designed such that in the normal operating state of the pump unit, ie when liquid is conveyed by the impeller in normal operation, the clutch is released so that the valve element remains in an assumed switching position in this state.

Gemäß einer speziellen Ausführungsform der Erfindung kann zwischen dem Antriebsmotor und der Ventileinrichtung ein Getriebe vorgesehen sein, welches die Bewegungsrichtung und/oder die Bewegungsgeschwindigkeit zwischen dem Antriebsmotor und der Ventileinrichtung ändert bzw. umsetzt. So kann das Getriebe beispielsweise als Untersetzungsgetriebe ausgebildet sein, welches eine Drehzahl der Ventileinrichtung oder eines Ventilelementes der Ventileinrichtung gegenüber der Drehzahl des Antriebsmotors verringert. Alternativ oder zusätzlich könnte eine Drehbewegung des Antriebsmotors in eine Linearbewegung des Ventilelementes durch ein Getriebe, wie einen Spindeltrieb, umgesetzt werden.According to a special embodiment of the invention, a gear can be provided between the drive motor and the valve device, which changes or converts the direction of movement and/or the speed of movement between the drive motor and the valve device. For example, the gear can be designed as a reduction gear, which counteracts a rotational speed of the valve device or of a valve element of the valve device the speed of the drive motor is reduced. Alternatively or additionally, a rotary movement of the drive motor could be converted into a linear movement of the valve element by a gear, such as a spindle drive.

Der Antriebsmotor ist vorzugsweise elektronisch gesteuert bzw. geregelt, sodass er mit unterschiedlichen Drehzahlen und/oder in unterschiedlichen Drehrichtungen antreibbar ist. Dazu kann eine Steuereinrichtung vorgesehen sein, welche den Antriebsmotor in entsprechender Weise regelt bzw. steuert. Insbesondere kann die Steuereinrichtung mit einem Frequenzumrichter zur Drehzahländerung des Antriebsmotors ausgestattet sein. Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist die Steuereinrichtung so ausgebildet, dass sie den Antriebsmotor nicht nur derart ansteuert, dass der Antriebsmotor mit unterschiedlichen Drehzahlen läuft, sondern auch unterschiedliche Beschleunigungsverläufe beim Beschleunigen und/oder Abbremsen des Antriebsmotors realisiert werden können.The drive motor is preferably electronically controlled or regulated so that it can be driven at different speeds and/or in different directions of rotation. For this purpose, a control device can be provided which regulates or controls the drive motor in a corresponding manner. In particular, the control device can be equipped with a frequency converter for changing the speed of the drive motor. According to a further preferred embodiment of the invention, the control device is designed so that it not only controls the drive motor in such a way that the drive motor runs at different speeds, but also different acceleration profiles can be implemented when accelerating and/or braking the drive motor.

Die erfindungsgemäße Ausgestaltung hat den Vorteil, dass zum einen auf einen separaten Antriebsmotor für die Ventileinrichtung verzichtet werden kann, zum anderen aber auch auf aufwendige Mechaniken zur Übertragung einer von der Strömung erzeugten Kraft auf ein Ventilelement verzichtet werden kann. Die Kraftübertragung kann vielmehr durch die erste Kupplung erfolgen. Darüber hinaus kann der Wirkungsgrad des Pumpenaggregates verbessert werden, da die Ventileinrichtung den Normalbetrieb im Wesentlichen nicht beeinträchtigt.The configuration according to the invention has the advantage that on the one hand a separate drive motor for the valve device can be dispensed with, but on the other hand complex mechanisms for transmitting a force generated by the flow to a valve element can also be dispensed with. Rather, the power can be transmitted by the first clutch. In addition, the efficiency of the pump unit can be improved since the valve device essentially does not impair normal operation.

Gemäß einer bevorzugten Ausführungsform der Erfindung kann zumindest ein Anschlag vorgesehen sein, welcher die Ventileinrichtung in einer definierten Schaltstellung, beispielsweise der ersten oder der zweiten Schaltstellung hält. Weiter bevorzugt können zwei Anschläge vorgesehen sein, wobei jeder der beiden Anschläge eine Schaltstellung der Ventileinrichtung definiert und die Ventileinrichtung zwischen den beiden Schaltstellungen bewegbar ist. Diese Bewegung erfolgt über die erste Kupplung und durch entsprechende Ansteuerung des Antriebsmotors, insbesondere über die beschriebene Steuereinrichtung.According to a preferred embodiment of the invention, at least one stop can be provided which holds the valve device in a defined switching position, for example the first or the second switching position. More preferably, two stops can be provided, each of the two stops having a switching position defined by the valve device and the valve device can be moved between the two switching positions. This movement takes place via the first clutch and by appropriate control of the drive motor, in particular via the control device described.

Vorzugsweise weist die Ventileinrichtung keine weiteren elektrisch betätigten Schaltelemente zum Schalten und/oder Halten der Ventileinrichtung auf. Vielmehr wird die Ventileinrichtung allein durch den Antriebsmotor zwischen den Schaltstellungen bewegt.The valve device preferably has no further electrically actuated switching elements for switching and/or holding the valve device. Rather, the valve device is moved between the switching positions solely by the drive motor.

Das Pumpenaggregat weist zumindest eine zweite lösbare Kupplung zwischen zumindest einem beweglichen Teil der Ventileinrichtung und einem das Laufrad umgebenden Ventilgehäuse auf. Diese zweite lösbare Kupplung ist durch den Druck ausgangsseitig des Laufrades von einer gelösten ersten Kupplungsstellung in eine haltende Kupplungsstellung bewegbar. Dabei muss die zumindest eine lösbare Kupplung nicht direkt an dem Pumpengehäuse angreifen, sondern kann vielmehr auch indirekt haltend an dem Pumpengehäuse angreifen, indem die Kupplung mit einem mit dem Pumpengehäuse verbundenen Bauteil in Eingriff tritt. Wesentlich bei der Ausgestaltung der zweiten lösbaren Kupplung ist, dass sie in ihrer haltenden zweiten Kupplungsstellung eine Bewegung der Ventileinrichtung unterbindet. Dabei tritt die zweite lösbare Kupplung vorzugsweise in einem Betriebszustand des Pumpenaggregates in haltenden Eingriff, d. h., in ihre haltende zweite Kupplungsstellung, in welchem die erste Kupplung ihre gelöste Stellung erreicht. So kann in einem Betriebszustand des Antriebsmotors, insbesondere einem Betriebszustand mit geringerer Drehzahl und/oder geringerer Beschleunigung, dass die Ventileinrichtung in eine gewünschte Schaltstellung bewegt werden. Anschließend kann durch eine Drehzahlerhöhung und/oder insbesondere starke Beschleunigung des Antriebsmotors erreicht werden, dass die zweite lösbare Kupplung in haltenden Eingriff tritt, sodass die Ventileinrichtung in der erreichten Schaltstellung verbleibt und gehalten wird. Gleichzeitig tritt dabei vorzugsweise die erste Kupplung außer Eingriff oder weist einen Schlupf auf, welcher die zweite Rotation des Antriebsmotors mit dem Laufrad zulässt.The pump unit has at least one second releasable coupling between at least one movable part of the valve device and a valve housing surrounding the impeller. This second releasable clutch can be moved from a released first clutch position into a holding clutch position by the pressure on the output side of the impeller. The at least one releasable coupling does not have to act directly on the pump housing, but rather can also act indirectly on the pump housing in a holding manner, in that the coupling engages with a component connected to the pump housing. What is essential in the design of the second releasable coupling is that it prevents movement of the valve device in its holding second coupling position. In this case, the second releasable clutch preferably enters into holding engagement in an operating state of the pump assembly, ie into its holding second clutch position, in which the first clutch reaches its released position. Thus, in an operating state of the drive motor, in particular an operating state with a lower speed and/or lower acceleration, the valve device can be moved into a desired switching position. It can then be achieved by increasing the speed and/or, in particular, strong acceleration of the drive motor that the second releasable clutch engages in a holding manner occurs, so that the valve device remains and is held in the switching position reached. At the same time, the first clutch preferably disengages or slips, which allows the second rotation of the drive motor with the impeller.

Vorzugsweise sind die erste und die zweite Kupplung derart ausgebildet, dass die erste Kupplung in ihrer gelösten Position eine geringere Haltekraft aufweist als die zweite Kupplung in ihrer haltenden zweiten Kupplungsstellung. Umgekehrt weist die erste Kupplung in ihrer gekuppelten Position vorzugsweise eine größere Haltekraft auf als die zweite Kupplung in ihrer gelösten ersten Kupplungsstellung. Dies bedeutet, dass die erste Kupplung, wenn sie in Eingriff ist, eine größere Kraft oder ein größeres Drehmoment übertragen kann als die zweite Kupplung in ihrer gelösten ersten Kupplungsstellung. So kann in diesem Schaltzustand das Ventilelement zwischen den Schaltstellungen bewegt werden. Wenn sich die erste Kupplung in ihrer gelösten Position befindet und die zweite Kupplung in ihrer haltenden Kupplungsstellung, kann die zweite Kupplung eine größere Kraft bzw. ein größeres Drehmoment übertragen als die erste Kupplung, sodass die Ventileinrichtung in ihrer erreichten Schaltstellung gehalten wird und nicht durch den Antriebsmotor über die erste Kupplung bewegt werden kann.The first and the second clutch are preferably designed in such a way that the first clutch has a lower holding force in its released position than the second clutch in its holding second clutch position. Conversely, the first clutch preferably has a greater holding force in its engaged position than the second clutch in its released first clutch position. This means that the first clutch, when engaged, can transmit greater force or torque than the second clutch in its released first clutch position. In this switching state, the valve element can be moved between the switching positions. If the first clutch is in its released position and the second clutch is in its holding clutch position, the second clutch can transmit a greater force or torque than the first clutch, so that the valve device is held in the switching position it has reached and not by the Drive motor can be moved via the first clutch.

Weiter bevorzugt ist der Antriebsmotor so ausgestaltet, dass er im Betrieb des Pumpenaggregates ein Drehmoment erzeugt, welches größer ist als die Haltekraft der ersten Kupplung in ihrer gekuppelten Position. Dadurch wird verhindert, dass die erste Kupplung die Drehung des Antriebsmotors und damit des Laufrades im Normalbetrieb des Pumpenaggregates verhindern würde.The drive motor is also preferably designed in such a way that during operation of the pump assembly it generates a torque which is greater than the holding force of the first clutch in its coupled position. This prevents the first clutch from preventing the drive motor and thus the impeller from rotating during normal operation of the pump assembly.

Die Ventileinrichtung kann vorzugsweise als Umschaltventil ausgebildet sein, welches ein Umschalten zwischen zwei Strömungswegen ermöglicht. Alternativ oder zusätzlich kann die Ventileinrichtung eine Mischeinrichtung sein, in welcher Fluid aus zwei Strömungswegen gemischt wird, wobei die Mischeinrichtung derart ausgestaltet ist, dass das Mischungsverhältnis in den beiden Schaltstellungen der Ventileinrichtung unterschiedlich ist. Bei Ausgestaltung als Mischeinrichtung weist die Ventileinrichtung bevorzugt mehr als zwei Schaltstellungen auf, kann beispielsweise zwischen zwei Schaltstellungen, welche die Endlagen definieren, in mehreren Stufen oder stufenlos bewegbar sein. Die Verwendung als Umschaltventil kann beispielsweise in einer Heizungsanlage genutzt werden, in welcher ein Umschaltventil benötigt wird, um eine Wärmeträgerströmung zwischen einem Wärmetauscher zum Erwärmen von Brauchwasser und zumindest einem Heizkreis zum Beheizen eines Gebäudes umzuschalten. Auch eine Mischeinrichtung kann in einer Heizungsanlage zum Einsatz kommen, beispielsweise, um die Temperatur eines Wärmeträgers durch Zumischen von Flüssigkeit aus einem Rücklauf der Heizungsanlage zu reduzieren. Dies kann z. B. für die Verwendung für eine Fußbodenheizung sinnvoll sein, bei der es in der Regel erforderlich ist, die von einem Heizkessel zur Verfügung gestellte Vorlauftemperatur durch Zumischen von Wärmeträger aus dem Rücklauf zu reduzieren.The valve device can preferably be embodied as a switching valve, which enables switching between two flow paths. Alternatively or additionally, the valve device Be mixing device, in which fluid is mixed from two flow paths, wherein the mixing device is designed such that the mixing ratio is different in the two switching positions of the valve device. When configured as a mixing device, the valve device preferably has more than two switching positions, and can be movable, for example, between two switching positions that define the end positions, in a number of stages or continuously. The use as a switching valve can be used, for example, in a heating system in which a switching valve is required to switch a heat transfer medium flow between a heat exchanger for heating service water and at least one heating circuit for heating a building. A mixing device can also be used in a heating system, for example in order to reduce the temperature of a heat transfer medium by admixing liquid from a return of the heating system. This can e.g. B. be useful for use for underfloor heating, in which it is usually necessary to reduce the flow temperature provided by a boiler by adding heat carrier from the return.

Die Ventileinrichtung kann vorzugsweise eine Ventilfunktion in einem Strömungsweg an der Saugseite des Laufrades und/oder eine Ventilfunktion in einem Strömungsweg an der Druckseite des Laufrades bereitstellen. So kann die Ventileinrichtung insbesondere als Umschalteinrichtung an der Saugseite angeordnet sein, sodass je nach Schaltstellung der Ventileinrichtung das Laufrad aus einem ersten oder einem zweiten saugseitigen Strömungsweg Flüssigkeit ansaugt. Alternativ könnte eine Umschalteinrichtung an der Druckseite angeordnet sein, sodass das Pumpenaggregat je nach Schaltstellung der Ventileinrichtung in einen ersten oder einen zweiten druckseitigen Strömungsweg fördert. Wenn die Ventileinrichtung als Mischeinrichtung ausgebildet ist, kann diese beispielsweise so an der Druckseite angeordnet sein, dass druckseitig zwei Strömungswege in der Mischeinrichtung in einen Mischpunkt münden und dass je nach Schaltstellung der Ventileinrichtung das Mischungsverhältnis zwischen den beiden Strömungswegen geändert wird. Dabei verläuft vorzugsweise einer der beiden Strömungswege stromabwärts des Pumpenaggregates durch einen Wärmetauscher einer Heiz- oder Kühleinrichtung, um die von dem Pumpenaggregat geförderte Flüssigkeit zu temperieren, d. h., zu erwärmen oder zu kühlen. Im anderen Strömungsweg befindet sich bevorzugt untemperierte Flüssigkeit, welche dann mit der temperierten Flüssigkeit in der Mischeinrichtung gemischt werden kann. Alternativ könnte auch eine Mischeinrichtung an der Saugseite des Pumpenaggregates angeordnet sein, so dass das Pumpenaggregat z. B. eine aus zwei Strömungswegen gemischte Flüssigkeit ansaugt.The valve means can preferably provide a valve function in a flow path on the suction side of the impeller and/or a valve function in a flow path on the pressure side of the impeller. The valve device can be arranged in particular as a switching device on the suction side, so that depending on the switching position of the valve device, the impeller sucks in liquid from a first or a second flow path on the suction side. Alternatively, a switchover device could be arranged on the pressure side, so that the pump assembly pumps into a first or a second flow path on the pressure side, depending on the switching position of the valve device. If the valve device is designed as a mixing device, it can be arranged, for example, on the pressure side in such a way that on the pressure side, two flow paths in the mixing device open into a mixing point and that the mixing ratio between the two flow paths is changed depending on the switching position of the valve device. In this case, one of the two flow paths preferably runs downstream of the pump unit through a heat exchanger of a heating or cooling device in order to temper the liquid delivered by the pump unit, ie to heat or cool it. In the other flow path there is preferably non-temperature-controlled liquid, which can then be mixed with the temperature-controlled liquid in the mixing device. Alternatively, a mixing device could also be arranged on the suction side of the pump unit, so that the pump unit z. B. draws in a liquid mixed from two flow paths.

Gemäß einer weiteren bevorzugten Ausführungsform weist die Ventileinrichtung zumindest ein bewegliches Ventilelement sowie Anschlagelemente auf, welche die erste und die zweite Schaltstellung definieren und von welchen vorzugsweise zumindest eines in seiner Lage einstellbar ist. Durch die Einstellbarkeit eines oder mehrerer Anschlagelemente wird es möglich, die Endlagen bzw. die Schaltstellungen der Ventileinrichtung zu regulieren. Die Anschlagelemente verhindern, dass die Ventileinrichtung bzw. das Ventilelement über die gewünschte Schaltstellung hinaus bewegt wird. Das Anschlagelement führt somit zu einem formschlüssigen Eingriff zwischen Ventilelement und Anschlagelement, sodass eine weitere Bewegung des Ventilelementes verhindert wird.According to a further preferred embodiment, the valve device has at least one movable valve element and stop elements which define the first and the second switching position and of which at least one is preferably adjustable in its position. The adjustability of one or more stop elements makes it possible to regulate the end positions or the switching positions of the valve device. The stop elements prevent the valve device or the valve element from being moved beyond the desired switching position. The stop element thus leads to a positive engagement between the valve element and the stop element, so that further movement of the valve element is prevented.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung weist die Ventileinrichtung zumindest ein bewegliches Ventilelement auf, welches mit zwei Ventilöffnungen derart zusammenwirkt, dass eine erste Ventilöffnung in der ersten Schaltstellung der Ventileinrichtung von dem Ventilelement mehr überdeckt ist als in der zweiten Schaltstellung und eine zweite Ventilöffnung von dem Ventilelement in der zweiten Schaltstellung mehr überdeckt ist als in der ersten Schaltstellung. Wenn das Ventilelement als Umschaltventil ausgebildet ist, ist in der ersten Schaltstellung die zweite Ventilöffnung geöffnet und die erste Ventilöffnung geschlossen. In der zweiten Schaltstellung ist dann umgekehrt die zweite Ventilöffnung geschlossen und die erste Ventilöffnung geöffnet. Im Falle der Ausgestaltung der Ventileinrichtung als Mischeinrichtung sind vorzugsweise Zwischenstellungen bzw. Zwischen-Schaltstellungen möglich, in welchen die beiden Ventilöffnungen gleichzeitig, jedoch unterschiedlich weit geöffnet sind. Durch Veränderung der Öffnungsgrade der beiden Ventilöffnungen kann so ein Mischungsverhältnis geändert werden. Vorzugsweise ist das zumindest eine bewegliche Ventilelement so ausgebildet, dass, wenn eine Ventilöffnung um ein bestimmtes Maß geöffnet wird, gleichzeitig die andere Ventilöffnung um dasselbe Maß geschlossen wird.According to a further preferred embodiment of the invention, the valve device has at least one movable valve element which interacts with two valve openings in such a way that a first valve opening is more covered by the valve element in the first switching position of the valve device than in the second Switching position and a second valve opening is covered by the valve element in the second switching position more than in the first switching position. If the valve element is designed as a switching valve, the second valve opening is open and the first valve opening is closed in the first switching position. Conversely, in the second switching position, the second valve opening is closed and the first valve opening is open. If the valve device is designed as a mixing device, intermediate positions or intermediate switching positions are preferably possible, in which the two valve openings are open simultaneously, but to different extents. A mixing ratio can be changed by changing the degree of opening of the two valve openings. The at least one movable valve element is preferably designed in such a way that when one valve opening is opened by a certain amount, the other valve opening is simultaneously closed by the same amount.

Eine solche Wechselwirkung des Verschließens der beiden Ventilöffnungen kann mit einem Ventilelement, aber auch mit zwei Ventilelementen realisiert werden, wenn diese mechanisch miteinander gekoppelt sind.Such an interaction of the closing of the two valve openings can be realized with one valve element, but also with two valve elements if these are mechanically coupled to one another.

Gemäß einer weiteren bevorzugten Ausführungsform weist die Ventileinrichtung ein bewegliches Ventilelement auf, welches zumindest eine Dichtfläche und eine Druckfläche aufweist, wobei die Druckfläche mit einem das Laufrad umgebenden Druckraum derart in Verbindung steht, dass das Ventilelement durch den auf die Druckfläche wirkenden Druck mit der Dichtfläche gegen eine Anlagefläche gedrückt wird, wobei die Anlagefläche vorzugsweise einen Ventilsitz bildet. Bei einer solchen Ausgestaltung kann das Ventilelement gemeinsam mit der Anlagefläche die Funktion der oben beschriebenen zweiten Kupplung übernehmen. Wenn das Ventilelement durch den Druck im Druckraum gegen die Anlagefläche gedrückt wird, entsteht zwischen der Dichtfläche und der Anlagefläche vorzugsweise ein derartiger Reibschluss, dass das Ventilelement in der erreichten Schaltstellung fixiert wird. Dieser Reibschluss könnte zusätzlich durch einen Formschluss bei entsprechender Ausgestaltung von Dichtfläche und Anlagefläche unterstützt werden. Wenn die Anlage ein Ventilsitz ist, wird über die Anlage der Dichtfläche gleichzeitig eine Abdichtung erreicht. Wenn der Druck im Druckraum geringer ist, tritt die Dichtfläche vorzugsweise von der Anlagefläche oder vorzugsweise einem Ventilsitz außer Eingriff, sodass eine leichte Bewegbarkeit des Ventilelementes mit verringerter Reibung sichergestellt wird. Die Ventilsitze können vorzugsweise Ventilöffnungen umgeben, wie sie vorangehend beschrieben wurden. Durch die Anlage der zumindest einen Dichtfläche wird dann eine Abdichtung der Strömungswege nach außen erreicht. Ferner kann eine Dichtfläche auch so gegen eine Anlagefläche oder einen Ventilsitz gedrückt werden, dass durch die Anlage eine Abdichtung zwischen Saugraum und Druckraum des Pumpenaggregates erreicht wird. So können mehrere Ventilsitze vorgesehen sein, an welcher eine oder mehrere Dichtflächen des Ventilelementes bei ausreichend hohem Druck in dem Druckraum zur Anlage kommen, um die erforderlichen Abdichtungen der Strömungswege zu erreichen. Bevorzugt kann ein Rückstellelement, beispielsweise eine Rückstellfeder, vorgesehen sein, welche das Ventilelement mit der Dichtfläche von der Anlagefläche außer Eingriff bringt, wenn der Druck im Druckraum einen vorbestimmten Wert unterschreitet, d. h., die von dem Druck in dem Druckraum an der Druckfläche erzeugte Kraft geringer wird als die von dem Rückstellelement erzeugte Rückstellkraft. So wird bei geringem Druck eine leichte Bewegbarkeit des Ventilelementes sichergestellt.According to a further preferred embodiment, the valve device has a movable valve element, which has at least one sealing surface and one pressure surface, the pressure surface being connected to a pressure chamber surrounding the impeller in such a way that the valve element is counteracted by the pressure acting on the pressure surface with the sealing surface a contact surface is pressed, the contact surface preferably forming a valve seat. In such a configuration, the valve element, together with the contact surface, can assume the function of the second clutch described above. When the valve element is pressed against the contact surface by the pressure in the pressure chamber, between the sealing surface and the contact surface preferably such a friction fit that the valve element is fixed in the switching position reached. This frictional connection could also be supported by a positive connection with a corresponding configuration of the sealing surface and contact surface. If the system is a valve seat, a seal is achieved at the same time via the system of the sealing surface. If the pressure in the pressure chamber is lower, the sealing surface preferably disengages from the contact surface or preferably from a valve seat, so that easy mobility of the valve element with reduced friction is ensured. The valve seats may preferably surround valve openings as previously described. The contact of the at least one sealing surface then seals off the flow paths to the outside. Furthermore, a sealing surface can also be pressed against a contact surface or a valve seat in such a way that the contact achieves a seal between the suction chamber and the pressure chamber of the pump assembly. Thus, several valve seats can be provided, on which one or more sealing surfaces of the valve element come into contact with a sufficiently high pressure in the pressure chamber in order to achieve the necessary sealing of the flow paths. A restoring element, for example a restoring spring, can preferably be provided, which disengages the valve element from the contact surface with the sealing surface when the pressure in the pressure chamber falls below a predetermined value, i.e. the force generated by the pressure in the pressure chamber on the pressure surface is lower becomes the restoring force generated by the restoring element. This ensures easy mobility of the valve element at low pressure.

Die Ventileinrichtung kann weiter bevorzugt ein drehbares Ventilelement aufweisen. D. h., das Ventilelement wird zwischen den Schaltstellungen durch drehende Bewegung bewegt, wobei die Drehachse weiter bevorzugt mit der Drehachse des Laufrades bzw. des Antriebsmotors fluchtet, was eine besonders einfache Kupplung ohne weitere Getriebemittel ermöglicht. Das drehbare Ventilelement ist vorzugsweise über die erste Kupplung mit einem Rotor des Antriebsmotors lösbar gekuppelt, wobei die Kupplung nicht am eigentlichen Magnetrotor angreifen muss, sondern auch an einem mit dem Magnetrotor verbundenen Bauteil, wie einer Welle oder dem Laufrad, angreifen kann. Wenn die erste Kupplung in Eingriff tritt, wird über den Rotor des Antriebsmotors das drehbare Ventilelement drehend mitbewegt.The valve device can more preferably have a rotatable valve element. That is to say, the valve element is moved between the switch positions by a rotating movement, with the axis of rotation more preferably being aligned with the axis of rotation of the impeller or of the drive motor aligned, which allows a particularly simple coupling without additional transmission means. The rotatable valve element is preferably releasably coupled to a rotor of the drive motor via the first coupling, with the coupling not having to act on the actual magnet rotor but also on a component connected to the magnet rotor, such as a shaft or the impeller. When the first clutch is engaged, the rotatable valve element is rotated by the rotor of the drive motor.

Der Antriebsmotor ist vorzugsweise in zwei Drehrichtungen antreibbar und die Ventileinrichtung derart ausgebildet, dass deren erste Schaltstellung durch Antrieb des Antriebsmotors in einer ersten Drehrichtung und dessen zweite Schaltstellung durch Antrieb des Antriebsmotors in einer zweiten Drehrichtung erreicht wird. Anstatt einer Bewegung des Ventilelementes durch den Antriebsmotor in zwei Drehrichtungen kann auch ein Rückstellmittel oder Krafterzeugungsmittel vorgesehen sein, welches das Ventilelement beim Abschalten des Antriebsmotors in eine vorbestimmte Ausgangslage bzw. Schaltstellung zurückdreht. Dies kann beispielsweise ein magnetisches Rückstellmittel, ein durch Federkraft oder durch Schwerkraft wirkendes Rückstellmittel sein.The drive motor can preferably be driven in two directions of rotation and the valve device is designed such that its first switch position is reached by driving the drive motor in a first direction of rotation and its second switch position is reached by driving the drive motor in a second direction of rotation. Instead of a movement of the valve element by the drive motor in two directions of rotation, a restoring means or force-generating means can also be provided, which rotates the valve element back into a predetermined starting position or switching position when the drive motor is switched off. This can be, for example, a magnetic restoring means, a restoring means acting by spring force or by gravity.

Die erste und/oder die zweite Kupplung können vorzugsweise eine Reibungskupplung, eine magnetische Kupplung und/oder eine hydraulische Kupplung sein, welche weiter bevorzugt einen Schlupf aufweisen. Wenn die erste Kupplung Schlupf aufweist, ermöglicht dies, dass der Antriebsmotor nach Erreichen einer vorbestimmten Schaltstellung, wenn das Ventilelement der Ventileinrichtung bzw. die Ventileinrichtung in der Schaltstellung fixiert wird, weiter drehen kann, ohne durch die Fixierung der Ventileinrichtung blockiert zu werden. So kann beispielsweise ein Ventilelement an einem Anschlag anstoßen, woraufhin die Kupplung dann durchrutscht bzw. der Antriebsmotor aufgrund des Schlupfes in der Kupplung weiter drehen kann. Besonders bevorzugt kann eine hydraulische Kupplung über die von dem Laufrad geförderte Flüssigkeit realisiert werden. So kann die Flüssigkeit von dem Laufrad im Inneren eines Pumpengehäuses in der Drehrichtung des Laufrades in Rotation versetzt werden und über die Reibung an einem Teil der Ventileinrichtung, insbesondere direkt an dem Ventilelement, dieses bewegen. Wenn das Ventilelement bzw. die Ventileinrichtung eine Schaltstellung erreicht und dort fixiert wird, strömt die hydraulische Strömung weiter, wobei lediglich an den Oberflächen die üblichen hydraulischen Reibungsverluste auftreten. D. h., so kann zum Bewegen der Ventileinrichtung im Wesentlichen ohnehin vorhandene Verlustenergie genutzt werden, welche in eine Bewegung der Ventileinrichtung bzw. des Ventilelementes umgesetzt wird.The first and/or the second clutch can preferably be a friction clutch, a magnetic clutch and/or a hydraulic clutch, which more preferably exhibit slip. If the first clutch slips, this allows the drive motor to continue rotating after a predetermined switching position has been reached, when the valve element of the valve device or the valve device is fixed in the switching position, without being blocked by the fixing of the valve device. For example, a valve element can hit a stop, whereupon the clutch then slips or the drive motor can continue to turn due to the slippage in the clutch. Especially preferred a hydraulic coupling can be realized via the liquid conveyed by the impeller. Thus, the liquid can be set in rotation by the impeller inside a pump housing in the direction of rotation of the impeller and can move this via the friction on a part of the valve device, in particular directly on the valve element. When the valve element or the valve device reaches a switching position and is fixed there, the hydraulic flow continues, with the usual hydraulic friction losses occurring only on the surfaces. In other words, to move the valve device, it is essentially possible to use energy loss which is present anyway and is converted into a movement of the valve device or the valve element.

Weiter bevorzugt weist die erste Kupplung zumindest ein zwischen einer gekuppelten und einer gelösten Position bewegbares Kupplungselement auf, wobei die Bewegungsrichtung zwischen der gekuppelten und der gelösten Position vorzugsweise quer zu einer Kraftrichtung der von der Kupplung auf die Ventileinrichtung zu übertragende Kraft verläuft. In der gekuppelten Position besteht ein kraft- und/oder formschlüssiger Eingriff zwischen dem Kupplungselement und einer gegenüberliegenden Kupplungsfläche. Das Kupplungselement ist so bewegbar, dass es von der Kupplungsfläche außer Eingriff treten kann, sodass das Ventilelement dann nicht mehr bewegt bzw. mitgenommen wird und in seiner eingenommenen Schaltstellung verbleibt. Die Bewegungsrichtung zwischen der gekuppelten und gelösten Position liegt bevorzugt in einer von der Kraftübertragungsrichtung abweichenden Richtung, wodurch sichergestellt wird, dass das Kupplungselement nicht durch die zu übertragende Kraft außer Eingriff bewegt wird. Besonders bevorzugt verläuft die Bewegungsrichtung normal zu der Kraftrichtung oder einer Ebene, in welcher die Kraftrichtung verläuft. Letzteres kann beispielsweise der Fall sein, wenn die Kupplung zur Übertragung eines Drehmomentes dient. Dann verläuft die Bewegungsrichtung vorzugsweise entlang der Drehachse und somit quer und insbesondere normal zu der Ebene, in welcher die Kraft übertragen wird.More preferably, the first clutch has at least one clutch element that can be moved between a clutched and a released position, the direction of movement between the clutched and the released position preferably running transversely to a force direction of the force to be transmitted from the clutch to the valve device. In the coupled position, there is a non-positive and/or positive engagement between the coupling element and an opposite coupling surface. The clutch element can be moved in such a way that it can disengage from the clutch surface, so that the valve element is then no longer moved or carried along and remains in its switched position. The direction of movement between the coupled and released position is preferably in a direction deviating from the direction of force transmission, which ensures that the coupling element is not moved out of engagement by the force to be transmitted. The direction of movement particularly preferably runs normal to the direction of force or to a plane in which the direction of force runs. The latter can be the case, for example, when the clutch is used to transmit torque. Then the direction of movement runs preferably along the axis of rotation and thus transverse and in particular normal to the plane in which the force is transmitted.

Besonders bevorzugt kann ein Ventilelement der Ventileinrichtung gleichzeitig das bewegbare Kupplungselement bilden. So kann das Ventilelement eine Kupplungsfläche aufweisen, die mit einer gegenüberliegenden Kupplungsfläche, welche vorzugsweise am Rotor oder Laufrad angeordnet ist, in Eingriff treten kann, um das Ventilelement zu bewegen, insbesondere drehend zu bewegen. Dabei kann ein kraft- und/oder formschlüssiger Eingriff vorgesehen sein. Das Kupplungselement kann ferner zweckmäßigerweise über ein Vorspannelement mit einer Vorspannkraft beaufschlagt sein, welche das Kupplungselement in die gekuppelte Position zwingt. Dies bedeutet, in der Ruhelage ist die erste Kupplung in kuppelndem Eingriff. Dieser Eingriff wird dann vorzugsweise durch den auftretenden Druck im Druckraum oder durch eine höhere Drehzahl des Antriebsmotors außer Eingriff gebracht. Wenn der Antriebsmotor abgeschaltet wird, fällt diese die Kupplung lösende Kraft wieder weg, sodass die Vorspannkraft die Kupplung wieder in die gekuppelte Position zwingt.A valve element of the valve device can particularly preferably form the movable coupling element at the same time. Thus, the valve element can have a coupling surface, which can engage with an opposite coupling surface, which is preferably arranged on the rotor or impeller, in order to move the valve element, in particular to move it in rotation. In this case, a non-positive and/or positive engagement can be provided. Furthermore, the coupling element can expediently be acted upon by a prestressing force, which forces the coupling element into the coupled position. This means that in the rest position the first clutch is engaged. This engagement is then preferably disengaged by the pressure occurring in the pressure chamber or by a higher speed of the drive motor. When the drive motor is switched off, this force disengaging the clutch is removed, so that the biasing force forces the clutch back into the engaged position.

Weiter bevorzugt weist das Kupplungselement eine Druckfläche auf, welche mit einem das Laufrad umgebenden Druckraum derart in Verbindung steht und derart angeordnet ist, dass ein auf die Druckfläche wirkenden Druck eine Kraft erzeugt, welche der Vorspannkraft entgegengesetzt gerichtet ist. Wenn der Druck in dem Druckraum so weit ansteigt, dass die an der Druckfläche erzeugte Druckkraft die Vorspannkraft übersteigt, wird das Kupplungselement verlagert, wobei es so angeordnet ist, dass es bei dieser Verlagerung in seine gelöste Position bewegt wird, d. h., die erste Kupplung tritt außer Eingriff und das Ventilelement wird nicht weiter von dem Antriebsmotor bewegt, sondern verbleibt in seiner eingenommenen Schaltstellung. Wenn der Druck abnimmt, beispielsweise, wenn das Pumpenaggregat abgeschaltet wird, lässt die Druckkraft nach und die Vorspannkraft wird wieder die größere Kraft, sodass die Kupplung wieder in die gekuppelte Position bewegt wird. Beim nächsten Anlaufen des Antriebsmotors kann dann das Ventilelement bzw. die Ventileinrichtung wieder in eine andere Schaltstellung bewegt werden.More preferably, the coupling element has a pressure surface which is connected to a pressure chamber surrounding the impeller and is arranged in such a way that a pressure acting on the pressure surface generates a force which is directed in the opposite direction to the prestressing force. When the pressure in the pressure chamber increases to such an extent that the pressure force generated at the pressure surface exceeds the preload force, the clutch element is displaced, being arranged so that on this displacement it is moved to its released position, ie the first clutch engages disengaged and the valve element is no longer moved by the drive motor, but remains in its adopted switching position. When the pressure decreases, for example when the pump unit is switched off is released, the pushing force decreases and the preloading force becomes the larger force again, so that the clutch is moved to the coupled position again. The next time the drive motor starts up, the valve element or the valve device can then be moved back into another switching position.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung kann das Kupplungselement eine Kupplungsfläche aufweisen, welche in der gekuppelten Position mit einer Gegenkupplungsfläche in Reibkontakt ist, wobei die Kupplungsfläche und die Gegenkupplungsfläche derart ausgebildet sind und von einem Schmiermittel umgeben sind, dass sich zwischen der Kupplungsfläche und der Gegen-Kupplungsfläche bei Erhöhung der Drehzahl des Antriebsmotors ein den Reibkontakt aufhebender Schmierfilm ausbildet. Als Schmiermittel findet vorzugsweise die von dem Pumpenaggregat geförderte Flüssigkeit, beispielsweise Wasser, Verwendung. Die Kupplung funktioniert dann nach Art eines Gleitlagers. Bei ausreichend hoher Drehzahl bildet sich zwischen der Kupplungsfläche und der Gegenkupplungsfläche ein Schmierfilm aus, sodass der Reibkontakt zwischen den Flächen aufgehoben wird und diese nach Art eines Gleitlagers aufeinander abgleiten. So kann eine Kupplung geschaffen werden, welche durch Drehzahlerhöhung außer Eingriff gebracht wird. D. h., wenn der Antriebsmotor mit geringer Drehzahl bewegt wird, wird über den Reibkontakt zwischen der Kupplungsfläche und der Gegenkupplungsfläche, welche zwischen Rotor und der Ventileinrichtung bzw. dem Ventilelement gelegen ist, das Ventilelement bzw. die Ventileinrichtung bewegt, sodass die Schaltstellung geändert werden kann. Anschließend kann der Antriebsmotor in seiner Drehzahl soweit erhöht werden, dass der Reibkontakt wie beschrieben aufgehoben wird und die Ventileinrichtung in der erreichten Schaltstellung verbleibt.According to a further preferred embodiment of the invention, the clutch element can have a clutch surface which, in the coupled position, is in frictional contact with a counter-coupling surface, the clutch surface and the counter-coupling surface being designed in such a way and being surrounded by a lubricant that between the clutch surface and the counter - When the speed of the drive motor increases, the clutch surface forms a lubricating film that eliminates the frictional contact. The liquid conveyed by the pump unit, for example water, is preferably used as the lubricant. The clutch then functions in the manner of a slide bearing. At a sufficiently high speed, a lubricating film forms between the clutch surface and the mating clutch surface, so that the frictional contact between the surfaces is eliminated and they slide over one another in the manner of a sliding bearing. In this way, a clutch can be created which is disengaged by increasing the speed. That is, when the drive motor is moved at a low speed, the valve element or the valve device is moved via the frictional contact between the coupling surface and the counter-coupling surface, which is located between the rotor and the valve device or the valve element, so that the switching position is changed can be. The speed of the drive motor can then be increased to such an extent that the frictional contact is eliminated as described and the valve device remains in the switching position that has been reached.

Wenn eine rein hydraulischen Kupplung zwischen dem Antriebsmotor und der Ventileinrichtung verwendet wird, kann das Außereingrifftreten durch hydraulischen Schlupf erreicht werden, wobei dann die Ventileinrichtung vorzugsweise in der oben beschriebenen Weise durch eine zweite Kupplung in der gewünschten Schaltstellung fixiert wird. Bei einer solchen Ausgestaltung ist es möglich, das Ventilelement bei entsprechender Beschleunigung des Antriebsmotors auch in seiner Ausgangslage zu halten, ohne dass es durch die hydraulische Kupplung bewegt wird. Dies kann dadurch erreicht werden, dass der Antriebsmotor so schnell beschleunigt wird, dass ein Druckaufbau, welcher die zweite Kupplung in die gekuppelte Kupplungsstellung bewegt, so schnell erfolgt, dass die zweite Kupplung in Eingriff tritt, bevor es zu einer Verlagerung des Ventilelementes und somit zu einer Änderung der Schaltstellung der Ventileinrichtung kommt.If a purely hydraulic coupling is used between the drive motor and the valve device, disengagement can be achieved by hydraulic slippage, in which case the valve device is then preferably fixed in the desired switching position in the manner described above by a second clutch. With such a configuration, it is possible to keep the valve element in its initial position when the drive motor accelerates accordingly, without it being moved by the hydraulic clutch. This can be achieved by accelerating the drive motor so quickly that a pressure build-up which moves the second clutch into the coupled clutch position occurs so quickly that the second clutch engages before there is displacement of the valve element and thus there is a change in the switching position of the valve device.

Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:

Fig. 1
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer ersten Ausführungsform der Erfindung,
Fig. 2
eine perspektivische Ansicht der Unterseite des Ventilelementes des Kreiselpumpenaggregates gemäß Fig. 1,
Fig. 3
eine perspektivische Ansicht des Pumpengehäuses des Kreiselpumpenaggregates gemäß Fig. 1 im geöffneten Zu-stand,
Fig. 4
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 1,
Fig. 5
eine Schnittansicht des Pumpengehäuses des Kreiselpumpenaggregates gemäß Fig. 4 mit dem Ventilelement in einer ersten Schaltstellung,
Fig. 6
eine Schnittansicht entsprechend Fig. 5 mit dem Ventilelement in einer zweiten Schaltstellung,
Fig. 7
schematisch den hydraulischen Aufbau mit einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß Fig. 1 bis 6,
Fig. 8
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer zweiten Ausführungsform der Erfindung,
Fig. 9
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 8 mit dem Ventilelement in einer ersten Position,
Fig. 10
eine Schnittansicht entsprechend Fig. 9 mit dem Ventilelement in einer zweiten Position,
Fig. 11
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer dritten Ausführungsform der Erfindung,
Fig. 12
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 11 mit dem Ventilelement in einer ersten Position,
Fig. 13
eine Schnittansicht entsprechend Fig. 12 mit dem Ventilelement in einer zweiten Position,
Fig. 14
eine Explosionsansicht eines Pumpengehäuses mit einem Ventilelement gemäß einer vierten Ausführungsform der Erfindung,
Fig. 15
eine Schnittansicht eines Kreiselpumpenaggregates gemäß der vierten Ausführungsform der Erfindung,
Fig. 16
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer fünften Ausführungsform der Erfindung,
Fig. 17
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 16 mit dem Ventilelement in einer ersten Position,
Fig. 18
eine Schnittansicht entsprechend Fig. 17 mit dem Ventilelement in einer zweiten Position,
Fig. 19
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer sechsten Ausführungsform der Erfindung,
Fig. 20
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 19,
Fig. 21
eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß Fig. 19 und 20 mit dem Ventilelement in einer ersten Schaltstellung,
Fig. 22
eine Draufsicht entsprechend Fig. 21 mit dem Ventilelement in einer zweiten Schaltstellung,
Fig. 23
eine Explosionsansicht eines Pumpengehäuses mit einem Ventilelement gemäß einer siebten Ausführungsform der Erfindung,
Fig. 24
eine Explosionsansicht des Pumpengehäuses mit Ventilelement gemäß der siebten Ausführungsform von einer anderen Seite her gesehen,
Fig. 25
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer achten Ausführungsform der Erfindung,
Fig. 26
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 25,
Fig. 27
eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß Fig. 25 und 26 mit dem Ventilelement in einer ersten Schaltstellung,
Fig. 28
eine Ansicht gemäß Fig. 27 mit dem Ventilelement in einer zweiten Schaltstellung,
Fig. 29
eine Explosionsansicht des Kreiselpumpenaggregates gemäß einer neunten Ausführungsform der Erfindung,
Fig. 30
eine perspektivische Ansicht des Kreiselpumpenaggregates gemäß Fig. 29 mit abgenommenem Pumpengehäuse und Ventilelement,
Fig. 31
eine perspektivische Ansicht der Motorwelle des Kreiselpumpenaggregates gemäß Fig. 29 und 30 sowie des Kupplungsteils des Ventilelementes,
Fig. 32
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 29 mit dem Ventilelement in einer ersten Position,
Fig. 33
eine Schnittansicht gemäß Fig. 32 mit dem Ventilelement in einer zweiten Position,
Fig. 34
eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß Fig. 29 bis 33 mit dem Ventilelement in einer ersten Schaltstellung,
Fig. 35
eine Ansicht gemäß Fig. 34 mit dem Ventilelement in einer zweiten Schaltstellung,
Fig. 36
eine Ansicht gemäß Fig. 34 und 35 mit dem Ventilelement in einer dritten Schaltstellung,
Fig. 37
schematisch den hydraulischen Aufbau einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß Fig. 29 bis 36,
Fig. 38
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer zehnten Ausführungsform der Erfindung,
Fig. 39
eine perspektivische Ansicht des geöffneten Ventilelementes des Kreiselpumpenaggregates gemäß Fig. 38,
Fig. 40
eine perspektivische Ansicht des geschlossenen Ventilelementes gemäß Fig. 39,
Fig. 41
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 38 mit dem Ventilelement in einer ersten Position,
Fig. 42
eine Schnittansicht gemäß Fig. 41 mit dem Ventilelement in einer zweiten Position,
Fig. 43
eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß Fig. 38 bis 42 mit dem Ventilelement in einer ersten Schaltstellung,
Fig. 44
eine Ansicht gemäß Fig. 43 mit dem Ventilelement in einer zweiten Schaltstellung,
Fig. 45
eine Ansicht gemäß Fig. 43 und 44 mit dem Ventilelement in einer dritten Schaltstellung,
Fig. 46
eine Ansicht gemäß Fig. 43 bis 45 mit dem Ventilelement in einer vierten Schaltstellung und
Fig. 47
schematisch den hydraulischen Aufbau einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß Fig. 38 bis 46.
The invention is described below by way of example with reference to the accompanying figures. In these shows:
1
an exploded view of a centrifugal pump unit according to a first embodiment of the invention,
2
a perspective view of the underside of the valve element of the centrifugal pump unit according to 1 ,
3
a perspective view of the pump housing of the centrifugal pump unit according to 1 in the open state,
4
a sectional view of the centrifugal pump unit according to FIG 1 ,
figure 5
a sectional view of the pump housing of the centrifugal pump unit according to FIG 4 with the valve element in a first switching position,
6
a sectional view accordingly figure 5 with the valve element in a second switching position,
7
Schematically the hydraulic structure with a heating system with a centrifugal pump unit according to Figures 1 to 6 ,
8
an exploded view of a centrifugal pump unit according to a second embodiment of the invention,
9
a sectional view of the centrifugal pump unit according to FIG 8 with the valve element in a first position,
10
a sectional view accordingly 9 with the valve element in a second position,
11
an exploded view of a centrifugal pump unit according to a third embodiment of the invention,
12
a sectional view of the centrifugal pump unit according to FIG 11 with the valve element in a first position,
13
a sectional view accordingly 12 with the valve element in a second position,
14
an exploded view of a pump housing with a valve element according to a fourth embodiment of the invention,
15
a sectional view of a centrifugal pump unit according to the fourth embodiment of the invention,
16
an exploded view of a centrifugal pump unit according to a fifth embodiment of the invention,
17
a sectional view of the centrifugal pump unit according to FIG 16 with the valve element in a first position,
18
a sectional view accordingly 17 with the valve element in a second position,
19
an exploded view of a centrifugal pump unit according to a sixth embodiment of the invention,
20
a sectional view of the centrifugal pump unit according to FIG 19 ,
21
a top view of the opened pump housing of the centrifugal pump unit according to FIG 19 and 20 with the valve element in a first switching position,
22
a top view accordingly 21 with the valve element in a second switching position,
23
an exploded view of a pump housing with a valve element according to a seventh embodiment of the invention,
24
an exploded view of the pump housing with valve element according to the seventh embodiment seen from another side,
25
an exploded view of a centrifugal pump unit according to an eighth embodiment of the invention,
26
a sectional view of the centrifugal pump unit according to FIG 25 ,
27
a top view of the opened pump housing of the centrifugal pump unit according to FIG 25 and 26 with the valve element in a first switching position,
28
a view according to 27 with the valve element in a second switching position,
29
an exploded view of the centrifugal pump unit according to a ninth embodiment of the invention,
30
a perspective view of the centrifugal pump unit according to FIG 29 with removed pump housing and valve element,
31
a perspective view of the motor shaft of the centrifugal pump unit according to 29 and 30 and the coupling part of the valve element,
32
a sectional view of the centrifugal pump unit according to FIG 29 with the valve element in a first position,
Figure 33
a sectional view according to FIG 32 with the valve element in a second position,
34
a top view of the opened pump housing of the centrifugal pump unit according to FIG Figures 29 to 33 with the valve element in a first switching position,
Figure 35
a view according to 34 with the valve element in a second switching position,
Figure 36
a view according to 34 and 35 with the valve element in a third switching position,
37
Schematically the hydraulic structure of a heating system with a centrifugal pump unit according to Figures 29 to 36 ,
38
an exploded view of a centrifugal pump unit according to a tenth embodiment of the invention,
Figure 39
a perspective view of the open valve element of the centrifugal pump unit according to 38 ,
figure 40
a perspective view of the closed valve element according to FIG Figure 39 ,
Figure 41
a sectional view of the centrifugal pump unit according to FIG 38 with the valve element in a first position,
Figure 42
a sectional view according to FIG Figure 41 with the valve element in a second position,
Figure 43
a top view of the opened pump housing of the centrifugal pump unit according to FIG 38 to 42 with the valve element in a first switching position,
Figure 44
a view according to Figure 43 with the valve element in a second switching position,
Figure 45
a view according to 43 and 44 with the valve element in a third switching position,
Figure 46
a view according to Figures 43 to 45 with the valve element in a fourth switching position and
Figure 47
Schematically the hydraulic structure of a heating system with a centrifugal pump unit according to Figures 38 to 46 .

Die in der nachfolgenden Beschreibung beschriebenen Ausführungsbeispiele des erfindungsgemäßen Pumpenaggregates in Form eines Kreiselpumpenaggregates betreffen Anwendungen in Heizungs- und/oder Klimasystemen, in welchen von dem Kreiselpumpenaggregat ein flüssiger Wärmeträger, insbesondere Wasser umgewälzt wird.The exemplary embodiments of the pump unit according to the invention in the form of a centrifugal pump unit described in the following description relate to applications in heating and/or air-conditioning systems in which a liquid heat carrier, in particular water, is circulated by the centrifugal pump unit.

Das Kreiselpumpenaggregat gemäß der ersten Ausführungsform der Erfindung weist ein Motorgehäuse 2 auf, in welchem ein elektrischer Antriebsmotor angeordnet ist. Dieser weist in bekannter Weise einen Stator 4 sowie einen Rotor 6 auf, welcher auf einer Rotorwelle 8 angeordnet ist. Der Rotor 6 dreht in einem Rotorraum, welcher von dem Statorraum, in welchem der Stator 4 angeordnet ist, durch ein Spaltrohr bzw. einen Spalttopf 10 getrennt ist. Das heißt es handelt sich hierbei um einen nasslaufenden elektrischen Antriebsmotor. An einem Axialende ist das Motorgehäuse 2 mit einem Pumpengehäuse 12 verbunden, in welchem ein mit der Rotorwelle 8 drehfest verbundenes Laufrad 14 rotiert.The centrifugal pump unit according to the first embodiment of the invention has a motor housing 2 in which an electric drive motor is arranged. In a known manner, this has a stator 4 and a rotor 6 which is arranged on a rotor shaft 8 . The rotor 6 rotates in a rotor space, which of the Stator space, in which the stator 4 is arranged, is separated by a can or a can 10 . This means it is a wet-running electric drive motor. At one axial end, the motor housing 2 is connected to a pump housing 12 in which an impeller 14 rotatably connected to the rotor shaft 8 rotates.

An dem dem Pumpengehäuse 12 entgegengesetzten Axialende des Motorgehäuses 2 ist ein Elektronikgehäuse 16 angeordnet, welches eine Steuerelektronik bzw. Steuereinrichtung zur Ansteuerung des elektrischen Antriebsmotors in dem Pumpengehäuse 2 beinhaltet. Das Elektronikgehäuse 16 könnte in entsprechender Weise auch an einer anderen Seite des Statorgehäuses 2 angeordnet sein.An electronics housing 16 is arranged on the axial end of the motor housing 2 opposite the pump housing 12 and contains control electronics or a control device for controlling the electric drive motor in the pump housing 2 . The electronics housing 16 could also be arranged on another side of the stator housing 2 in a corresponding manner.

In dem Pumpengehäuse 12 ist darüber hinaus eine Ventileinrichtung mit einem beweglichen Ventilelement 18 angeordnet. Dieses Ventilelement 18 ist auf einer Achse 20 im Inneren des Pumpengehäuses 12 drehbar gelagert, und zwar so, dass die Drehachse des Ventilelementes 18 mit der Drehachse X des Laufrades 14 fluchtet. Die Achse 20 ist am Boden des Pumpengehäuses 12 drehfest fixiert. Das Ventilelement 18 ist nicht nur um die Achse 20 drehbar, sondern um ein gewisses Maß in Längsrichtung X bewegbar. In einer Richtung wird diese lineare Bewegbarkeit durch das Pumpengehäuse 12, an welches das Ventilelement 18 mit seinem Außenumfang anschlägt, begrenzt. In der entgegengesetzten Richtung wird die Bewegbarkeit durch die Mutter 22 begrenzt, mit welcher das Ventilelement 18 auf der Achse 20 befestigt ist. Es ist zu verstehen, dass statt der Mutter 22 auch eine andere axiale Befestigung des Ventilelementes 18 auf der Achse 20 gewählt werden könnte.In addition, a valve device with a movable valve element 18 is arranged in the pump housing 12 . This valve element 18 is rotatably mounted on an axis 20 inside the pump housing 12 in such a way that the axis of rotation of the valve element 18 is aligned with the axis of rotation X of the impeller 14 . The axis 20 is fixed in a rotationally fixed manner on the bottom of the pump housing 12 . The valve element 18 is not only rotatable about the axis 20, but also movable to a certain extent in the longitudinal direction X. This linear mobility is limited in one direction by the pump housing 12, against which the valve element 18 abuts with its outer circumference. In the opposite direction, the movability is limited by the nut 22, with which the valve element 18 is fastened on the axle 20. It is to be understood that instead of the nut 22, a different axial fastening of the valve element 18 on the axle 20 could also be selected.

Das Ventilelement 18 trennt in dem Pumpengehäuse 12 einen Saugraum 24 von einem Druckraum 26. In dem Druckraum 26 rotiert das Laufrad 14. Der Druckraum 26 ist mit dem Druckanschluss bzw. Druckstutzen 28 des Kreiselpumpenaggregates verbunden, welcher den Auslass des Kreiselpumpenaggregates bildet. In den Saugraum 24 münden zwei saugseitige Eingänge 28 und 30, von welchen der Eingang 28 mit einem ersten Sauganschluss 32 und der Eingang 30 mit einem zweiten Sauganschluss 34 des Pumpengehäuses 12 verbunden ist.The valve element 18 separates a suction chamber 24 from a pressure chamber 26 in the pump housing 12. In the pressure chamber 26 rotates the impeller 14. The pressure chamber 26 is connected to the pressure connection or pressure connection 28 of the centrifugal pump unit, which forms the outlet of the centrifugal pump unit. Two inlets 28 and 30 on the suction side open into the suction chamber 24 , of which the inlet 28 is connected to a first suction connection 32 and the inlet 30 is connected to a second suction connection 34 of the pump housing 12 .

Das Ventilelement 18 ist scheibenförmig ausgebildet und übernimmt gleichzeitig die Funktion einer üblichen Deflektorplatte, welche den Saugraum 24 von dem Druckraum 26 trennt. Das Ventilelement 18 weist eine zentrale Saugöffnung 36 auf, welche einen vorstehenden umfänglichen Kragen aufweist, der mit dem Saugmund 38 des Laufrades 14 in Eingriff ist und im Wesentlichen mit dem Saugmund 38 in dichter Anlage ist. Dem Laufrad 14 zugewandt ist das Ventilelement 18 im Wesentlichen glatt ausgebildet. An der dem Laufrad 14 abgewandten Seite weist das Ventilelement zwei ringförmige Dichtflächen 40 auf, welche in diesem Ausführungsbeispiel auf geschlossenen rohrförmigen Stutzen gelegen sind. Die beiden ringförmigen Dichtflächen 40 sind an zwei diametral entgegengesetzten Positionen auf dem Dichtelement 18 bezüglich dessen Drehachse X angeordnet, sodass sie im Umfangsbereich der Eingänge 28 und 30 am Boden des Pumpengehäuses 12 in dichte Anlage treten können, um die Eingänge 28 und 30 zu verschlie-βen. In einer Winkelposition 90° versetzt zu den Dichtflächen 40 sind Stützelemente 42 angeordnet, welche ebenfalls am Umfangsbereich der Eingänge 28, 30 zur Anlage kommen können, aber so voneinander beabstandet sind, dass sie die Eingänge 28, 30 dann nicht verschließen. Die Eingänge 28 und 30 liegen nicht auf einer Durchmesserlinie bezüglich der Drehachse X, sondern auf einer radial versetzten Geraden, sodass bei Drehung des Ventilelementes 18 um die Drehachse X in einer ersten Schaltstellung der Eingang 38 von einer Dichtfläche 40 verschlossen ist, während die Stützelemente 42 an dem Eingang 30 liegen und diesen öffnen. In einer zweiten Schaltstellung ist der Eingang 30 von einer Dichtfläche 40 verschlossen, während die Stützelemente 42 im Umfangsbereich des Einganges 28 anliegen und diesen öffnen. Die erste Schaltstellung, in welcher der Eingang 38 verschlossen und der Eingang 30 geöffnet ist, ist in Fig. 5 gezeigt. Die zweite Schaltstellung, in welcher der Eingang 30 verschlossen und der Eingang 28 geöffnet ist, ist in Fig. 6 dargestellt. Das bedeutet, durch eine Drehung des Ventilelementes um 90° um die Drehachse X kann zwischen den beiden Schaltstellungen umgeschaltet werden. Die beiden Schaltstellungen werden durch ein Anschlagelement 44, welches abwechselnd an zwei Anschlägen 46 in dem Pumpengehäuse 12 anschlägt, begrenzt.The valve element 18 is disk-shaped and at the same time assumes the function of a conventional deflector plate, which separates the suction chamber 24 from the pressure chamber 26 . The valve element 18 has a central suction opening 36 which has a projecting peripheral collar which engages the suction mouth 38 of the impeller 14 and is in substantial sealing abutment with the suction mouth 38 . Facing the impeller 14, the valve element 18 is designed to be essentially smooth. On the side facing away from the impeller 14, the valve element has two ring-shaped sealing surfaces 40, which in this exemplary embodiment are located on closed tubular sockets. The two annular sealing surfaces 40 are arranged in two diametrically opposite positions on the sealing element 18 with respect to its axis of rotation X, so that they can come into tight contact in the peripheral area of the inlets 28 and 30 on the bottom of the pump housing 12 in order to close the inlets 28 and 30. be. Arranged in an angular position 90° offset from the sealing surfaces 40 are supporting elements 42, which can also come into contact with the peripheral area of the inlets 28, 30, but are spaced apart from one another in such a way that they then do not close the inlets 28, 30. The inlets 28 and 30 do not lie on a diameter line with respect to the axis of rotation X, but rather on a radially offset straight line, so that when the valve element 18 rotates about the axis of rotation X in a first switching position, the inlet 38 is closed by a sealing surface 40, while the support elements 42 lie at the entrance 30 and open it. In a second switching position, the input 30 is of a Sealing surface 40 closed, while the support elements 42 rest in the peripheral area of the input 28 and open it. The first switch position, in which inlet 38 is closed and inlet 30 is open, is in figure 5 shown. The second switch position, in which input 30 is closed and input 28 is open, is in 6 shown. This means that by turning the valve element by 90° around the axis of rotation X, it is possible to switch between the two switch positions. The two switching positions are limited by a stop element 44 which alternately strikes two stops 46 in the pump housing 12 .

In einer Ruhestellung, das heißt wenn das Kreiselpumpenaggregat nicht in Betrieb ist, drückt eine Feder 48 das Ventilelement 18 in eine gelöste Stellung, in welcher der Außenumfang des Ventilelementes 18 nicht dicht an dem Pumpengehäuse 12 und die Dichtflächen 40 nicht dicht im Umfangsbereich der Eingänge 28 und 30 anliegen, sodass das Ventilelement 18 um die Achse 20 drehen kann. Wenn nun von der Steuereinrichtung 17 in dem Elektronikgehäuse 16 der Antriebsmotor in Drehung versetzt wird, sodass das Laufrad 14 rotiert, wird in dem Druckraum 26 eine umlaufende Strömung erzeugt, welche über Reibung das Ventilelement 18 in ihrer Drehrichtung mitdreht. D.h. über die rotierende Strömung wird eine erste hydraulische Kupplung zwischen Antriebsmotor und Ventilelement gebildet. Die Steuereinrichtung 17 ist so ausgebildet, dass sie den Antriebsmotor wahlweise in zwei Drehrichtungen antreiben kann. So kann das Ventilelement 18 um die Drehachse X je nach Drehrichtung des Laufrades 14 über die von dem Laufrad 14 in Rotation versetzte Strömung ebenfalls in zwei Drehrichtungen bewegt werden, da die Strömung im Umfangsbereich des Laufrades 14 stets in dessen Drehrichtung verläuft. So kann das Ventilelement 18 zwischen den beiden durch die Anschläge 46 begrenzten Schaltstellungen gedreht werden.In a rest position, i.e. when the centrifugal pump unit is not in operation, a spring 48 presses the valve element 18 into a released position in which the outer circumference of the valve element 18 is not tight against the pump housing 12 and the sealing surfaces 40 are not tight in the peripheral area of the inlets 28 and 30 abut so that the valve element 18 can rotate about the axis 20. If the drive motor is rotated by the control device 17 in the electronics housing 16 so that the impeller 14 rotates, a circulating flow is generated in the pressure chamber 26 which rotates the valve element 18 in its direction of rotation via friction. This means that a first hydraulic clutch is formed between the drive motor and the valve element via the rotating flow. The control device 17 is designed in such a way that it can selectively drive the drive motor in two directions of rotation. Depending on the direction of rotation of the impeller 14, the valve element 18 can also be moved about the axis of rotation X in two directions of rotation via the flow set in rotation by the impeller 14, since the flow in the peripheral region of the impeller 14 always runs in its direction of rotation. The valve element 18 can thus be rotated between the two switch positions delimited by the stops 46 .

Wenn das Laufrad 14 mit ausreichender Drehzahl rotiert, baut sich in dem Druckraum 26 ein Druck auf, welcher an der Oberfläche des Ventilelementes 18, welche die Saugöffnung 36 umgibt, eine Druckkraft erzeugt, welche der Federkraft der Feder 48 entgegengesetzt ist, so dass das Ventilelement 18 gegen die Federkraft der Feder 48 in axialer Richtung X so bewegt wird, dass es an seinem Außenumfang an einer ringförmigen Anlageschulter 50 an dem Pumpengehäuse 12 dichtend zur Anlage kommt. Gleichzeitig kommt je nach Schaltstellung eine der Dichtflächen 40 im Umfang eines der Eingänge 28 und 30 dichtend zur Anlage, sodass einer der Eingänge 28, 30 verschlossen wird. An dem anderen Eingang kommen die Stützelemente 42 zur Anlage, sodass dieser Eingang offen bleibt und ein Strömungsweg von diesem Eingang 28, 30 zu der Saugöffnung 36 und von dort in das Innere des Laufrades 14 gegeben ist. Durch die Anlage des Ventilelementes 18 an der Anlageschulter 50 und der Dichtfläche 40 im Umfangsbereich eines der Eingänge 28, 30 wird gleichzeitig eine reibschlüssige Anlage zwischen Ventilelement 18 und Pumpengehäuse 12 geschaffen. Diese reibschlüssige Anlage bildet eine zweite Kupplung, welche das Ventilelement fixiert. Diese reibschlüssige Anlage sorgt dafür, dass das Ventilelement 18 in der erreichten Schaltstellung gehalten wird. Dies ermöglicht es, den Antriebsmotor kurzzeitig wieder außer Betrieb zu nehmen und in der entgegengesetzten Drehrichtung wieder in Betrieb zu nehmen, ohne dass das Ventilelement 18 gedreht wird. Erfolgt das Ausschalten und wieder in Betrieb nehmen des Motors schnell genug, verringert sich der Druck in dem Druckraum 26 nicht so weit, dass das Ventilelement 18 sich wieder in axialer Richtung in seine gelöste Position bewegen kann. Dies ermöglicht es, das Laufrad beim Betrieb des Kreiselpumpenaggregates stets in seiner bevorzugten Drehrichtung, für welche die Schaufeln ausgelegt sind, anzutreiben und die entgegengesetzte Drehrichtung lediglich zum Bewegen des Ventilelementes 18 in die entgegengesetzte Drehrichtung zu nutzen. Wenn das Ventilelement 18 in seiner anliegenden Position ist, in welcher eine reibschlüssige Anlage gegeben ist und die so gebildete zweite Kupplung in Eingriff ist, kann das Laufrad 14 weiter rotieren. Die Strömung verläuft im Druckraum 26 weiter, ohne das Ventilelement 18 mitzudrehen. Das heißt die zwischen Laufrad 14 und Ventilelement 18 gebildete hydraulische erste Kupplung tritt durch Schlupf außer Eingriff.When the impeller 14 rotates at a sufficient speed, a pressure builds up in the pressure chamber 26, which generates a compressive force on the surface of the valve element 18 which surrounds the suction opening 36, which is opposed to the spring force of the spring 48, so that the valve element 18 is moved against the spring force of the spring 48 in the axial direction X in such a way that it comes into sealing contact on its outer circumference with an annular bearing shoulder 50 on the pump housing 12 . At the same time, depending on the switching position, one of the sealing surfaces 40 comes into sealing contact on the circumference of one of the inlets 28 and 30, so that one of the inlets 28, 30 is closed. The support elements 42 come into contact with the other inlet, so that this inlet remains open and a flow path is provided from this inlet 28, 30 to the suction opening 36 and from there into the interior of the impeller 14. The contact of the valve element 18 on the contact shoulder 50 and the sealing surface 40 in the peripheral area of one of the inlets 28, 30 creates a frictional contact between the valve element 18 and the pump housing 12 at the same time. This frictional contact forms a second clutch which fixes the valve element. This frictional contact ensures that the valve element 18 is held in the switching position it has reached. This makes it possible to take the drive motor out of operation again for a short time and to put it back into operation in the opposite direction of rotation without the valve element 18 being rotated. If the engine is switched off and restarted quickly enough, the pressure in the pressure chamber 26 does not decrease to such an extent that the valve element 18 can move again in the axial direction into its released position. During operation of the centrifugal pump unit, this makes it possible to always drive the impeller in its preferred direction of rotation, for which the blades are designed, and to use the opposite direction of rotation only to move the valve element 18 in the opposite direction of rotation. When the valve element 18 is in its seated position, in which a frictional seat is given and the second clutch thus formed is engaged, the impeller 14 can continue to rotate. The flow continues in the pressure chamber 26 without the valve element 18 also rotating. This means that the hydraulic first clutch formed between the impeller 14 and the valve element 18 is disengaged due to slippage.

Das beschriebene Kreiselpumpenaggregat, gemäß der ersten Ausführungsform der Erfindung, kann beispielsweise in einem Heizungssystem eingesetzt werden, wie es in Fig. 7 gezeigt ist. Ein derartiges Heizungssystem findet üblicherweise in Wohnungen oder Wohnhäusern Verwendung und dient zur Erwärmung des Gebäudes und zur Bereitstellung von erwärmtem Brauchwasser. Die Heizungsanlage weist eine Wärmequelle 52, beispielsweise in Form eines Gasheizkessels auf. Ferner ist ein Heizkreis 54 vorhanden, welcher beispielsweise durch verschiedene Heizkörper eines Gebäudes führt. Darüber hinaus ist ein Sekundärwärmetauscher 56 vorgesehen, über welchen Brauchwasser erwärmt werden kann. In derartigen Heizungsanlagen ist üblicherweise ein Umschaltventil erforderlich, welches den Wärmeträgerstrom wahlweise durch den Heizkreis 54 oder Sekundärwärmetauscher 56 lenkt. Mit dem erfindungsgemäßen Kreiselpumpenaggregat 1 wird diese Ventilfunktion durch das Ventilelement 18, welches in das Kreiselpumpenaggregat 1 integriert ist, übernommen. Die Steuerung erfolgt von der Steuereinrichtung 17 in dem Elektronikgehäuse 16. An den Druckanschluss 27 des Pumpengehäuses 12 ist die Wärmequelle 52 angeschlossen. An den Sauganschluss 32 ist ein Strömungsweg 58 angeschlossen, während an den Sauganschluss 34 ein Strömungsweg 60 durch den Heizkreis 54 angeschlossen ist. So kann je nach Schaltstellung des Ventilelementes 18 zwischen dem Strömungsweg 58 durch den Sekundärwärmetauscher 56 oder den Strömungsweg 60 durch den Heizkreis 54 umgeschaltet werden, ohne dass ein Ventil mit einem zusätzlichen Antrieb erforderlich wäre.The centrifugal pump unit described, according to the first embodiment of the invention, can be used, for example, in a heating system as shown in 7 is shown. Such a heating system is usually used in apartments or residential buildings and is used to heat the building and to provide heated service water. The heating system has a heat source 52, for example in the form of a gas boiler. There is also a heating circuit 54 which, for example, runs through various radiators in a building. In addition, a secondary heat exchanger 56 is provided, via which process water can be heated. In such heating systems, a switching valve is usually required, which directs the flow of heat transfer medium either through the heating circuit 54 or the secondary heat exchanger 56 . With the centrifugal pump unit 1 according to the invention, this valve function is taken over by the valve element 18 which is integrated into the centrifugal pump unit 1 . The control is carried out by the control device 17 in the electronics housing 16. The heat source 52 is connected to the pressure connection 27 of the pump housing 12. A flow path 58 is connected to the suction port 32 , while a flow path 60 through the heating circuit 54 is connected to the suction port 34 . Depending on the switching position of the valve element 18, it is possible to switch between the flow path 58 through the secondary heat exchanger 56 or the flow path 60 through the heating circuit 54, without a valve having an additional drive being required.

Das zweite Ausführungsbeispiel gemäß Fig. 8 bis 10 unterscheidet sich von dem ersten Ausführungsbeispiel im Aufbau des Ventilelementes 18'. Auch in diesem Ausführungsbeispiel trennt das Ventilelement 18' den Druckraum 26 von einem Saugraum 24 des Pumpengehäuses 12. Das Ventilelement 18 weist eine zentrale Saugöffnung 36' auf, in welche der Saugmund 38 des Laufrades 14 dichtend eingreift. Der Saugöffnung 36 entgegengesetzt weist das Ventilelement 18' eine Öffnung 62 auf, welche abhängig von der Schaltstellung des Ventilelementes 18' wahlweise mit einem der Eingänge 28, 30 zur Deckung gebracht werden kann. Die Eingänge 28',30' unterscheiden sich in diesem Ausführungsbeispiel in Ihrer Formgebung von den Eingängen 28, 30 gemäß der vorangehenden Ausführungsform. Das Ventilelement 18' weist einen zentralen Vorsprung 64 auf, welcher in ein zentrales Loch 60 im Boden des Pumpengehäuses 12 eingreift und dort um die Drehachse X drehend gelagert ist. Gleichzeitig lässt der Vorsprung 64 in dem Loch 66 ebenfalls eine Axialbewegung entlang der Drehachse X zu, welche in einer Richtung durch den Boden des Pumpengehäuses 12 und in der anderen Richtung durch das Laufrad 14 begrenzt wird. An seinem Außenumfang weist das Ventilelement 18' einen Stift 68 auf, welcher in einer halbkreisförmigen Nut 70 am Boden des Pumpengehäuses 12 eingreift. Die Enden der Nut 70 dienen als Anschlagflächen für den Stift 68 in den beiden möglichen Schaltstellungen des Ventilelementes 18', wobei in einer ersten Schaltstellung die Öffnung 62 über dem Eingang 28' und in einer zweiten Schaltstellung die Öffnung 62 über dem Eingang 30' liegt und der jeweils andere Eingang durch den Boden des Ventilelementes 18' verschlossen wird. Die Drehbewegung des Ventilelementes 18' zwischen den beiden Schaltstellungen erfolgt auch in diesem Ausführungsbeispiel durch die in dem Druckraum 26 von dem Laufrad 14 verursachte Strömung, welche eine erste hydraulische Kupplung bildet. Um diese noch besser auf das Ventilelement 18' zu übertragen, ist es mit in dem Druckraum 26 gerichteten Vorsprüngen 72 versehen. Wenn das Kreiselpumpenaggregat 1 außer Betrieb genommen wird, drückt die Feder 48 das Ventilelement 18' in die in Fig. 10 gezeigte gelöste Stellung, in welcher es nicht am Boden im Umfang der Eingänge 28' und 30' anliegt. D.h. die zweite Kupplung ist gelöst. In dieser Stellung stößt das Ventilelement 18'axial mit einem zentralen Zapfen 74 an der Stirnseite der Motorwelle 8 an und wird durch diesen Anschlag in seiner axialen Bewegung begrenzt. Wenn der Druck in dem Druckraum 26 ausreichend groß ist, wird das Ventilelement 18' in die in Fig. 9 gezeigte anliegende Position gedrückt, in welcher das Ventilelement 18' am Boden des Pumpengehäuses 12 im Umfangsbereich der Eingänge 28' und 30' zur Anlage kommt und gleichzeitig der Zapfen 24 von der Stirnseite der Rotorwelle 8 abgehoben ist. D.h. die zweite Kupplung ist in Eingriff. In dieser Position rotiert das Laufrad 14 dann im Normalbetrieb des Umwälzpumpenaggregates. D.h. die hydraulische erste Kupplung tritt durch Schlupf außer Eingriff.The second embodiment according to Figures 8 to 10 differs from the first exemplary embodiment in the structure of the valve element 18'. In this exemplary embodiment too, the valve element 18' separates the pressure chamber 26 from a suction chamber 24 of the pump housing 12. The valve element 18 has a central suction opening 36', into which the suction mouth 38 of the impeller 14 engages in a sealing manner. Opposite the suction opening 36, the valve element 18' has an opening 62 which, depending on the switching position of the valve element 18', can optionally be brought to coincide with one of the inlets 28, 30. In this exemplary embodiment, the inputs 28', 30' differ in their shape from the inputs 28, 30 according to the previous embodiment. The valve element 18' has a central projection 64 which engages in a central hole 60 in the bottom of the pump housing 12 and is mounted there so as to rotate about the axis of rotation X. At the same time, the projection 64 in the hole 66 also allows an axial movement along the axis of rotation X, which is limited in one direction by the bottom of the pump housing 12 and in the other direction by the impeller 14. On its outer circumference, the valve element 18 ′ has a pin 68 which engages in a semi-circular groove 70 on the bottom of the pump housing 12 . The ends of the groove 70 serve as stop surfaces for the pin 68 in the two possible switching positions of the valve element 18', with the opening 62 being above the inlet 28' in a first switching position and the opening 62 being above the inlet 30' in a second switching position and the respective other input is closed by the base of the valve element 18'. The rotational movement of the valve element 18' between the two switch positions also takes place in this exemplary embodiment by the flow caused by the impeller 14 in the pressure chamber 26, which flow forms a first hydraulic clutch. In order to transfer this even better to the valve element 18 ′, it is provided with projections 72 directed in the pressure chamber 26 . When the centrifugal pump unit 1 is taken out of operation is, the spring 48 presses the valve element 18' in the in 10 released position shown clear of the ground in the perimeter of the entrances 28' and 30'. Ie the second clutch is released. In this position, the valve element 18′ abuts axially with a central pin 74 on the end face of the motor shaft 8 and is limited in its axial movement by this stop. If the pressure in the pressure chamber 26 is sufficiently high, the valve element 18 'in the in 9 shown applied position, in which the valve element 18 'at the bottom of the pump housing 12 in the peripheral area of the inputs 28' and 30 'comes to rest and at the same time the pin 24 is lifted from the end face of the rotor shaft 8. Ie the second clutch is engaged. In this position, the impeller 14 then rotates during normal operation of the circulating pump assembly. Ie the hydraulic first clutch is disengaged due to slip.

Das dritte Ausführungsbeispiel gemäß Fig. 11 bis 13 zeigt eine weitere mögliche Ausgestaltung des Ventilelementes 18". Dieses Ausführungsbeispiel unterscheidet sich von den vorangehenden Ausführungsbeispielen im Aufbau des Ventilelementes 18". Dieses ist als Ventiltrommel ausgebildet. Das Pumpengehäuse 12 entspricht im Wesentlichen dem Aufbau gemäß Fig. 1 bis 6, wobei insbesondere die Anordnung der Eingänge 28 und 30 der anhand des ersten Ausführungsbeispiels beschriebenen Anordnung entspricht. Die Ventiltrommel des Ventilelementes 18" besteht aus einem topfförmigen Unterteil, welches durch einen Deckel 78 verschlossen ist. Der Deckel 78 ist dem Druckraum 26 zugewandt und weist die zentrale Saugöffnung 36 auf, welche mit ihrem axial gerichteten Kragen in den Saugmund 38 des Laufrades 14 eingreift. An der entgegengesetzten Seite weist der Boden des Unterteils 36 eine Eintrittsöffnung 80 auf, welche, je nach Schaltstellung, mit einem der Eingänge 28, 30 zur Deckung gebracht wird, während der jeweils andere Eingang 28, 30 durch den Boden des Unterteils 26 verschlossen wird. Das Ventilelement 18" ist drehbar auf einer Achse 20 gelagert, welche im Boden des Pumpengehäuses 12 befestigt ist, wobei die Drehachse, die durch die Achse 20 definiert wird, der Drehachse X des Laufrades 14 entspricht. Auch in diesem Ausführungsbeispiel ist das Ventilelement 18" entlang der Achse 20 um ein gewisses Maß axial verschiebbar, wobei auch hier eine Feder 48 vorgesehen ist, welche in der Ruhelage das Ventilelement 18" in seine in Fig. 13 gezeigte gelöste Stellung drückt. So wird auch hier eine lösbare zweite Kupplung zum Halten des Ventilelementes 18" geschaffen. Die gelöste axiale Stellung wird auch in diesem Ausführungsbeispiel durch die Mutter 22 begrenzt. In der gelösten Stellung ist das Ventilelement 18", wie vorangehend beschrieben, durch die Strömung, welche von dem Laufrad 14 verursacht wird, drehbar, das heißt es wird eine hydraulische Kupplung (erste Kupplung) zwischen Laufrad 14 und Ventilelement 18" hergestellt, wie sie vorangehend beschrieben wurde. In der anliegenden Position, welche in Fig. 12 gezeigt ist, wird je nach Schaltstellung zum einen einer der Eingänge 28, 30 dicht verschlossen. Zum anderen erfolgt auch eine Abdichtung zwischen Saugraum 24 und Druckraum 26 durch die Anlage des Ventilelementes 18" an der Anlageschulte 50.The third embodiment according to Figures 11 to 13 shows another possible embodiment of the valve element 18". This embodiment differs from the previous embodiments in the structure of the valve element 18". This is designed as a valve drum. The pump housing 12 essentially corresponds to the structure shown in FIG Figures 1 to 6 , wherein in particular the arrangement of the inputs 28 and 30 corresponds to the arrangement described with reference to the first exemplary embodiment. The valve drum of the valve element 18" consists of a pot-shaped lower part, which is closed by a cover 78. The cover 78 faces the pressure chamber 26 and has the central suction opening 36, which engages in the suction mouth 38 of the impeller 14 with its axially directed collar On the opposite side, the bottom of the lower part 36 has an inlet opening 80 which, depending on the switch position, is brought to coincide with one of the inlets 28, 30, while the respective other inlet 28, 30 is closed by the bottom of the lower part 26 . The valve element 18" is rotatable on an axis 20 mounted, which is fixed in the bottom of the pump housing 12, wherein the axis of rotation, which is defined by the axis 20, the axis of rotation X of the impeller 14 corresponds. In this exemplary embodiment, too, the valve element 18" can be displaced axially along the axis 20 by a certain amount, with a spring 48 also being provided here which, in the rest position, moves the valve element 18" into its in 13 shown released position presses. In this way, a releasable second coupling for holding the valve element 18" is also created here. The released axial position is also limited in this exemplary embodiment by the nut 22. In the released position, the valve element 18" is, as described above, by the flow which caused by the impeller 14, rotatably, i.e. a hydraulic coupling (first coupling) is established between impeller 14 and valve element 18" as previously described. In the abutting position shown in 12 is shown, depending on the switching position, one of the inputs 28, 30 is tightly closed. On the other hand, there is also a seal between the suction chamber 24 and the pressure chamber 26 through the contact of the valve element 18" with the contact shoulder 50.

In diesem Ausführungsbeispiel ist die Lagerung des Ventilelementes 18" auf der Achse 20 darüber hinaus durch zwei Hülsen 82 und 84 gekapselt, sodass diese Bereiche vor Verunreinigungen durch das geförderte Fluid geschützt sind und gegebenenfalls vorab geschmiert werden können. Es wird eine möglichst leichtgängige Lagerung angestrebt, um die leichte Drehbarkeit des Ventilelementes 18" durch die von dem Laufrad 14 verursachte Strömung zu gewährleisten. Es ist zu verstehen, dass auch bei den anderen hier beschriebenen Ausführungsbeispielen die Lagerung entsprechend gekapselt sein könnte.In this exemplary embodiment, the mounting of the valve element 18" on the axle 20 is also encapsulated by two sleeves 82 and 84, so that these areas are protected from contamination by the fluid being pumped and can be lubricated beforehand if necessary. to ensure the easy rotation of the valve element 18" by the flow caused by the impeller 14. It is to be understood that the bearing could also be correspondingly encapsulated in the other exemplary embodiments described here.

Fig. 14 und 15 zeigen ein viertes Ausführungsbeispiel, bei welchem der Aufbau des Pumpengehäuses 12 dem Aufbau des Pumpengehäuses 12 gemäß dem ersten und dem dritten Ausführungsbeispiel entspricht. In diesem Ausführungsbeispiel wird die Drehbewegung des Ventilelementes 18c durch die saugseitige Strömung, das heißt die in den Saugmund 38 des Laufrades 14 eintretende Strömung, unterstützt. Da in einem Kreislaufsystem, in welchem ein Kreiselpumpenaggregat, wie es hier beschrieben ist, zum Einsatz kommt, auch die saugseitige Strömung von dem Kreiselpumpenaggregat erzeugt wird, wird auch über die saugseitige Strömung eine indirekte Kopplung des Laufrades 14 mit dem Ventilelement 18c geschaffen, welche eine erste hydraulische Kupplung darstellt. Auch in diesem Ausführungsbeispiel ist das Ventilelement 18c im Wesentlichen trommelförmig ausgebildet und weist einen dem Druckraum 26 zugewandten Deckel 28 mit der zentralen Saugöffnung 36 auf, welche mit dem Saugmund 38, wie vorangehend beschrieben wurde, in Eingriff ist. Das hier gezeigte Unterteil 76b weist zwei Eintrittsöffnungen 80 auf, welche je nach Schaltstellung mit einem der Eingänge 28, 30 zur Überdeckung gebracht werden können, wobei der jeweils andere Eingang 28, 30 durch den Boden des Unterteils 46b dicht verschlossen wird, wie es beim vorangehenden Ausführungsbeispiel beschrieben wurde. Zwischen dem Unterteil 76b und dem Deckel 78 ist ein Leitrad 86 mit Schaufeln angeordnet, in welches die Strömung aus den Eintrittsöffnungen 80 radial eintritt und axial zu der zentralen Saugöffnung 36 austritt. Durch die Schaufeln des Leitrades 86 wird ebenfalls ein Drehmoment um die Achse 20 erzeugt, durch welches das Ventilelement 18c zwischen den Schaltstellungen bewegt werden kann. Dies funktioniert im Wesentlichen wie es vorangehend beschrieben wurde. Es kann auch zusätzlich eine Feder 48, wie sie vorangehend beschrieben wurde, vorgesehen sein, um das Ventilelement 18c in eine gelöste Stellung zu bewegen. Da durch die Formgebung der Schaufeln des Leitrades 86 stets ein Drehmoment in derselben Richtung erzeugt wird, unabhängig davon, in welcher Richtung das Laufrad 14 rotiert, erfolgt bei diesem Ausführungsbeispiel die Rückstellbewegung durch ein Gewicht 88. Im Betrieb befindet sich das Kreiselpumpenaggregat stets in der Einbaulage, welche in Fig. 15 gezeigt ist, in welcher sich die Drehachse X horizontal erstreckt. Wenn das Kreiselpumpenaggregat ausgeschaltet ist, dreht sich das Ventilelement 18c um die Achse 20 stets so, dass das Gewicht 88 unten liegt. Durch das von dem Leitrad 86 erzeugte Drehmoment kann das Ventilelement 18c gegen diese von dem Gewicht 88 erzeugte Rückstellkraft gedreht werden, wobei durch sehr schnelle Inbetriebnahme des Antriebsmotors in dem Druckraum 26 so schnell ein Druck aufgebaut werden kann, dass das Ventilelement 18c in seine anliegende Stellung tritt, wie sie oben beschrieben wurde, in welcher es kraftschlüssig drehfest am Pumpengehäuse 12 gehalten wird, ohne aus seiner Ruhelage herausbewegt zu werden. D.h. auch hier ist eine zweite Kupplung, wie sie oben beschrieben wurde, realisiert. Es ist zu verstehen, dass eine Rückstellung des Ventilelementes durch Schwerkraft oder eine andere Rückstellkraft unabhängig vom Antrieb auch bei den anderen hier beschriebenen Ausführungsbeispielen zur Anwendung kommen könnte. Wenn das Ventilelement 18c in der anliegenden Stellung ist, tritt die von dem Leitrad 86 gebildete erste Kupplung durch Schlupf außer Eingriff, das heißt die Strömung verläuft weiter durch das Leitrad, jedoch ohne eine Drehung des Ventilelementes 18c verursachen zu können. 14 and 15 12 show a fourth embodiment in which the structure of the pump housing 12 is the same as that of the pump housing 12 according to the first and third embodiments is equivalent to. In this exemplary embodiment, the rotational movement of the valve element 18c is supported by the flow on the suction side, ie the flow entering the suction mouth 38 of the impeller 14 . Since, in a circulatory system in which a centrifugal pump unit as described here is used, the suction-side flow is also generated by the centrifugal pump unit, an indirect coupling of the impeller 14 to the valve element 18c is also created via the suction-side flow, which represents the first hydraulic clutch. In this exemplary embodiment, too, the valve element 18c is essentially drum-shaped and has a cover 28 facing the pressure chamber 26 with the central suction opening 36, which engages with the suction mouth 38, as described above. The lower part 76b shown here has two inlet openings 80 which, depending on the switching position, can be brought to overlap with one of the inlets 28, 30, the respective other inlet 28, 30 being sealed tightly by the bottom of the lower part 46b, as in the previous embodiment has been described. Between the lower part 76b and the cover 78 there is arranged a guide wheel 86 with vanes, into which the flow from the inlet openings 80 enters radially and exits axially to the central suction opening 36 . The vanes of the guide wheel 86 also generate a torque about the axis 20, by means of which the valve element 18c can be moved between the switching positions. This works essentially as described above. A spring 48 as described above may also be additionally provided to move the valve element 18c to a released position. Since the shape of the blades of guide wheel 86 always generates a torque in the same direction, regardless of the direction in which impeller 14 rotates, in this exemplary embodiment the restoring movement is carried out by a weight 88. During operation, the centrifugal pump unit is always in the installed position , what a 15 is shown in which the axis of rotation X extends horizontally. When the centrifugal pump unit is switched off, the valve element 18c always rotates about the axis 20 in such a way that the weight 88 is at the bottom. The torque generated by the guide wheel 86 allows the valve element 18c to be rotated against this restoring force generated by the weight 88, and by very rapid activation of the drive motor in the pressure chamber 26 a pressure can be built up so quickly that the valve element 18c moves into its adjacent position occurs, as described above, in which it is held non-rotatably on the pump housing 12 without being moved out of its rest position. This means that a second clutch, as described above, is also implemented here. It is to be understood that a return of the valve element by gravity or another restoring force could also be used in the other exemplary embodiments described here, independently of the drive. When the valve member 18c is in the applied position, the first clutch formed by the stator 86 slips out of engagement, i.e. flow continues through the stator but without being able to cause rotation of the valve member 18c.

Das fünfte Ausführungsbeispiel gemäß Fig. 16 bis 18 unterscheidet sich von den vorangehenden Ausführungsbeispielen wiederrum im Aufbau des Ventilelementes. Bei diesem Ausführungsbeispiel ist das Ventilelement 18d konisch ausgebildet. Das Ventilelement 18d weist ein konisches topfförmiges Unterteil 76d auf, welches durch einen Deckel 78d verschlossen ist, wobei in dem Deckel 78d wiederrum eine zentrale Saugöffnung 36 ausgebildet ist, welche in der vorangehend beschriebenen Weise mit dem Saugmund 38 des Laufrades 14 in Eingriff ist. In der konischen Umfangsfläche des Unterteiles 76b sind Eintrittsöffnungen 90 ausgebildet, welche durch Drehung des Ventilelementes 18d mit Eingängen, welche mit den Sauganschlüssen 32 und 34 verbunden sind, wahlweise zur Überdeckung gebracht werden können, um einen Strömungsweg durch das Innere des Ventilelementes 18d zu der Saugöffnung 36 herzustellen. Zwischen den Eintrittsöffnungen 90 sind an dem konischen Unterteil Dichtflächen 92 ausgebildet, welche den jeweils anderen Eingang verschließen können. Wie auch das Ausführungsbeispiel zwei gemäß Fig. 8 bis 10 weist hier das Ventilelement 18d einen stiftförmigen Vorsprung 64 auf, welcher in einer Ausnehmung am Boden des Pumpengehäuses 12 eingreift und dort das Ventilelement 18d um die Drehachse X drehend lagert. Dabei ist auch hier eine axiale Bewegung zwischen einer gelösten Position, wie sie in Fig. 18 gezeigt ist, und einer anliegenden Position, wie sie in Fig. 17 gezeigt ist, möglich, um eine lösbare zweite Kupplung zu bilden. In der gelösten Position liegt das Unterteil 76d des Ventilelementes 18d im Wesentlichen nicht an dem Pumpengehäuse 12 an, sodass es durch die Strömung im Druckraum 26 als erste hydraulische Kupplung drehbar ist, wie es bei den vorangehend beschriebenen Ausführungsbeispielen beschrieben wurde. Dabei kann hier, abhängig von der Drehrichtung des Laufrades 14, wiederrum ein Hin-und-Her -Bewegen des Ventilelementes 18d erreicht werden, wobei die Drehbewegung des Ventilelementes 18d auch hier wieder durch nicht gezeigte Anschläge begrenzt werden kann. In der anliegenden Position gemäß Fig. 17 erfolgt zum einen eine dichte Anlage des Ventilelementes 18d, zum anderen wird es kraftschlüssig gehalten, sodass es wiederrum, solange der Druck im Druckraum 26 ausreichend groß ist, auch bei einem Drehrichtungswechsel des Laufrades 14 nicht zwischen den Schaltstellungen bewegt wird.The fifth embodiment according to Figures 16 to 18 differs from the preceding exemplary embodiments in turn in the structure of the valve element. In this embodiment, the valve element 18d is conical. The valve element 18d has a conical pot-shaped lower part 76d, which is closed by a cover 78d, with a central suction opening 36 being formed in the cover 78d, which engages with the suction mouth 38 of the impeller 14 in the manner described above. In the conical peripheral surface of the lower part 76b inlet openings 90 are formed, which can be made to overlap by rotating the valve element 18d with inlets which are connected to the suction ports 32 and 34 selectively flow path through the interior of the valve member 18d to the suction port 36 to establish. Sealing surfaces 92 are formed on the conical lower part between the inlet openings 90 and can close the respective other inlet. As well as the embodiment according to two Figures 8 to 10 Here the valve element 18d has a pin-shaped projection 64 which engages in a recess on the bottom of the pump housing 12 and supports the valve element 18d there so that it can rotate about the axis of rotation X. Here, too, an axial movement between a released position, as shown in 18 is shown, and an abutting position as shown in 17 shown, is possible to form a releasable second coupling. In the released position, the lower part 76d of the valve element 18d is essentially not in contact with the pump housing 12, so that it can be rotated as a first hydraulic clutch by the flow in the pressure chamber 26, as was described in the exemplary embodiments described above. Here, depending on the direction of rotation of the impeller 14, a back and forth movement of the valve element 18d can be achieved, with the rotary movement of the valve element 18d again being able to be limited by stops (not shown). In the fitting position according to 17 on the one hand there is a tight contact of the valve element 18d, on the other hand it is held in a non-positive manner so that it is not moved between the switching positions even when the direction of rotation of the impeller 14 changes as long as the pressure in the pressure chamber 26 is sufficiently high.

Das sechste Ausführungsbeispiel gemäß Fig. 19 bis 22 ist ähnlich zu dem Ausführungsbeispiel zwei gemäß Fig. 8 bis 10. Das Pumpengehäuse 12 entspricht im Wesentlichen dem dort gezeigten und beschriebenen Aufbau. Auch das Motorgehäuse 2 mit dem Elektronikgehäuse 16 und das Spaltrohr 10 entsprechen dem Aufbau gemäß dem zweiten Ausführungsbeispiel. Das Ventilelement 18e hat einen sehr ähnlichen Aufbau zu dem Aufbau des Ventilelementes 18'. Es fehlen lediglich die Vorsprünge 72 und der Zapfen 74. Die Öffnung 62 hingegen ist genauso ausgebildet. Auch die Saugöffnung 36e entspricht im Wesentlichen dem Aufbau der Saugöffnung 36'. Das Ventilelement 18e ist drehend auf einer hohlen Achse gelagert, welche in das Loch 66 im Boden des Pumpengehäuses 12 eingesetzt ist. In diesem Ausführungsbeispiel ist die Feder 48 im Inneren der hohlen Achse 94 angeordnet.The sixth embodiment according to Figures 19 to 22 is similar to the embodiment according to FIG Figures 8 to 10 . The pump housing 12 essentially corresponds to the structure shown and described there. The motor housing 2 with the electronics housing 16 and the can 10 correspond to the structure according to the second embodiment. The valve element 18e has a very similar construction to the construction of the valve element 18'. It's just missing the projections 72 and the pin 74. The opening 62, however, is formed in the same way. The suction opening 36e also essentially corresponds to the structure of the suction opening 36'. The valve element 18e is journaled for rotation on a hollow axle which is inserted in the hole 66 in the bottom of the pump housing 12. As shown in FIG. In this embodiment, the spring 48 is positioned inside the hollow axle 94 .

Je nach Schaltstellung des Ventilelementes 18e kommt die Öffnung 62 entweder über dem Eingang 28' oder dem Ausgang 30' zum Liegen, um entweder einen Strömungsweg von dem Sauganschluss 32 zu dem Laufrad 14 oder von dem Sauganschluss 34 zu dem Laufrad 14 zu öffnen. Auch in diesem Ausführungsbeispiel ist das Ventilelement 18e zusätzlich axial entlang der Drehachse X, welche die Drehachse des Laufrades 14 und des Ventilelementes 18e ist, bewegbar, um eine zweite Kupplung zu bilden. In einer Ruhelage, in welcher das Kreiselpumpenaggregat nicht im Betrieb ist, wird das Ventilelement 18e von der Feder 48 in eine gelöste Position gedrückt, in welcher die dem Laufrad 14 abgewandte Oberfläche des Ventilelementes 18e von dem Boden des Pumpengehäuses 12 beabstandet ist, sodass das Ventilelement 18e im Wesentlichen frei um die Achse 94 zwischen den von dem Stift 68 und der Nut 70 gebildeten Anschlägen hin und her drehbar ist. Fig. 21 zeigt die erste Schaltstellung, in welcher die Öffnung 62 dem Eingang 28' gegenüberliegt, Fig. 22 zeigt die zweite Schaltstellung, in welcher die Öffnung 62 dem zweiten Eingang 30' gegenüberliegt.Depending on the switching position of the valve element 18e, the opening 62 comes to rest either over the inlet 28' or the outlet 30' in order to open either a flow path from the suction connection 32 to the impeller 14 or from the suction connection 34 to the impeller 14. In this exemplary embodiment too, the valve element 18e is additionally movable axially along the axis of rotation X, which is the axis of rotation of the impeller 14 and the valve element 18e, in order to form a second clutch. In a rest position, in which the centrifugal pump unit is not in operation, the valve element 18e is pressed by the spring 48 into a released position in which the surface of the valve element 18e facing away from the impeller 14 is spaced from the bottom of the pump housing 12, so that the valve element 18e is substantially free to reciprocate about axis 94 between the stops formed by pin 68 and groove 70. 21 shows the first switch position, in which the opening 62 is opposite the input 28', 22 shows the second switching position, in which the opening 62 is opposite the second input 30'.

Bei diesem Ausführungsbeispiel erfolgt die Drehung des Ventilelementes 18e wiederrum über das Laufrad 14, jedoch ist hier eine mechanische Kupplung als erste Kupplung vorgesehen, welche dadurch realisiert wird, dass das Laufrad 14 mit seinem den Saugmund 38 umgebenden Bereich reibschlüssig am Umfang der Saugöffnung 36e zur Anlage kommt. So wird das Ventilelement 18e mit dem Laufrad 14 mitgedreht, bis der Stift 68 einen Anschlag erreicht. Dann tritt die Kupplung aufgrund von Schlupf außer Eingriff. Mit im Druckraum 26 steigendem Druck wird das Ventilelement 18e dann, wie oben beschrieben, axial in seine anliegende Position bewegt, in welcher somit die zweite Kupplung in Eingriff ist und wobei die erste Kupplung von dem Laufrad 14 außer Eingriff tritt, sodass das Laufrad 14 dann im Wesentlichen reibungsfrei rotieren kann.In this exemplary embodiment, the rotation of the valve element 18e takes place via the impeller 14, but here a mechanical coupling is provided as the first coupling, which is implemented in that the impeller 14 frictionally engages with its area surrounding the suction mouth 38 on the circumference of the suction opening 36e comes. Thus the valve element 18e is rotated with the impeller 14 until the pin 68 reaches a stop. Then the clutch kicks in disengaged due to slippage. As the pressure in the pressure chamber 26 increases, the valve element 18e is then, as described above, moved axially into its abutting position, in which the second clutch is thus engaged and the first clutch is disengaged from the impeller 14, so that the impeller 14 then can rotate essentially without friction.

Das siebte Ausführungsbeispiel gemäß Fig. 23 und 24 unterscheidet sich von dem vorangehend beschriebenen sechsten Ausführungsbeispiel dadurch, dass an dem Ventilelement 18f eine sich in den Druckraum 26 hinein erstreckende Zunge 96 angeordnet ist, welche in den Druckraum 26 als zusätzliches Ventilelement dient. Das Pumpengehäuse 12 weist einen zusätzlichen Druckanschluss 98 auf, welcher getrennt zu dem Druckanschluss 27 in den Druckraum 26 mündet. Die Zunge 96 kann je nach Schaltstellung des Ventilelementes 18f den Druckanschluss 27 oder den Druckanschluss 28 freigeben den die jeweils anderen Druckanschluss überdecken. So ist bei diesem Ausführungsbeispiel eine druckseitige Umschaltung an der Druckseite des Laufrades 14 vorgesehen. Über die Eingänge 28' und 30' kann gleichzeitig eine Mischfunktion realisiert werden, in dem die Öffnung 92 so positioniert ist, dass sie in einer ersten Schaltstellung diese beiden Eingänge 28', 30' überdeckt, sodass Flüssigkeit aus beiden Eingängen 28', 30' durch die Öffnung 62 und weiter durch den Saugmund 38 strömt. In der zweiten Schaltstellung hingegen überdeckt die Öffnung 62 lediglich den Eingang 28', während der Eingang 30' in der oben beschriebenen Weise vom Boden des Ventilelementes 18f verschlossen ist. Gleichzeitig ist der Druckanschluss 27 geschlossen und der Druckanschluss 98 freigegeben. Die Bewegung des Ventilelementes 18f kann in der oben beschriebenen Weise über das Laufrad 14 und eine mechanische Kupplung, welche durch axiale Verlagerung des Ventilelementes 18f bei ausreichend hohem Druck im Druckraum 26 außer Eingriff tritt, realisiert werden. In diesem Ausführungsbeispiel ist das Ventilelement 18f auf der Rotorwelle 8 gelagert.According to the seventh embodiment 23 and 24 differs from the sixth exemplary embodiment described above in that a tongue 96 which extends into the pressure chamber 26 and serves as an additional valve element in the pressure chamber 26 is arranged on the valve element 18f. The pump housing 12 has an additional pressure connection 98 which opens into the pressure chamber 26 separately from the pressure connection 27 . Depending on the switching position of the valve element 18f, the tongue 96 can release the pressure connection 27 or the pressure connection 28 which the respective other pressure connection covers. In this exemplary embodiment, a pressure-side changeover is provided on the pressure side of the impeller 14 . A mixing function can be implemented at the same time via the inputs 28' and 30', in which the opening 92 is positioned in such a way that it covers these two inputs 28', 30' in a first switch position, so that liquid flows out of the two inputs 28', 30'. through the opening 62 and further through the suction mouth 38 flows. In the second switching position, on the other hand, the opening 62 only covers the inlet 28', while the inlet 30' is closed by the bottom of the valve element 18f in the manner described above. At the same time, the pressure port 27 is closed and the pressure port 98 is released. The movement of the valve element 18f can be realized in the manner described above via the impeller 14 and a mechanical clutch, which disengages through axial displacement of the valve element 18f when the pressure in the pressure chamber 26 is sufficiently high will. In this exemplary embodiment, the valve element 18f is mounted on the rotor shaft 8.

Die achte Ausführungsform gemäß Fig. 25 bis 28 unterscheidet sich von der sechsten Ausführungsform in der Ausbildung der ersten mechanischen Kupplung zwischen der Rotorwelle 8 und dem Ventilelement 18g. Bei diesem Ausführungsbeispiel ist das Ventilelement 18g direkt auf der Rotorwelle 8 gelagert, welche verlängert ausgebildet ist und sich bis in das Loch 66 im Boden des Pumpengehäuses 12 erstreckt. Im Inneren des Ventilelementes 18g sind zwei Ringsegmente 100 mit Gleitlagereigenschaften, insbesondere aus Keramik angeordnet. Die Ringsegmente 100 werden durch einen Spannring 102 zusammengehalten und gegen die Rotorwelle 8 gepresst. Die zwei Ringsegmente 100 bilden in diesem Beispiel im Wesentlichen einen 2/3-Ring. Im Bereich des fehlenden Ringsegmentes für einen vollständigen Ring greift das Ventilelement 18g mit einem Vorsprung 104 an seinem Innenumfang ein, sodass die beiden Ringsegmente 100 drehfst im Inneren des Ventilelementes 18g angeordnet sind. Im Bereich des fehlenden Ringsegmentes, das heißt angrenzend an den Vorsprung 104, verbleibt in dem Ventilelement 18g ein Durchgang 106, welcher die Ventilfunktion bewirkt.The eighth embodiment according to Figures 25 to 28 differs from the sixth embodiment in the formation of the first mechanical coupling between the rotor shaft 8 and the valve element 18g. In this embodiment, the valve element 18g is mounted directly on the rotor shaft 8, which is elongated and extends into the hole 66 in the bottom of the pump housing 12. Inside the valve element 18g are two ring segments 100 with plain bearing properties, in particular made of ceramic. The ring segments 100 are held together by a clamping ring 102 and pressed against the rotor shaft 8 . In this example, the two ring segments 100 essentially form a 2/3 ring. In the area of the missing ring segment for a complete ring, the valve element 18g engages with a projection 104 on its inner circumference, so that the two ring segments 100 are arranged in a rotationally fixed manner inside the valve element 18g. In the area of the missing ring segment, that is to say adjacent to the projection 104, a passage 106 remains in the valve element 18g, which causes the valve function.

Der Durchgang 106 kann in einer ersten Schaltstellung, welche in Fig. 27 gezeigt ist, dem Eingang 30' gegenüberliegen und in einer zweiten Schaltstellung, welche in Fig. 28 gezeigt ist, dem Eingang 28' gegenüberliegen. Der andere Eingang ist jeweils verschlossen. Dazu kann das Ventilelement 18g entsprechend den oben beschriebenen Ausführungsformen von dem im Druckraum 26 herrschenden Druck in axialer Richtung in Anlage an den die Eingänge 28' und 30' umgebenden Boden des Pumpengehäuses 2 drücken.The passage 106 can be in a first switch position, which is in 27 is shown, the input 30 'opposite and in a second switch position, which in 28 shown, opposite the entrance 28'. The other entrance is locked. For this purpose, according to the above-described embodiments, the valve element 18g can be pressed by the pressure prevailing in the pressure chamber 26 in the axial direction against the base of the pump housing 2 surrounding the inlets 28' and 30'.

Die Bewegung des Ventilelementes 18g erfolgt über eine erste Kupplung durch den Antrieb des Laufrades 14. Die Rotorwelle 8 liegt beim Start kraftschlüssig am Innenumfang der Ringsegmente 10 an und dreht diese, und damit das Ventilelement 18g mit. Für die beiden Schaltstellungen können in der oben beschriebenen Weise Anschläge im Pumpengehäuse 12 ausgebildet sein. Erreicht das Ventilelement 18g einen dieser Anschläge, rutscht die Pumpenwelle 8 im Inneren der Ringsegmente 100 durch, d.h. die Kupplung tritt außer Eingriff. Mit zunehmender Drehzahl der Rotorwelle 8 kann sich darüber hinaus zwischen dem Außenumfang der Rotorwelle 8 und den Innenflächen der Ringsegmente 100 ein Schmierfilm nach Art eines Gleitlagers ausbilden, sodass die Rotorwelle 8 dann im Wesentlichen reibungsfrei im Inneren der Ringsegmente 100 rotieren kann. Dies bedeutet, dass zum Verstellen des Ventilelementes 18g zwischen seinen beiden Schaltstellungen der Antriebsmotor von der Steuereinrichtung 17 vorzugsweise mit einer geringeren Drehzahl bewegt wird, als die Drehzahl, mit welcher das Laufrad 14 im Betrieb rotiert wird. Zum Hin-und-Her-Bewegen des Ventilelementes 18g kann der Antriebsmotor, in der oben beschriebenen Weise, in zwei Drehrichtungen angetrieben werden, wobei wiederrum nach Erreichen der gewünschten Schaltstellung in der oben beschriebenen Weise durch schnelle Drehzahlerhöhung erreicht werden kann, dass das Ventilelement 18g aufgrund des Druckes im Druckraum 26 und seiner Anlage am Boden des Pumpengehäuses 12 in der zuvor erreichten Schaltstellung verbleibt.The valve element 18g is moved via a first clutch by driving the impeller 14. At the start, the rotor shaft 8 rests non-positively on the inner circumference of the ring segments 10 and rotates them, and thus the valve element 18g as well. Stops can be formed in the pump housing 12 in the manner described above for the two switching positions. If the valve element 18g reaches one of these stops, the pump shaft 8 slips inside the ring segments 100, i.e. the clutch is disengaged. With increasing speed of the rotor shaft 8, a lubricating film in the manner of a slide bearing can also form between the outer circumference of the rotor shaft 8 and the inner surfaces of the ring segments 100, so that the rotor shaft 8 can then rotate essentially without friction inside the ring segments 100. This means that in order to adjust the valve element 18g between its two switch positions, the drive motor is preferably moved by the control device 17 at a lower speed than the speed at which the impeller 14 is rotated during operation. In order to move the valve element 18g back and forth, the drive motor can be driven in two directions of rotation, in the manner described above remains due to the pressure in the pressure chamber 26 and its system at the bottom of the pump housing 12 in the switching position previously reached.

Bei der neunten und zehnten Ausführungsform gemäß Fig. 29 bis 37 sowie 38 bis 47 ist ebenfalls eine mechanische Kupplung zwischen dem Antriebsmotor und dem Ventilelement vorgesehen, wobei bei diesen Ausführungsformen der Antriebsmotor von der Steuereinrichtung 17 in zwei verschiedenen Betriebsarten bzw. Betriebsmodi ansteuerbar ist. In einer ersten Betriebsart, welche dem Normalbetrieb des Umwälzpumpenaggregates entspricht, rotiert der Antriebsmotor in herkömmlieher Weise mit einer gewünschten, insbesondere von der Steuereinrichtung 17 einstellbaren Drehzahl. In der zweiten Betriebsart wird der Antriebsmotor im Open-Loop-Betrieb angesteuert, sodass der Rotor schrittweise in einzelnen Winkelschritten, welche kleiner als 360° sind, gedreht werden kann. So kann der Antriebsmotor nach Art eines Schrittmotors in einzelnen Schritten bewegt werden, was bei diesen Ausführungsbeispielen dazu genutzt wird, das Ventilelement gezielt in kleinen Winkelschritten in eine definierte Position zu bewegen, wie es nachfolgend beschrieben wird.According to the ninth and tenth embodiments Figures 29 to 37 and 38 to 47, a mechanical coupling is also provided between the drive motor and the valve element, with the drive motor being controllable by the control device 17 in two different operating modes in these embodiments. In a first operating mode, which corresponds to the normal operation of the circulating pump unit, the drive motor rotates in the conventional manner Way with a desired, in particular by the control device 17 adjustable speed. In the second operating mode, the drive motor is controlled in open-loop operation, so that the rotor can be rotated step by step in individual angular steps that are less than 360°. The drive motor can thus be moved in individual steps in the manner of a stepping motor, which is used in these exemplary embodiments to move the valve element in small angular steps into a defined position, as will be described below.

Bei der neunten Ausführungsform gemäß Fig. 29 bis 37 ist in dem Pumpengehäuse 2 ein Mischventil integriert, wie es beispielsweise zur Temperatureinstellung für eine Fußbodenheizung genutzt werden kann.According to the ninth embodiment Figures 29 to 37 A mixing valve is integrated in the pump housing 2, as can be used, for example, to set the temperature for underfloor heating.

Das Motorgehäuse 2 mit dem Elektronikgehäuse 16 entspricht der vorangehend beschriebenen Ausgestaltung. Das Pumpengehäuse 12 ist im Wesentlichen genauso aufgebaut, wie das Pumpengehäuse gemäß der ersten Ausführungsform gemäß Fig. 1 bis 6, lediglich die äußere Konfiguration unterscheidet sich. Das Ventilelement 18h ist bei dieser neunten Ausführungsform ebenfalls trommelförmig ausgebildet und besteht aus einem topfförmigen Unterteil 76h, welches an seiner dem Laufrad 14 zugewandten Seite durch einen Deckel 78h verschlossen ist. Im Zentralbereich des Deckels 78h ist eine Saugöffnung 36 ausgebildet. Das Ventilelement 18h ist auf einer Achse 20, welche im Boden des Pumpengehäuses 12 angeordnet ist, drehbar gelagert. Dabei entspricht die Drehachse des Ventilelementes 18h, wie bei den oben beschriebenen Beispielen, der Drehachse X der Rotorwelle 8h. Dabei ist das Ventilelement 18h zum Bilden einer zweiten lösbaren Kupplung ebenfalls entlang der Achse X axial verschiebbar und wird durch eine Feder 48 in die in Fig. 33 gezeigte Ruhelage gedrückt, in welcher sich das Ventilelement 18h in einer gelösten Position befindet, in welcher das Unterteil 76h nicht am Boden des Pumpengehäuses 12 anliegt, sodass das Ventilelement 18h im Wesentlichen frei um die Achse 20 drehbar ist. Als axialer Anschlag fungiert in der gelösten Position das Stirnende der Rotorwelle 8h, welches als erste Kupplung 108 ausgebildet ist. Die Kupplung 108 tritt mit einer Gegenkupplung 110, welche drehfest an dem Ventilelement 18h angeordnet ist, in Eingriff. Die Kupplung 108 weist angeschrägte Kupplungsflächen auf, welche entlang einer Umfangslinie im Wesentlichen ein Sägezahnprofil in der Weise beschreiben, dass lediglich in einer Drehrichtung eine Drehmomentübertragung von der Kupplung 108 auf die Gegenkupplung 110 möglich ist, nämlich in der Drehrichtung A in Fig. 31. In der entgegengesetzten Drehrichtung B rutscht die Kupplung hingegen durch, wobei es zu einer Axialbewegung des Ventilelementes 18h kommt. Die Drehrichtung B ist diejenige Drehrichtung, in welcher das Pumpenaggregat im Normalbetrieb angetrieben wird. Die Drehrichtung A hingegen wird zur gezielten Verstellung des Ventilelementes 18h genutzt. Das heißt hier ist eine drehrichtungsabhängige erste Kupplung ausgebildet. Zusätzlich jedoch tritt auch bei dieser Ausführungsform die Gegenkupplung 110 von der Kupplung 108 durch den Druck im Druckraum 26 außer Eingriff. Steigt der Druck im Druckraum 26 an, wirkt auf den Deckel 78h eine Drucckraft, welche der Federkraft der Feder 48 entgegengesetzt ist und diese übersteigt, sodass das Ventilelement 18h in die anliegende Position gedrückt wird, welche in Fig. 32 gezeigt ist. In dieser liegt das Unterteil 76h an der Bodenseite des Pumpengehäuses 12 an, sodass zum einen das Ventilelement 18h kraftschlüssig gehalten wird und zum anderen eine dichte Anlage erreicht wird, welche die Druck- und die Saugseite in der nachfolgend beschriebenen Weise gegeneinander abdichtet.The motor housing 2 with the electronics housing 16 corresponds to the embodiment described above. The pump housing 12 has essentially the same structure as the pump housing according to the first embodiment Figures 1 to 6 , only the external configuration differs. The valve element 18h is also drum-shaped in this ninth embodiment and consists of a pot-shaped lower part 76h, which is closed on its side facing the impeller 14 by a cover 78h. A suction port 36 is formed in the central portion of the lid 78h. The valve element 18h is rotatably mounted on an axle 20 which is arranged in the bottom of the pump housing 12. The axis of rotation of the valve element 18h corresponds to the axis of rotation X of the rotor shaft 8h, as in the examples described above. The valve element 18h is also axially displaceable along the axis X to form a second releasable coupling and is pushed by a spring 48 into the in Figure 33 Pressed rest position shown, in which the valve element is 18h in a released position in which the lower part 76h does not rest against the bottom of the pump housing 12, so that the valve member 18h is substantially free to rotate about the axis 20. In the released position, the front end of the rotor shaft 8h, which is designed as the first clutch 108, acts as an axial stop. The clutch 108 engages a mating clutch 110 which is non-rotatably mounted on the valve member 18h. The clutch 108 has beveled clutch surfaces which essentially describe a sawtooth profile along a peripheral line in such a way that a torque transmission from the clutch 108 to the mating clutch 110 is only possible in one direction of rotation, namely in the direction of rotation A in 31 . In the opposite direction of rotation B, on the other hand, the clutch slips, causing an axial movement of the valve element 18h. Direction of rotation B is the direction of rotation in which the pump unit is driven during normal operation. The direction of rotation A, on the other hand, is used for the targeted adjustment of the valve element 18h. This means that a first clutch that is dependent on the direction of rotation is formed here. In addition, however, the counter-coupling 110 is also disengaged from the clutch 108 by the pressure in the pressure chamber 26 in this embodiment. If the pressure in the pressure chamber 26 increases, a compressive force acts on the cover 78h, which is opposite to and exceeds the spring force of the spring 48, so that the valve element 18h is pressed into the abutting position, which is shown in 32 is shown. In this, the lower part 76h rests against the bottom side of the pump housing 12, so that on the one hand the valve element 18h is held in a non-positive manner and on the other hand a tight contact is achieved, which seals the pressure and suction sides against one another in the manner described below.

Das Pumpengehäuse 12 weist zwei Sauganschlüsse 32 und 34 auf, von denen der Sauganschluss 32 an einem Eingang 28h und der Sauganschluss 34 an einem Eingang 30h im Boden des Pumpengehäuses 12 in dessen Innenraum, das heißt den Saugraum 24 hinein mündet. Das Unterteil 76h des Ventilelementes 18h weist in seinem Boden eine bogenförmige Öffnung 112 auf, welche sich im Wesentlichen über 90° erstreckt. Fig. 34 zeigt eine erste Schaltstellung, in welcher die Öffnung 112 lediglich den Eingang 30h überdeckt, sodass ein Strömungsweg nur von dem Sauganschluss 34 zu der Saugöffnung 36 und damit zum Saugmund 38 des Laufrades 14 gegeben ist. Der zweite Eingang 28h wird durch den in seinem Umfangsbereich anliegenden Boden des Ventilelementes 18h dicht verschlossen. Fig. 36 zeigt die zweite Schaltstellung, in welcher die Öffnung 112 lediglich den Eingang 28h überdeckt, während der Eingang 30h verschlossen ist. In dieser Schaltstellung ist lediglich ein Strömungsweg von dem Sauganschluss 32 zum Saugmund 38 hin geöffnet. Fig. 35 zeigt nun eine Zwischenstellung, in welcher die Öffnung 112 beide Eingänge 28h und 30h überdeckt, wobei der Eingang 30h nur teilweise freigegeben ist. Durch Änderung des Grades der Freigabe des Anschlusses 30h kann ein Mischungsverhältnis zwischen den Strömungen aus den Eingängen 28h und 30h geändert werden. Über die schrittweise Verstellung der Rotorwelle 8h kann auch das Ventilelement 18h in kleinen Schritten verstellt werden, um das Mischungsverhältnis zu ändern.The pump housing 12 has two suction connections 32 and 34 , of which the suction connection 32 opens at an inlet 28h and the suction connection 34 at an inlet 30h in the bottom of the pump housing 12 into its interior, ie the suction chamber 24 . The lower part 76h of the valve element 18h has a bottom in its base arcuate opening 112 extending substantially 90°. 34 shows a first switching position, in which the opening 112 only covers the inlet 30h, so that a flow path is only provided from the suction connection 34 to the suction opening 36 and thus to the suction mouth 38 of the impeller 14. The second inlet 28h is tightly closed by the base of the valve element 18h lying in its peripheral area. Figure 36 shows the second switching position, in which the opening 112 only covers the entrance 28h, while the entrance 30h is closed. In this switching position, only one flow path from the suction connection 32 to the suction mouth 38 is open. Figure 35 12 now shows an intermediate position in which the opening 112 covers both entrances 28h and 30h, the entrance 30h being only partially uncovered. By changing the degree of opening of the port 30h, a mixing ratio between the flows from the inlets 28h and 30h can be changed. The valve element 18h can also be adjusted in small steps via the stepwise adjustment of the rotor shaft 8h in order to change the mixing ratio.

Eine solche Funktionalität kann beispielsweise in einem hydraulischen System, wie es in Fig. 37 gezeigt ist, zur Anwendung kommen. Dort ist das Kreiselpumpenaggregat mit dem integrierten Ventil, wie es vorangehend beschrieben wurde, durch die gestrichelte Linie 1 gekennzeichnet. Der hydraulische Kreis weist eine Wärmequelle 114 in Form beispielsweise eines Gasheizkessels auf, dessen Ausgang in beispielsweise den Sauganschluss 34 des Pumpengehäuses 12 mündet. An den Druckanschluss 37 des Kreiselpumpenaggregates 1 schließt sich in diesem Beispiel ein Fußbodenheizkreis 116 an, dessen Rücklauf sowohl mit dem Eingang der Wärmequelle 114 als auch mit dem Sauganschluss 32 des Kreiselpumpenaggregates verbunden ist. Über ein zweites Umwälzpumpenaggregat 118 kann ein weiterer Heizkreis 120 mit einem Wärmeträger versorgt werden, welcher die ausgangsseitige Temperatur der Wärmequelle 114 aufweist. Der Fußboden-Heizkreis 116 hingegen kann in seiner Vorlauftemperatur in der Weise geregelt werden, dass kaltes Wasser aus dem Rücklauf dem heißen Wasser ausgangsseitig der Wärmequelle 114 zugemischt wird, wobei durch Veränderung der Öffnungsverhältnisse der Eingänge 28h und 30h, in der oben beschriebenen Weise, das Mischungsverhältnis durch Drehung des Ventilelementes 18h verändert werden kann.Such functionality can be used, for example, in a hydraulic system as in 37 is shown to apply. There, the centrifugal pump unit with the integrated valve, as described above, is identified by the dashed line 1. The hydraulic circuit has a heat source 114 in the form of a gas boiler, for example, whose outlet opens into, for example, the suction connection 34 of the pump housing 12 . In this example, a floor heating circuit 116 is connected to the pressure connection 37 of the centrifugal pump unit 1, the return of which is connected both to the input of the heat source 114 and to the suction connection 32 of the centrifugal pump unit. A second circulating pump assembly 118 can be used to supply a further heating circuit 120 with a heat transfer medium, which Temperature of the heat source 114 has. The flow temperature of underfloor heating circuit 116, on the other hand, can be regulated in such a way that cold water from the return is mixed with the hot water on the outlet side of heat source 114, with changing the opening ratios of inlets 28h and 30h in the manner described above Mixing ratio can be changed by rotating the valve element 18h.

Das zehnte Ausführungsbeispiel gemäß Fig. 38 bis 47 zeigt ein Kreiselpumpenaggregat, welches zusätzlich zu der vorangehend beschriebenen Mischerfunktionalität noch eine Umschaltfunktionalität zur zusätzlichen Versorgung eines Sekundärwärmetauschers zur Brauchwassererwärmung aufweist.The tenth embodiment according to Figures 38 to 47 shows a centrifugal pump unit which, in addition to the mixer functionality described above, also has a switchover functionality for the additional supply of a secondary heat exchanger for domestic water heating.

Die Lagerung und der Antrieb des Ventilelementes 18i erfolgt bei dieser Ausführungsform genauso, wie bei der neunten Ausführungsform. Im Unterschied zu dem Ventilelement 18h weist das Ventilelement 18i zusätzlich zu der Öffnung 112 einen Durchgangskanal 122 auf, welcher sich von einer Öffnung 124 in den Deckel 78i zu einer Öffnung im Boden des Unterteils 76i erstreckt und somit die beiden Axialenden des Ventilelementes 18i miteinander verbindet. Ferner ist in dem Ventilelement 18i noch eine lediglich zur Unterseite, das heißt zum Boden des Unterteils 76i und damit zum Saugraum 24 hin geöffnete bogenförmige Überbrückungsöffnung 126 ausgebildet, welche zum Druckraum 26 hin durch den Deckel 78i verschlossen ist.In this embodiment, the valve element 18i is mounted and driven in exactly the same way as in the ninth embodiment. In contrast to the valve element 18h, the valve element 18i has, in addition to the opening 112, a through channel 122 which extends from an opening 124 in the cover 78i to an opening in the bottom of the lower part 76i and thus connects the two axial ends of the valve element 18i to one another. Furthermore, an arcuate bridging opening 126 is formed in the valve element 18i which is open only to the underside, ie to the bottom of the lower part 76i and thus to the suction chamber 24, which is closed to the pressure chamber 26 by the cover 78i.

Das Pumpengehäuse 12 weist neben dem Druckanschluss 27 und den beiden zuvor beschriebenen Sauganschlüssen 34 und 32 einen weiteren Anschluss 128 auf. Der Anschluss 128 mündet in einem Eingang 130 im Boden des Umwälzpumpenaggregates 12 zusätzlich zu den Eingängen 28h und 30h in den Saugraum 24 hinein. Anhand der Fig. 43 bis 46 werden die verschiedenen Schaltstellungen erläutert, wobei in diesen Figuren der Deckel 78i des Ventilelementes 18i teilweise geöffnet gezeigt ist, um die Stellung der darunter liegenden Öffnungen zu verdeutlichen. Fig. 43 zeigt eine erste Schaltstellung, in welcher die Öffnung 112 dem Eingang 30h gegenüberliegt, sodass eine Strömungsverbindung von dem Sauganschluss 34 zum Saugmund 38 des Laufrades 14 hergestellt wird. In der Schaltstellung gemäß Fig. 44 liegt die Öffnung 112 über dem Eingang 130, sodass eine Strömungsverbindung von dem Anschluss 128 zu der Saugöffnung 36 und über diese in den Saugmund 38 des Laufrades 14 geschaffen wird. In einer weiteren Schaltstellung, welche Fig. 45 zeigt, liegt die Öffnung 112 über dem Eingang 30h, sodass wiederum eine Strömungsverbindung von dem Sauganschluss 34 zum Saugmund 38 des Laufrades 14 gegeben ist. Gleichzeitig findet eine teilweise Überdeckung der Öffnung 124 und des Durchgangsloches 122 mit dem Eingang 28h statt, sodass eine Verbindung zwischen dem Druckraum 26 und dem Sauganschluss 32 hergestellt ist, welcher hier als Druckanschluss fungiert. Gleichzeitig überdeckt die Überbrückungsöffnung 126 gleichzeitig den Eingang 130 und einen Teil des Einganges 28h, sodass ebenfalls eine Verbindung von dem Anschluss 128 über den Eingang 130, die Überbrückungsöffnung 126 und den Eingang 28h zu dem Anschluss 32 geschaffen wird.In addition to the pressure connection 27 and the two suction connections 34 and 32 described above, the pump housing 12 has a further connection 128 . The connection 128 opens into an inlet 130 in the base of the circulating pump unit 12 in addition to the inlets 28h and 30h into the suction chamber 24. Based on Figures 43 to 46 the various switch positions are explained, with these Figures the cover 78i of the valve member 18i is shown partially open to show the position of the underlying openings. Figure 43 shows a first switch position, in which the opening 112 is opposite the inlet 30h, so that a flow connection is established from the suction connection 34 to the suction mouth 38 of the impeller 14. In the switching position according to Figure 44 For example, the opening 112 is above the inlet 130 so that a flow connection is created from the connection 128 to the suction opening 36 and via this into the suction mouth 38 of the impeller 14. In another switching position, which Figure 45 shows, the opening 112 is above the inlet 30h, so that in turn there is a flow connection from the suction connection 34 to the suction mouth 38 of the impeller 14. At the same time, the opening 124 and the through hole 122 partially overlap with the inlet 28h, so that a connection is established between the pressure chamber 26 and the suction connection 32, which acts as a pressure connection here. At the same time, the bridging opening 126 simultaneously covers the inlet 130 and part of the inlet 28h, so that a connection from the connection 128 via the inlet 130, the bridging opening 126 and the inlet 28h to the connection 32 is also created.

Fig. 46 zeigt eine vierte Schaltstellung, in welcher der Durchgangskanal 122 den Eingang 28h vollständig überdeckt, sodass der Anschluss 32 über den Durchgangskanal 122 und die Öffnung 124 mit dem Druckraum 26 verbunden ist. Gleichzeitig überdeckt die Überbrückungsöffnung 126 nur noch den Eingang 130. Die Öffnung 112 überdeckt weiterhin den Eingang 30h. Figure 46 12 shows a fourth switching position, in which the through-channel 122 completely covers the inlet 28h, so that the connection 32 is connected to the pressure chamber 26 via the through-channel 122 and the opening 124. At the same time, the bridging opening 126 only covers the entrance 130. The opening 112 continues to cover the entrance 30h.

Ein solches Kreiselpumpenaggregat kann beispielsweise in einem Heizungssystem, wie es in Fig. 47 gezeigt ist, Verwendung finden. Dort begrenzt die gestrichelte Linie das Kreiselpumpenaggregat 1, wie es gerade anhand der Fig. 38 bis 46 beschrieben wurde. Das Heizungssystem weist wiederrum einen Primärwärmetauscher bzw. eine Wärmequelle 114 auf, welche beispielsweise ein Gasheizkessel sein kann. Ausgangsseitig verläuft der Strömungsweg in einen ersten Heizkreis 120, welcher beispielsweise von herkömmlichen Heizkörpern bzw. Radiatoren gebildet sein kann. Gleichzeitig zweigt ein Strömungsweg zu einem Sekundärwärmetauscher 56 zur Erwärmung von Brauchwasser ab. Das Heizungssystem weist ferner einen Fußbodenheizkreis 116 auf. Die Rückläufe des Heizkreises 120 und des Fußbodenheizkreises 116 münden in den Sauganschluss 34 am Pumpengehäuse 12. Der Rücklauf aus dem Sekundärwärmetauscher 56 mündet in den Anschluss 128, welcher, wie nachfolgend beschrieben wird, zwei Funktionalitäten bietet. Der Anschluss 32 des Pumpengehäuses 12 ist mit dem Vorlauf des Fußbodenheizkreises 116 verbunden.Such a centrifugal pump unit can be used, for example, in a heating system as described in Figure 47 is shown, find use. There the dashed line limits the centrifugal pump unit 1, as is just based on the Figures 38 to 46 was described. The heating system in turn has a primary heat exchanger or a heat source 114, which can be a gas boiler, for example. On the outlet side, the flow path runs into a first heating circuit 120, which can be formed, for example, by conventional heaters or radiators. At the same time, a flow path branches off to a secondary heat exchanger 56 for heating service water. The heating system also has a floor heating circuit 116 . The returns from the heating circuit 120 and the underfloor heating circuit 116 flow into the suction connection 34 on the pump housing 12. The return from the secondary heat exchanger 56 flows into the connection 128 which, as will be described below, offers two functionalities. The connection 32 of the pump housing 12 is connected to the flow of the underfloor heating circuit 116 .

Wenn sich das Ventilelement 18i in der ersten in Fig. 43 gezeigten Schaltstellung befindet, fördert das Laufrad 14 Flüssigkeit aus dem Sauganschluss 34 über den Druckanschluss 27 durch die Wärmequelle 140 und dem Heizkreis 120 und zurück zu dem Sauganschluss 34. Befindet sich das Ventilelement 18i in der zweiten Schaltstellung, welche in Fig. 44 gezeigt ist, ist die Anlage auf Brauchwasserbetrieb umgeschaltet, in diesem Zustand fördert das Pumpenaggregat bzw. das Laufrad 14 Flüssigkeit von dem Anschluss 128, welcher als Sauganschluss dient, durch den Druckanschluss 27, über die Wärmequelle 114 durch den Sekundärwärmetauscher 56 und zurück zu dem Anschluss 128. Befindet sich das Ventilelement 18i in der dritten Schaltstellung, welche in Fig. 45 gezeigt ist, wird zusätzlich der Fußbodenheizkreis 116 versorgt. Über den Sauganschluss 34 strömt das Wasser in den Saugmund 38 des Laufrades 14 und wird über den Druckanschluss 27 über die Wärmequelle 114 in der beschriebenen Weise durch den ersten Heizkreis 120 gefördert. Gleichzeitig tritt die Flüssigkeit ausgangsseitig des Laufrades 14 aus dem Druckraum 26 in die Öffnung 124 und durch den Durchgangskanal 122 hindurch und fließt so zu dem Anschluss 32 und über diesen in den Fußbodenheizkreis 116.When the valve element 18i is in the first in Figure 43 switching position shown, the impeller 14 conveys liquid from the suction connection 34 via the pressure connection 27 through the heat source 140 and the heating circuit 120 and back to the suction connection 34. If the valve element 18i is in the second switching position, which is shown in Figure 44 is shown, the system is switched to service water operation, in this state the pump unit or the impeller 14 conveys liquid from the connection 128, which serves as a suction connection, through the pressure connection 27, via the heat source 114 through the secondary heat exchanger 56 and back to the connection 128. If the valve element 18i is in the third switch position, which is in Figure 45 is shown, the underfloor heating circuit 116 is also supplied. The water flows via the suction connection 34 into the suction mouth 38 of the impeller 14 and is conveyed through the first heating circuit 120 via the pressure connection 27 via the heat source 114 in the manner described. At the same time, the liquid exits the impeller 14 from the pressure chamber 26 into the opening 124 and through the through-channel 122 through and thus flows to connection 32 and via this into the underfloor heating circuit 116.

In der in Fig. 45 gezeigten Schaltstellung fließt gleichzeitig über die Überbrückungsöffnung 126 Flüssigkeit über den Anschluss 128 und den Eingang 130 in den Anschluss 32. Das heißt hier strömt Wasser über die Wärmequelle 114 durch den Sekundärwärmetauscher 26 und den Anschluss 128 zu dem Anschluss 32. Da in diesem Heizbetrieb am Sekundärwärmetauscher 56 im Wesentlichen keine Wärme abgenommen wird, wird so dem Anschluss 32 heißes Wasser zusätzlich zu dem kalten Wasser, welches aus dem Druckraum 26 über den Durchgangskanal 122 zu dem Anschluss 32 strömt, zugemischt. Durch Veränderung des Öffnungsgrades über die Ventilstellung 18i kann die Menge des zugemischten warmen Wassers am Anschluss 32 variiert werden. Fig. 46 zeigt eine Schaltstellung, in welcher die Zumischung abgeschaltet ist und der Anschluss 32 ausschließlich mit dem Druckraum 26 direkt in Verbindung ist. In diesem Zustand wird das Wasser im Fußbodenkreis 116 ohne Wärmezufuhr im Kreis gefördert. Es ist zu erkennen, dass durch die Veränderung der Schaltstellungen des Ventilelementes 18i bei dieser Ausführungsform sowohl eine Umschaltung zwischen Heizung und Brauchwassererwärmung erreicht werden kann, als auch gleichzeitig die Versorgung von zwei Heizkreisen mit unterschiedlichen Temperaturen, nämlich eines ersten Heizkreises 120 mit der Ausgangstemperatur der Wärmequelle 114 und eines Fußbodenheizkreises 116 mit einer über eine Mischfunktion reduzierte Temperatur.in the in Figure 45 Switching position shown flows at the same time via the bridging opening 126 via the connection 128 and the inlet 130 into the connection 32. This means here water flows via the heat source 114 through the secondary heat exchanger 26 and the connection 128 to the connection 32. Since in this heating mode at the secondary heat exchanger 56 essentially no heat is removed, so the connection 32 is mixed with hot water in addition to the cold water, which flows from the pressure chamber 26 via the through-channel 122 to the connection 32 . The amount of warm water mixed in at connection 32 can be varied by changing the degree of opening via valve position 18i. Figure 46 shows a switching position in which the admixture is switched off and the connection 32 is only directly connected to the pressure chamber 26 . In this state, the water in the floor circuit 116 is conveyed in a circuit without supplying heat. It can be seen that by changing the switching positions of the valve element 18i in this embodiment, both a switchover between heating and domestic water heating can be achieved, and at the same time the supply of two heating circuits with different temperatures, namely a first heating circuit 120 with the output temperature of the heat source 114 and a floor heating circuit 116 with a temperature reduced via a mixing function.

Es ist zu verstehen, dass die verschiedenen vorangehend beschriebenen Ausführungsformen in verschiedener Weise miteinander kombiniert werden können. So können die unterschiedlichen beschriebenen Antriebsarten des Ventilelementes mit verschiedenen geometrischen Ausgestaltungen des Ventilelementes, wie sie ebenfalls vorangehend beschrieben wurden, im Wesentlichen beliebig kombiniert werden. Auch lassen sich die verschiedeneren Ventilfunktionalitäten (zum Beispiel Mischen und Umschalten) ebenfalls mit verschiedenen Antriebsarten realisieren und kombinieren. Diese verschiedenen Kombinationsmöglichkeiten, welche sich aus den vorangehenden Ausführungsbeispielen ergeben, sind insofern ausdrücklich von der Erfindung mit umfasst.It is to be understood that the various embodiments described above can be combined with one another in various ways. Thus, the different drive types of the valve element described can be combined with different geometric configurations of the valve element, as they were also described above, in essentially any way will. The various valve functionalities (e.g. mixing and switching) can also be implemented and combined with different drive types. These different possible combinations, which result from the preceding exemplary embodiments, are expressly included in the invention.

Bei den beschriebenen Beispielen ist das Ventilelement mit dem Laufrad stets in einem gemeinsamen Pumpengehäuse, welches somit ein kombiniertes Ventil- und Pumpengehäuse bildet, angeordnet. Es ist zu verstehen, dass dieses Pumpengehäuse auch mehrteilig ausgebildet werden kann.In the examples described, the valve element is always arranged with the impeller in a common pump housing, which thus forms a combined valve and pump housing. It is to be understood that this pump housing can also be made in several parts.

BezugszeichenlisteReference List

11
Kreiselpumpenaggregatcentrifugal pump unit
22
Motorgehäusemotor housing
44
Statorstator
66
Rotorrotor
88th
Rotorwellerotor shaft
1010
Spaltrohrcracking tube
1212
Pumpengehäusepump housing
1414
LaufradWheel
1616
Elektronikgehäuseelectronics housing
1717
Steuereinrichtungcontrol device
18,18', 18", 18c, 18d, 18e,18f, 18g, 18h, 18i18,18', 18", 18c, 18d, 18e,18f, 18g, 18h, 18i
Ventilelementvalve element
2020
Achseaxis
2222
Muttermother
2424
Saugraumsuction chamber
2626
Druckraumpressure room
2727
Druckanschlusspressure connection
28, 3028, 30
Eingängeinputs
28', 30', 28h, 30h28', 30', 28h, 30h
Eingängeinputs
32,3432.34
Sauganschlüssesuction connections
36, 36', 36e36, 36', 36e
Saugöffnungsuction port
3838
Saugmundsuction mouth
4040
Dichtflächensealing surfaces
4242
Stützelementesupport elements
4444
Anschlagelementstop element
4646
Anschlägeattacks
4848
FederFeather
5050
Anlageschultercontact shoulder
5252
Wärmequelleheat source
5454
Heizkreisheating circuit
5656
Sekundärwärmetauschersecondary heat exchanger
58, 6058, 60
Strömungswegeflow paths
6262
Öffnungopening
6464
Vorsprunghead Start
6666
LochHole
6868
StiftPen
7070
Nutgroove
7272
Vorsprüngeprotrusions
7474
Zapfencones
76, 76b, 76dm 76h, 76i76, 76b, 76dm 76h, 76i
Unterteillower part
78, 78d, 78h, 78i78, 78d, 78h, 78i
Deckellid
8080
Eintrittsöffnungentry opening
82, 8482, 84
HülsenPods
8686
Leitradidler wheel
8888
Gewichtweight
9090
Eintrittsöffnungentry opening
9292
Dichtflächensealing surfaces
9494
Achseaxis
9696
ZungeTongue
9898
Druckanschlusspressure connection
100100
Ringsegmentring segment
102102
Spannringclamping ring
104104
Vorsprunghead Start
106106
Durchgangpassage
108108
Kupplungcoupling
110110
Gegenkupplungcounter-coupling
112112
Öffnungopening
114114
Wärmequelleheat source
116116
Fußboden-HeizkreisFloor heating circuit
118118
Umwälzpumpenaggregatcirculating pump unit
120120
Heizkreisheating circuit
122122
Durchgangskanalthrough channel
124124
Öffnungopening
126126
Überbrückungsöffnungbypass opening
128128
Anschlussconnection
130130
EingangEntry
XX
Drehachseaxis of rotation
A, BAWAY
Drehrichtungendirections of rotation

Claims (16)

  1. A pump assembly with an electric drive motor (4, 6), with at least one impeller which is driven by the drive motor (4, 6) and with at least one valve device (18) which is situated in a flow path through the pump assembly and which is movable at least between a first and a second switching position,
    wherein
    the valve device (18) is coupled to the drive motor via a first coupling in a manner such that a movement of the drive motor (4, 6) is transmitted onto the valve device (18) and the valve device is movable from the first into the second switching position by way of a rotation movement of the drive motor (4, 6) and wherein
    the first coupling is releasable by way of increasing the speed of the drive motor (4, 6) and/or increasing the pressure at the outlet side of the impeller and/or by way of slip, in a manner such that the coupling between the drive motor (4, 6) and the valve device (18) is reduced or lifted,
    characterised in that
    a second releasable coupling is provided between at least one movable part of the valve device (18) and a pump casing which surrounds the impeller (14), said second releasable coupling being movable from a released, first coupling position into a holding, second coupling position by way of the pressure at the outlet side of the impeller (14).
  2. A pump assembly according to claim 1, characterised in that the first and the second coupling are designed in a manner such that the first coupling in its released position has a lower holding force than the second coupling in its holding, second coupling position and the first coupling in its coupled position has a greater holding force than the second coupling in its released, first coupling position.
  3. A pump assembly according to one of the preceding claims, characterised in that on operation of the pump assembly, the drive motor (4, 6) produces a torque which is larger than the holding force of the first coupling in its coupled position.
  4. A pump assembly according to one of the preceding claims, characterised in that the valve device (18) is designed as a switch-over valve which permits a switching-over between two flow paths and/or is a mixing device, in which fluid is mixed from two flow paths, wherein the mixing device is designed in a manner such that the mixing ratio is different in the two switching positions.
  5. A pump assembly according to one of the preceding claims, characterised in that the valve device (18) has a valve function in a flow path at the suction side of the impeller (14) and/or in a flow path at the delivery side of the impeller (14).
  6. A pump assembly according to one of the preceding claims, characterised in that the valve device comprises at least one movable valve element (18) as well as stop elements which define the first and the second switching position and of which preferably at least one is adjustable in its position.
  7. A pump assembly according to one of the preceding claims, characterised in that the valve device (18) comprises at least one movable valve element (18) which interacts with two valve openings in a manner such that in the first switching position of the valve device, a first valve opening (28) is covered by the valve element (18) to a greater extent than in the second switching position and in the second switching position a second valve opening (30) is covered to a greater extent than in the first switching position.
  8. A pump assembly according to one of the preceding claims, characterised in that the valve device comprises a movable valve element (18) which comprises at least one sealing surface and a pressure surface, wherein the pressure surface is connected to a delivery chamber (26) which surrounds the impeller (14), in a manner such that the valve element (18) is pressed with the sealing surface against a contact surface by way of the pressure which acts upon the pressure surface, wherein the contact surface preferably forms a valve seat.
  9. A pump assembly according to one of the preceding claims, characterised in that the valve device comprises a rotatable valve element (18) which via the first coupling is releasably coupled to a rotor (6) of the drive motor, wherein the rotation axis (X) of the valve element is preferably aligned with the rotation axis (X) of the drive motor.
  10. A pump assembly according to one of the preceding claims, characterised in that the drive motor (4, 6) can be driven in two rotation directions and the valve device (18) is designed in a manner such that its first switching position is achieved by the drive of the drive motor in a first rotation direction (A) and its second switching position is reached by the drive of the drive motor in a second rotation direction (B).
  11. A pump assembly according to one of the preceding claims, characterised in that the first and/or the second coupling is a friction coupling, a magnetic coupling and/or a hydraulic coupling, which preferably has slip.
  12. A pump assembly according to one of the preceding claims, characterised in that the first coupling comprises at least one coupling element which is movable between a coupled and a released position, wherein the movement direction between the coupled and the released position preferably runs transversely to a force direction of the force which is to be transmitted by the coupling onto the valve device.
  13. A pump assembly according to claim 12, characterised in that a valve element of the valve device simultaneously forms the movable coupling element.
  14. A pump assembly according to claim 12 or 13, characterised in that the coupling element is subjected to a biasing force via a biasing element (48), said biasing force forcing the coupling element into the coupled position.
  15. A pump assembly according to claim 14, characterised in that the coupling element comprises a pressure surface, the connection of said pressure surface to a delivery chamber (26) which surrounds the impeller (14) and the arrangement of said pressure surface being such that a pressure acting upon the pressure surface produces a force which is directed oppositely to the biasing force.
  16. A pump assembly according to one of the claims 12 to 15, characterised in that the coupling element comprises a coupling surface (100) which in the coupled condition is in frictional contact with a counter coupling surface (8), and that the coupling surface (100) and the counter coupling surface (8) are designed and surrounded by a lubricant, in a manner such that a lubricant film which overcomes the frictional contact forms between the coupling surface (100) and the counter coupling surface (8) on increasing the speed of the drive motor.
EP17160834.2A 2017-03-14 2017-03-14 Pump unit Active EP3376051B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17160834.2A EP3376051B1 (en) 2017-03-14 2017-03-14 Pump unit
US16/492,717 US20210140435A1 (en) 2017-03-14 2018-03-12 Pump assembly
PCT/EP2018/056086 WO2018166975A1 (en) 2017-03-14 2018-03-12 Pump assembly
CN201880018444.4A CN110431314B (en) 2017-03-14 2018-03-12 Pump assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17160834.2A EP3376051B1 (en) 2017-03-14 2017-03-14 Pump unit

Publications (2)

Publication Number Publication Date
EP3376051A1 EP3376051A1 (en) 2018-09-19
EP3376051B1 true EP3376051B1 (en) 2022-08-24

Family

ID=58347144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17160834.2A Active EP3376051B1 (en) 2017-03-14 2017-03-14 Pump unit

Country Status (4)

Country Link
US (1) US20210140435A1 (en)
EP (1) EP3376051B1 (en)
CN (1) CN110431314B (en)
WO (1) WO2018166975A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006135B (en) * 2021-10-25 2023-07-14 苏州工业园区源荣科创机电有限公司 Electric vacuum integrated priming device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3317155C1 (en) * 1983-05-11 1984-09-06 Ford-Werke AG, 5000 Köln Windscreen washer system of a vehicle
DE9013992U1 (en) 1990-10-08 1991-10-24 Grundfos International A/S, Bjerringbro, Dk
US5924432A (en) * 1995-10-17 1999-07-20 Whirlpool Corporation Dishwasher having a wash liquid recirculation system
KR100220407B1 (en) * 1996-10-28 1999-09-15 전주범 Hot circulation pump having flow direction
CN2418287Y (en) * 2000-02-01 2001-02-07 广东万家乐燃气具有限公司 Automatic-reversing pump
JP4287322B2 (en) * 2004-04-19 2009-07-01 朝日興業株式会社 pump
WO2013098142A1 (en) * 2011-12-27 2013-07-04 Grundfos Holding A/S Pump unit
CN105745450B (en) * 2013-11-16 2017-10-24 博泽沃尔兹堡汽车零部件有限公司 Electronic cooling medium pump
US9714665B2 (en) * 2013-12-13 2017-07-25 Asia Connection LLC Pool pump with multiple outlets
EP3037669B1 (en) * 2014-12-22 2019-07-24 Grundfos Holding A/S Hydraulic system
CN106321457A (en) * 2015-06-16 2017-01-11 博西华电器(江苏)有限公司 A water pump and a clothing care machine with the water pump
KR102555267B1 (en) * 2016-06-13 2023-07-14 엘지전자 주식회사 Drain pump for laundry treating appratus
EP3376037B1 (en) * 2017-03-14 2021-01-27 Grundfos Holding A/S Centrifugal pump assembly
EP3540233A1 (en) * 2018-03-13 2019-09-18 Grundfos Holding A/S Centrifugal pump assembly with rotatable valve

Also Published As

Publication number Publication date
CN110431314A (en) 2019-11-08
CN110431314B (en) 2021-04-16
EP3376051A1 (en) 2018-09-19
WO2018166975A1 (en) 2018-09-20
US20210140435A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
EP2084439B1 (en) Rotary slide valve, in particular for a coolant circuit, which has a plurality of branches, of an internal combustion engine; electromechanical assembly
DE102010050605B4 (en) Device for controlling a coolant flow and cooling system
EP2818726B1 (en) Centrifugal pump with axially shiftable impeller for feeding different fluid paths
WO2018167043A1 (en) Pump assembly
EP3540233A1 (en) Centrifugal pump assembly with rotatable valve
EP3376036A1 (en) Pump unit
EP3376037B1 (en) Centrifugal pump assembly
DE102006022472B3 (en) Hydrostatic coupling arrangement with gear ring machine
EP3376040B1 (en) Pump unit
EP3376051B1 (en) Pump unit
EP3267042A1 (en) Pump unit
DE102013113362B4 (en) Adjustable pump for an internal combustion engine
EP3376038B1 (en) Pump unit
WO2018166967A1 (en) Centrifugal pump aggregate
WO1989002027A1 (en) Thermostatted hydraulic fan clutch
EP3662205A1 (en) Mixing device and method for controlling the temperature of a fluid flow
EP3284950A1 (en) Blower and pump driven by a common motor, wherein the pump is driven via a magnetic transmission
DE3006386C2 (en) Rotary valve that can be controlled depending on the speed
EP3376039B1 (en) Centrifugal pump assembly
DE102017223576A1 (en) Coolant pump for conveying a coolant
EP3438555A1 (en) Circulation pump generator
WO2012167961A1 (en) Infinitely adjustable coolant pump
DE102010049059B4 (en) Torque transfer device
WO2005017362A1 (en) Turbomachine comprising a magnetic coupling drive
EP3596342A1 (en) Centrifugal pump aggregate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190318

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191023

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20220203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20220309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013657

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1513821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013657

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 7

Ref country code: GB

Payment date: 20230322

Year of fee payment: 7

Ref country code: DE

Payment date: 20230321

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230314

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230314

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331