EP2795421A1 - Frequency generator assembly - Google Patents

Frequency generator assembly

Info

Publication number
EP2795421A1
EP2795421A1 EP12812548.1A EP12812548A EP2795421A1 EP 2795421 A1 EP2795421 A1 EP 2795421A1 EP 12812548 A EP12812548 A EP 12812548A EP 2795421 A1 EP2795421 A1 EP 2795421A1
Authority
EP
European Patent Office
Prior art keywords
frequency
frequency generator
generator arrangement
oscillator
clock signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12812548.1A
Other languages
German (de)
French (fr)
Inventor
Jörg HEIMEL
Timo Dietz
Gerhard Möheken
Stefan GÜNTHNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Publication of EP2795421A1 publication Critical patent/EP2795421A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only

Definitions

  • the invention relates to a frequency generator arrangement according to the preamble of claim 1 and the use of the frequency generator arrangement in motor vehicles.
  • the object of the invention has been found to propose a frequency ⁇ encoder arrangement, which does not fall back on such a relatively expensive quartz oscillator.
  • a sensor element which comprises at least one mikrome ⁇ chanical seismic mass of the oscillator, will be ⁇ vorzugt a Inertialsensorelement understood, in particular, this sensor element forms a rotation-rate sensor element being ⁇ .
  • the entire oscillator is micromechanical Yaw sensor element formed and the at least one seismic mass is formed and operated so that it is designed both for detecting a rate of rotation about at least ei ⁇ ne axis, as well as, in particular simultaneously, as a seismic mass of the oscillator of Frequenzgeberanord ⁇ tion, said in Dependence of the oscillation frequency of this at least one seismic mass, the electrical Taktsig ⁇ signal is generated or influenced.
  • a clock signal is preferably understood to mean an electrical binary signal whose alternating frequency is in particular substantially constant or alternatively preferably designed to change or aperiodically.
  • the frequency generator assembly preferably comprises a control ⁇ unit which is designed so that the vibration of the tendonss we ⁇ a seismic mass of the oscillator frequency to a defined value, in particular, its natural frequency is adjusted.
  • the oscillator preferably comprises a drive device, which drives the at least one seismic mass and excites the oscillation or influences the oscillation of the seismic mass, and a read-out device which detects the deflection of the at least one seismic mass with respect to the at least one oscillation mode.
  • the Antriebseinrich ⁇ device and the readout device are particularly preferably formed according to the electrostatic action principle.
  • the oscillator and its at least one seismic mass in particular its two seismic Masses, trained and are operated so that they are designed in terms of a drive mode and in terms of a readout mode with respect to the design of the oscillator as a micro ⁇ mechanical rotation rate sensor element.
  • the frequency generator arrangement is particularly preferred as being likely ⁇ that the electric clock signal generated at least one seismic mass in its drive mode in dependence of the oscillation or vibration frequency.
  • the frequency generator arrangement is preferably designed such that the electric clock signal is generated or influenced by a Frequenzvervielfa ⁇ monitoring unit. Under a Fri ⁇ quenzvervielfachungshim one unit means in particular to frequency conversion, which must not be an integer pronounced particularly preferred.
  • the frequency generator arrangement preferably has a temperature sensor, which is designed so that it detects the temperature of at least the oscillator in the temperature in the Umge ⁇ tion / proximity of the oscillator directly or indirectly.
  • the temperature sensor is associated with the frequency multiplier unit via a calibration or interacts with such a calibration unit and the frequency generator arrangement is such that the Fre acid sequence of the clock signal is adjusted independently of the temperature of the oscillator, and particularly preferably inde ⁇ gig of the temperature dependence of the natural frequency of the Os ⁇ zillators.
  • the temperature sensor is expediently in the signal processing device, in particular in the crizein- , arranged.
  • the Signal kauseinrich ⁇ for, or the control unit is particularly preferred thermally conductively connected to the oscillator and / or coupled.
  • the frequency generator arrangement is connected to an external circuit unit comprising at least one Mik roreaor ⁇ , and that the circuit unit provides the clock signal.
  • the external circuit unit is formed as an external microcontroller, and this micro controller is operated at least partially clocked by the clock signal of the Fre ⁇ quenzgeberanaku.
  • the external circuit unit includes the frequency generator arrangement to a sensor cluster and form parts of a sensor cluster and in particular have a ge ⁇ concomitantly housing.
  • This sensor cluster particularly preferably comprises at least one yaw rate sensor element and at least one acceleration sensor element.
  • the invention also relates to the use of the frequency generator arrangement in motor vehicles, in particular for providing the clock signal for at least one external microcontroller and / or an external sensor arrangement.
  • Fig. 1 shows a schematic representation of an exemplary Frequency generator arrangement, comprising an oscillator 1, which is also designed as a rotation rate sensor element and is used at the same time as such.
  • Seismic mass 11 is excited by means of the drive device 12 to oscillate whose frequency is adjusted to the natural frequency of the seismic mass by the control unit 23.
  • this control circuit and for detecting the deflections of the drive mode of the seismic mass 11 of the oscillator 1 this has a read-out device 13.
  • This readout device 13 or oscillator 1 is connected to signal processing device 2, which has a frequency multiplication ⁇ unit 21, so that in dependence on the regular oscillation frequency of the seismic mass, an electrical clock signal with desired, defined frequency f can be generated.
  • the frequency generator arrangement also comprises temperature sensor 3, which detects the temperature of the oscillator 1 and provides this temperature information to a calibration unit 22 of the signal processing device 2, whereby the clock signal f is generated independently of the temperature or temperature-compensated.
  • the temperature sensor 3 is integrated as an example in control unit 23 and thermally coupled to oscillator 1.
  • This clock signal f is provided to an external microcontroller 4, wherein the microcontroller is operated in response to this clock signal f, and by means of this clock signal getak ⁇ tet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Gyroscopes (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Micromachines (AREA)

Abstract

The invention relates to a frequency generator assembly, comprising at least one oscillator (1) and an electronic signal processing device (2), which is designed in such a way that the electronic signal processing device provides an electric clock signal (f) having a defined frequency as an output signal of the frequency generator assembly, wherein said defined frequency depends on the vibration frequency of the oscillator (1), wherein the oscillator comprises at least one micromechanical seismic mass (11), which is vibrationally excited by means of at least one driving device (12), whereupon the electronic signal processing device (2) generates and provides the electric clock signal (f) according to the vibration frequency of the at least one seismic mass (11).

Description

Frequenzgeberanordnung  Frequency transmitter arrangement
Die Erfindung betrifft eine Frequenzgeberanordnung gemäß Oberbegriff von Anspruch 1 sowie die Verwendung der Frequenzgeberanordnung in Kraftfahrzeugen. The invention relates to a frequency generator arrangement according to the preamble of claim 1 and the use of the frequency generator arrangement in motor vehicles.
Es ist bekannt, geregelte Quarzoszillatoren als Frequenzge¬ beranordnungen zur Erzeugung eines elektrischen Taktsignals zu nutzen. It is known to use controlled quartz oscillators as Frequenzge ¬ beranordnungen for generating an electrical clock signal.
Die Erfindung hat sich die Aufgabe gestellt, eine Frequenz¬ geberanordnung vorzuschlagen, die nicht auf einen solchen, relativ teuren Quarzoszillator zurückgreift. The object of the invention has been found to propose a frequency ¬ encoder arrangement, which does not fall back on such a relatively expensive quartz oscillator.
Diese Aufgabe wird erfindungsgemäß gelöst durch die Fre¬ quenzgeberanordnung gemäß Anspruch 1. This object is achieved by the Fre ¬ quenzgeberanordnung according to claim 1.
Unter einem Sensorelement, das die zumindest eine mikrome¬ chanische seismische Masse des Oszillators umfasst, wird be¬ vorzugt ein Inertialsensorelement verstanden, insbesondere ist dieses Sensorelement als Drehratensensorelement ausge¬ bildet . Under a sensor element which comprises at least one mikrome ¬ chanical seismic mass of the oscillator, will be ¬ vorzugt a Inertialsensorelement understood, in particular, this sensor element forms a rotation-rate sensor element being ¬.
Bevorzugt ist der gesamte Oszillator als mikromechanisches Drehratensensorelement ausgebildet und die wenigstens eine seismische Masse ist so ausgebildet und wird so betrieben, dass sie sowohl zum Erfassen einer Drehrate um zumindest ei¬ ne Achse ausgelegt ist, als auch, insbesondere gleichzeitig, als seismische Masse des Oszillators der Frequenzgeberanord¬ nung, wobei in Abhängigkeit der Schwingungsfrequenz dieser wenigstens einen seismischen Masse das elektrische Taktsig¬ nal erzeugt oder beeinflusst wird. Preferably, the entire oscillator is micromechanical Yaw sensor element formed and the at least one seismic mass is formed and operated so that it is designed both for detecting a rate of rotation about at least ei ¬ ne axis, as well as, in particular simultaneously, as a seismic mass of the oscillator of Frequenzgeberanord ¬ tion, said in Dependence of the oscillation frequency of this at least one seismic mass, the electrical Taktsig ¬ signal is generated or influenced.
Unter einem Taktsignal wird vorzugsweise ein elektrisches binäres Signal verstanden, dessen Wechselfrequenz insbesondere im Wesentlichen konstant oder alternativ vorzugsweise sich ändernd bzw. aperiodisch ausgelegt ist. A clock signal is preferably understood to mean an electrical binary signal whose alternating frequency is in particular substantially constant or alternatively preferably designed to change or aperiodically.
Die Frequenzgeberanordnung umfasst vorzugsweise eine Regel¬ einheit, die so ausgebildet ist, dass die Schwingung der we¬ nigstens einen seismischen Masse des Oszillators auf einen definierten Frequenzwert, insbesondere dessen Eigenfrequenz eingeregelt wird. The frequency generator assembly preferably comprises a control ¬ unit which is designed so that the vibration of the nigstens we ¬ a seismic mass of the oscillator frequency to a defined value, in particular, its natural frequency is adjusted.
Der Oszillator umfasst bevorzugt eine Antriebseinrichtung, welche die wenigstens eine seismische Masse antreibt und zur Schwingung anregt bzw. die Schwingung der seismischen Masse beeinflusst, sowie eine Ausleseeinrichtung, die Auslenkung der zumindest einen seismischen Masse hinsichtlich der zumindest einen Schwingungsmode erfasst. Die Antriebseinrich¬ tung und die Ausleseeinrichtung sind besonders bevorzugt nach dem elektrostatischen Wirkprinzip ausgebildet. The oscillator preferably comprises a drive device, which drives the at least one seismic mass and excites the oscillation or influences the oscillation of the seismic mass, and a read-out device which detects the deflection of the at least one seismic mass with respect to the at least one oscillation mode. The Antriebseinrich ¬ device and the readout device are particularly preferably formed according to the electrostatic action principle.
Zweckmäßigerweise ist der Oszillator und seine wenigstens eine seismische Masse, insbesondere seine zwei seismischen Massen, so ausgebildet und werden so betrieben, dass sie hinsichtlich einer Antriebsmode und hinsichtlich einer Auslesemode bezüglich der Auslegung des Oszillators als mikro¬ mechanisches Drehratensensorelement ausgelegt sind. Dabei ist die Frequenzgeberanordnung besonders bevorzugt so ausge¬ legt, dass das elektrische Taktsignal in Abhängigkeit der Schwingung bzw. Schwingungsfrequenz der wenigstens einen seismischen Masse in ihrer Antriebsmode erzeugt wird. Conveniently, the oscillator and its at least one seismic mass, in particular its two seismic Masses, trained and are operated so that they are designed in terms of a drive mode and in terms of a readout mode with respect to the design of the oscillator as a micro ¬ mechanical rotation rate sensor element. The frequency generator arrangement is particularly preferred as being likely ¬ that the electric clock signal generated at least one seismic mass in its drive mode in dependence of the oscillation or vibration frequency.
Die Frequenzgeberanordnung ist vorzugsweise so ausgebildet, dass das elektrische Taktsignal von einer Frequenzvervielfa¬ chungseinheit erzeugt oder beeinflusst wird. Unter eine Fre¬ quenzvervielfachungseinheit wird insbesondere eine Einheit zu Frequenzkonversion verstanden, die besonders bevorzugt nicht ganzzahlig ausgeprägt sein muss. The frequency generator arrangement is preferably designed such that the electric clock signal is generated or influenced by a Frequenzvervielfa ¬ monitoring unit. Under a Fri ¬ quenzvervielfachungseinheit one unit means in particular to frequency conversion, which must not be an integer pronounced particularly preferred.
Die Frequenzgeberanordnung weist bevorzugt einen Temperatursensor auf, welcher so ausgelegt ist, dass er die Temperatur zumindest des Oszillators in die Temperatur in die Umge¬ bung/Nähe des Oszillators direkt oder indirekt erfasst. Ins¬ besondere ist der Temperatursensor dabei mit der Frequenzvervielfachungseinheit über eine Kalibriereinheit verknüpft bzw. wirkt mit einer solchen Kalibriereinheit zusammen und die Frequenzgeberanordnung ist so ausgebildet, dass die Fre¬ quenz des Taktsignals unabhängig von der Temperatur des Oszillators eingestellt wird und besonders bevorzugt unabhän¬ gig von der Temperaturabhängigkeit der Eigenfrequenz des Os¬ zillators . The frequency generator arrangement preferably has a temperature sensor, which is designed so that it detects the temperature of at least the oscillator in the temperature in the Umge ¬ tion / proximity of the oscillator directly or indirectly. Ins ¬ particular the temperature sensor is associated with the frequency multiplier unit via a calibration or interacts with such a calibration unit and the frequency generator arrangement is such that the Fre acid sequence of the clock signal is adjusted independently of the temperature of the oscillator, and particularly preferably inde ¬ gig of the temperature dependence of the natural frequency of the Os ¬ zillators.
Der Temperatursensor ist zweckmäßigerweise in der Signalverarbeitungseinrichtung, dabei insbesondere in der Regelein- heit, angeordnet. Dabei ist die Signalverarbeitungseinrich¬ tung bzw. die Regeleinheit besonders bevorzugt thermisch leitfähig mit dem Oszillator verbunden und/oder gekoppelt. The temperature sensor is expediently in the signal processing device, in particular in the Regelein- , arranged. The Signalverarbeitungseinrich ¬ for, or the control unit is particularly preferred thermally conductively connected to the oscillator and / or coupled.
Es ist bevorzugt, dass die Frequenzgeberanordnung mit einer externen Schaltungseinheit, umfassend wenigstens einen Mik¬ roprozessor, verbunden ist und dieser Schaltungseinheit das Taktsignal bereitstellt. It is preferable that the frequency generator arrangement is connected to an external circuit unit comprising at least one Mik roprozessor ¬, and that the circuit unit provides the clock signal.
Es ist zweckmäßig, dass die externe Schaltungseinheit als externer MikroController ausgebildet ist und dieser Mikro- controller zumindest teilweise durch das Taktsignal der Fre¬ quenzgeberanordnung getaktet betrieben wird. It is expedient that the external circuit unit is formed as an external microcontroller, and this micro controller is operated at least partially clocked by the clock signal of the Fre ¬ quenzgeberanordnung.
Es ist bevorzugt, dass die externe Schaltungseinheit mit der Frequenzgeberanordnung zu einem Sensorcluster gehören bzw. Teile eines Sensorclusters bilden und insbesondere ein ge¬ meinsames Gehäuse aufweisen. Dieser Sensorcluster umfasst dabei besonders bevorzugt wenigstens ein Drehratensensorele- ment und zumindest ein Beschleunigungssensorelement. It is preferred that the external circuit unit includes the frequency generator arrangement to a sensor cluster and form parts of a sensor cluster and in particular have a ge ¬ concomitantly housing. This sensor cluster particularly preferably comprises at least one yaw rate sensor element and at least one acceleration sensor element.
Die Erfindung bezieht sich außerdem auf die Verwendung der Frequenzgeberanordnung in Kraftfahrzeugen, insbesondere zur Bereitstellung des Taktsignals für wenigstens einen externen MikroController und/oder eine externe Sensoranordnung. The invention also relates to the use of the frequency generator arrangement in motor vehicles, in particular for providing the clock signal for at least one external microcontroller and / or an external sensor arrangement.
Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung eines Ausführungsbeispiels an Hand einer Figur. Further preferred embodiments will become apparent from the subclaims and the following description of an embodiment with reference to a figure.
Fig. 1 zeigt in schematischer Darstellung eine beispielhafte Frequenzgeberanordnung, umfassend einen Oszillator 1, der außerdem als Drehratensensorelement ausgebildet ist und gleichzeitig als solches verwendet wird. Seismische Masse 11, wird mittels der Antriebseinrichtung 12 zu Schwingungen angeregt, deren Frequenz auf die Eigenfrequenz der seismischen Masse durch die Regeleinheit 23 eingeregelt wird. Für diesen Regelkreis und zur Erfassung der Auslenkungen der Antriebsmode der seismischen Masse 11 des Oszillators 1, weist dieser eine Ausleseeinrichtung 13 auf. Diese Ausleseeinrichtung 13 bzw. Oszillator 1 ist mit Signalverarbeitungseinrichtung 2 verbunden, welche eine Frequenzvervielfachungs¬ einheit 21 aufweist, damit in Abhängigkeit der regelmäßigen Schwingungsfrequenz der seismischen Masse ein elektrisches Taktsignal mit gewünschter, definierter Frequenz f erzeugt werden kann. Die Frequenzgeberanordnung umfasst außerdem Temperatursensor 3, welcher die Temperatur des Oszillators 1 erfasst und diese Temperaturinformation einer Kalibriereinheit 22 der Signalverarbeitungseinrichtung 2 bereitstellt, wodurch das Taktsignal f unabhängig von der Temperatur bzw. temperaturkompensiert erzeugt wird. Der Temperatursensor 3 ist dabei beispielhaft in Regeleinheit 23 integriert und thermisch mit Oszillator 1 gekoppelt. Fig. 1 shows a schematic representation of an exemplary Frequency generator arrangement, comprising an oscillator 1, which is also designed as a rotation rate sensor element and is used at the same time as such. Seismic mass 11, is excited by means of the drive device 12 to oscillate whose frequency is adjusted to the natural frequency of the seismic mass by the control unit 23. For this control circuit and for detecting the deflections of the drive mode of the seismic mass 11 of the oscillator 1, this has a read-out device 13. This readout device 13 or oscillator 1 is connected to signal processing device 2, which has a frequency multiplication ¬ unit 21, so that in dependence on the regular oscillation frequency of the seismic mass, an electrical clock signal with desired, defined frequency f can be generated. The frequency generator arrangement also comprises temperature sensor 3, which detects the temperature of the oscillator 1 and provides this temperature information to a calibration unit 22 of the signal processing device 2, whereby the clock signal f is generated independently of the temperature or temperature-compensated. The temperature sensor 3 is integrated as an example in control unit 23 and thermally coupled to oscillator 1.
Dieses Taktsignal f wird einem externen Mikrocontroller 4 bereitgestellt, wobei dieser Mikrocontroller in Abhängigkeit dieses Taktsignals f bzw. mittels dieses Taktsignals getak¬ tet betrieben wird. This clock signal f is provided to an external microcontroller 4, wherein the microcontroller is operated in response to this clock signal f, and by means of this clock signal getak ¬ tet.

Claims

Patentansprüche claims
1. Frequenzgeberanordnung, umfassend zumindest einen Oszillator (1) und eine elektronische Signalverarbeitungseinrichtung (2), welche so ausgebildet ist, dass sie ein elektrisches Taktsignal (f) mit definierter Frequenz als Ausgangssignal der Frequenzgeberanordnung bereitstellt, wobei diese definierte Frequenz von der Schwingungsfre¬ quenz des Oszillators (1) abhängt, wobei der Oszillator wenigstens eine mikromechanische seismische Masse (11) umfasst, welche mittels zumindest einer Antriebseinrich¬ tung (12) zur Schwingungen angeregt wird, wonach die elektronische Signalverarbeitungseinrichtung (2) in Abhängigkeit der Schwingungsfrequenz der wenigstens einen seismischen Masse (11) das elektrische Taktsignal (f) erzeugt und bereitstellt, dadurch gekennzeichnet, dass die wenigstens eine mikromechanische seismische Masse (11) als Teil eines Sensorelements ausgebildet ist. 1. Frequency generator arrangement, comprising at least one oscillator (1) and an electronic signal processing device (2) which is designed such that it provides an electrical clock signal (f) with a defined frequency as an output signal of the frequency generator arrangement, wherein said defined frequency of the Schwingungsfre ¬ frequency the oscillator (1), wherein the oscillator comprises at least one micromechanical seismic mass (11), which is excited by means of at least one Antriebseinrich ¬ device (12) to oscillate, after which the electronic signal processing means (2) as a function of the oscillation frequency of the at least one seismic Mass (11) generates and provides the electrical clock signal (f), characterized in that the at least one micromechanical seismic mass (11) is formed as part of a sensor element.
2. Frequenzgeberanordnung nach Anspruch 1, dadurch gekennzeichnet, dass diese eine Regeleinheit (23) aufweist, die so ausgebildet ist, dass die Schwingung der wenigs¬ tens einen seismischen Masse (11) des Oszillators (1) auf einen definierten Frequenzwert, insbesondere dessen Eigenfrequenz eingeregelt wird. 2. frequency generator arrangement according to claim 1, characterized in that it comprises a control unit (23) which is formed so that the oscillation of wenigs ¬ least a seismic mass (11) of the oscillator (1) to a defined frequency value, in particular its natural frequency is adjusted.
3. Frequenzgeberanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das elektrische Taktsignal (f) von einer Frequenzvervielfachungseinheit (21) erzeugt oder beeinflusst wird. 3. frequency generator arrangement according to claim 1 or 2, characterized in that the electrical clock signal (f) by a Frequenzvervielfachungseinheit (21) is generated or influenced.
Frequenzgeberanordnung nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Frequenz¬ geberanordnung einen Temperatursensor (3) aufweist, welcher so ausgelegt ist, dass er die Temperatur zumindest des Oszillators (1) direkt oder indirekt erfasst. Frequency generator arrangement according to at least one of claims 1 to 3, characterized in that the frequency ¬ encoder arrangement comprises a temperature sensor (3) which is designed so that it detects the temperature of at least the oscillator (1) directly or indirectly.
Frequenzgeberanordnung nach Anspruch 4, dadurch gekennzeichnet, dass der Temperatursensor (3) mit der Fre¬ quenzvervielfachungseinheit (21) über eine Kalibrierein¬ heit (22) verknüpft ist und die Frequenzgeberanordnung so ausgebildet ist, dass insbesondere die Frequenz des Taktsignals (f) unabhängig von der Temperatur des Oszillators (1) eingestellt wird. Frequency generator arrangement according to claim 4, characterized in that the temperature sensor (3) with the Fre ¬ quenzvervielfachungseinheit (21) via a standard input ¬ unit (22) is linked, and the frequency generator arrangement is such that in particular the frequency of the clock signal (f) is independent of the temperature of the oscillator (1) is set.
Frequenzgeberanordnung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Frequenz¬ geberanordnung mit einer externen Schaltungseinheit (4), umfassend wenigstens einen Mikroprozessor, verbunden ist und dieser Schaltungseinheit das Taktsignal (f) bereit¬ stellt. Frequency generator arrangement according to at least one of claims 1 to 5, characterized in that the frequency ¬ encoder arrangement with an external circuit unit (4), comprising at least one microprocessor, connected and this circuit unit, the clock signal (f) ready ¬ provides.
Frequenzgeberanordnung nach Anspruch 6, dadurch gekennzeichnet, dass die externe Schaltungseinheit (4) als ex¬ terner MikroController ausgebildet ist und dieser Mikro- controller zumindest teilweise durch das Taktsignal (f) der Frequenzgeberanordnung getaktet betrieben wird. Frequency generator arrangement according to claim 6, characterized in that the external circuit unit (4) is designed as ex ¬ ternal microcontroller and this microcontroller is operated at least partially clocked by the clock signal (f) of the frequency generator arrangement.
Frequenzgeberanordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die externe Schaltungseinheit (4) mit der Frequenzgeberanordnung zu einem Sensorcluster gehören und insbesondere ein gemeinsames Gehäuse aufwei- sen . Frequency generator arrangement according to claim 6 or 7, characterized in that the external circuit unit (4) with the frequency generator arrangement belong to a sensor cluster and in particular a common housing aufwei- sen.
9. Frequenzgeberanordnung nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Oszillator (1) als mikromechanisches Drehratensensorelement ausge¬ bildet ist. 9. frequency generator arrangement according to at least one of claims 1 to 8, characterized in that the oscillator (1) is formed out as a micromechanical rotation rate sensor element ¬ .
10. Verwendung der Frequenzgeberanordnung nach mindestens einem der Ansprüche 1 bis 9 in Kraftfahrzeugen, insbesondere zur Bereitstellung des Taktsignals (f) für we¬ nigstens einen externen MikroController (4) und/oder eine externe Sensoranordnung. 10. Use of the frequency generator arrangement according to one of claims 1 to 9 in motor vehicles, in particular for the supply of the clock signal (f) for we ¬ nigstens an external microcontroller (4) and / or an external sensor arrangement.
EP12812548.1A 2011-12-23 2012-12-10 Frequency generator assembly Withdrawn EP2795421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011089813A DE102011089813A1 (en) 2011-12-23 2011-12-23 Frequency transmitter arrangement
PCT/EP2012/074999 WO2013092280A1 (en) 2011-12-23 2012-12-10 Frequency generator assembly

Publications (1)

Publication Number Publication Date
EP2795421A1 true EP2795421A1 (en) 2014-10-29

Family

ID=47520903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12812548.1A Withdrawn EP2795421A1 (en) 2011-12-23 2012-12-10 Frequency generator assembly

Country Status (6)

Country Link
US (1) US9214896B2 (en)
EP (1) EP2795421A1 (en)
KR (1) KR20140117407A (en)
CN (1) CN104011619A (en)
DE (1) DE102011089813A1 (en)
WO (1) WO2013092280A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013225359A1 (en) * 2013-12-10 2015-06-11 Robert Bosch Gmbh Method for operating a rotation rate sensor
DE102015200944A1 (en) * 2015-01-21 2016-07-21 Robert Bosch Gmbh Method for calculating an orientation with a sensor system and sensor system
TWI690716B (en) * 2016-01-26 2020-04-11 德商羅伯特博斯奇股份有限公司 Process to calculate an orientation with a sensor system, and snch sensor system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003605A1 (en) * 2008-07-07 2010-01-14 Albert-Ludwigs-Universität Freiburg Micro-electromechanical oscillator
WO2011064677A2 (en) * 2009-11-24 2011-06-03 Yost Engineering, Inc. Combining redundant inertial sensors to create a virtual sensor output

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939998A1 (en) * 1999-08-24 2001-03-01 Bosch Gmbh Robert Device for generating bias voltage for a vibrating yaw rate sensor
US7298178B1 (en) * 2003-07-31 2007-11-20 Actel Corporation Clock-generator architecture for a programmable-logic-based system on a chip
US6995622B2 (en) * 2004-01-09 2006-02-07 Robert Bosh Gmbh Frequency and/or phase compensated microelectromechanical oscillator
JP2005241625A (en) * 2004-01-27 2005-09-08 Seiko Epson Corp Clock-generating device, vibration type gyro sensor, navigation device, imaging apparatus, and electronic device
US7679466B1 (en) * 2007-03-01 2010-03-16 Discera, Inc. Counter-based resonator frequency compensation
US7876167B1 (en) * 2007-12-31 2011-01-25 Silicon Laboratories Inc. Hybrid system having a non-MEMS device and a MEMS device
DE102008043742A1 (en) * 2008-11-14 2010-05-20 Robert Bosch Gmbh Evaluation electronics for a rotation rate sensor
US8875577B2 (en) * 2009-02-13 2014-11-04 Panasonic Corporation Oscillator circuit, method for manufacturing oscillator circuit, inertial sensor using the oscillator circuit, and electronic device
DE102009045422B4 (en) * 2009-10-07 2024-05-02 Robert Bosch Gmbh Sensor arrangement and method for operating a sensor arrangement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003605A1 (en) * 2008-07-07 2010-01-14 Albert-Ludwigs-Universität Freiburg Micro-electromechanical oscillator
WO2011064677A2 (en) * 2009-11-24 2011-06-03 Yost Engineering, Inc. Combining redundant inertial sensors to create a virtual sensor output

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013092280A1 *

Also Published As

Publication number Publication date
US20140347139A1 (en) 2014-11-27
US9214896B2 (en) 2015-12-15
KR20140117407A (en) 2014-10-07
CN104011619A (en) 2014-08-27
DE102011089813A1 (en) 2013-06-27
WO2013092280A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
DE19910415B4 (en) Method and device for tuning a first oscillator with a second oscillator
EP1866612B1 (en) Device for determining and/or monitoring a process variable of a medium
EP3256822B1 (en) Device for determining and/or monitoring at least one process variable for a medium and corresponding method
DE102017130527A1 (en) Vibronic sensor
EP2320225B1 (en) Method for adjusting ultrasound sensors
DE102010028303A1 (en) Device for determining and / or monitoring a process variable of a medium
EP2795421A1 (en) Frequency generator assembly
WO2017194223A1 (en) Method and device for demodulating gyroscope signals
EP3045877A1 (en) Method for operating a coriolis mass flow measuring device
WO2015120938A1 (en) Housing with a damping element for a micromechanical sensor element
EP2798317B1 (en) Device for determining and/or monitoring a limit value of a process variable
DE19720519C2 (en) Device for determining and / or monitoring a fill level of a medium in a container
EP3513152B1 (en) Compensation of a phase shift of at least one electronic component of a vibronic sensor
EP2861942B1 (en) Method of operating a resonance measuring system and corresponding resonance measuring system
EP4168759A1 (en) Symmetrizing a vibronic sensor
DE102012102791B4 (en) Electronic device and its adaptation method
EP1996905B1 (en) Device for determining and/or monitoring a process variable
DE10245341B4 (en) Method and device for determining an amount of bulk material
EP3881035B1 (en) Vibronic sensor with temperature compensation
EP3653991B1 (en) Method and signal processing device for automatically adjusting the frequency of a filter in a closed control loop
EP3969853B1 (en) Monitoring the condition of a vibronic sensor
DE102011088304A1 (en) Device for determining and / or monitoring at least one process variable
EP2151672A1 (en) Method for measuring a fill level or limit level, fill level or limit level measuring device control and fill level or limit level measuring device
EP3268695B1 (en) Device and method for processing residual values when controlling a sensor
DE102010063146B4 (en) Device for determining at least one process variable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171016

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180227