EP2787168B1 - Rotor for a turbomachine with hollow shaft - Google Patents
Rotor for a turbomachine with hollow shaft Download PDFInfo
- Publication number
- EP2787168B1 EP2787168B1 EP14002196.5A EP14002196A EP2787168B1 EP 2787168 B1 EP2787168 B1 EP 2787168B1 EP 14002196 A EP14002196 A EP 14002196A EP 2787168 B1 EP2787168 B1 EP 2787168B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- rings
- compressor
- cavity
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 claims description 14
- 238000007789 sealing Methods 0.000 claims description 6
- 239000012809 cooling fluid Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000003570 air Substances 0.000 description 18
- 238000001816 cooling Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000011796 hollow space material Substances 0.000 description 3
- 230000004323 axial length Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/026—Shaft to shaft connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
- F01D5/043—Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
- F01D5/048—Form or construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/085—Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
- F01D5/088—Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/40—Transmission of power
- F05D2260/403—Transmission of power through the shape of the drive components
- F05D2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
Definitions
- the invention relates to a rotor for a turbomachine, with a hollow shaft arranged coaxially with respect to its axis of rotation, which is supported on both sides on two axially opposite sections of the rotor, encloses an inner central cavity and is formed in the axial direction of the rotor of a plurality of contiguous rings that the adjacent and adjacent to the sections rings limit the cavity to the outside. Furthermore, the invention relates to a turbomachine with such a rotor.
- FIG. 4 shows the FIG. 4 a gas turbine 1, which, arranged along a rotatably mounted about an axis 2 rotor 3, a compressor 5, a combustion chamber 6 and a turbine unit 11.
- the compressor 5 as well as in the turbine unit 11 guide vanes 12, 35 on the housing and blades 15, 37 on the rotor 3 in each case with the formation of blade rings 17, 19, 36, 38 attached.
- a vane ring 19, 36 forms with the blade ring 17, 38 a compressor stage 21 and a turbine stage 34, wherein a plurality of stages are connected in series.
- the blades 15 of a ring 17, 38 are fixed to the rotor 3 by means of an annular, centrally perforated disc 26, 39.
- a central tie rod 7 which braces the turbine disks 39 and compressor disks 26 with each other. Further, for bridging the distance caused by the combustion chamber 6, between the compressor 5 and the turbine unit 11 between the compressor disk 26 of the last compressor stage 21 and the turbine disk 39 of the first turbine stage 34, a hollow shaft 13 is arranged.
- the compressor 5 sucks in ambient air and compresses it.
- the compressed air is mixed with a fuel and fed to the combustion chamber 6, in which the mixture is burned to a hot working medium M.
- the latter flows from the combustion chamber 6 in the turbine unit 11 and drives by means of the blades 15 to the rotor 3 of the gas turbine 1, which drives the compressor 5 and a working machine, for example a generator.
- the torque acting on the blades of the turbine unit and generated by the working fluid is transmitted to the generator as useful energy and to the compressor as driving energy for compressing the ambient air. Therefore, the hollow shaft must transmit the required for the compression of the ambient air in the compressor drive energy from the turbine disk of the first turbine stage to the compressor disk of the last compressor stage.
- the combustion chamber of the gas turbine which can heat inadmissible this axial region of the rotor during operation.
- thermal stresses can occur, which can weaken the strength as well as rigidity of the hollow shaft, so that the mechanical stress occurring can cause premature fatigue of the material of the hollow shaft.
- a rotor for a compressor which is formed from a plurality of axially adjacent, tensioned compressor disks.
- the compressor discs have a central opening which forms a hollow shaft.
- the shows GB 661,078 a hollow shaft for a gas turbine rotor, which is formed from two adjacent pipe sections radially within the combustion chamber.
- the object of the invention is to provide a rotor for a turbomachine, which has a longer service life and a lower susceptibility to mechanical defects. It is another object of the invention to provide a turbomachine for this purpose.
- the invention provides in the case of the rotor mentioned at the outset that one of the two sections of the rotor is formed by a compressor disk and the other section is formed by a turbine disk and the rotor has at least one tie rod extending parallel to the axis of rotation, which clamps the disks and the ring extends therethrough, each ring being I-shaped in cross-section, the land of the I-shape extending in the radial direction of the rotor.
- the invention is based on the consideration that the hollow shaft, which is subject to high mechanical and thermal loads, is replaced in the region of the combustion chamber by a plurality of contiguous and comparatively short rings in the axial direction.
- the mechanical stresses can be significantly reduced.
- the stresses and the resulting resulting creep deformations are reduced. This increases the life of each ring.
- the hollow shaft by transmission of the energy required by the compressor over its axial length especially stressed on torsion.
- the axial length of a ring over the previous overall lengths of the hollow shaft is greatly shortened, so that each ring is much less stressed to torsion. Therefore, the mechanical loads are further reduced with the invention.
- one of the two sections is designed as a compressor disk and the other as a turbine disk, the power required to compress the intake ambient air at the compressor is transmitted without loss from the turbine unit to the compressor by means of the rings arranged therebetween.
- the rings with their webs extending in the radial direction, effect a better thermal insulation of the central hollow space by means of an intermediate further hollow space with respect to a radially outer area, so that colder air is present in the hollow space on the surfaces of the component. Consequently, the areas with particularly high mechanical loads during operation of the turbomachine below a transition temperature required for the creep (activation energy) are operated, so that especially at this point creep can be avoided. Thus, the thermal load of the rings is further reduced, which allows a higher mechanical load.
- the I-shaped cross section of the rings allows a particularly stiff, lightweight and mechanically resilient design of the ring.
- the rotor has at least one tie rod extending parallel to the axis of rotation.
- the sections of the rotor are each formed by a disc, wherein the at least one tie rod for bracing the discs and the rings extends through them.
- the tie rod extends centrally through the discs and through the rings.
- the tie rod which is centrally arranged relative to the axis of rotation, can clamp the stacked rings and disks of the compressor and of the turbine unit and at the same time be used for the axial and radial bearing of the rotor.
- the rotor has a plurality of tie rods spaced apart from the axis of rotation, which extend through the disks and the rings.
- the application of the multi-piece hollow shaft is thus also applicable to rotors, which provides the tension with multiple tie rods.
- each ring and each section has positive-locking means for transmitting the torque of the rotor from one of the two sections to the opposite section.
- a known loss as loss relative movement in the circumferential direction between the immediately adjacent rings or between a ring and a portion can thus be effectively avoided.
- the means for transmitting the torque at the end faces of the ring and at which the portions are designed as spur toothing in the manner of a Hirth toothing This positive engagement allows a slip-free operation of the rotor.
- an axially extending flange is arranged at each end of the web, so that between two adjacent rings and between the radially inner flanges and the radially outer flanges, a further cavity is formed.
- This allows a spatial separation of a region of the combustion chamber radially outer and relatively hot outer region of a closed by the rings central cavity.
- the heat input from the outer region into the rings, in particular into the radially inner flanges of the rings can be reduced, since the further cavity isolates the central cavity from the outer region, so that colder air is present in the cavity on the surfaces of the component.
- the further cavities may be in fluid communication with each other via passages located in the webs. Either the connections between two adjacent further cavities leads to a faster and more uniform insulating effect, or they serve as connection channels for the cooling medium, if this compressor side in the form of compressor air in the other cavity can be supplied and removed turbine side. In this case, in the compressor, the compressor air can take place both by removal openings arranged in the rotor or behind the compressor by a suitable device.
- the cavity can be flowed through in the axial direction by a cooling medium.
- the rings and the portions for sealing the cavity have labyrinth-like sealing means.
- the sealing means may be provided on the flanges of the rings, on which no means for transmitting the torque are provided.
- a flange of the ring may be designed comparatively broad in its radial material thickness, which then transmits the torque, and the other flange be designed comparatively narrow, which then serves only for sealing the cavity to the outside and to form the further cavity.
- the cooling air cools the rings so that the average component temperature decreases.
- the invention leads to the solution of the task directed to an initially mentioned turbomachine, that the rotor is designed according to one of claims 1 to 11.
- turbomachine is designed as a gas turbine and in which the gas turbine along the rotor successively a compressor, at least one combustion chamber and a turbine unit, wherein one of the two sections by a compressor disc arranged in the compressor and the other section is formed by a turbine disk arranged in the turbine unit.
- FIG. 1 shows a rotor 3 of a gas turbine 1 with a central tie rod 7 in a longitudinal section in the region between compressor 5 and turbine unit 11. From the compressor 5, a flow channel 23 is shown with only the last compressor stage 21. Along the rotatable about the rotation axis 2 rotor 3 follows a compressor outlet 25, a diffuser 27 and a combustion chamber 29. The latter has a combustion chamber 31, which opens into a hot gas duct 33 of a turbine unit 11.
- rotatable guide vanes 12 are mounted in rings 19. These are upstream of blades 15, which are mounted on the rotor 3 by means of a compressor disk 26.
- the hot gas passage 33 has vanes 35 and further downstream blades 37.
- the stationary vanes 35 are connected to the housing of the gas turbine 1, whereas the blades 37 are fixed to a turbine disk 39.
- the rotor 3 has, between the compressor disk 26 and the turbine disk 39, three axially successive rings 43 instead of the one-piece hollow shaft known from the prior art.
- each ring 43 is I-shaped in cross section, so that two flanges 45, 46 extending in the axial direction of the tie rod 7 are connected to one another via a web 47 extending in the radial direction.
- central tie rod 7 Between the outer periphery of the central tie rod 7 and an inner surface 49 formed by the radially inner flanges 46, there is formed an axially extending central cavity 51 suitable for guiding a cooling fluid such as compressor air.
- a cooling fluid such as compressor air.
- the cavity 51 is annular in cross-section.
- the serration is arranged, with which the torque of the rotor 3 is passed from the turbine disk 39 via the rings 43 to the compressor disk 26.
- the end faces 57 of the turbine disk 39 and the compressor disk 26 likewise have the serration.
- the radially inner flanges 46 of the rings 43 have on their end faces 59 labyrinth-like seals 62, which seal the cavity 51 against the outer region 61.
- the outer flanges 45 pass through the torque from one end face 55 to its opposite end face 55, the outer flanges 45 have a greater width in the radial direction than the inner flanges 46, which carry only the seals 62.
- air is compressed by the compressor 5 in the flow channel 23 of the compressor 5, wherein a proportion of the compressed air as cooling air through disc bores 24 is removed and guided according to the arrows 63 along the tie rod 7 from the compressor-side end of the cavity 51 to the turbine end.
- Disc bores 24 located in the turbine disk 39 from inner diameter to outer diameter guide the cooling air to the blades 37 of the first turbine stage 34. The cooling air cools the blades 37 and then escapes into the hot gas passage 33.
- the labyrinth seals 65 and the seals 62 provided between tie rods 7 and disks 26, 39 prevent escape of the cooling air from the cavity 51.
- FIG. 2 shows a rotor 3 of a gas turbine 1 with a plurality of tie rods 8 in a longitudinal section in the region between the compressor 5 and the turbine unit 11.
- FIG. 1 shows FIG. 2 the compressor 5, the combustion chamber 6, the turbine unit 11 and the rotor 3 assembled from compressor disks 26, turbine disks 39 and rings 43
- FIG. 1 shown central tie rod 7 is in FIG. 2 one of a plurality of spaced apart from the axis of rotation 2 decentralized tie rods 8 is shown.
- the decentralized tie rod 8 is so spaced from the axis of rotation 2 that the webs 47 of the rings 43 are penetrated by him.
- the distance could be chosen so that the tie rod 8 pierces the flanges 45 of the rings.
- FIG. 3 a tensioned with a central tie rod rotor, in which, for example in a radially outer flange 45 of the compressor side arranged ring 43 holes 71 may be provided through which still comparatively cool Verreterend Kunststoff in a formed between the radially inner and radially outer flanges 45, 46 cavity 66th This leads to a more uniform and faster temperature control of the rotor 3, which can be used to positively influence the radial gap formed by rotor blades and guide rings.
- the cooling air flowing into the further cavity 66 is guided through passages 72 located in the webs 47 in the direction of the turbine unit and further via disk bores 24 to the turbine blades 27 of the first turbine stage, where it can be used as cooling air.
- the central cavity 51 serves in this case as a supply channel for cooling air for the turbine blades 37 of the second turbine stage 34th
- a gap 69 can be made possible between the compressor disk 26 and the radially inner flange 46 of the ring 43 resting against it, in order to bring about a targeted supply of cooling air into a further cavity 66 'radially delimited by the flanges 45, 46.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft einen Rotor für eine Strömungsmaschine, mit einer zu seiner Drehachse koaxial angeordneten Hohlwelle, welche sich beidseitig stirnseitig an zwei axial gegenüberliegenden Abschnitten des Rotors abstützt, einen inneren zentralen Hohlraum umschließt und in Axialrichtung des Rotors aus mehreren aneinander liegenden Ringen gebildet ist, so dass die aneinander liegenden und an den Abschnitten anliegenden Ringe den Hohlraum nach außen begrenzen. Ferner betrifft die Erfindung eine Strömungsmaschine mit solch einem Rotor.The invention relates to a rotor for a turbomachine, with a hollow shaft arranged coaxially with respect to its axis of rotation, which is supported on both sides on two axially opposite sections of the rotor, encloses an inner central cavity and is formed in the axial direction of the rotor of a plurality of contiguous rings that the adjacent and adjacent to the sections rings limit the cavity to the outside. Furthermore, the invention relates to a turbomachine with such a rotor.
Gasturbinen und deren Arbeitsweisen sind allgemein bekannt. Hierzu zeigt die
Beim Betrieb der Gasturbine 1 saugt der Verdichter 5 Umgebungsluft an und verdichtet diese. Die verdichtete Luft wird mit einem Brennstoff vermischt und der Brennkammer 6 zugeführt, in der das Gemisch zu einem heißen Arbeitsmedium M verbrannt wird. Letzteres strömt aus der Brennkammer 6 in die Turbineneinheit 11 und treibt mittels der Laufschaufeln 15 den Rotor 3 der Gasturbine 1 an, welcher den Verdichter 5 und eine Arbeitsmaschine, zum Beispiel einen Generator antreibt.During operation of the gas turbine 1, the
Das auf die Laufschaufeln der Turbineneinheit wirkende und von dem Arbeitsmedium erzeugte Drehmoment wird an den Generator als Nutzenergie und an den Verdichter als Antriebsenergie zum Verdichten der Umgebungsluft weitergegeben. Daher muss die Hohlwelle die für das Verdichten der Umgebungsluft im Verdichter erforderliche Antriebsenergie von der Turbinenscheibe der ersten Turbinenstufe an die Verdichterscheibe der letzten Verdichterstufe übertragen.The torque acting on the blades of the turbine unit and generated by the working fluid is transmitted to the generator as useful energy and to the compressor as driving energy for compressing the ambient air. Therefore, the hollow shaft must transmit the required for the compression of the ambient air in the compressor drive energy from the turbine disk of the first turbine stage to the compressor disk of the last compressor stage.
Diese Anordnung innerhalb der Gasturbine bedingt, dass die Hohlwelle besonders hohen mechanischen Belastungen ausgesetzt ist. Diese Belastungen können zu Kriechverformungen und zu Defekten führen, was dann zu einer Reduzierung der Lebensdauer des Rotors führt.This arrangement within the gas turbine requires that the hollow shaft is exposed to particularly high mechanical loads. These stresses can lead to creep and defects, which then leads to a reduction in the life of the rotor.
Ferner liegt radial benachbart zur Hohlwelle die Brennkammer der Gasturbine, welche diesen axialen Bereich des Rotors beim Betrieb unzulässig erwärmen kann. Somit können auch thermische Belastungen auftreten, welche die Festigkeit wie auch Steifigkeit der Hohlwelle schwächen können, so dass die auftretende mechanische Belastung eine vorzeitige Ermüdung des Materials der Hohlwelle hervorrufen kann.Further, radially adjacent to the hollow shaft, the combustion chamber of the gas turbine, which can heat inadmissible this axial region of the rotor during operation. Thus, thermal stresses can occur, which can weaken the strength as well as rigidity of the hollow shaft, so that the mechanical stress occurring can cause premature fatigue of the material of the hollow shaft.
Zudem ist aus der
Ferner zeigt die
Die Aufgabe der Erfindung ist es, einen Rotor für eine Strömungsmaschine anzugeben, der eine höhere Lebensdauer und eine geringere Anfälligkeit gegenüber mechanischen Defekten aufweist. Ferner ist es Aufgabe der Erfindung, hierzu eine Strömungsmaschine anzugeben.The object of the invention is to provide a rotor for a turbomachine, which has a longer service life and a lower susceptibility to mechanical defects. It is another object of the invention to provide a turbomachine for this purpose.
Die auf den Rotor gerichtete Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.The object directed to the rotor is solved by the features of claim 1. Advantageous developments are specified in the subclaims.
Betreffend den Rotor sieht die Erfindung bei dem eingangs genannten Rotor vor, dass der eine der beiden Abschnitte des Rotors durch eine Verdichterscheibe und der andere Abschnitt durch eine Turbinenscheibe gebildet ist und der Rotor zumindest einen parallel zur Drehachse verlaufenden Zuganker aufweist, welcher zum Verspannen der Scheiben und der Ringe sich durch diese erstreckt, wobei jeder Ring im Querschnitt I-förmig ausgebildet ist, wobei der Steg der I-Form in Radialrichtung des Rotors verläuft.With regard to the rotor, the invention provides in the case of the rotor mentioned at the outset that one of the two sections of the rotor is formed by a compressor disk and the other section is formed by a turbine disk and the rotor has at least one tie rod extending parallel to the axis of rotation, which clamps the disks and the ring extends therethrough, each ring being I-shaped in cross-section, the land of the I-shape extending in the radial direction of the rotor.
Die Erfindung geht von der Überlegung aus, dass die sowohl mechanisch als auch thermisch hoch belastete Hohlwelle im Bereich der Brennkammer durch mehrere aneinander liegende und in Axialrichtung vergleichsweise kurze Ringe ersetzt wird. Durch diese grundlegende konstruktive Umgestaltung lassen sich die mechanischen Beanspruchungen erheblich reduzieren. In dem Bereich der Ringe mit hohen Materialtemperaturen, die aufgrund der radial weiter außen angeordneten Brennkammer entstehen, werden die Spannungen und die daraus möglicherweise resultierenden Kriechverformungen verringert. Dadurch wird die Lebensdauer jedes Ringes vergrößert.The invention is based on the consideration that the hollow shaft, which is subject to high mechanical and thermal loads, is replaced in the region of the combustion chamber by a plurality of contiguous and comparatively short rings in the axial direction. Through this fundamental structural transformation, the mechanical stresses can be significantly reduced. In the region of the rings with high material temperatures, which arise due to the radially outwardly disposed combustion chamber, the stresses and the resulting resulting creep deformations are reduced. This increases the life of each ring.
Bisher wurde die Hohlwelle durch Übertragung der vom Verdichter benötigten Energie über ihre axiale Länge besonders auf Torsion beansprucht. Mittels der Erfindung ist die axiale Länge eines Ringes gegenüber den bisherigen Baulängen der Hohlwelle stark verkürzt, so dass jeder Ring wesentlich geringer auf Torsion beansprucht wird. Daher werden mit der Erfindung die mechanischen Belastungen weiter verringert.So far, the hollow shaft by transmission of the energy required by the compressor over its axial length especially stressed on torsion. By means of the invention, the axial length of a ring over the previous overall lengths of the hollow shaft is greatly shortened, so that each ring is much less stressed to torsion. Therefore, the mechanical loads are further reduced with the invention.
Da einer der beiden Abschnitte ist als eine Verdichterscheibe und die andere als Turbinenscheibe ausgebildet, wird die zum Verdichten der angesaugten Umgebungsluft am Verdichter erforderliche Leistung verlustfrei von der Turbineneinheit zum Verdichter mittels der dazwischen angeordneten Ringe übertragen.Since one of the two sections is designed as a compressor disk and the other as a turbine disk, the power required to compress the intake ambient air at the compressor is transmitted without loss from the turbine unit to the compressor by means of the rings arranged therebetween.
Des Weiteren bewirken die Ringe mit ihren in Radialrichtung sich erstreckenden Stegen durch einen zwischengeschalteten weiteren Hohlraum eine bessere thermische Isolation des zentralen Hohlraums gegenüber einem radial weiter außen liegenden Außenbereich, so dass kältere Luft im Hohlraum an den Oberflächen des Bauteils ansteht. Folglich werden die Bereiche mit besonders hohen mechanischen Belastungen beim Betrieb der Strömungsmaschine unterhalb einer für das Kriechen erforderlichen Übergangstemperatur (Aktivierungsenergie) betrieben, so dass besonders an dieser Stelle Kriechverformungen vermieden werden können. Es wird also die thermische Belastung der Ringe weiter reduziert, welches eine höhere mechanische Belastung ermöglicht.Furthermore, the rings, with their webs extending in the radial direction, effect a better thermal insulation of the central hollow space by means of an intermediate further hollow space with respect to a radially outer area, so that colder air is present in the hollow space on the surfaces of the component. Consequently, the areas with particularly high mechanical loads during operation of the turbomachine below a transition temperature required for the creep (activation energy) are operated, so that especially at this point creep can be avoided. Thus, the thermal load of the rings is further reduced, which allows a higher mechanical load.
Zudem ermöglicht der I-förmige Querschnitt der Ringe eine besonders steife, leichte und mechanisch belastbare Ausgestaltung des Rings.In addition, the I-shaped cross section of the rings allows a particularly stiff, lightweight and mechanically resilient design of the ring.
Darüber hinaus kann dem allgemeinen Bestreben zur Minderung der Herstellungskosten Rechnung getragen werden, da aufgrund der geringeren Beanspruchung ein preiswerterer Werkstoff, beispielsweise 26NiCrMo26145mod für die Ringe eingesetzt werden kann, verglichen mit dem Werkstoff für eine einstückige Hohlwelle aus dem Stand der Technik.In addition, the general effort to reduce manufacturing costs can be taken into account, since due to the lower stress a cheaper material, such as 26NiCrMo26145mod can be used for the rings, compared to the material for a one-piece hollow shaft from the prior art.
Gemäß einer Weiterbildung der Erfindung weist der Rotor zumindest einen parallel zur Drehachse verlaufenden Zuganker auf. Die Abschnitte des Rotors werden jeweils durch eine Scheibe gebildet, wobei der zumindest eine Zuganker zum Verspannen der Scheiben und der Ringe sich durch diese erstreckt. Dieser komponentenartige Aufbau des Rotors ermöglicht im unwahrscheinlichen Falle eines Defektes am Ring oder an einer Scheibe das Ersetzen des betroffenen Bauteils.According to one embodiment of the invention, the rotor has at least one tie rod extending parallel to the axis of rotation. The sections of the rotor are each formed by a disc, wherein the at least one tie rod for bracing the discs and the rings extends through them. This component-like structure of the rotor allows the replacement of the affected component in the unlikely event of a defect on the ring or on a disc.
In einer besonders vorteilhaften Weiterbildung der Erfindung erstreckt der Zuganker sich zentral durch die Scheiben und durch die Ringe. Somit kann der zu der Drehachse zentrisch angeordnete Zuganker die gestapelten Ringe und Scheiben des Verdichters und der Turbineneinheit verspannen und gleichzeitig zum axialen und radialen Lagern des Rotors verwendet werden.In a particularly advantageous embodiment of the invention, the tie rod extends centrally through the discs and through the rings. Thus, the tie rod, which is centrally arranged relative to the axis of rotation, can clamp the stacked rings and disks of the compressor and of the turbine unit and at the same time be used for the axial and radial bearing of the rotor.
Im Rahmen einer vorteilhaften Weiterbildung weist der Rotor mehrere zur Drehachse beabstandete Zuganker auf, die sich durch die Scheiben und die Ringe erstrecken. Die Anwendung der mehrstückig ausgebildeten Hohlwelle ist somit auch auf Rotoren anwendbar, welche die Verspannung mit mehreren Zugankern vorsieht.In the context of an advantageous development, the rotor has a plurality of tie rods spaced apart from the axis of rotation, which extend through the disks and the rings. The application of the multi-piece hollow shaft is thus also applicable to rotors, which provides the tension with multiple tie rods.
Gemäß einer besonders bevorzugten Weiterbildung weist jeder Ring und jeder Abschnitt formschlüssige Mittel zur Übertragung des Drehmoments des Rotors von einem der beiden Abschnitte zum gegenüberliegenden Abschnitt auf. Eine als Schlupf bekannte verlustbehaftete Relativbewegung in Umfangsrichtung zwischen den unmittelbar benachbarten Ringen bzw. zwischen einem Ring und einem Abschnitt kann somit wirksam vermieden werden.According to a particularly preferred development, each ring and each section has positive-locking means for transmitting the torque of the rotor from one of the two sections to the opposite section. A known loss as loss relative movement in the circumferential direction between the immediately adjacent rings or between a ring and a portion can thus be effectively avoided.
Zweckmäßigerweise sind die Mittel zur Übertragung des Drehmoments an den Stirnseiten des Rings und an denen der Abschnitte als Stirnverzahnung nach Art einer Hirthverzahnung ausgebildet. Diese formschlüssige Verzahnung ermöglicht einen schlupffreien Betrieb des Rotors.Conveniently, the means for transmitting the torque at the end faces of the ring and at which the portions are designed as spur toothing in the manner of a Hirth toothing. This positive engagement allows a slip-free operation of the rotor.
In einer besonders vorteilhaften Ausgestaltung ist an jedem Ende des Stegs jeweils ein sich in Axialrichtung erstreckender Flansch angeordnet, so dass zwischen zwei benachbarten Ringen und zwischen deren radial inneren Flanschen und deren radial äußeren Flanschen ein weiterer Hohlraum gebildet ist. Dies ermöglicht eine räumliche Trennung eines im Bereich der Brennkammer radial außen liegenden und vergleichsweise heißen Außenbereichs von einem von den Ringen eingeschlossenen zentralen Hohlraum. Der Wärmeeintrag aus dem Außenbereich in die Ringe, insbesondere in die radial inneren Flansche der Ringe, kann verringert werden, da der weitere Hohlraum den zentralen Hohlraum gegenüber dem Außenbereich isoliert, so dass kältere Luft im Hohlraum an den Oberflächen des Bauteils ansteht.In a particularly advantageous embodiment, in each case an axially extending flange is arranged at each end of the web, so that between two adjacent rings and between the radially inner flanges and the radially outer flanges, a further cavity is formed. This allows a spatial separation of a region of the combustion chamber radially outer and relatively hot outer region of a closed by the rings central cavity. The heat input from the outer region into the rings, in particular into the radially inner flanges of the rings, can be reduced, since the further cavity isolates the central cavity from the outer region, so that colder air is present in the cavity on the surfaces of the component.
Unabhängig davon, ob der weitere Hohlraum als nicht durchströmter Isolierraum oder zur Führung eines weiteren Kühlfluids genutzt wird, können zumindest teilweise die weiteren Hohlräume über in den Stegen befindlichen Pasagen miteinander in Strömungsverbindung stehen. Entweder führt die Verbindungen zwischen zwei benachbarten weiteren Hohlräumen zu einer schnelleren und gleichmäßigeren Isolierwirkung, oder sie dienen als Verbindungskanäle für das Kühlmedium, wenn dieses in Form von Verdichterluft verdichterseitig in den weiteren Hohlraum zuführbar und turbinenseitig entnehmbar ist. Dabei kann im Verdichter die Verdichterluft sowohl durch im Rotor angeordnete Entnahmeöffnungen erfolgen oder hinter dem Verdichter durch eine geeignete Vorrichtung.Regardless of whether the additional cavity is used as a non-perfused insulating space or for guiding a further cooling fluid, at least partially the further cavities may be in fluid communication with each other via passages located in the webs. Either the connections between two adjacent further cavities leads to a faster and more uniform insulating effect, or they serve as connection channels for the cooling medium, if this compressor side in the form of compressor air in the other cavity can be supplied and removed turbine side. In this case, in the compressor, the compressor air can take place both by removal openings arranged in the rotor or behind the compressor by a suitable device.
Diese Ausgestaltungen führen jeweils zu einer Temperatursenkung des Ringmaterials, so dass schädliche Kriechverformungen vermieden werden.These embodiments each lead to a decrease in temperature of the ring material, so that harmful creep deformations are avoided.
Ferner ist der Hohlraum in Axialrichtung von einem Kühlmedium durchströmbar. Dabei weisen die Ringe und die Abschnitte zum Abdichten des Hohlraums labyrinthartige Dichtmittel auf. Da die Ringe gegeneinander und gegenüber den Abschnitten den Hohlraum nach außen abdichten, kann die Kühlluft vom Verdichter durch den Hohlraum zur Turbineneinheit verlustfrei geleitet werden, ohne dass Leckagen auftreten. Die Dichtmittel können dabei an den Flanschen der Ringe vorgesehen sein, an denen keine Mittel zur Übertragung des Drehmoments vorgesehen sind. Somit kann ein Flansch des Rings in seiner radialen Materialstärke vergleichsweise breit ausgelegt sein, der dann das Drehmoment überträgt, und der andere Flansch vergleichsweise schmal ausgelegt sein, der dann lediglich zum Abdichten des Hohlraums nach außen hin und zur Bildung der weiteren Hohlraums dient.Furthermore, the cavity can be flowed through in the axial direction by a cooling medium. In this case, the rings and the portions for sealing the cavity have labyrinth-like sealing means. There the rings against each other and against the sections seal the cavity to the outside, the cooling air from the compressor through the cavity to the turbine unit can be routed lossless without leaks occur. The sealing means may be provided on the flanges of the rings, on which no means for transmitting the torque are provided. Thus, a flange of the ring may be designed comparatively broad in its radial material thickness, which then transmits the torque, and the other flange be designed comparatively narrow, which then serves only for sealing the cavity to the outside and to form the further cavity.
Darüber hinaus kühlt die Kühlluft die Ringe, so dass sich die mittlere Bauteiltemperatur verringert.In addition, the cooling air cools the rings so that the average component temperature decreases.
Die Erfindung führt zur Lösung der auf eine eingangs genannte Strömungsmaschine gerichteten Aufgabe an, dass der Rotor nach einem der Ansprüche 1 bis 11 ausgebildet ist.The invention leads to the solution of the task directed to an initially mentioned turbomachine, that the rotor is designed according to one of claims 1 to 11.
Besonders vorteilhaft ist die Weiterbildung, bei der die Strömungsmaschine als Gasturbine ausgebildet ist und bei der die Gasturbine entlang des Rotors aufeinander folgend einen Verdichter, zumindest eine Brennkammer und eine Turbineneinheit aufweist, wobei einer der beiden Abschnitte durch eine im Verdichter angeordnete Verdichterscheibe und der andere Abschnitt durch eine in der Turbineneinheit angeordnete Turbinenscheibe gebildet ist.Particularly advantageous is the development in which the turbomachine is designed as a gas turbine and in which the gas turbine along the rotor successively a compressor, at least one combustion chamber and a turbine unit, wherein one of the two sections by a compressor disc arranged in the compressor and the other section is formed by a turbine disk arranged in the turbine unit.
Ferner gelten die für den Rotor beschriebenen Vorteile sinngemäß auch für die Strömungsmaschine.Furthermore, the advantages described for the rotor apply mutatis mutandis to the turbomachine.
Die Erfindung wird anhand einer Zeichnung erläutert. Es zeigt:
- FIG 1
- einen Rotor einer Gasturbine mit einem zentralen Zuganker in einem Längsschnitt im Bereich zwischen Verdichter und Turbineneinheit,
- FIG 2
- einen Rotor einer Gasturbine mit mehreren Zugankern in einem Längsschnitt im Bereich zwischen Verdichter und Turbineneinheit,
- FIG 3
- einen alternativ ausgestalteten Rotor einer Gasturbine mit einem zentralen Zuganker in einem Längsschnitt im Bereich zwischen Verdichter und Turbineneinheit und
- FIG 4
- eine Gasturbine nach dem Stand der Technik in einem Längsteilschnitt.
- FIG. 1
- a rotor of a gas turbine with a central tie rod in a longitudinal section in the area between Compressor and turbine unit,
- FIG. 2
- a rotor of a gas turbine with several tie rods in a longitudinal section in the region between compressor and turbine unit,
- FIG. 3
- an alternatively configured rotor of a gas turbine with a central tie rod in a longitudinal section in the region between compressor and turbine unit and
- FIG. 4
- a gas turbine according to the prior art in a longitudinal section.
Eine gemäß dem vorab beschriebenen Stand der Technik ausgebildete Gasturbine 1 zeigt
Im Strömungskanal 23 des Verdichters 5 sind in Kränzen 19 drehfeste Leitschaufeln 12 befestigt. Diesen sind Laufschaufeln 15 vorgeschaltet, welche am Rotor 3 mittels einer Verdichterscheibe 26 montiert sind.In the
Der Heißgaskanal 33 weist Leitschaufeln 35 und weiter stromabwärts Laufschaufeln 37 auf. Die feststehenden Leitschaufeln 35 sind mit dem Gehäuse der Gasturbine 1 verbunden, wohingegen die Laufschaufeln 37 an einer Turbinenscheibe 39 befestigt sind.The
Der Rotor 3 weist zwischen der Verdichterscheibe 26 und der Turbinenscheibe 39 anstelle der aus dem Stand der Technik bekannten einstückigen Hohlwelle drei axial aufeinander folgende Ringe 43 auf. Dabei ist jeder Ring 43 im Querschnitt I-förmig, so dass zwei in Axialrichtung des Zugankers 7 erstreckende Flansche 45, 46 über einen in Radialrichtung verlaufenden Steg 47 miteinander verbunden sind.The
Zwischen dem Außenumfang des zentralen Zugankers 7 und einer von den radial inneren Flanschen 46 gebildeten, inneren Oberfläche 49 ist ein sich in Axialrichtung erstreckender zentraler Hohlraum 51 geformt, welcher zur Führung eines Kühlfluids, beispielsweise Verdichterluft, geeignet ist. Bei der in
An den Stirnseiten 55 der radial außenliegenden Flansche 45 ist die Hirthverzahnung angeordnet, mit welcher das Drehmoment des Rotors 3 von der Turbinenscheibe 39 über die Ringe 43 an die Verdichterscheibe 26 weitergegeben wird. Dazu weisen die Stirnseiten 57 der Turbinenscheibe 39 und der Verdichterscheibe 26 ebenfalls die Hirthverzahnung auf.At the end faces 55 of the radially
Die radial innenliegenden Flansche 46 der Ringe 43 weisen an ihren Stirnseiten 59 labyrinthartige Dichtungen 62 auf, welche den Hohlraum 51 gegen den außenliegenden Bereich 61 abdichten.The radially
Da die außen liegenden Flansche 45 das Drehmoment von einer Stirnseite 55 zur ihrer gegenüberliegenden Stirnseite 55 durchreichen, weisen die äußeren Flansche 45 in Radialrichtung eine größere Breite auf als die inneren Flansche 46, welche lediglich die Dichtungen 62 tragen.Since the
Beim Betrieb der Gasturbine 1 wird Luft vom Verdichter 5 im Strömungskanal 23 des Verdichters 5 verdichtet, wobei ein Anteil der verdichteten Luft als Kühlluft durch Scheibenbohrungen 24 entnommen und gemäß den Pfeilen 63 entlang des Zugankers 7 vom verdichterseitigen Ende des Hohlraums 51 zum turbinenseitigen Ende geführt wird. In der Turbinenscheibe 39 vom inneren Durchmesser bis zum äußeren Durchmesser befindliche Scheibenbohrungen 24 führen die Kühlluft zu den Laufschaufeln 37 der ersten Turbinenstufe 34. Die Kühlluft kühlt die Laufschaufeln 37 und entweicht anschließend in den Heißgaskanal 33.During operation of the gas turbine 1, air is compressed by the
Die zwischen Zuganker 7 und Scheiben 26, 39 vorgesehenen Labyrinthdichtungen 65 und die Dichtungen 62 verhindern ein Entweichen der Kühlluft aus dem Hohlraum 51.The labyrinth seals 65 and the seals 62 provided between
Wie
Im Abweichung zur
Die in die den weiteren Hohlraum 66" einströmende Kühlluft wird durch in den Stegen 47 befindlichen Passagen 72 in Richtung der Turbineneinheit und weiter über Scheibenbohrungen 24 zu den Turbinenschaufeln 27 der ersten Turbinenstufe geführt, wo sie als Kühlluft eingesetzt werden kann.The cooling air flowing into the
Der zentrale Hohlraum 51 dient für diesen Fall als Versorgungskanal für Kühlluft für die Turbinenschaufeln 37 der zweiten Turbinenstufe 34.The
Es kann optional ein Spalt 69 zwischen der Verdichterscheibe 26 und dem radial inneren Flansch 46 des an ihr anliegenden Rings 43 ermöglicht sein, um eine gezielte Zuführung von Kühlluft in einen von den Flanschen 45, 46 radial begrenzten weiteren Hohlraums 66' herbeizuführen.Optionally, a
Claims (13)
- Rotor (3) for a turbo-engine,
with a hollow shaft installed coaxially to its rotational axis, which on both sides on the end face is supported on two axially oppositely disposed sections of the rotor (3) and encloses an inner cavity (51) and in the axial direction of the rotor (3) is formed from a plurality of abutting rings (43) so that the rings (43) reciprocally abutting and abutting upon the sections externally define the cavity (51),
wherein one of the two sections of the rotor (3) is formed by a compressor disk (26) and the other section is formed by a turbine disk (39) and the rotor (3) has at least one tension bolt (7,8) extending parallel to the rotational axis, which tension bolt (7,8) for the clamping of the disks (26,39) and the rings (43) extends through these,
characterized in that,
each ring (43) is constructed I-shaped in cross section, wherein the web (47) of the I-shape extends in the radial direction of the rotor (3). - Rotor (3) according to Claim 1,
characterized in that,
the tension bolt (7) extends centrally through the disks (26,39) and the rings (43). - Rotor (3) according to Claim 2,
characterized in that,
the rotor (3) has a plurality of tension bolts (8) spaced away from the rotational axis, which extend through the disks (26,39) and the rings (43). - Rotor (3) according to Claims 1, 2 or 3,
characterized in that,
each ring (43) and each section has positive-locking means for the transmission of the torque of the rotor (3) from one of the two sections to the oppositely disposed section. - Rotor (3) according to Claim 4,
characterized in that,
the means for the transmission of the torque to the end faces (55) of the ring (43) and to those of the sections are constructed in the fashion of a Hirth-type toothing. - Rotor (3) according to one of the Claims 1 to 5,
characterized in that,
a flange (45,46) extending in each case in the axial direction is installed on each end of the web (47) so that between two adjacent rings (43) and between their radially inner flanges (46) and their radially outer flanges (45) an additional cavity (66) for the guiding of a cooling fluid is formed. - Rotor according to Claim 6,
characterized in that,
the cavities (66) are at least partially in flow communication with one another by passages (72) located in the webs (47). - Rotor according to Claim 6 or 7,
characterized in that,
as cooling fluid compressor air is feedable into the additional cavity (66) and is extractable in the region of the turbine stage. - Rotor (3) according to one of the Claims 1 to 8,
characterized in that,
the rings (43) on their oppositely disposed flanges (45) have areas upon which the Hirth-type toothing is provided. - Rotor (3) according to one of the Claims 1 to 9,
characterized in that,
the cavity (51) in the axial direction is flow-washable by a cooling fluid and
the rings (43) and the sections have labyrinth-like sealing means for the sealing of the cavity (51). - Turbo-engine with a rotor (3),
characterized in that,
the rotor (3) is constructed according to one of the Claims 1 to 10. - Turbo-engine according to Claim 11,
characterized in that,
the turbo-engine is constructed as a gas turbine (1). - Turbo-engine according to Claim 12,
characterized in that,
the gas turbine (1) has in series along the rotor (3) a compressor (5), at least one combustion chamber (6) and a turbine unit (11).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14002196.5A EP2787168B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine with hollow shaft |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04006393A EP1577493A1 (en) | 2004-03-17 | 2004-03-17 | Turbomachine and rotor for a turbomachine |
EP14002196.5A EP2787168B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine with hollow shaft |
EP05715935.2A EP1725741B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05715935.2A Division-Into EP1725741B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine |
EP05715935.2A Division EP1725741B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2787168A2 EP2787168A2 (en) | 2014-10-08 |
EP2787168A3 EP2787168A3 (en) | 2015-04-15 |
EP2787168B1 true EP2787168B1 (en) | 2016-01-06 |
Family
ID=34833623
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04006393A Withdrawn EP1577493A1 (en) | 2004-03-17 | 2004-03-17 | Turbomachine and rotor for a turbomachine |
EP14002196.5A Active EP2787168B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine with hollow shaft |
EP05715935.2A Active EP1725741B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04006393A Withdrawn EP1577493A1 (en) | 2004-03-17 | 2004-03-17 | Turbomachine and rotor for a turbomachine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05715935.2A Active EP1725741B1 (en) | 2004-03-17 | 2005-03-10 | Rotor for a turbomachine |
Country Status (6)
Country | Link |
---|---|
US (1) | US7585148B2 (en) |
EP (3) | EP1577493A1 (en) |
JP (1) | JP4722120B2 (en) |
CN (1) | CN101010486B (en) |
RU (1) | RU2347912C2 (en) |
WO (1) | WO2005093219A1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1970530A1 (en) | 2007-03-12 | 2008-09-17 | Siemens Aktiengesellschaft | Rotor of a thermal fluid flow engine and fluid flow engine |
EP2414637A2 (en) * | 2009-04-01 | 2012-02-08 | Siemens Aktiengesellschaft | Rotor for a turbomachine |
IT1399904B1 (en) * | 2010-04-21 | 2013-05-09 | Nuovo Pignone Spa | STACKED ROTOR WITH TIE AND BOLTED FLANGE AND METHOD |
US9133729B1 (en) * | 2011-06-08 | 2015-09-15 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US20130264779A1 (en) * | 2012-04-10 | 2013-10-10 | General Electric Company | Segmented interstage seal system |
US9032738B2 (en) * | 2012-04-25 | 2015-05-19 | Siemens Aktiengeselischaft | Gas turbine compressor with bleed path |
JP5865204B2 (en) * | 2012-07-20 | 2016-02-17 | 株式会社東芝 | Axial turbine and power plant |
KR101665887B1 (en) * | 2015-09-23 | 2016-10-12 | 두산중공업 주식회사 | Cooling system of the gas turbine |
KR101744411B1 (en) | 2015-10-15 | 2017-06-20 | 두산중공업 주식회사 | Cooling apparatus of the gas turbine |
JP6554736B2 (en) * | 2015-10-23 | 2019-08-07 | 三菱日立パワーシステムズ株式会社 | Gas turbine rotor, gas turbine, and gas turbine equipment |
KR101788413B1 (en) | 2015-12-01 | 2017-10-19 | 두산중공업 주식회사 | Disk assembly and a turbine using the same |
KR101747550B1 (en) * | 2015-12-01 | 2017-06-27 | 두산중공업 주식회사 | Disk assembly and a turbine using the same |
FR3047075B1 (en) * | 2016-01-27 | 2018-02-23 | Safran Aircraft Engines | REVOLUTION PIECE FOR TURBINE TEST BENCH OR FOR TURBOMACHINE, TURBINE TESTING BENCH COMPRISING THE TURBINE, AND PROCESS USING THE SAME |
KR102052029B1 (en) * | 2016-03-01 | 2019-12-04 | 지멘스 악티엔게젤샤프트 | Compressor bleed cooling system for mid-frame torque disks downstream from the compressor assembly in a gas turbine engine |
EP3214266A1 (en) | 2016-03-01 | 2017-09-06 | Siemens Aktiengesellschaft | Rotor of a gas turbine with cooling air path |
EP3219911A1 (en) * | 2016-03-17 | 2017-09-20 | Siemens Aktiengesellschaft | Gas turbine rotor with bolted rotor discs |
US10024170B1 (en) * | 2016-06-23 | 2018-07-17 | Florida Turbine Technologies, Inc. | Integrally bladed rotor with bore entry cooling holes |
KR101794451B1 (en) | 2016-07-07 | 2017-11-06 | 두산중공업 주식회사 | Disk assembly and a turbine using the same |
KR101834647B1 (en) * | 2016-07-07 | 2018-04-13 | 두산중공업 주식회사 | Disk assembly and a turbine using the same |
EP3269926B1 (en) * | 2016-07-07 | 2020-10-07 | Doosan Heavy Industries & Construction Co., Ltd. | Disk assembly and turbine including the same |
KR101772334B1 (en) | 2016-07-07 | 2017-08-28 | 두산중공업 주식회사 | Disk assembly and a turbine using the same |
KR101882107B1 (en) * | 2016-12-22 | 2018-07-25 | 두산중공업 주식회사 | Gas turbine |
FR3063775B1 (en) * | 2017-03-07 | 2022-05-06 | Ifp Energies Now | TURBOPUMP FOR A FLUID CIRCUIT, IN PARTICULAR FOR A CLOSED CIRCUIT IN PARTICULAR OF THE RANKINE CYCLE TYPE |
CN111971462B (en) * | 2018-02-20 | 2023-01-10 | 三菱重工发动机和增压器株式会社 | Pressure booster |
US10794190B1 (en) | 2018-07-30 | 2020-10-06 | Florida Turbine Technologies, Inc. | Cast integrally bladed rotor with bore entry cooling |
US11428104B2 (en) | 2019-07-29 | 2022-08-30 | Pratt & Whitney Canada Corp. | Partition arrangement for gas turbine engine and method |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB599809A (en) | 1945-01-15 | 1948-03-22 | Bristol Aeroplane Co Ltd | Improvements in axial flow compressors, turbines and the like |
US2452782A (en) * | 1945-01-16 | 1948-11-02 | Power Jets Res & Dev Ltd | Construction of rotors for compressors and like machines |
GB661078A (en) * | 1948-07-27 | 1951-11-14 | Westinghouse Electric Int Co | Improvements in or relating to gas turbine power plants |
BE534314A (en) * | 1953-12-24 | |||
US2858101A (en) * | 1954-01-28 | 1958-10-28 | Gen Electric | Cooling of turbine wheels |
DE1023933B (en) * | 1954-03-08 | 1958-02-06 | Canadian Patents Dev | Shaft coupling, especially for gas turbine engines |
US2741454A (en) * | 1954-09-28 | 1956-04-10 | Clifford R Eppley | Elastic fluid machine |
GB836920A (en) * | 1957-05-15 | 1960-06-09 | Napier & Son Ltd | Rotors for multi-stage axial flow compressors or turbines |
US3059901A (en) * | 1958-04-01 | 1962-10-23 | Carrier Corp | Rotor construction |
DE2250484A1 (en) * | 1972-10-14 | 1974-04-18 | Bulawin | STATOR OF THE MULTISTAGE FLOW MACHINE |
US4173120A (en) * | 1977-09-09 | 1979-11-06 | International Harvester Company | Turbine nozzle and rotor cooling systems |
US4292008A (en) * | 1977-09-09 | 1981-09-29 | International Harvester Company | Gas turbine cooling systems |
US4184797A (en) * | 1977-10-17 | 1980-01-22 | General Electric Company | Liquid-cooled turbine rotor |
DE3606597C1 (en) * | 1986-02-28 | 1987-02-19 | Mtu Muenchen Gmbh | Blade and sealing gap optimization device for compressors of gas turbine engines |
JPS63253125A (en) * | 1987-04-08 | 1988-10-20 | Hitachi Ltd | Cooling air centrifugal accelerator for gas turbine |
US5054996A (en) * | 1990-07-27 | 1991-10-08 | General Electric Company | Thermal linear actuator for rotor air flow control in a gas turbine |
FR2685936A1 (en) * | 1992-01-08 | 1993-07-09 | Snecma | DEVICE FOR CONTROLLING THE GAMES OF A TURBOMACHINE COMPRESSOR HOUSING. |
JP3149774B2 (en) * | 1996-03-19 | 2001-03-26 | 株式会社日立製作所 | Gas turbine rotor |
US5755556A (en) * | 1996-05-17 | 1998-05-26 | Westinghouse Electric Corporation | Turbomachine rotor with improved cooling |
JP3621523B2 (en) * | 1996-09-25 | 2005-02-16 | 株式会社東芝 | Gas turbine rotor blade cooling system |
DE69632837T2 (en) * | 1996-11-29 | 2005-07-07 | Hitachi, Ltd. | GAS TURBINE WHERE THE REFRIGERANT IS RE-USED |
US6053701A (en) * | 1997-01-23 | 2000-04-25 | Mitsubishi Heavy Industries, Ltd. | Gas turbine rotor for steam cooling |
DE69934570T2 (en) * | 1999-01-06 | 2007-10-04 | General Electric Co. | Cover plate for a turbine rotor |
DE60026236T2 (en) * | 1999-08-24 | 2006-11-23 | General Electric Co. | Steam cooling system for a gas turbine |
US6287079B1 (en) * | 1999-12-03 | 2001-09-11 | Siemens Westinghouse Power Corporation | Shear pin with locking cam |
JP3361501B2 (en) * | 2000-03-02 | 2003-01-07 | 株式会社日立製作所 | Closed-circuit blade cooling turbine |
JP3762661B2 (en) * | 2001-05-31 | 2006-04-05 | 株式会社日立製作所 | Turbine rotor |
JP2003206701A (en) * | 2002-01-11 | 2003-07-25 | Mitsubishi Heavy Ind Ltd | Turbine rotor for gas turbine, and gas turbine |
-
2004
- 2004-03-17 EP EP04006393A patent/EP1577493A1/en not_active Withdrawn
-
2005
- 2005-03-10 WO PCT/EP2005/002559 patent/WO2005093219A1/en active Application Filing
- 2005-03-10 EP EP14002196.5A patent/EP2787168B1/en active Active
- 2005-03-10 RU RU2006136413/06A patent/RU2347912C2/en active
- 2005-03-10 JP JP2007503243A patent/JP4722120B2/en active Active
- 2005-03-10 US US10/593,030 patent/US7585148B2/en active Active
- 2005-03-10 CN CN2005800085028A patent/CN101010486B/en active Active
- 2005-03-10 EP EP05715935.2A patent/EP1725741B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP1577493A1 (en) | 2005-09-21 |
JP2007529668A (en) | 2007-10-25 |
EP1725741A1 (en) | 2006-11-29 |
RU2347912C2 (en) | 2009-02-27 |
CN101010486A (en) | 2007-08-01 |
US20080159864A1 (en) | 2008-07-03 |
EP1725741B1 (en) | 2014-09-24 |
US7585148B2 (en) | 2009-09-08 |
WO2005093219A1 (en) | 2005-10-06 |
EP2787168A2 (en) | 2014-10-08 |
CN101010486B (en) | 2011-06-01 |
JP4722120B2 (en) | 2011-07-13 |
RU2006136413A (en) | 2008-04-27 |
EP2787168A3 (en) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2787168B1 (en) | Rotor for a turbomachine with hollow shaft | |
EP1945911B1 (en) | Steam turbine | |
DE4309636C2 (en) | Radially flow-through turbocharger turbine | |
DE69018338T2 (en) | Gas turbine. | |
EP2148977B1 (en) | Gas turbine | |
DE102007025006A1 (en) | Double shaft gas turbine, has bars arranged along circumference of bearing housing and extend via circular intermediate channel into space between outer circumference surface of housing and inner circumference surface of housing wall | |
EP2118445A1 (en) | Rotor of a gas turbine | |
DE102007031712A1 (en) | Device and method for clamping bladed rotor disks of a jet engine | |
DE69935745T2 (en) | Steam-cooled gas turbine | |
EP2173972B1 (en) | Rotor for an axial flow turbomachine | |
WO2006087267A1 (en) | Sealing element for use in turbomachinery | |
EP2342425A1 (en) | Gas turbine with securing plate between blade base and disk | |
WO1998013584A1 (en) | Method of compensating pressure loss in a cooling air guide system in a gas turbine plant | |
WO2015022222A1 (en) | Heat shield having at least one helmholtz resonator | |
EP2823154B1 (en) | Coolant bridging line, corresponding turbine vane, gas turbine and power plant | |
DE102012208263A1 (en) | Compressor device for turbomachine of jet engine, has secondary compressor that is designed such that air withdrawn after last compressor stage is supplied to secondary compressor, which is driven by gearbox of auxiliary device carrier | |
EP2378103B1 (en) | Aircraft gas turbine drive | |
EP3587748B1 (en) | Housing structure for a turbo engine, turbo engine and method for cooling a housing section of a structure of a turbo engine | |
DE102020134759A1 (en) | Turbomachine and method of operating a turbomachine | |
EP1564376B1 (en) | Turbomachine rotor construction | |
WO2000029721A1 (en) | Turbo-machine, especially a turbo-generator comprising a turbo-machine and an electric machine | |
EP3004741A1 (en) | Tubular combustion chamber having a flame tube end region and gas turbine | |
EP2551453A1 (en) | Cooling device of a gas turbine compressor | |
EP1895094B1 (en) | Swirl cooled rotor welding seam | |
EP1707758B1 (en) | Shell Element for a Combustion Chamber and Combustion Chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140626 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1725741 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB IT LI SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/02 20060101AFI20150311BHEP Ipc: F01D 5/04 20060101ALI20150311BHEP Ipc: F01D 25/12 20060101ALI20150311BHEP |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150401 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB IT LI SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150709 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1725741 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005015077 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005015077 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161007 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160310 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20170710 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005015077 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220811 AND 20220817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240328 Year of fee payment: 20 Ref country code: GB Payment date: 20240319 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240326 Year of fee payment: 20 Ref country code: IT Payment date: 20240321 Year of fee payment: 20 Ref country code: FR Payment date: 20240326 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 20 |