EP2818725B1 - Centrifugal pump with axially shiftable and closable impeller - Google Patents

Centrifugal pump with axially shiftable and closable impeller Download PDF

Info

Publication number
EP2818725B1
EP2818725B1 EP13174142.3A EP13174142A EP2818725B1 EP 2818725 B1 EP2818725 B1 EP 2818725B1 EP 13174142 A EP13174142 A EP 13174142A EP 2818725 B1 EP2818725 B1 EP 2818725B1
Authority
EP
European Patent Office
Prior art keywords
impeller
functional position
centrifugal pump
flow path
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13174142.3A
Other languages
German (de)
French (fr)
Other versions
EP2818725A1 (en
Inventor
Thomas Blad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Priority to EP13174142.3A priority Critical patent/EP2818725B1/en
Priority to US14/392,246 priority patent/US10539142B2/en
Priority to PCT/EP2014/063370 priority patent/WO2014207030A1/en
Priority to CN201480036938.7A priority patent/CN105339672B/en
Publication of EP2818725A1 publication Critical patent/EP2818725A1/en
Application granted granted Critical
Publication of EP2818725B1 publication Critical patent/EP2818725B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/042Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • F04D15/0038Varying behaviour or the very pump by varying the effective cross-sectional area of flow through the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/62Electrical actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/64Hydraulic actuators

Definitions

  • the invention relates to a centrifugal pump unit and an impeller for such a centrifugal pump unit.
  • centrifugal pump units which have an axially displaceable shaft, whereby the impeller can be brought into two axial positions, wherein in a first position, the flow path closed by the impeller and in a second position, the flow path through the impeller is opened.
  • Such an arrangement is for example off DE 101 15 989 A1 known.
  • the impeller In the first position, in which the flow path is closed by the impeller, the impeller is held by spring force, while it is drawn when energized by the drive motor by a resulting axial magnetic force against the spring force in the second position.
  • the drive motor In order to open the impeller and the pump, it is necessary that the drive motor has a special configuration which generates a magnetic axial force for moving the impeller when energized.
  • DE 21 07 000 discloses a centrifugal pump with an axially displaceable impeller to selectively bring the impeller into fluid communication with two different inputs.
  • the impeller is designed so that it is moved during operation of the pump unit by the hydraulic pressure in one of the possible switching positions and can be moved via an electromagnetic coil in the motor either against this hydraulic force in a second switching position.
  • U1 discloses a pump having an electric drive motor in which the impeller is axially movable to be selectively moved to a closed or opened position.
  • the impeller can be moved by a magnetic force or a hydraulic force in the closed position and open automatically during operation of the pump unit by an opposite hydraulic pressure.
  • the impeller can be held by an axial centering of the rotor in the stator during operation in an open position and moved in the de-energized state by an additional spring or an additional magnet in a closed switching position.
  • EP 2 228 891 A2 discloses an electric motor for actuating a valve with a pump impeller, which simultaneously forms a movable valve member.
  • the pump impeller can be moved by normal to the operation of the pump impeller opposite direction of rotation via a thread in a closed switching position.
  • DE 25 10 787 A1 discloses a pump unit with an impeller, which can be selectively moved to a closed or open switching position.
  • the impeller is axially movable together with the rotor of the drive motor.
  • the rotor has a conical configuration, so that it is moved by the prevailing magnetic forces in operation in an axial position, which moves the impeller in its open position. The provision is made via a spring.
  • DE 10 2010 062 752 A1 discloses another pump unit with an axially movable impeller, which is movable between an open and a closed switching position. For movement, an additional hydraulic system is provided.
  • centrifugal pump unit which allows a displacement of the impeller between a first and a second functional position without additional components and makes it possible to keep the impeller without hydraulic pressure in one of the functional positions.
  • the centrifugal pump unit according to the invention has an electric drive motor, which is preferably designed as a permanent magnet rotor.
  • the drive motor is preferably a canned motor, i. H. a wet running engine.
  • the drive motor drives at least one impeller.
  • the impeller can be connected via a shaft to the rotor of the drive motor.
  • the impeller is also directly connected to a shaftless rotor or integrally formed with at least a part of the rotor.
  • the impeller is movable in the axial direction between at least two functional positions. In this case, the movement of the impeller preferably takes place together with the shaft or the rotor of the electric drive motor.
  • a flow path through the impeller is substantially closed, so that the impeller can assume a valve function in this functional position and can substantially block a flow path through the centrifugal pump assembly.
  • the shut-off essentially means that a small residual pass can remain and may even be desirable, as set forth below.
  • the flow path through the impeller and thus through the centrifugal pump unit is open and the centrifugal pump unit can promote the drive of the electric drive motor by rotation of the at least one impeller, a fluid, in particular a liquid.
  • the impeller is held in a first functional position by a magnetic force, in particular a permanent magnetic force. From the first to the second functional position, the impeller can then according to the invention be moved by a hydraulic force and held in the second position by a hydraulic force.
  • This hydraulic force is a hydraulic force generated by a fluid delivered by the impeller.
  • the impeller generates, when it is driven by the drive motor, the output pressure, which in turn acts on the impeller and / or coupled to the impeller for power transmission component that acts on the impeller, a hydraulic force, it in the second Function position holds.
  • the impeller in a very simple manner by driving the drive motor, ie by commissioning the drive motor, the impeller can be moved axially to open the flow passage.
  • the impeller is held in the first operative position by a permanent magnetic force acting between a permanent magnet rotor connected to the impeller and the surrounding stator of the drive motor. So can be dispensed with additional components for generating a permanent magnetic force. In addition, these Kratterzeugungssch are substantially free of wear, so that a high reliability of the pump unit according to the invention is ensured.
  • the impeller is held in the first functional position by a permanent magnetic force, which results from an axial displacement of the permanent magnet rotor relative to the stator of the drive motor. A permanent magnet rotor tends in the axial direction to center in the iron circle of the stator in the axial direction.
  • this permanent-magnet restoring force is used to hold the impeller in the first functional position and to move it, if necessary, from the second functional position into the first functional position, when the hydraulic force which drives the impeller in the second functional position holds, falls away.
  • the centrifugal pump unit is designed so that the hydraulic force which holds the impeller in the second functional position is greater than the permanent magnetic force which holds the impeller in the first functional position.
  • the flow path through the impeller is closed in the first functional position and opened in the second functional position.
  • the impeller in the first functional position, the impeller is preferably located closer to the stator than in the second functional position.
  • the impeller is preferably moved further to the suction side than in the first functional position.
  • a reverse configuration is possible.
  • a closure element is preferably present, which in the functional position in which the flow path is closed by the impeller, at least a large part, preferably more than 90%, closes an outlet opening or inlet opening of the impeller.
  • the closing element thus achieves the closing of the flow path, it being possible, as described above, that in the flow path, a residual opening remains, which allows a flow when starting the impeller in the closed or locked functional position to ensure a pressure build-up on the output side of the impeller in this functional position to the desired hydraulic force for moving the impeller in the create second functional position.
  • Such residual opening is preferably less than 10% of the total flow path, more preferably less than 5% or 2% of the total flow path.
  • the centrifugal pump unit is designed such that the closure element in that functional position in which the flow path is substantially closed by the impeller, the inlet opening or the outlet largely, but only so far closes that when starting the impeller, a pressure build-up on the output side of the impeller is possible.
  • the residual opening of the impeller is preferably as small as possible, but as large as necessary to set pressure in the closed state.
  • the impeller is preferably movable between the first and the second functional position relative to the closure element.
  • the closure element is preferably stationary and the impeller, as described, axially displaceable.
  • the closure element may preferably surround the impeller circumferentially and the impeller immerses with its outer wall in the inner circumference of the closure element.
  • the impeller may have an axial-side or radial-side inlet opening and the closure element may substantially cover the inlet opening in a functional position in order to close the closure the flow path through the impeller, wherein, as described above, a certain residual opening, preferably less than 10% or 5%, more preferably less than 2% may remain.
  • the closure element is preferably aligned so that it extends transversely to the longitudinal or rotational axis of the impeller and the end face closes the inlet opening.
  • the closure element is preferably designed as an annular wall which can cover the outer circumference of the impeller.
  • the impeller may have a radial outlet opening and cover the closure element in a functional position, the outlet opening.
  • the centrifugal pump unit is designed so that the flow path is effected by the impeller by closing the radial or peripheral outlet opening.
  • the closure element is preferably designed as an annular wall, which in a functional position, d. H. the functional position, in which the flow path is substantially closed, surrounding the outlet opening circumferentially.
  • a residual opening may remain in the manner described above.
  • the centrifugal pump assembly is designed such that in the functional position in which the flow path is closed by the impeller, the impeller rests with a peripheral edge bounding the outlet opening at an end edge of the annular wall.
  • the flow path between the first peripheral edge, which preferably faces the other functional position, and the annular wall are preferably substantially sealed tight.
  • more preferred may be between a second peripheral edge opposite this first peripheral edge and the annular wall in that functional position in which the flow path through the impeller is substantially closed, a flow passage remains which is open to an axial end face of the impeller. This is preferably a pressure-side axial end face on the outside of the impeller.
  • this axial end face is preferably located in a space enclosed by the annular wall, which, when the impeller rests with its first end edge, which limits the outlet opening, on the annular wall, is completely closed to a pressure channel. In this way the flow path to the outside is completely interrupted. However, there remains a flow path from the outlet side of the impeller to a pressure-side end face, so that upon rotation of the impeller in this area can build up a pressure which acts on the end face of the impeller and thus generates a hydraulic force which the impeller from this functional position in the other functional position, if necessary, shifts against an acting permanent magnetic force or spring force.
  • a special impeller for a centrifugal pump unit is advantageous for the invention.
  • This impeller may find particular use in a centrifugal pump unit, as described above, but could also be used independently in another centrifugal pump unit.
  • the impeller has at least one outlet opening and an inlet opening.
  • An essential feature is that the inlet opening is not located on the axial side but in a peripheral portion of the impeller, ie, is open to the outer circumference and the radial side.
  • Such an impeller allows the valve function described above, but could not only be used to close the flow path, but also, for example, by axial displacement between two possible Change or switch flow paths or cause a mixing function.
  • this impeller has a closed suction-side axial end face, on which the peripheral portion adjoins the inlet opening.
  • the fluid to be delivered flows essentially not in the axial direction but substantially in the radial direction through the inlet opening into the impeller.
  • the closed axial end side on the suction side of the impeller can simultaneously take over the function of a control disk by different hydraulic pressures acting on both sides of this end face, d. H. once on the inside of the impeller and once on the opposite outside of the impeller. These hydraulic forces can be used for axial positioning or displacement of the impeller, depending on which side of the impeller, a larger force acts.
  • the closed axial end face may be formed in one piece or in one piece with the other parts of the impeller.
  • this closed side in the form of a separate disc, which is fixed directly on a shaft of the rotor, as well as the impeller.
  • a disk can be arranged axially spaced from the impeller, so that a gap remains between the disk and the suction-side axial end of the impeller, which forms the annular radial-side inlet opening.
  • the inlet opening is formed as a extending over the entire circumference of the impeller annular opening.
  • webs may optionally be formed in the opening in the axial direction, which the Circumferential edges bounding the opening connect together to stabilize the structure of the impeller.
  • a closed axial end face of the impeller may be connected to the remaining parts of the impeller via the shaft or a connecting element in the interior of the impeller to ensure a connection across the annular opening.
  • the described opening preferably has a surface which corresponds to 50 to 150% of the cross-sectional area in the interior of the impeller in this area, this cross-sectional area extending transversely to the longitudinal or rotational axis of the impeller.
  • the opening of the impeller is preferably chosen so large that no high flow velocities occur in this area.
  • the impeller has on its suction side an elongated cylindrical portion of constant cross section, which preferably has an outer surface which corresponds to a size of 50 to 150% of an inner cross section (transverse to the longitudinal axis of the impeller) in the interior of this section.
  • this cylindrical portion the above-described annular or radially opened opening, which forms the inlet opening of the impeller, are located.
  • the cylindrical portion of the impeller permits axial movement of the impeller in a pump set as described above, wherein the entry portion in each position of the impeller can be sealed sufficiently outwardly to surround the pressure and suction sides of the impeller in each To separate position from each other.
  • the pump unit according to the first embodiment in FIGS. 1 and 2 has an electric drive motor 2, which has a stator 4 and a rotor 6 rotatable about the longitudinal axis X therein.
  • the drive motor is designed as a wet-running motor and has a gap tube 7 between the stator 4 and the rotor 6. This can be formed completely closed and separates rotor space and stator space.
  • the rotor is designed as a permanent magnet rotor 6 and rotatably connected to a along the longitudinal axis X extending shaft 8, which is preferably made of ceramic and machined over its entire length to storage quality.
  • the shaft in turn is non-rotatably connected to an impeller 10, which is preferably formed of plastic.
  • the rotor 6 is arranged axially movable together with the shaft 8 and the impeller 10 in its bearings 12, so that the impeller in a Fig. 1 shown first axial functional position and an in Fig. 2 shown axially spaced second functional position can take.
  • the impeller is closer to the stator 4 in the first functional position than in the second functional position.
  • the impeller 10 has on its axial end face an inlet opening 14 in the form of a suction mouth.
  • a fluid to be conveyed in particular a liquid to be conveyed in the axial direction X in the Inflow impeller 10.
  • the flow is then accelerated radially outwards by the centrifugal forces prevailing during rotation of the impeller and can emerge from the impeller 10 through a peripheral outlet opening located at the axial end facing away from the inlet opening 14.
  • the outlet opening 16 is formed as an annular opening in the peripheral region of the impeller adjacent to a pressure-side axial end face 18 of the impeller.
  • the outlet opening 16 is closed by a closure element in the form of a ring wall 20.
  • the annular wall 20 extends starting from a wall bounding the pump chamber, in this case a bearing carrier 22 in a direction away from the stator 4.
  • the annular wall 20 has such an axial length that it completely covers the axial extent of the outlet opening 16 in the first functional position and comes into contact with a first peripheral edge 24 which limits the outlet opening 16 on one axial side.
  • the first peripheral edge 24 is the suction side of the impeller 10 facing the peripheral edge which limits the outlet opening 16.
  • the annular gap 28 forms a flow passage from the interior of the impeller through the outlet opening 16 to the pressure-side end face 18 of the impeller 10. This flow path is open even when the annular wall 20 abuts the first peripheral edge 24 and so the flow path through the impeller to the outside in a pressure channel 30 closes.
  • the outlet opening 16 is displaced in the axial direction outside of the annular wall 20, ie the peripheral edge 24 has been disengaged from the end edge of the annular wall 20 and the annular wall 20 substantially no longer overlaps the annular outlet opening 16, so that during rotation of the impeller 10 funded fluid from the outlet opening 16 can escape into the pressure channel 30.
  • acts on the pressure-side end face 18 of the impeller 10 further, the hydraulic force F H due to the pressure in the pressure channel 30. This hydraulic force F H keeps the impeller 10 in the in Fig. 2 shown second functional position.
  • the rotor 6 In the first functional position is, as in Fig. 1 shown, the rotor 6 centered with respect to the surrounding stator 4 in the axial direction X, that is, the axial center S of the stator and the axial center R of the rotor are substantially one above the other. If the rotor, as in Fig. 2 shown, the dimension a is shifted relative to the stator 4, to bring the impeller 10 in the second functional position shown, thereby shifts the axial center R of the rotor 6 relative to the axial center S of the stator 4 also by the dimension a, as in Fig. 2 shown. This results in a magnetic restoring force F M. This is because the rotor 6 is a permanent magnet rotor to a permanent magnetic force.
  • the magnetic restoring force F M endeavors to restore the rotor 6 in the in Fig. 1 to move shown axially centered position. Ie. the magnetic restoring force F M counteracts the hydraulic force F H. As long as the hydraulic force F H is greater than this magnetic restoring force F M , the impeller 10 remains in the in Fig. 2 shown second functional position. By appropriate dimensioning of the drive motor and the impeller 10, this can be ensured. In addition, the drive motor 2 can be controlled so that always a sufficient pressure in the pressure channel 30 is ensured in order to keep the impeller 10 in operation in the second functional position shown.
  • the output side of the impeller in the pressure channel 30 again set a pressure which counteracts the magnetic restoring force F M and the impeller 10 in its second functional position or in a functional position between the first and the second Function position holds.
  • the pump unit has no electronic quantity limitation and, for example, is not externally controllable in order to reduce the flow rate in certain operating conditions.
  • Fig. 3 and 4 show a second embodiment of the invention.
  • the drive motor 2 is identical to the in Fig. 1 and 2 formedorgansbespiel, so reference is made to the relevant description. Also, this drive motor 2 is designed so that by moving the rotor 6 relative to the stator 4 by the dimension a, the axial center of the rotor 6 from the axial center S of the stator 4 is out of control, so that a magnetic restoring force F M results as previously described in the first embodiment.
  • the second embodiment differs from the first embodiment in that of the impeller 10 ', which is connected to the shaft 8, not the outlet opening 16' but the inlet opening 14 'is closed in the first functional position.
  • the outlet opening 16 ' remains in fluid communication with the pressure channel 30 in both functional positions.
  • the connection between the suction channel 32 'and the inlet opening 14' is substantially closed.
  • the inlet opening 14 ' is formed in this impeller 10' according to the invention as a peripheral or radial inlet opening 14 '.
  • the inlet opening 14 ' forms a circumferential annular opening through which fluid in the radial direction in the interior of the impeller 10' can occur.
  • the suction-side end face 34 of the impeller 10 ' is formed closed.
  • the suction-side end face 34 is formed by a disk-shaped wall, which at the same time has the function of a control disk can take over, since on the two sides of the suction-side end face 34, that is, both the interior of the impeller facing surface and the outwardly directed surface, a hydraulic pressure can act.
  • the inlet opening 14 ' In the first functional position, the inlet opening 14 'is located so that it faces an annular wall 36 in the pump chamber or pump housing.
  • the annular wall 38 is formed concentrically to the longitudinal axis X and surrounds the annular inlet opening 14 'so that it is substantially completely covered.
  • the inner diameter of the wall 36 is slightly larger than the outer diameter of the opening 14 'adjacent circumferential surfaces, so that between the wall 16' and the inlet opening 14 'bounding peripheral edge an annular gap 38 remains.
  • This forms a residual opening when the flow path through the impeller 10 'is substantially closed in the first functional position.
  • this residual opening represents less than 2% of the area of the inlet opening 14 ', so that only a very small flow passage remains.
  • the flow passage through the gap 38 is dimensioned so that here just as much fluid or liquid in the first functional position according to Fig. 3 can flow through that when starting the impeller 10 'can build up a pressure in the pressure channel 30.
  • a pressure leads to a hydraulic axial force F H , which acts on the pressure-side cover plate or front side 18 'from the outside to the impeller 10', so that this in the direction A from the first functional position in the in Fig. 4 shown second functional position is moved.
  • the inlet opening 14 ' is opposite the suction channel 32, so that the suction channel 32' through the inlet opening 14 'with the interior of the impeller 10' is in fluid communication and the impeller 10 'promotes fluid or fluid in rotation in the usual way ,
  • the hydraulic axial force F H continues to act on the pressure-side cover disk or end face 18 ', so that when there is sufficient Pressure in the pressure channel 30, the impeller 10 'is held in this second functional position against the magnetic restoring force F M.
  • the drive motor 2 is controlled so that always a sufficient output-side pressure in the pressure channel 30 is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft ein Kreiselpumpenaggregat sowie ein Laufrad für ein solches Kreiselpumpenaggregat.The invention relates to a centrifugal pump unit and an impeller for such a centrifugal pump unit.

Es sind Kreiselpumpenaggregate bekannt, welche eine axial verschiebbare Welle aufweisen, wodurch das Laufrad in zwei axiale Positionen gebracht werden kann, wobei in einer ersten Position der Strömungsweg durch das Laufrad verschlossen und in einer zweiten Position der Strömungsweg durch das Laufrad geöffnet ist. Solch eine Anordnung ist beispielsweise aus DE 101 15 989 A1 bekannt. In der ersten Position, in welcher der Strömungsweg durch das Laufrad geschlossen ist, wird das Laufrad durch Federkraft gehalten, während es bei Bestromung des Antriebsmotors durch eine dann resultierende magnetische Axialkraft gegen die Federkraft in die zweite Position gezogen wird. D. h. um das Laufrad und die Pumpe zu öffnen, ist es erforderlich, dass der Antriebsmotor eine spezielle Ausgestaltung aufweist, welche eine magnetische Axialkraft zum Bewegen des Laufrades bei Bestromung erzeugt.There are known centrifugal pump units, which have an axially displaceable shaft, whereby the impeller can be brought into two axial positions, wherein in a first position, the flow path closed by the impeller and in a second position, the flow path through the impeller is opened. Such an arrangement is for example off DE 101 15 989 A1 known. In the first position, in which the flow path is closed by the impeller, the impeller is held by spring force, while it is drawn when energized by the drive motor by a resulting axial magnetic force against the spring force in the second position. Ie. In order to open the impeller and the pump, it is necessary that the drive motor has a special configuration which generates a magnetic axial force for moving the impeller when energized.

DE 21 07 000 offenbart eine Kreiselpumpe mit einem axial verschiebbaren Laufrad, um das Laufrad wahlweise mit zwei unterschiedlichen Eingängen in strömungsleitende Verbindung zu bringen. Dabei ist das Laufrad so ausgebildet, dass es bei Betrieb des Pumpenaggregates durch den hydraulischen Druck in eine der möglichen Schaltstellungen bewegt wird und über eine elektromagnetische Spule in dem Motor wahlweise entgegen dieser hydraulischen Kraft in eine zweite Schaltstellung bewegt werden kann. DE 21 07 000 discloses a centrifugal pump with an axially displaceable impeller to selectively bring the impeller into fluid communication with two different inputs. In this case, the impeller is designed so that it is moved during operation of the pump unit by the hydraulic pressure in one of the possible switching positions and can be moved via an electromagnetic coil in the motor either against this hydraulic force in a second switching position.

DE 93 19 309 U1 offenbart eine Pumpe mit einem elektrischen Antriebsmotor, bei welcher das Laufrad axial bewegbar ist, um wahlweise in eine geschlossene oder geöffnete Position bewegt zu werden. Dabei kann das Laufrad durch eine magnetische Kraft oder eine hydraulische Kraft in die geschlossene Position bewegt werden und sich bei Betrieb des Pumpenaggregates durch einen entgegengesetzten hydraulischen Druck selbsttätig öffnen. Alternativ kann das Laufrad durch eine axiale Zentrierung des Rotors im Stator im Betrieb in einer geöffneten Stellung gehalten werden und im stromlosen Zustand durch eine zusätzliche Feder oder einen zusätzlichen Magneten in eine geschlossene Schaltstellung bewegt werden. DE 93 19 309 U1 discloses a pump having an electric drive motor in which the impeller is axially movable to be selectively moved to a closed or opened position. In this case, the impeller can be moved by a magnetic force or a hydraulic force in the closed position and open automatically during operation of the pump unit by an opposite hydraulic pressure. Alternatively, the impeller can be held by an axial centering of the rotor in the stator during operation in an open position and moved in the de-energized state by an additional spring or an additional magnet in a closed switching position.

EP 2 228 891 A2 offenbart einen Elektromotor zum Betätigen eines Ventils mit einem Pumpenlaufrad, welches gleichzeitig ein bewegliches Ventilelement bildet. Dabei kann das Pumpenlaufrad durch zum Normalbetrieb des Pumpenlaufrades entgegengesetzte Drehrichtung über ein Gewinde in eine geschlossene Schaltstellung bewegt werden. EP 2 228 891 A2 discloses an electric motor for actuating a valve with a pump impeller, which simultaneously forms a movable valve member. In this case, the pump impeller can be moved by normal to the operation of the pump impeller opposite direction of rotation via a thread in a closed switching position.

DE 25 10 787 A1 offenbart ein Pumpenaggregat mit einem Laufrad, welches wahlweise in eine geschlossene oder geöffnete Schaltstellung bewegt werden kann. Dabei ist das Laufrad gemeinsam mit dem Rotor des Antriebsmotors axial beweglich. Der Rotor weist eine konische Ausgestaltung auf, so dass er durch die im Betrieb herrschenden Magnetkräfte in eine Axialstellung bewegt wird, welche das Laufrad in seine geöffnete Position bewegt. Die Rückstellung erfolgt über eine Feder. DE 25 10 787 A1 discloses a pump unit with an impeller, which can be selectively moved to a closed or open switching position. The impeller is axially movable together with the rotor of the drive motor. The rotor has a conical configuration, so that it is moved by the prevailing magnetic forces in operation in an axial position, which moves the impeller in its open position. The provision is made via a spring.

DE 10 2010 062 752 A1 offenbart ein weiteres Pumpenaggregat mit einem axial beweglichen Laufrad, welches zwischen einer geöffneten und einer geschlossenen Schaltstellung bewegbar ist. Zur Bewegung ist ein zusätzliches hydraulisches System vorgesehen. DE 10 2010 062 752 A1 discloses another pump unit with an axially movable impeller, which is movable between an open and a closed switching position. For movement, an additional hydraulic system is provided.

All den vorangehend beschriebenen Lösungen gemeinsam ist, dass zur Bewegung des Laufrades in zumindest eine der zwei möglichen Schaltstellungen ein zusätzliches Betätigungselement wie ein Magnet, eine Feder oder ein hydraulisches System erforderlich sind oder im System ein hydraulischer Druck herrschen muss, um das Laufrad in seiner geschlossenen Schaltstellung zu halten.All of the above-described solutions have in common that in order to move the impeller into at least one of the two possible switching positions an additional actuating element such as a magnet, a spring or a hydraulic system is required or in the system a hydraulic pressure must prevail to the impeller in its closed Keep switching position.

Im Hinblick auf den genannten Stand der Technik ist es Aufgabe der Erfindung, ein Kreiselpumpenaggregat bereitzustellen, welches eine Verschiebung des Laufrades zwischen einer ersten und einer zweiten Funktionsstellung ohne zusätzliche Bauteile ermöglicht und es ermöglicht, das Laufrad ohne hydraulischen Druck in einer der Funktionsstellungen zu halten.In view of the cited prior art, it is an object of the invention to provide a centrifugal pump unit, which allows a displacement of the impeller between a first and a second functional position without additional components and makes it possible to keep the impeller without hydraulic pressure in one of the functional positions.

Diese Aufgabe wird gelöst durch ein Kreiselpumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This object is achieved by a centrifugal pump assembly having the features specified in claim 1. Preferred embodiments emerge from the subclaims, the following description and the accompanying figures.

Das erfindungsgemäße Kreiselpumpenaggregat weist einen elektrischen Antriebsmotor auf, welcher vorzugsweise als Permanentmagnetrotor ausgebildet ist. Bevorzugt handelt es sich bei dem Antriebsmotor um einen Spaltrohrmotor, d. h. einen nasslaufenden Motor. Der Antriebsmotor treibt zumindest ein Laufrad an. Dabei kann das Laufrad über eine Welle mit dem Rotor des Antriebsmotors verbunden sein. Alternativ ist es möglich, dass das Laufrad auch direkt mit einem wellenlos ausgebildeten Rotor verbunden oder einstückig mit zumindest einem Teil des Rotors ausgebildet ist. Erfindungsgemäß ist das Laufrad in axialer Richtung zwischen zumindest zwei Funktionsstellungen bewegbar. Dabei erfolgt die Bewegung des Laufrades vorzugsweise gemeinsam mit der Welle bzw. dem Rotor des elektrischen Antriebsmotors. In einer ersten Funktionsstellung ist ein Strömungsweg durch das Laufrad im Wesentlichen verschlossen, sodass das Laufrad in dieser Funktionsstellung eine Ventilfunktion übernehmen kann und einen Strömungsweg durch das Kreiselpumpenaggregat im Wesentlichen absperren kann. Das Absperren im Wesentlichen bedeutet, dass ein geringer Restdurchgang bestehen bleiben kann und gegebenenfalls sogar erwünscht ist, wie unten dargelegt wird. In einer anderen Funktionsstellung, in welcher das Laufrad axial verschoben ist, ist hingegen der Strömungsweg durch das Laufrad und damit durch das Kreiselpumpenaggregat geöffnet und das Kreiselpumpenaggregat kann bei Antrieb des elektrischen Antriebsmotors durch Rotation des zumindest einen Laufrades ein Fluid, insbesondere eine Flüssigkeit, fördern.The centrifugal pump unit according to the invention has an electric drive motor, which is preferably designed as a permanent magnet rotor. The drive motor is preferably a canned motor, i. H. a wet running engine. The drive motor drives at least one impeller. In this case, the impeller can be connected via a shaft to the rotor of the drive motor. Alternatively, it is possible that the impeller is also directly connected to a shaftless rotor or integrally formed with at least a part of the rotor. According to the invention, the impeller is movable in the axial direction between at least two functional positions. In this case, the movement of the impeller preferably takes place together with the shaft or the rotor of the electric drive motor. In a first functional position, a flow path through the impeller is substantially closed, so that the impeller can assume a valve function in this functional position and can substantially block a flow path through the centrifugal pump assembly. The shut-off essentially means that a small residual pass can remain and may even be desirable, as set forth below. In another functional position in which the impeller is axially displaced, however, the flow path through the impeller and thus through the centrifugal pump unit is open and the centrifugal pump unit can promote the drive of the electric drive motor by rotation of the at least one impeller, a fluid, in particular a liquid.

Erfindungsgemäß ist nun vorgesehen, dass das Laufrad in einer ersten Funktionsstellung durch eine magnetische Kraft, insbesondere eine permanentmagnetische Kraft, gehalten wird. Von der ersten in die zweite Funktionsstellung kann das Laufrad dann erfindungsgemäß durch eine hydraulische Kraft bewegt werden und auch in der zweiten Position durch eine hydraulische Kraft gehalten werden. Diese hydraulische Kraft ist eine von einem von dem Laufrad geförderten Fluid erzeugte hydraulische Kraft. D. h. hier erzeugt das Laufrad, wenn es von dem Antriebsmotor angetrieben wird, ausgangsseitig einen Druck, welcher wiederum so auf das Laufrad und/oder ein mit dem Laufrad zur Kraftübertragung gekoppeltes Bauteil wirkt, dass auf das Laufrad eine hydraulische Kraft wirkt, weiche es in der zweiten Funktionsstellung hält. So kann auf sehr einfache Weise durch Ansteuerung des Antriebsmotors, d. h. durch Inbetriebnahme des Antriebsmotors, das Laufrad axial zum Öffnen des Strömungsdurchganges bewegt werden.According to the invention it is now provided that the impeller is held in a first functional position by a magnetic force, in particular a permanent magnetic force. From the first to the second functional position, the impeller can then according to the invention be moved by a hydraulic force and held in the second position by a hydraulic force. This hydraulic force is a hydraulic force generated by a fluid delivered by the impeller. Ie. Here, the impeller generates, when it is driven by the drive motor, the output pressure, which in turn acts on the impeller and / or coupled to the impeller for power transmission component that acts on the impeller, a hydraulic force, it in the second Function position holds. Thus, in a very simple manner by driving the drive motor, ie by commissioning the drive motor, the impeller can be moved axially to open the flow passage.

Das Laufrad wird in der ersten Funktionsstellung durch eine permanentmagnetische Kraft gehalten, welche zwischen einem mit dem Laufrad verbundenen Permanentmagnetrotor und dem umgebenden Stator des Antriebsmotors wirkt. So kann auf zusätzliche Bauteile zum Erzeugen einer permanentmagnetischen Kraft verzichtet werden. Darüber hinaus sind diese Kratterzeugungsmittel im Wesentlichen verschleißfrei, sodass eine hohe Zuverlässigkeit des erfindungsgemäßen Pumpenaggregates gewährleistet wird. Das Laufrad wird in der ersten Funktionsstellung durch eine permanentmagnetische Kraft gehalten, welche aus einem axialen Versatz des Permanentmagnetrotors relativ zu dem Stator des Antriebsmotors resultiert. Ein Permanentmagnetrotor ist in axialer Richtung bestrebt, sich in dem Eisenkreis des Stators in axiale Richtung zu zentrieren. Wenn nun der Rotor in axialer Richtung aus dieser zentrierten Position herausbewegt wird, führt dies zu einer permanentmagnetischen Rückstellkraft, welche bestrebt ist, den Rotor wieder in die zentrierte Position zu ziehen. Diese permanentmagnetische Rückstellkraft wird erfindungsgemäß dazu genutzt, das Laufrad in der ersten Funktionsstellung zu halten und gegebenenfalls aus der zweiten Funktionsstellung in die erste Funktionsstellung zu bewegen, wenn die hydraulische Kraft, welche das Laufrad in der zweiten Funktionsstellung hält, wegfällt. D. h. bei dieser Ausgestaltung ist das Kreiselpumpenaggregat so ausgebildet, dass die hydraulische Kraft, welche das Laufrad in der zweiten Funktionsstellung hält, größer ist als die permanentmagnetische Kraft, welche das Laufrad in der ersten Funktionsstellung hält. Dies führt dann dazu, dass beim Abschalten des Antriebsmotors die hydraulische Axialkraft wegfällt und das Laufrad durch die permanentmagnetische Kraft zurück in die erste Funktionsstellung bewegt wird. Wird der Antriebsmotor eingeschaltet, erzeugt das Laufrad ausgangsseitig einen Druck und es wird die genannte hydraulische Axialkraft aufgebaut, welche größer als die permanentmagnetische Rückstellkratt ist, sodass das Laufrad dann aus der ersten Funktionsstellung in die zweite Funktionsstellung bewegt wird.The impeller is held in the first operative position by a permanent magnetic force acting between a permanent magnet rotor connected to the impeller and the surrounding stator of the drive motor. So can be dispensed with additional components for generating a permanent magnetic force. In addition, these Kratterzeugungsmittel are substantially free of wear, so that a high reliability of the pump unit according to the invention is ensured. The impeller is held in the first functional position by a permanent magnetic force, which results from an axial displacement of the permanent magnet rotor relative to the stator of the drive motor. A permanent magnet rotor tends in the axial direction to center in the iron circle of the stator in the axial direction. If now the rotor is moved out of this centered position in the axial direction, this leads to a permanent magnetic restoring force, which tends to pull the rotor back to the centered position. According to the invention, this permanent-magnet restoring force is used to hold the impeller in the first functional position and to move it, if necessary, from the second functional position into the first functional position, when the hydraulic force which drives the impeller in the second functional position holds, falls away. Ie. In this embodiment, the centrifugal pump unit is designed so that the hydraulic force which holds the impeller in the second functional position is greater than the permanent magnetic force which holds the impeller in the first functional position. This then causes the hydraulic axial force is eliminated when switching off the drive motor and the impeller is moved by the permanent magnetic force back into the first functional position. When the drive motor is switched on, the impeller generates a pressure on the output side and the said hydraulic axial force is built up, which is greater than the permanent magnet reset angle, so that the impeller is then moved from the first functional position to the second functional position.

Erfindungsgemäß ist der Strömungsweg durch das Laufrad in der ersten Funktionsstellung geschlossen und in der zweiten Funktionsstellung geöffnet. In der ersten Funktionsstellung ist darüber hinaus das Laufrad bevorzugt näher zum Stator gelegen als in der zweiten Funktionsstellung. In der zweiten Funktionsstellung ist das Laufrad vorzugsweise weiter zur Saugseite hin bewegt als in der ersten Funktionsstellung. Hier ist jedoch auch eine umgekehrte Ausgestaltung möglich.According to the invention, the flow path through the impeller is closed in the first functional position and opened in the second functional position. In addition, in the first functional position, the impeller is preferably located closer to the stator than in the second functional position. In the second functional position, the impeller is preferably moved further to the suction side than in the first functional position. Here, however, a reverse configuration is possible.

Ferner ist vorzugsweise ein Verschlusselement vorhanden, welches in derjenigen Funktionsstellung, in welcher der Strömungsweg durch das Laufrad verschlossen ist, eine Austrittsöffnung oder Eintrittsöffnung des Laufrades zumindest großteils, vorzugsweise zu mehr als 90 %, verschließt. Durch das Verschlusselement wird somit das Verschließen des Strömungsweges erreicht, wobei es wie oben beschrieben, möglich ist, dass in dem Strömungsweg eine Restöffnung verbleibt, welche eine Strömung beim Anlaufen des Laufrades in der geschlossenen bzw. versperrten Funktionsstellung ermöglicht, um einen Druckaufbau an der Ausgangsseite des Laufrades auch in dieser Funktionsstellung zu gewährleisten, um die gewünschte hydraulische Kraft zum Verschieben des Laufrades in die zweite Funktionsstellung zu erzeugen. Eine solche Restöffnung ist vorzugsweise kleiner als 10% des Gesamtströmungsweges, weiter bevorzugt kleiner als 5% oder 2% des Gesamtströmungsweges. Eine solche Restöffnung ist bei vielen Anwendungen, bei welchen ein Absperren des Strömungsweges erwünscht ist, jedoch tolerierbar. Weiter bevorzugt ist das Kreiselpumpenaggregat derart ausgebildet, dass das Verschlusselement in derjenigen Funktionsstellung, in welcher der Strömungsweg durch das Laufrad im Wesentlichen verschlossen ist, die Eintrittsöffnung oder die Austrittsöffnung großteils, aber nur so weit verschließt, dass beim Anlaufen des Laufrades ein Druckaufbau ausgangsseitig des Laufrades möglich ist. D. h. die Restöffnung des Laufrades wird vorzugsweise so klein wie möglich, jedoch so groß wie nötig zum Druckaufbau im geschlossenen Zustand gewählt.Further, a closure element is preferably present, which in the functional position in which the flow path is closed by the impeller, at least a large part, preferably more than 90%, closes an outlet opening or inlet opening of the impeller. The closing element thus achieves the closing of the flow path, it being possible, as described above, that in the flow path, a residual opening remains, which allows a flow when starting the impeller in the closed or locked functional position to ensure a pressure build-up on the output side of the impeller in this functional position to the desired hydraulic force for moving the impeller in the create second functional position. Such residual opening is preferably less than 10% of the total flow path, more preferably less than 5% or 2% of the total flow path. However, such residual opening is tolerable in many applications where shut-off of the flow path is desired. More preferably, the centrifugal pump unit is designed such that the closure element in that functional position in which the flow path is substantially closed by the impeller, the inlet opening or the outlet largely, but only so far closes that when starting the impeller, a pressure build-up on the output side of the impeller is possible. Ie. the residual opening of the impeller is preferably as small as possible, but as large as necessary to set pressure in the closed state.

Um ein Öffnen und Schließen des Strömungsweges durch das Verschlusselement zu ermöglichen, ist das Laufrad bevorzugt zwischen der ersten und der zweiten Funktionsstellung relativ zu dem Verschlusselement bewegbar. Dabei ist das Verschlusselement vorzugsweise feststehend und das Laufrad, wie beschrieben, axial verschiebbar. Das Verschlusselement kann vorzugsweise das Laufrad umfangsseitig umgeben und das Laufrad taucht mit seiner Außenwandung in den Innenumfang des Verschlusselementes ein.In order to enable opening and closing of the flow path through the closure element, the impeller is preferably movable between the first and the second functional position relative to the closure element. In this case, the closure element is preferably stationary and the impeller, as described, axially displaceable. The closure element may preferably surround the impeller circumferentially and the impeller immerses with its outer wall in the inner circumference of the closure element.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung kann das Laufrad eine axialseitige oder radialseitige Eintrittsöffnung aufweisen und das Verschlusselement kann in einer Funktionsstellung die Eintrittsöffnung im Wesentlichen überdecken, um das Verschließen des Strömungsweges durch das Laufrad zu bewirken, wobei, wie oben beschrieben, eine gewisse Restöffnung, vorzugsweise kleiner als 10% oder 5 %, weiter bevorzugt kleiner 2 % verbleiben kann. Wenn die Eintrittsöffnung axialseitig gelegen ist, ist das Verschlusselement vorzugsweise so ausgerichtet, dass es sich quer zur Längs- bzw. Drehachse des Laufrades erstreckt und stirnseitig die Eintrittsöffnung verschließt. Für den Fall, dass die Eintrittsöffnung radialseitig gelegen ist, vorzugsweise als eine ringförmige sich über den Außenumfang des Laufrades erstreckende Eintrittsöffnung, ist das Verschlusselement bevorzugt als ringförmige Wandung ausgebildet, welche das Laufrad außenumfänglich überdecken kann.According to a further preferred embodiment of the invention, the impeller may have an axial-side or radial-side inlet opening and the closure element may substantially cover the inlet opening in a functional position in order to close the closure the flow path through the impeller, wherein, as described above, a certain residual opening, preferably less than 10% or 5%, more preferably less than 2% may remain. If the inlet opening is located on the axial side, the closure element is preferably aligned so that it extends transversely to the longitudinal or rotational axis of the impeller and the end face closes the inlet opening. In the event that the inlet opening is located radially on the side, preferably as an annular inlet opening extending over the outer circumference of the impeller, the closure element is preferably designed as an annular wall which can cover the outer circumference of the impeller.

Gemäß einer weiteren möglichen Ausführungsform kann das Laufrad eine radialseitige Austrittsöffnung aufweisen und das Verschlusselement in einer Funktionsstellung die Austrittsöffnung überdecken. D. h. bei dieser Ausführungsform ist das Kreiselpumpenaggregat so ausgestaltet, dass der Strömungsweg durch das Laufrad durch Verschließen der radial- bzw. umfangsseitigen Austrittsöffnung bewirkt wird. Das Verschlusselement ist dabei vorzugsweise als eine Ringwandung ausgebildet, welche in einer Funktionsstellung, d. h. der Funktionsstellung, in welcher der Strömungsweg im Wesentlichen verschlossen wird, die Austrittsöffnung umfänglich umgibt. Auch dabei kann eine Restöffnung in der oben beschriebenen Weise verbleiben.According to a further possible embodiment, the impeller may have a radial outlet opening and cover the closure element in a functional position, the outlet opening. Ie. In this embodiment, the centrifugal pump unit is designed so that the flow path is effected by the impeller by closing the radial or peripheral outlet opening. The closure element is preferably designed as an annular wall, which in a functional position, d. H. the functional position, in which the flow path is substantially closed, surrounding the outlet opening circumferentially. Here too, a residual opening may remain in the manner described above.

Gemäß einer weiteren bevorzugten Ausführungsform ist das Kreiselpumpenaggregat derart ausgestaltet, dass in der Funktionsstellung, in welcher der Strömungsweg durch das Laufrad verschlossen ist, das Laufrad mit einer die Austrittsöffnung begrenzenden Umfangskante an einer Stirnkante der Ringwandung anliegt. So kann der Strömungsweg zwischen der ersten Umfangskante, welche bevorzugt der anderen Funktionsstellung zugewandt ist, und der Ringwandung bevorzugt im Wesentlichen dicht verschlossen werden. Weiter bevorzugt kann jedoch zwischen einer dieser ersten Umfangskante gegenüberliegenden zweiten Umfangskante und der Ringwandung in derjenigen Funktionsstellung, in welcher der Strömungsweg durch das Laufrad im Wesentlichen verschlossen ist, ein Strömungsdurchgang verbleiben, welcher zu einer axialen Stirnseite des Laufrades geöffnet ist. Dies ist vorzugsweise eine druckseitige axiale Stirnseite an der Außenseite des Laufrades. Weiter bevorzugt ist diese axiale Stirnseite bevorzugt in einem von der Ringwandung umschlossenen Raum gelegen, welcher, wenn das Laufrad mit seiner ersten Stirnkante, welche die Austrittsöffnung begrenzt, an der Ringwandung anliegt, zu einem Druckkanal hin vollständig verschlossen ist. Auf diese Weise wird der Strömungsweg nach außen vollständig unterbrochen. Es verbleibt jedoch ein Strömungsweg aus der Austrittsseite des Laufrades zu einer druckseitigen Stirnseite, sodass sich bei Rotation des Laufrades in diesem Bereich ein Druck aufbauen kann, welcher auf die Stirnseite des Laufrades wirkt und so eine hydraulische Kraft erzeugt, welche das Laufrad aus dieser Funktionsstellung in die andere Funktionsstellung, gegebenenfalls gegen eine wirkende permanentmagnetische Kraft oder Federkraft verschiebt.According to a further preferred embodiment, the centrifugal pump assembly is designed such that in the functional position in which the flow path is closed by the impeller, the impeller rests with a peripheral edge bounding the outlet opening at an end edge of the annular wall. Thus, the flow path between the first peripheral edge, which preferably faces the other functional position, and the annular wall are preferably substantially sealed tight. However, more preferred may be between a second peripheral edge opposite this first peripheral edge and the annular wall in that functional position in which the flow path through the impeller is substantially closed, a flow passage remains which is open to an axial end face of the impeller. This is preferably a pressure-side axial end face on the outside of the impeller. More preferably, this axial end face is preferably located in a space enclosed by the annular wall, which, when the impeller rests with its first end edge, which limits the outlet opening, on the annular wall, is completely closed to a pressure channel. In this way the flow path to the outside is completely interrupted. However, there remains a flow path from the outlet side of the impeller to a pressure-side end face, so that upon rotation of the impeller in this area can build up a pressure which acts on the end face of the impeller and thus generates a hydraulic force which the impeller from this functional position in the other functional position, if necessary, shifts against an acting permanent magnetic force or spring force.

Vorteilhaft für die Erfindung ist darüber hinaus auch ein spezielles Laufrad für ein Kreiselpumpenaggregat. Dieses Laufrad kann insbesondere in einem Kreiselpumpenaggregat, wie es vorangehend beschrieben wurde, Verwendung finden, könnte jedoch auch unabhängig in einem anderen Kreiselpumpenaggregat eingesetzt werden. Das Laufrad weist zumindest eine Austrittsöffnung und eine Eintrittsöffnung auf. Wesentliches Merkmal ist, dass die Eintrittsöffnung nicht axialseitig sondern in einem Umfangsabschnitt des Laufrades gelegen ist, d. h. zum Außenumfang bzw. radialseitig geöffnet ist. Ein solches Laufrad ermöglicht die oben beschriebene Ventilfunktion, könnte jedoch nicht nur zum Verschließen des Strömungsweges eingesetzt werden, sondern beispielsweise auch dazu, durch axiale Verschiebung zwischen zwei möglichen Strömungswegen zu wechseln bzw. umzuschalten oder eine Mischfunktion zu bewirken.In addition, a special impeller for a centrifugal pump unit is advantageous for the invention. This impeller may find particular use in a centrifugal pump unit, as described above, but could also be used independently in another centrifugal pump unit. The impeller has at least one outlet opening and an inlet opening. An essential feature is that the inlet opening is not located on the axial side but in a peripheral portion of the impeller, ie, is open to the outer circumference and the radial side. Such an impeller allows the valve function described above, but could not only be used to close the flow path, but also, for example, by axial displacement between two possible Change or switch flow paths or cause a mixing function.

Besonders bevorzugt weist dieses Laufrad eine geschlossene saugseitige axiale Stirnseite auf, an welche der Umfangsabschnitt mit der Eintrittsöffnung angrenzt. D. h. das zu fördernde Fluid strömt im Wesentlichen nicht in axialer Richtung sondern im Wesentlichen in radialer Richtung durch die Eintrittsöffnung in das Laufrad ein. Die geschlossene axialseitige Stirnseite an der Saugseite des Laufrades kann gleichzeitig die Funktion einer Steuerscheibe übernehmen, indem unterschiedliche hydraulische Drücke auf beiden Seiten dieser Stirnseite wirken, d. h. einmal an der Innenseite des Laufrades und einmal an der abgewandten Außenseite des Laufrades. Diese hydraulischen Kräfte können zur axialen Positionierung bzw. Verschiebung des Laufrades genutzt werden, je nachdem an welcher Seite des Laufrades eine größere Kraft wirkt. Die geschlossene axiale Stirnseite kann einstückig bzw. einteilig mit den weiteren Teilen des Laufrades ausgebildet sein. Es ist jedoch auch möglich, diese geschlossene Seite in Form einer separaten Scheibe auszubilden, welche direkt auf einer Welle des Rotors, wie auch das Laufrad fixiert wird. Eine solche Scheibe kann axial beabstandet zu dem Laufrad angeordnet werden, sodass zwischen der Scheibe und dem saugseitigen Axialende des Laufrades ein Spalt verbleibt, welcher die ringförmige radialseitige Eintrittsöffnung bildet. So kann mit einem herkömmlichen Laufrad mit axialer Eintrittsöffnung und einem zusätzlichen Element, nämlich der Scheibe, ein erfindungsgemäßes Laufrad geschaffen werden, welches eine zum Außenumfang geöffnete Eintrittsöffnung aufweist.Particularly preferably, this impeller has a closed suction-side axial end face, on which the peripheral portion adjoins the inlet opening. Ie. The fluid to be delivered flows essentially not in the axial direction but substantially in the radial direction through the inlet opening into the impeller. The closed axial end side on the suction side of the impeller can simultaneously take over the function of a control disk by different hydraulic pressures acting on both sides of this end face, d. H. once on the inside of the impeller and once on the opposite outside of the impeller. These hydraulic forces can be used for axial positioning or displacement of the impeller, depending on which side of the impeller, a larger force acts. The closed axial end face may be formed in one piece or in one piece with the other parts of the impeller. However, it is also possible to form this closed side in the form of a separate disc, which is fixed directly on a shaft of the rotor, as well as the impeller. Such a disk can be arranged axially spaced from the impeller, so that a gap remains between the disk and the suction-side axial end of the impeller, which forms the annular radial-side inlet opening. Thus, with a conventional impeller with an axial inlet opening and an additional element, namely the disc, an impeller according to the invention can be created, which has an opening which is open to the outer circumference.

Gemäß einer weiteren bevorzugten Ausführungsform ist die Eintrittsöffnung als eine sich über den gesamten Umfang des Laufrades erstreckende ringförmige Öffnung ausgebildet. Dabei können in der Öffnung gegebenenfalls Stege in axialer Richtung ausgebildet sein, welche die Umfangskanten, welche die Öffnung begrenzen, miteinander verbinden, um die Struktur des Laufrades zu stabilisieren. Alternativ oder zusätzlich kann beispielsweise auch eine geschlossene axiale Stirnseite des Laufrades mit den übrigen Teilen des Laufrades über die Welle oder ein Verbindungselement im Inneren des Laufrades verbunden sein, um eine Verbindung über die ringförmige Öffnung hinweg zu gewährleisten. Die beschriebene Öffnung weist vorzugsweise eine Fläche auf, welche 50 bis 150 % der Querschnittsfläche im Inneren des Laufrades in diesem Bereich entspricht, wobei diese Querschnittsfläche sich quer zur Längs- bzw. Drehachse des Laufrades erstreckt. Die Öffnung des Laufrades ist vorzugsweise so groß gewählt, dass keine zu hohen Strömungsgeschwindigkeiten in diesem Bereich auftreten.According to a further preferred embodiment, the inlet opening is formed as a extending over the entire circumference of the impeller annular opening. In this case, webs may optionally be formed in the opening in the axial direction, which the Circumferential edges bounding the opening connect together to stabilize the structure of the impeller. Alternatively or additionally, for example, a closed axial end face of the impeller may be connected to the remaining parts of the impeller via the shaft or a connecting element in the interior of the impeller to ensure a connection across the annular opening. The described opening preferably has a surface which corresponds to 50 to 150% of the cross-sectional area in the interior of the impeller in this area, this cross-sectional area extending transversely to the longitudinal or rotational axis of the impeller. The opening of the impeller is preferably chosen so large that no high flow velocities occur in this area.

Weiter bevorzugt weist das Laufrad an seiner Saugseite einen verlängerten zylindrischen Abschnitt mit konstantem Querschnitt auf, welcher vorzugsweise eine Außenfläche aufweist, welche einer Größe von 50 bis 150% eines Innenquerschnittes (quer zur Längsachse des Laufrades) im Inneren dieses Abschnittes entspricht. In diesem zylindrischen Abschnitt kann die vorangehend beschriebene ringförmige oder radial geöffnete Öffnung, welche die Eintrittsöffnung des Laufrades bildet, liegen. Der zylindrische Abschnitt des Laufrades ermöglicht eine Axialbewegung des Laufrades in einem Pumpenaggregat, wie dies vorangehend beschrieben wurde, wobei der Eintrittsbereich bzw. die Eintrittsöffnung in jeder Position des Laufrades ausreichend nach außen abgedichtet werden kann, um die Druck- und die Saugseite des Laufrades in jeder Position voneinander zu trennen.More preferably, the impeller has on its suction side an elongated cylindrical portion of constant cross section, which preferably has an outer surface which corresponds to a size of 50 to 150% of an inner cross section (transverse to the longitudinal axis of the impeller) in the interior of this section. In this cylindrical portion, the above-described annular or radially opened opening, which forms the inlet opening of the impeller, are located. The cylindrical portion of the impeller permits axial movement of the impeller in a pump set as described above, wherein the entry portion in each position of the impeller can be sealed sufficiently outwardly to surround the pressure and suction sides of the impeller in each To separate position from each other.

Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:

Fig. 1
schematisch die erste Ausführungsform der Erfindung, mit dem Laufrad in einer ersten Funktionsstellung,
Fig. 2
schematisch ein Kreiselpumpenaggregat gemäß Fig. 1 mit dem Laufrad in einer zweiten Funktionsstellung,
Fig. 3
schematisch eine zweite Ausführungsform eines erfindungsgemäßen Kreiselpumpenaggregates mit dem Laufrad in einer ersten Funktionsstellung und
Fig. 4
das Kreiselpumpenaggregat gemäß Fig. 3 mit dem Laufrad in seiner zweiten Funktionsstellung.
The invention will now be described by way of example with reference to the accompanying drawings. In these shows:
Fig. 1
schematically the first embodiment of the invention, with the impeller in a first functional position,
Fig. 2
schematically a centrifugal pump unit according to Fig. 1 with the impeller in a second functional position,
Fig. 3
schematically a second embodiment of a centrifugal pump assembly according to the invention with the impeller in a first functional position and
Fig. 4
the centrifugal pump unit according to Fig. 3 with the impeller in its second functional position.

Das Pumpenaggregat gemäß der ersten Ausführungsform in Figuren 1 und 2 weist einen elektrischen Antriebsmotor 2 auf, welcher einen Stator 4 sowie einen darin um die Längsachse X drehbaren Rotor 6 aufweist. Der Antriebsmotor ist als nasslaufender Motor ausgebildet und weist zwischen dem Stator 4 und dem Rotor 6 ein Spaltrohr 7 auf. Dieses kann vollständig geschlossen ausgebildet sein und trennt Rotorraum und Statorraum. Der Rotor ist als Permanentmagnetrotor 6 ausgebildet und drehfest mit einer sich längs der Längsachse X erstreckenden Welle 8 verbunden, welche vorzugsweise aus Keramik gefertigt ist und über ihre gesamte Länge auf Lagerqualität bearbeitet ist. Die Welle wiederum ist drehfest mit einem Laufrad 10 verbunden, welches vorzugsweise aus Kunststoff ausgebildet ist. Der Rotor 6 ist gemeinsam mit der Welle 8 und dem Laufrad 10 axial beweglich in seinen Lagern 12 angeordnet, sodass das Laufrad eine in Fig. 1 gezeigte erste axiale Funktionsstellung und eine in Fig. 2 gezeigte axial beabstandete zweite Funktionsstellung einnehmen kann. Dabei liegt das Laufrad in der ersten Funktionsstellung näher zum Stator 4 als in der zweiten Funktionsstellung.The pump unit according to the first embodiment in FIGS. 1 and 2 has an electric drive motor 2, which has a stator 4 and a rotor 6 rotatable about the longitudinal axis X therein. The drive motor is designed as a wet-running motor and has a gap tube 7 between the stator 4 and the rotor 6. This can be formed completely closed and separates rotor space and stator space. The rotor is designed as a permanent magnet rotor 6 and rotatably connected to a along the longitudinal axis X extending shaft 8, which is preferably made of ceramic and machined over its entire length to storage quality. The shaft in turn is non-rotatably connected to an impeller 10, which is preferably formed of plastic. The rotor 6 is arranged axially movable together with the shaft 8 and the impeller 10 in its bearings 12, so that the impeller in a Fig. 1 shown first axial functional position and an in Fig. 2 shown axially spaced second functional position can take. In this case, the impeller is closer to the stator 4 in the first functional position than in the second functional position.

Das Laufrad 10 weist an seiner axialen Stirnseite eine Eintrittsöffnung 14 in Form eines Saugmundes auf. Durch diese kann ein zu förderndes Fluid, insbesondere eine zu fördernde Flüssigkeit in axialer Richtung X in das Laufrad 10 einströmen. In dem Laufrad 10 wird die Strömung dann durch die bei Rotation des Laufrades herrschenden Fliehkräfte radial nach außen beschleunigt und kann durch ein an dem der Eintrittsöffnung 14 abgewandten Axialende gelegene umfängliche Austrittsöffnung aus dem Laufrad 10 austreten. Die Austrittsöffnung 16 ist als ringförmige Öffnung im Umfangsbereich des Laufrades angrenzend an eine druckseitige axiale Stirnseite 18 des Laufrades ausgebildet.The impeller 10 has on its axial end face an inlet opening 14 in the form of a suction mouth. Through this, a fluid to be conveyed, in particular a liquid to be conveyed in the axial direction X in the Inflow impeller 10. In the impeller 10, the flow is then accelerated radially outwards by the centrifugal forces prevailing during rotation of the impeller and can emerge from the impeller 10 through a peripheral outlet opening located at the axial end facing away from the inlet opening 14. The outlet opening 16 is formed as an annular opening in the peripheral region of the impeller adjacent to a pressure-side axial end face 18 of the impeller.

In der in Fig. 1 gezeigten ersten Funktionsstellung ist die Austrittsöffnung 16 durch ein Verschlusselement in Form einer Ringwandung 20 verschlossen. Die Ringwandung 20 erstreckt sich ausgehend von einer den Pumpenraum begrenzenden Wandung, in diesem Fall einem Lagerträger 22 in eine von dem Stator 4 abgewandte Richtung. Dabei weist die Ringwandung 20 eine solche axiale Länge auf, dass sie in der ersten Funktionsstellung die axiale Erstreckung der Austrittsöffnung 16 vollständig überdeckt und mit einer ersten Umfangskante 24, welche die Austrittsöffnung 16 an einer Axialseite begrenzt, zur Anlage kommt. Die erste Umfangskante 24 ist dabei die der Saugseite des Laufrades 10 zugewandte Umfangskante, welche die Austrittsöffnung 16 begrenzt. Die näher zur Druckseite hin gelegene gegenüberliegende zweite Umfangskante 26, welche die Austrittsöffnung 16 zum druckseitigen Axialende hin begrenzt, weist einen geringeren Durchmesser als die erste Umfangkante 24 bzgl. der Längsachse X auf und liegt in der ersten Funktionsstellung derart im Inneren der Ringwandung 24, dass zwischen dem Innenumfang der Ringwandung 24 und der zweiten Umfangskante 26 ein Ringspalt 28 verbleibt. Der Ringspalt 28 bildet einen Strömungsdurchgang aus dem Inneren des Laufrades durch die Austrittsöffnung 16 zu der druckseitigen Stirnseite 18 des Laufrades 10. Dieser Strömungsweg ist auch dann offen, wenn die Ringwandung 20 an der ersten Umfangskante 24 anliegt und so den Strömungsweg durch das Laufrad nach außen in einen Druckkanal 30 verschließt. So kann in der ersten Funktionsstellung zwar kein Fluid aus dem Saugkanal 32 in den Druckkanal 30 strömen, jedoch, wenn das Laufrad durch Antrieb des Antriebsmotors 2 rotiert wird, in den Raum im Inneren der Ringwandung 20 angrenzend an die druckseitige Stirnseite 18 bzw. druckseitige Deckscheibe des Laufrades 10. So wird in diesem Bereich beim Anlaufen des Laufrades aus der ersten Funktionsstellung, welche in Fig. 1 gezeigt ist, einen Druck und eine hydraulische Axialkraft FH erzeugt, welche parallel zur Längsachse X auf die druckseitige Stirnseite 18 des Laufrades 10 wirkt und so das Laufrad 10 in Richtung A in die in Fig. 2 gezeigte zweite Funktionsstellung verschiebt.In the in Fig. 1 shown first functional position, the outlet opening 16 is closed by a closure element in the form of a ring wall 20. The annular wall 20 extends starting from a wall bounding the pump chamber, in this case a bearing carrier 22 in a direction away from the stator 4. In this case, the annular wall 20 has such an axial length that it completely covers the axial extent of the outlet opening 16 in the first functional position and comes into contact with a first peripheral edge 24 which limits the outlet opening 16 on one axial side. The first peripheral edge 24 is the suction side of the impeller 10 facing the peripheral edge which limits the outlet opening 16. The closer to the pressure side lying opposite second peripheral edge 26, which limits the outlet opening 16 to the pressure-side axial end, has a smaller diameter than the first peripheral edge 24 with respect to the longitudinal axis X and lies in the first functional position in such a way inside the annular wall 24, that between the inner circumference of the annular wall 24 and the second peripheral edge 26, an annular gap 28 remains. The annular gap 28 forms a flow passage from the interior of the impeller through the outlet opening 16 to the pressure-side end face 18 of the impeller 10. This flow path is open even when the annular wall 20 abuts the first peripheral edge 24 and so the flow path through the impeller to the outside in a pressure channel 30 closes. Thus, in the first functional position, although no fluid from the suction channel 32 in the Pressure channel 30 flow, however, when the impeller is rotated by driving the drive motor 2, in the space inside the annular wall 20 adjacent to the pressure-side end face 18 and pressure-side cover plate of the impeller 10. So in this area when starting the impeller from the first functional position, which in Fig. 1 is shown, a pressure and a hydraulic axial force F H generated which acts parallel to the longitudinal axis X on the pressure-side end face 18 of the impeller 10 and so the impeller 10 in the direction A in the in Fig. 2 shifts shown second functional position.

In dieser zweiten Funktionsstellung liegt die Austrittsöffnung 16 in axialer Richtung verschoben außerhalb der Ringwandung 20, d. h. die Umfangskante 24 ist von der Stirnkante der Ringwandung 20 außer Eingriff getreten und die Ringwandung 20 überlappt die ringförmige Austrittsöffnung 16 im Wesentlichen nicht mehr, sodass das bei Rotation von dem Laufrad 10 geförderte Fluid aus der Austrittsöffnung 16 in den Druckkanal 30 austreten kann. Dabei wirkt auf die druckseitige Stirnseite 18 des Laufrades 10 weiter die hydraulische Kraft FH aufgrund des Druckes im Druckkanal 30. Diese hydraulische Kraft FH hält das Laufrad 10 in der in Fig. 2 gezeigten zweiten Funktionsstellung.In this second functional position, the outlet opening 16 is displaced in the axial direction outside of the annular wall 20, ie the peripheral edge 24 has been disengaged from the end edge of the annular wall 20 and the annular wall 20 substantially no longer overlaps the annular outlet opening 16, so that during rotation of the impeller 10 funded fluid from the outlet opening 16 can escape into the pressure channel 30. In this case acts on the pressure-side end face 18 of the impeller 10 further, the hydraulic force F H due to the pressure in the pressure channel 30. This hydraulic force F H keeps the impeller 10 in the in Fig. 2 shown second functional position.

In der ersten Funktionsstellung ist, wie in Fig. 1 gezeigt, der Rotor 6 gegenüber dem umgebenden Stator 4 in axialer Richtung X zentriert, d. h. die axiale Mitte S des Stators und die axiale Mitte R des Rotors liegen im Wesentlichen übereinander. Wenn der Rotor, wie in Fig. 2 gezeigt, um das Maß a gegenüber dem Stator 4 verschoben wird, um das Laufrad 10 in die gezeigte zweite Funktionsstellung zu bringen, verschiebt sich dabei die axiale Mitte R des Rotors 6 gegenüber der axialen Mitte S des Stators 4 ebenfalls um das Maß a, wie in Fig. 2 gezeigt. Daraus resultiert eine magnetische Rückstellkraft FM. Bei dieser handelt es sich, da der Rotor 6 ein Permanentmagnetrotor ist, um eine permanentmagnetische Kraft. Die magnetische Rückstellkraft FM ist bestrebt, den Rotor 6 wieder in die in Fig. 1 gezeigte axial zentrierte Position zu bewegen. D. h. die magnetische Rückstellkraft FM wirkt der hydraulischen Kraft FH entgegen. So lange die hydraulische Kraft FH größer als diese magnetische Rückstellkraft FM ist, verbleibt das Laufrad 10 in der in Fig. 2 gezeigten zweiten Funktionsstellung. Durch entsprechende Dimensionierung des Antriebsmotors und des Laufrades 10 kann dies sichergestellt werden. Darüber hinaus kann der Antriebsmotor 2 so geregelt werden, dass stets ein ausreichender Druck im Druckkanal 30 sichergestellt wird, um im Betrieb das Laufrad 10 in der gezeigten zweiten Funktionsstellung zu halten. Wenn der Antriebsmotor 2 ausgeschaltet wird, fällt die hydraulische Axialkraft FH weg und es wirkt nur noch die magnetische Rückstellkraft FM, wodurch dann das Laufrad 10 über die Welle 8 gemeinsam mit dem Rotor 6 wieder in die in Fig. 1 gezeigte Ausgangslage zurückbewegt wird, in welcher sich das Laufrad 10 dann in der ersten Funktionsstellung befindet, in welcher die Austrittsöffnung 16 durch die Ringwandung 20 verschlossen ist.In the first functional position is, as in Fig. 1 shown, the rotor 6 centered with respect to the surrounding stator 4 in the axial direction X, that is, the axial center S of the stator and the axial center R of the rotor are substantially one above the other. If the rotor, as in Fig. 2 shown, the dimension a is shifted relative to the stator 4, to bring the impeller 10 in the second functional position shown, thereby shifts the axial center R of the rotor 6 relative to the axial center S of the stator 4 also by the dimension a, as in Fig. 2 shown. This results in a magnetic restoring force F M. This is because the rotor 6 is a permanent magnet rotor to a permanent magnetic force. The magnetic restoring force F M endeavors to restore the rotor 6 in the in Fig. 1 to move shown axially centered position. Ie. the magnetic restoring force F M counteracts the hydraulic force F H. As long as the hydraulic force F H is greater than this magnetic restoring force F M , the impeller 10 remains in the in Fig. 2 shown second functional position. By appropriate dimensioning of the drive motor and the impeller 10, this can be ensured. In addition, the drive motor 2 can be controlled so that always a sufficient pressure in the pressure channel 30 is ensured in order to keep the impeller 10 in operation in the second functional position shown. When the drive motor 2 is turned off, the hydraulic axial force F H falls away and it only affects the magnetic restoring force F M , whereby then the impeller 10 via the shaft 8 together with the rotor 6 back into the in Fig. 1 shown starting position is moved back, in which the impeller 10 is then in the first functional position, in which the outlet opening 16 is closed by the annular wall 20.

Wenn der Antriebsmotor nicht so geregelt wird, dass der Druck im Druckkanal 30 stets so ist, dass das Laufrad im Betrieb in seiner zweiten in Fig. 2 gezeigten Funktionsstellung gehalten wird, kann eine automatische mechanische Mengenbegrenzung erreicht werden. Wenn das Pumpenaggregat in einem Betriebszustand mit hohem Durchfluss und geringem Druck gerät, führt dies dann dazu, dass der Druck im Druckkanal 30 so weit abnimmt, dass die hydraulische Kraft FH kleiner als magnetische Rückstellkraft FM wird und das Laufrad 10 sich in Richtung seine ersten Funktionsstellung, welche in Fig. 1 gezeigt ist, bewegt. Dabei wird dann die Austrittsöffnung 16 des Laufrades zumindest teilweise geschlossen, sodass der Durchfluss durch das Laufrad verringert wird. Dabei kann sich dann ausgangsseitig des Laufrades im Druckkanal 30 wieder ein Druck einstellen, welcher der magnetischen Rückstellkraft FM entgegenwirkt und das Laufrad 10 in seiner zweiten Funktionsstellung oder in einer Funktionsstellung zwischen der ersten und der zweiten Funktionsstellung hält. Eine solche Ausgestaltung ist von Vorteil, wenn das Pumpenaggregat keine elektronische Mengenbegrenzung aufweist und beispielsweise nicht von außen ansteuerbar ist, um die Durchflussmenge in bestimmten Betriebszuständen zu reduzieren.If the drive motor is not controlled so that the pressure in the pressure channel 30 is always such that the impeller in operation in its second in Fig. 2 shown functional position, an automatic mechanical quantity limitation can be achieved. If the pump unit in a high flow and low pressure operating state, this then causes the pressure in the pressure channel 30 decreases so much that the hydraulic force F H is smaller than the magnetic restoring force F M and the impeller 10 in the direction of his first functional position, which in Fig. 1 shown is moved. In this case, the outlet opening 16 of the impeller is then at least partially closed, so that the flow through the impeller is reduced. In this case, then the output side of the impeller in the pressure channel 30 again set a pressure which counteracts the magnetic restoring force F M and the impeller 10 in its second functional position or in a functional position between the first and the second Function position holds. Such a configuration is advantageous if the pump unit has no electronic quantity limitation and, for example, is not externally controllable in order to reduce the flow rate in certain operating conditions.

Fig. 3 und 4 zeigen eine zweite Ausführungsform der Erfindung. Bei dem in Fig. 3 und 4 gezeigten Kreiselpumpenaggregat ist der Antriebsmotor 2 identisch zu dem in Fig. 1 und 2 gezeigten Ausführungsbespiel ausgebildet, sodass auf die diesbezügliche Beschreibung verwiesen wird. Auch dieser Antriebsmotor 2 ist so ausgestaltet, dass durch Verschieben des Rotors 6 relativ zu dem Stator 4 um das Maß a die axiale Mitte des Rotors 6 von der axialen Mitte S des Stators 4 außer Deckung kommt, sodass eine magnetische Rückstellkraft FM resultiert, wie es vorangehend am ersten Ausführungsbeispiel beschrieben wurde. Fig. 3 and 4 show a second embodiment of the invention. At the in Fig. 3 and 4 shown centrifugal pump unit, the drive motor 2 is identical to the in Fig. 1 and 2 formed Ausführungsbespiel, so reference is made to the relevant description. Also, this drive motor 2 is designed so that by moving the rotor 6 relative to the stator 4 by the dimension a, the axial center of the rotor 6 from the axial center S of the stator 4 is out of control, so that a magnetic restoring force F M results as previously described in the first embodiment.

Das zweite Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel darin, dass von dem Laufrad 10', welches mit der Welle 8 verbunden ist, in der ersten Funktionsstellung nicht die Austrittsöffnung 16' sondern die Eintrittsöffnung 14' verschlossen wird. Gemäß dieser Ausführungsform bleibt die Austrittsöffnung 16' in beiden Funktionsstellungen in fluidleitender Verbindung mit dem Druckkanal 30. Allerdings ist in der ersten Funktionsstellung, welche in Fig. 3 gezeigt ist, die Verbindung zwischen dem Saugkanal 32' und der Eintrittsöffnung 14' im Wesentlichen verschlossen.The second embodiment differs from the first embodiment in that of the impeller 10 ', which is connected to the shaft 8, not the outlet opening 16' but the inlet opening 14 'is closed in the first functional position. According to this embodiment, the outlet opening 16 'remains in fluid communication with the pressure channel 30 in both functional positions. However, in the first functional position, which in FIG Fig. 3 is shown, the connection between the suction channel 32 'and the inlet opening 14' is substantially closed.

Die Eintrittsöffnung 14' ist bei diesem erfindungsgemäßen Laufrad 10' als umfangsseitige bzw. radialseitige Eintrittsöffnung 14' ausgebildet. Die Eintrittsöffnung 14' bildet eine umfängliche ringförmige Öffnung, durch welche Fluid in radialer Richtung in das Innere des Laufrades 10' eintreten kann. Die saugseitige Stirnseite 34 des Laufrades 10' ist geschlossen ausgebildet. Die saugseitige Stirnseite 34 wird durch eine scheibenförmige Wandung gebildet, welche gleichzeitig die Funktion einer Steuerscheibe übernehmen kann, da auf die beiden Seiten der saugseitigen Stirnseite 34, d. h. sowohl die dem Inneren des Laufrades zugewandte Fläche als auch die nach außen gerichtete Fläche, ein hydraulischer Druck wirken kann. In der ersten Funktionsstellung liegt die Eintrittsöffnung 14' so, dass sie einer ringförmigen Wandung 36 im Pumpenraum bzw. Pumpengehäuse gegenüberliegt. Die ringförmige Wandung 38 ist konzentrisch zur Längsachse X ausgebildet und umschließt die ringförmige Eintrittsöffnung 14' so, dass diese im Wesentlichen vollständig überdeckt wird. Dabei ist der Innendurchmesser der Wandung 36 jedoch geringfügig größer als der Außendurchmesser, der an die Öffnung 14' angrenzenden Umfangsflächen, sodass zwischen der Wandung 16' und der Eintrittsöffnung 14' begrenzenden Umfangskante ein ringförmiger Spalt 38 verbleibt. Dieser bildet eine Restöffnung, wenn der Strömungsweg durch das Laufrad 10' in der ersten Funktionsstellung im Wesentlichen verschlossen ist. Diese Restöffnung stellt jedoch weniger als 2% der Fläche der Eintrittsöffnung 14' dar, sodass nur ein sehr kleiner Strömungsdurchgang verbleibt. Der Strömungsdurchgang durch den Spalt 38 ist so dimensioniert, dass hier gerade so viel Fluid bzw. Flüssigkeit in der ersten Funktionsstellung gemäß Fig. 3 hindurchströmen kann, dass beim Anlaufen des Laufrades 10' sich im Druckkanal 30 ein Druck aufbauen kann. Ein solcher Druck führt zu einer hydraulischen Axialkraft FH, welche auf die druckseitige Deckscheibe bzw. Stirnseite 18' von außen auf das Laufrad 10' wirkt, sodass dieses in der Richtung A von der ersten Funktionsstellung in die in Fig. 4 gezeigte zweite Funktionsstellung verschoben wird.The inlet opening 14 'is formed in this impeller 10' according to the invention as a peripheral or radial inlet opening 14 '. The inlet opening 14 'forms a circumferential annular opening through which fluid in the radial direction in the interior of the impeller 10' can occur. The suction-side end face 34 of the impeller 10 'is formed closed. The suction-side end face 34 is formed by a disk-shaped wall, which at the same time has the function of a control disk can take over, since on the two sides of the suction-side end face 34, that is, both the interior of the impeller facing surface and the outwardly directed surface, a hydraulic pressure can act. In the first functional position, the inlet opening 14 'is located so that it faces an annular wall 36 in the pump chamber or pump housing. The annular wall 38 is formed concentrically to the longitudinal axis X and surrounds the annular inlet opening 14 'so that it is substantially completely covered. However, the inner diameter of the wall 36 is slightly larger than the outer diameter of the opening 14 'adjacent circumferential surfaces, so that between the wall 16' and the inlet opening 14 'bounding peripheral edge an annular gap 38 remains. This forms a residual opening when the flow path through the impeller 10 'is substantially closed in the first functional position. However, this residual opening represents less than 2% of the area of the inlet opening 14 ', so that only a very small flow passage remains. The flow passage through the gap 38 is dimensioned so that here just as much fluid or liquid in the first functional position according to Fig. 3 can flow through that when starting the impeller 10 'can build up a pressure in the pressure channel 30. Such a pressure leads to a hydraulic axial force F H , which acts on the pressure-side cover plate or front side 18 'from the outside to the impeller 10', so that this in the direction A from the first functional position in the in Fig. 4 shown second functional position is moved.

In dieser zweiten Funktionsstellung liegt die Eintrittsöffnung 14' dem Saugkanal 32 gegenüber, sodass der Saugkanal 32' durch die Eintrittsöffnung 14' mit dem Inneren des Laufrades 10' in fluidleitender Verbindung ist und das Laufrad 10' bei Rotation in gewohnter Weise Fluid bzw. Flüssigkeit fördert. Dabei wirkt weiter die hydraulische Axialkraft FH auf die druckseitige Deckscheibe bzw. Stirnseite 18', sodass bei ausreichendem Druck in dem Druckkanal 30 das Laufrad 10' in dieser zweiten Funktionsstellung gegen die magnetische Rückstellkraft FM gehalten wird. Bevorzugt wird der Antriebsmotor 2 so geregelt, dass stets ein ausreichender ausgangsseitiger Druck im Druckkanal 30 gewährleistet ist. Wenn der Antriebsmotor 2 abgeschaltet wird und das Laufrad 10' somit kein Fluid mehr fördert, fällt die hydraulische Axialkraft FH weg und das Laufrad 10' wird über die Welle 8 gemeinsam mit dem Rotor 6 durch die magnetische Rückstellkraft FM wieder in die in Fig. 3 gezeigte erste Funktionsstellung bewegt.In this second functional position, the inlet opening 14 'is opposite the suction channel 32, so that the suction channel 32' through the inlet opening 14 'with the interior of the impeller 10' is in fluid communication and the impeller 10 'promotes fluid or fluid in rotation in the usual way , In this case, the hydraulic axial force F H continues to act on the pressure-side cover disk or end face 18 ', so that when there is sufficient Pressure in the pressure channel 30, the impeller 10 'is held in this second functional position against the magnetic restoring force F M. Preferably, the drive motor 2 is controlled so that always a sufficient output-side pressure in the pressure channel 30 is ensured. If the drive motor 2 is turned off and the impeller 10 'thus promotes no more fluid, the hydraulic axial force F H falls away and the impeller 10' is returned via the shaft 8 together with the rotor 6 by the magnetic restoring force F M back into the in Fig. 3 shown first functional position moves.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
Antriebsmotordrive motor
44
Statorstator
66
Rotorrotor
77
Spaltrohrcanned
88th
Wellewave
10, 10'10, 10 '
LaufradWheel
1212
Lagercamp
14, 14'14, 14 '
Eintrittsöffnunginlet opening
16, 16'16, 16 '
Austrittsöffnungoutlet opening
1818
druckseitige Stirnseitepressure-side end face
2020
Ringwandungannular wall
2222
Lagerträgerbearing bracket
2424
erste Umfangskantefirst peripheral edge
2626
zweite Umfangskantesecond peripheral edge
2828
Ringspaltannular gap
3030
Druckkanalpressure channel
32, 32'32, 32 '
Saugkanalsuction
3434
saugseitige Stirnseitesuction side end face
3636
Wandungwall
3838
Spaltgap
XX
Längsachselongitudinal axis
FH F H
Axial kraftAxial force
FM F M
RückstellkraftRestoring force
AA
Richtungdirection
aa
Versatzoffset
SS
Axiale Mitte des StatorsAxial center of the stator
RR
Axiale Mitte des RotorsAxial center of the rotor

Claims (9)

  1. A centrifugal pump assembly with an electric drive motor (2) and with at least one impeller (10; 10') which is movable in the axial direction (X) between at least two functional positions, wherein in a first functional position a flow path through the impeller (10; 10') is essentially closed and in a second functional position the flow path through the impeller (10; 10') is opened, wherein the impeller (10; 10') in the first functional position is held by a permanent-magnetic force (FM) which acts between a permanent magnet rotor (6) which is connected to the impeller (10, 10') and which is axially movable together with this and the surrounding stator (4) of the drive motor (2), said permanent-magnetic force resulting from an axial offset (a) of the permanent magnet rotor (6) relative to the stator (4) of the drive motor (2), and in the second functional position is held by a hydraulic force (FH) which is produced by fluid delivered by the impeller and which is larger than the permanent-magnetic force (FM).
  2. A centrifugal pump assembly according to the preceding claim, characterised in that a closure element (20; 36) is present, said closure element in that functional position, in which the flow path through the impeller (10') is closed, closing an outlet opening (16) or an inlet opening (14') of the impeller (10; 10') at least for the larger part, preferably by more than 90 %.
  3. A centrifugal pump assembly according to claim 2, characterised in that the closure element (20; 36) in that functional position, in which the flow path through the impeller (10; 10') is closed, closes the inlet opening (14') or the outlet opening (16) for the larger part, but closes it only to the extent that a pressure build-up at the outlet side of the impeller (10; 10') is possible on starting the impeller (10; 10').
  4. A centrifugal pump according to claim 2 or 3, characterised in that the impeller (10; 10') is movable relative to the closure element (20; 36) between the first and the second functional position.
  5. A centrifugal pump assembly according to one of the claims 2 to 4, characterised in that the impeller (10') comprises an axial-side or radial-side inlet opening (14') and the closure element (36) covers the inlet opening in one functional position.
  6. A centrifugal pump assembly according to one of the claims 2 to 5, characterised in that the impeller (10) comprises a radial-side outlet opening (16), and the closure element (26) covers the outlet opening (16) in one functional position.
  7. A centrifugal pump assembly according to claim 6, characterised in that the closure element (20) is designed as an annular wall which peripherally surrounds the outlet opening (16) in one functional position.
  8. A centrifugal pump assembly according to claim 7, characterised in that in that functional position, in which the flow path through the impeller (10) is closed, the impeller (10) bears with a first peripheral edge (24) which delimits the outlet opening (16), on a face edge of the annular wall (20).
  9. A centrifugal pump assembly according to claim 8, characterised in that in that functional position, in which the flow path through the impeller (10) is closed, a flow passage (28) which is open to an axial face side (18) of the impeller (10) remains between a second peripheral edge (26) which lies opposite the first peripheral edge (24) and the annular wall (20).
EP13174142.3A 2013-06-27 2013-06-27 Centrifugal pump with axially shiftable and closable impeller Not-in-force EP2818725B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13174142.3A EP2818725B1 (en) 2013-06-27 2013-06-27 Centrifugal pump with axially shiftable and closable impeller
US14/392,246 US10539142B2 (en) 2013-06-27 2014-06-25 Rotary pump with axially displaceable, closeable rotor
PCT/EP2014/063370 WO2014207030A1 (en) 2013-06-27 2014-06-25 Rotary pump with axially displaceable, closable rotor
CN201480036938.7A CN105339672B (en) 2013-06-27 2014-06-25 Centrifugal pump with axially movable, closed impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13174142.3A EP2818725B1 (en) 2013-06-27 2013-06-27 Centrifugal pump with axially shiftable and closable impeller

Publications (2)

Publication Number Publication Date
EP2818725A1 EP2818725A1 (en) 2014-12-31
EP2818725B1 true EP2818725B1 (en) 2017-09-13

Family

ID=48745734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13174142.3A Not-in-force EP2818725B1 (en) 2013-06-27 2013-06-27 Centrifugal pump with axially shiftable and closable impeller

Country Status (4)

Country Link
US (1) US10539142B2 (en)
EP (1) EP2818725B1 (en)
CN (1) CN105339672B (en)
WO (1) WO2014207030A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076020B1 (en) 2015-03-31 2020-12-30 Magna Powertrain FPC Limited Partnership Spring regulated variable flow electric water pump
EP3447302B1 (en) * 2017-08-23 2021-12-08 Sulzer Management AG Shaft bearing device with lifting device
CN110094339B (en) * 2018-10-24 2020-06-26 浙江朗庆智能科技有限公司 Centrifugal urea pump
CN111102205B (en) * 2020-01-08 2020-11-20 福州城建设计硏究院有限公司 Anti-jamming self-suction type sewage pump based on underground sewage
DE102021207404A1 (en) * 2021-07-13 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Pump device, in particular magnetic coupling pump device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2265806A (en) * 1939-05-15 1941-12-09 Goldschmied Livio Pump
US3329095A (en) * 1965-11-16 1967-07-04 Henning G Bartels Booster pump
DE2107000A1 (en) * 1971-02-13 1972-08-24 Loewe Pumpenfabrik Gmbh Centrifugal pump, especially heating circulation pump
DE2510787A1 (en) * 1975-03-08 1976-09-16 Vaillant Joh Kg Circulating pump for central heating - has impeller formed to act as shut off valve when pump stops
DE9319309U1 (en) * 1993-12-16 1995-08-03 Licentia Gmbh Pump with an electric drive motor
DE19523661A1 (en) * 1995-06-29 1997-01-02 Mayer Helmut Self-supporting turbo-rotor e.g. for multistage pumps, blowers compressor and turbines
DE19845864A1 (en) * 1998-10-05 2000-04-06 Wilo Gmbh Canned motor
DE10115989A1 (en) 2000-04-04 2001-12-13 Bernhard Stadler Rotary circulation pump has an axially moveable motor rotor which is automatically positioned to block back circulation when in the quiescent mode
CN201148979Y (en) * 2007-12-17 2008-11-12 杭州大路实业有限公司 Axial force self-balanced type magnetic transmission multiple stage centrifugal pump
DE102009011946A1 (en) * 2009-03-10 2010-09-16 Wilo Se Electric motor for actuating a valve
DE102010062752A1 (en) * 2010-12-09 2012-06-14 Mahle International Gmbh Cooling agent pump for internal combustion engine, has impeller that is displaceably mounted along axial direction for controlling ejection rate of pump, where annular piston is provided for axial adjustment of impeller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105339672A (en) 2016-02-17
CN105339672B (en) 2018-05-15
WO2014207030A1 (en) 2014-12-31
US10539142B2 (en) 2020-01-21
EP2818725A1 (en) 2014-12-31
US20160273542A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
EP0568909B1 (en) Rotating disc obturator for steam turbine
EP2818725B1 (en) Centrifugal pump with axially shiftable and closable impeller
EP2798224B2 (en) Pump unit
EP3540233A1 (en) Centrifugal pump assembly with rotatable valve
EP2129920A1 (en) Arrangement for delivering fluids
EP3376037B1 (en) Centrifugal pump assembly
DE102008031618A1 (en) Fluid-dynamic storage system for spindle motor, has fixed components and rotary component, which is pivoted relative to fixed components around rotational axis
EP2818726B1 (en) Centrifugal pump with axially shiftable impeller for feeding different fluid paths
EP3267042B1 (en) Pump unit
WO2008058779A1 (en) Regulating device for an internal combustion engine
WO2018167043A1 (en) Pump assembly
EP3657021A1 (en) Vacuum pump
WO2017076649A1 (en) Coolant pump for an internal combustion engine
EP2378127B1 (en) Flow guiding component with pump and fitting
EP2228891B1 (en) Electric motor for actuating a valve
DE10115989A1 (en) Rotary circulation pump has an axially moveable motor rotor which is automatically positioned to block back circulation when in the quiescent mode
EP2002123A1 (en) Fluid pump
DE102020116770B4 (en) VACUUM PUMP WITH INTEGRATED MINIATURE VALVE
DE19631824A1 (en) Single stage centrifugal pump for fluids
EP2786021B1 (en) Wet-rotor motor pump
DE102017223576A1 (en) Coolant pump for conveying a coolant
EP3907406B1 (en) Vacuum pump
DE102017216696B4 (en) Fluid friction clutch
WO2020126223A1 (en) Side-channel compressor for a fuel cell system for conveying and/or compressing a gaseous medium
EP4328468A2 (en) Flow valve and vacuum pump equipped with such a flow valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150622

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 928441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008323

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170913

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008323

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

26N No opposition filed

Effective date: 20180614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 928441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220623

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220621

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013008323

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220630

Year of fee payment: 10

Ref country code: DE

Payment date: 20220624

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013008323

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230627