EP1725741A1 - Non-positive-displacement machine and rotor for a non-positive-displacement machine - Google Patents

Non-positive-displacement machine and rotor for a non-positive-displacement machine

Info

Publication number
EP1725741A1
EP1725741A1 EP05715935A EP05715935A EP1725741A1 EP 1725741 A1 EP1725741 A1 EP 1725741A1 EP 05715935 A EP05715935 A EP 05715935A EP 05715935 A EP05715935 A EP 05715935A EP 1725741 A1 EP1725741 A1 EP 1725741A1
Authority
EP
European Patent Office
Prior art keywords
rotor
rings
compressor
sections
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05715935A
Other languages
German (de)
French (fr)
Other versions
EP1725741B1 (en
Inventor
Harald Hoell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05715935.2A priority Critical patent/EP1725741B1/en
Priority to EP14002196.5A priority patent/EP2787168B1/en
Publication of EP1725741A1 publication Critical patent/EP1725741A1/en
Application granted granted Critical
Publication of EP1725741B1 publication Critical patent/EP1725741B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/088Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing

Definitions

  • the invention relates to a rotor for a turbomachine, with a hollow shaft arranged coaxially to its axis of rotation, which is supported on both ends at two axially opposite sections of the rotor, encloses an inner central cavity and is formed in the axial direction of the rotor from a plurality of rings lying one against the other that the rings lying against one another and lying against the sections limit the cavity to the outside.
  • the invention further relates to a turbomachine with such a rotor.
  • Gas turbines and their working methods are generally known.
  • 4 shows a gas turbine 1 which, arranged along a rotor 3 rotatably mounted about an axis of rotation 2, has a compressor 5, a combustion chamber 6 and a turbine unit 11.
  • guide vanes 12, 35 are fastened to the housing and rotor blades 15, 37 to the rotor 3, each with the formation of blade rings 17, 19, 36, 38.
  • a guide vane ring 19, 36 forms with the moving vane ring 17, 38 a compressor stage 21 or a turbine stage 34, several stages being connected in series.
  • the blades 15 of a ring 17, 38 are attached to the rotor 3 by means of an annular, centrally perforated disk 26, 39. Through the central opening, a central tie rod 7 extends in the axial direction, which the turbine disks 39 and
  • Compressor discs 26 clamped together. Furthermore, to bridge the distance caused by the combustion chamber 6, a hollow shaft 13 is arranged between the compressor 5 and the turbine unit 11 between the compressor disk 26 of the last compressor stage 21 and the turbine disk 39 of the first turbine stage 34.
  • the compressor 5 draws in ambient air and compresses it.
  • the compressed air is mixed with a fuel and fed to the combustion chamber 6, in which the mixture is burned to a hot working medium.
  • the latter flows out of the combustion chamber 6 into the turbine unit 11 and drives the rotor 3 of the gas turbine 1 by means of the rotor blades 15, which rotor drives the compressor 5 and a working machine, for example a generator.
  • the torque acting on the rotor blades of the turbine unit and generated by the working medium is passed on to the generator as useful energy and to the compressor as drive energy for compressing the ambient air. Therefore, the hollow shaft must have the necessary to compress the ambient air in the compressor
  • Hollow shaft is exposed to particularly high mechanical loads. These loads can lead to creep deformations and defects, which then leads to a reduction in the service life of the rotor.
  • combustion chamber of the gas turbine which can heat this axial region of the rotor during operation, is located radially adjacent to the hollow shaft. This means that thermal loads can also occur, which can weaken the strength and rigidity of the hollow shaft, so that the mechanical load that occurs can cause the material of the hollow shaft to fatigue prematurely.
  • a rotor for a compressor is known from GB 836,920, which is formed from a plurality of axially adjacent, braced compressor disks.
  • the Compressor disks have a central opening that form a hollow shaft.
  • GB 661,078 also shows a hollow shaft for a gas turbine rotor, which is formed radially inside the combustion chamber from two pieces of pipe lying against one another.
  • the object of the invention is to provide a rotor for a turbomachine which has a longer service life and a lower susceptibility to mechanical defects. It is also an object of the invention to provide a turbomachine for this purpose.
  • each ring has an I-shaped cross section, the web of the I-shape running in the radial direction of the rotor.
  • the invention is based on the consideration that the hollow shaft, which is subject to high mechanical and thermal stresses, is replaced in the combustion chamber area by a plurality of rings which lie against one another and are relatively short in the axial direction.
  • This fundamental design redesign significantly reduces mechanical stress. In the area of the rings with high material temperatures, which arise due to the combustion chamber arranged radially further out, the stresses and the creep deformations that may result from this are reduced. This will extend the life of each ring.
  • the hollow shaft has been particularly stressed by torsion by transmitting the energy required by the compressor over its axial length.
  • the axial length of a ring is compared to the previous ones
  • the length of the hollow shaft is greatly shortened, so that each ring is subjected to less torsional stress.
  • the mechanical loads are therefore further reduced with the invention.
  • the rings with their webs extending in the radial direction, provide better thermal insulation of the central cavity from a radially more external area through an intermediate cavity, so that colder air is present in the cavity on the surfaces of the component. Consequently, the areas with particularly high mechanical loads during operation of the turbomachine are operated below a transition temperature (activation energy) required for creep, so that creep deformations can be avoided at this point in particular. The thermal load on the rings is thus further reduced, which enables a higher mechanical load.
  • transition temperature activation energy
  • the I-shaped cross section of the rings enables the ring to be designed to be particularly rigid, light and mechanically resilient.
  • the rotor has at least one tie rod running parallel to the axis of rotation.
  • the sections of the rotor are each formed by a disk, the at least one tie rod for bracing the disks and the rings extending through them.
  • the tie rod extends centrally through the disks and through the rings.
  • the tie rod which is arranged centrally to the axis of rotation, can brace the stacked rings and disks of the compressor and the turbine unit and, at the same time, can be used for the axial and radial bearing of the rotor.
  • the rotor has a plurality of tie rods spaced apart from the axis of rotation, which extend through the disks and the rings.
  • the use of the multi-piece hollow shaft is therefore also applicable to rotors that provide bracing with several tie rods.
  • each ring and each section has form-fitting means for transmitting the torque of the rotor from one of the two sections to the opposite section.
  • a lossy relative movement known as slip in the circumferential direction between the immediately adjacent rings or between a ring and a section can thus be effectively avoided.
  • the means for transmitting the torque are expediently formed on the end faces of the ring and on those of the sections as end serrations in the manner of a Hirth serration.
  • This positive toothing enables a slip-free operation of the rotor.
  • one of the two sections is designed as a compressor disk and the other as a turbine disk, the power required for compressing the ambient air drawn in at the compressor is transmitted losslessly from the turbine unit to the compressor by means of the rings arranged between them.
  • an axially extending flange is arranged at each end of the web, so that a further cavity is formed between two adjacent rings and between their radially inner flanges and their radially outer flanges.
  • the further cavities can be at least partially in flow communication with one another via passages located in the webs. Either the connections between two adjacent further cavities lead to a faster and more uniform insulating effect, or they serve as connecting channels for the cooling medium if this can be supplied in the form of compressor air on the compressor side into the further cavity and can be removed on the turbine side. In this case, the compressor air in the compressor can take place both through removal openings arranged in the rotor or behind the compressor by means of a suitable device.
  • a cooling medium can flow through the cavity in the axial direction.
  • the rings and the sections for sealing the cavity have labyrinthine sealants. Since the rings against each other and opposite the sections If the cavity is sealed to the outside, the cooling air can be conducted from the compressor through the cavity to the turbine unit without loss, without leakage occurring.
  • the sealant can be provided on the flanges of the rings, on which no means for transmitting the
  • one flange of the ring can be designed to be comparatively wide in its radial material thickness, which then transmits the torque, and the other flange can be designed to be comparatively narrow, which then only serves to seal the cavity to the outside and to form the further cavity.
  • the cooling air cools the rings so that the average component temperature is reduced.
  • the invention leads to the solution of the object directed to a flow machine mentioned at the outset that the rotor is designed according to one of claims 1 to 11.
  • Turbomachine is designed as a gas turbine and in which the gas turbine has a compressor, at least one combustion chamber and a turbine unit in succession along the rotor, one of the two sections being formed by a compressor disk arranged in the compressor and the other section being formed by a turbine disk arranged in the turbine unit ,
  • FIG. 1 shows a rotor of a gas turbine with a central tie rod in a longitudinal section in the area between Compressor and turbine unit
  • FIG. 2 shows a rotor of a gas turbine with a plurality of tie rods in a longitudinal section in the region between the compressor and the turbine unit
  • FIG. 3 shows an alternatively designed rotor of a gas turbine with a central tie rod in a longitudinal section in the area between the compressor and the turbine unit
  • FIG. 4 shows a gas turbine according to the prior art in a partial longitudinal section.
  • FIG. 1 shows a rotor 3 of a gas turbine 1 with a central tie rod 7 in a longitudinal section in the area between the compressor 5 and the turbine unit 11
  • Compressor 5 shows a flow channel 23 with only the last compressor stage 21.
  • a compressor outlet 25 is followed by a diffuser 27 and a combustion chamber 29.
  • the latter has a combustion chamber 31 which opens into a hot gas duct 33 of a turbine unit 11.
  • non-rotatable guide vanes 12 are fixed in rings. These are preceded by blades 15, which are mounted on the rotor 3 by means of a compressor disk 26.
  • the hot gas channel 33 has guide vanes 35 and further downstream rotor blades 37.
  • the fixed guide blades 35 are connected to the housing of the gas turbine 1, whereas the rotor blades 37 are attached to a turbine disk 39.
  • the rotor 3 has three axially consecutive rings 43 between the compressor disk 26 and the turbine disk 39 instead of the one-piece hollow shaft known from the prior art.
  • Each ring 43 is I-shaped in cross section, so that two flanges 45, 46 extending in the axial direction of the tie rod 7 are connected to one another via a web 47 extending in the radial direction.
  • an axially extending central cavity 51 which is suitable for guiding a cooling fluid, for example compressor air.
  • a cooling fluid for example compressor air.
  • the cavity 51 is annular in cross section.
  • Torque of the rotor 3 is passed on from the turbine disk 39 to the compressor disk 26 via the rings 43.
  • the end faces 57 of the turbine disk 39 and the compressor disk 26 likewise have the serration teeth.
  • the radially inner flanges 46 of the rings 43 have labyrinth-like seals 62 on their end faces 59, which seal the cavity 51 against the outer region 61.
  • the outer flanges 45 pass the torque from one end face 55 to their opposite end face 55, the outer flanges 45 have a greater width in the radial direction than the inner flanges 46, which only carry the seals 62.
  • air is compressed by the compressor 5 in the flow channel 23 of the compressor 5, a portion of the compressed air being extracted as cooling air through disk bores 24 and being guided along the tie rod 7 from the compressor-side end of the cavity 51 to the turbine-side end according to the arrows 63 , Disc bores 24 located in the turbine disk 39 from the inner diameter to the outer diameter lead the cooling air to the rotor blades 37 of the first turbine stage 34.
  • the cooling air cools the rotor blades 37 and then escapes into the hot gas duct 33.
  • the labyrinth seals 65 and the seals 62 provided between tie rods 7 and disks 26, 39 prevent the cooling air from escaping from the cavity 51.
  • FIG. 2 shows a rotor 3 of a gas turbine 1 with a plurality of tie rods 8 in a longitudinal section in the area between the compressor 5 and the turbine unit 11.
  • FIG. 2 shows the compressor 5, the combustion chamber 6, the turbine unit 11 and the rotor 3 assembled from compressor disks 26, turbine disks 39 and rings 43.
  • FIG. 2 shows one of several to the axis of rotation 2 spaced decentralized tie rods 8 shown.
  • the decentralized tie rod 8 is spaced from the axis of rotation 2 such that the webs 47 of the rings 43 are penetrated by it. Alternatively, the distance could also be chosen so that the tie rod 8 pierces the flanges 45 of the rings.
  • FIG. 3 shows a rotor braced with a central tie rod, in which 43 bores 71 can be provided, for example, in a radially outer flange 45 of the ring arranged on the compressor side, through which holes still comparatively cool compressor end air into one between the radially inner and the radial outer flanges 45, 46 shaped cavity 66 '' can be introduced.
  • the cooling air flowing into the further cavity 66 ′′ is led through passages 72 located in the webs 47 in the direction of the turbine unit and further via disk bores 24 to the turbine blades 27 of the first turbine stage, where it can be used as cooling air.
  • the central cavity 51 serves as a supply duct for cooling air for the turbine blades 37 of the second turbine stage 34.
  • a gap 69 can optionally be made possible between the compressor disk 26 and the radially inner flange 46 of the ring 43 lying against it, in order to bring about a targeted supply of cooling air into a further cavity 66 ′, which is radially delimited by the flanges 45, 46.

Abstract

The invention relates to a rotor (3) for a non-positive-displacement machine provided with a hollow shaft (13), which is arranged coaxial to the rotation axis, is supported, on both sides and on the face, on two axially opposed sections of the rotor (3), and which encloses an inner hollow space (51). In order to provide a rotor (3) for a non-positive-displacement machine, which has a higher serviceable life and is less susceptible to mechanical defects, the invention provides that the hollow shaft, in the axial direction of the rotor (3), is formed from a number of adjoining rings (43), and the rings (43) are outwardly sealed against one another and with regard to the sections of the hollow space (51). Each ring has an I-shaped cross-section and the web of the I shape extends in the radial direction of the rotor.

Description

Beschreibungdescription
Strömungsmaschine und Rotor für eine StrömungsmaschineFluid machine and rotor for a fluid machine
Die Erfindung betrifft einen Rotor für eine Strömungsmaschine, mit einer zu seiner Drehachse koaxial angeordneten Hohlwelle, welche sich beidseitig stirnseitig an zwei axial gegenüberliegenden Abschnitten des Rotors abstützt, einen inneren zentralen Hohlraum umschließt und in Axialrichtung des Rotors aus mehreren aneinander liegenden Ringen gebildet ist, so dass die aneinander liegenden und an den Abschnitten anliegenden Ringe den Hohlraum nach außen begrenzen. Ferner betrifft die Erfindung eine Strömungsmaschine mit solch einem Rotor.The invention relates to a rotor for a turbomachine, with a hollow shaft arranged coaxially to its axis of rotation, which is supported on both ends at two axially opposite sections of the rotor, encloses an inner central cavity and is formed in the axial direction of the rotor from a plurality of rings lying one against the other that the rings lying against one another and lying against the sections limit the cavity to the outside. The invention further relates to a turbomachine with such a rotor.
Gasturbinen und deren Arbeitsweisen sind allgemein bekannt. Hierzu zeigt die FIG 4 eine Gasturbine 1, welche, entlang eines um eine Drehachse 2 drehgelagerten Rotors 3 angeordnet einen Verdichter 5, eine Brennkammer 6 und eine Turbinenein- heit 11 aufweist. In dem Verdichter 5 sowie auch in der Turbineneinheit 11 sind Leitschaufeln 12, 35 am Gehäuse und Laufschaufeln 15, 37 am Rotor 3 jeweils unter Bildung von Schaufelkränzen 17, 19, 36, 38 befestigt. Ein Leitschaufelkranz 19, 36 bildet mit dem Laufschaufelkranz 17, 38 eine Verdichterstufe 21 bzw. eine Turbinenstufe 34, wobei mehrere Stufen hintereinander geschaltet sind. Die Laufschaufeln 15 eines Kranzes 17, 38 sind am Rotor 3 mittels einer ringförmigen, zentral gelochten Scheibe 26, 39 befestigt. Durch die zentrale Öffnung erstreckt sich in Axialrichtung ein zentraler Zuganker 7, der die Turbinenscheiben 39 undGas turbines and their working methods are generally known. 4 shows a gas turbine 1 which, arranged along a rotor 3 rotatably mounted about an axis of rotation 2, has a compressor 5, a combustion chamber 6 and a turbine unit 11. In the compressor 5 and also in the turbine unit 11, guide vanes 12, 35 are fastened to the housing and rotor blades 15, 37 to the rotor 3, each with the formation of blade rings 17, 19, 36, 38. A guide vane ring 19, 36 forms with the moving vane ring 17, 38 a compressor stage 21 or a turbine stage 34, several stages being connected in series. The blades 15 of a ring 17, 38 are attached to the rotor 3 by means of an annular, centrally perforated disk 26, 39. Through the central opening, a central tie rod 7 extends in the axial direction, which the turbine disks 39 and
Verdichterscheiben 26 miteinander verspannt. Ferner ist, zur Überbrückung der von der Brennkammer 6 hervorgerufenen Distanz, zwischen Verdichter 5 und Turbineneinheit 11 zwischen der Verdichterscheibe 26 der letzten Verdichterstufe 21 und der Turbinenscheibe 39 der ersten Turbinenstufe 34 eine Hohlwelle 13 angeordnet. Beim Betrieb der Gasturbine 1 saugt der Verdichter 5 Umgebungsluft an und verdichtet diese. Die verdichtete Luft wird mit einem Brennstoff vermischt und der Brennkammer 6 zugeführt, in der das Gemisch zu einem heißen Arbeitsmedium verbrannt wird. Letzteres strömt aus der Brennkammer 6 in die Turbineneinheit 11 und treibt mittels der Laufschaufeln 15 den Rotor 3 der Gasturbine 1 an, welcher den Verdichter 5 und eine Arbeitsmaschine, zum Beispiel einen Generator antreibt.Compressor discs 26 clamped together. Furthermore, to bridge the distance caused by the combustion chamber 6, a hollow shaft 13 is arranged between the compressor 5 and the turbine unit 11 between the compressor disk 26 of the last compressor stage 21 and the turbine disk 39 of the first turbine stage 34. When the gas turbine 1 is operating, the compressor 5 draws in ambient air and compresses it. The compressed air is mixed with a fuel and fed to the combustion chamber 6, in which the mixture is burned to a hot working medium. The latter flows out of the combustion chamber 6 into the turbine unit 11 and drives the rotor 3 of the gas turbine 1 by means of the rotor blades 15, which rotor drives the compressor 5 and a working machine, for example a generator.
Das auf die Laufschaufeln der Turbineneinheit wirkende und von dem Arbeitsmedium erzeugte Drehmoment wird an den Generator als Nutzenergie und an den Verdichter als Antriebsenergie zum Verdichten der Umgebungsluft weitergegeben. Daher muss die Hohlwelle die für das Verdichten der Umgebungsluft im Verdichter erforderlicheThe torque acting on the rotor blades of the turbine unit and generated by the working medium is passed on to the generator as useful energy and to the compressor as drive energy for compressing the ambient air. Therefore, the hollow shaft must have the necessary to compress the ambient air in the compressor
Antriebsenergie von der Turbinenscheibe der ersten Turbinenstufe an die Verdichterscheibe der letzten Verdichterstufe übertragen.Transfer drive energy from the turbine disk of the first turbine stage to the compressor disk of the last compressor stage.
Diese Anordnung innerhalb der Gasturbine bedingt, dass dieThis arrangement within the gas turbine requires that the
Hohlwelle besonders hohen mechanischen Belastungen ausgesetzt ist. Diese Belastungen können zu Kriechverformungen und zu Defekten führen, was dann zu einer Reduzierung der Lebensdauer des Rotors führt .Hollow shaft is exposed to particularly high mechanical loads. These loads can lead to creep deformations and defects, which then leads to a reduction in the service life of the rotor.
Ferner liegt radial benachbart zur Hohlwelle die Brennkammer der Gasturbine, welche diesen axialen Bereich des Rotors beim Betrieb unzulässig erwärmen kann. Somit können auch thermische Belastungen auftreten, welche die Festigkeit wie auch Steifigkeit der Hohlwelle schwächen können, so dass die auftretende mechanische Belastung eine vorzeitige Ermüdung des Materials der Hohlwelle hervorrufen kann.Furthermore, the combustion chamber of the gas turbine, which can heat this axial region of the rotor during operation, is located radially adjacent to the hollow shaft. This means that thermal loads can also occur, which can weaken the strength and rigidity of the hollow shaft, so that the mechanical load that occurs can cause the material of the hollow shaft to fatigue prematurely.
Zudem ist aus der GB 836,920 ein Rotor für einen Verdichter bekannt, der aus mehreren axial aneinander liegenden, verspannten Verdichterscheiben gebildet wird. Die Verdichterscheiben weisen eine zentrale Öffnung auf, die eine Hohlwelle formen.In addition, a rotor for a compressor is known from GB 836,920, which is formed from a plurality of axially adjacent, braced compressor disks. The Compressor disks have a central opening that form a hollow shaft.
Ferner zeigt die GB 661,078 eine Hohlwelle für einen Gasturbinenrotor, der aus zwei aneinander liegenden Rohrstücken radial innerhalb der Brennkammer gebildet ist.GB 661,078 also shows a hollow shaft for a gas turbine rotor, which is formed radially inside the combustion chamber from two pieces of pipe lying against one another.
Die Aufgabe der Erfindung ist es, einen Rotor für eine Strömungsmaschine anzugeben, der eine höhere Lebensdauer und eine geringere Anfälligkeit gegenüber mechanischen Defekten aufweist. Ferner ist es Aufgabe der Erfindung, hierzu eine Strömungsmaschine anzugeben.The object of the invention is to provide a rotor for a turbomachine which has a longer service life and a lower susceptibility to mechanical defects. It is also an object of the invention to provide a turbomachine for this purpose.
Die auf den Rotor gerichtete Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.The object directed to the rotor is achieved by the features of claim 1. Advantageous further developments are specified in the subclaims.
Betreffend den Rotor sieht die Erfindung mit dem eingangs genannten Rotor vor, dass jeder Ring im Querschnitt I-förmig ausgebildet ist, wobei der Steg der I-Form in Radialrichtung des Rotors verläuft.With regard to the rotor, the invention provides with the rotor mentioned at the outset that each ring has an I-shaped cross section, the web of the I-shape running in the radial direction of the rotor.
Die Erfindung geht von der Überlegung aus, dass die sowohl mechanisch als auch thermisch hoch belastete Hohlwelle im Bereich der Brennkammer durch mehrere aneinander liegende und in Axialrichtung vergleichsweise kurze Ringe ersetzt wird. Durch diese grundlegende konstruktive Umgestaltung lassen sich die mechanischen Beanspruchungen erheblich reduzieren. In dem Bereich der Ringe mit hohen Materialtemperaturen, die aufgrund der radial weiter außen angeordneten Brennkammer entstehen, werden die Spannungen und die daraus möglicherweise resultierenden Kriechverformungen verringert. Dadurch wird die Lebensdauer jedes Ringes vergrößert.The invention is based on the consideration that the hollow shaft, which is subject to high mechanical and thermal stresses, is replaced in the combustion chamber area by a plurality of rings which lie against one another and are relatively short in the axial direction. This fundamental design redesign significantly reduces mechanical stress. In the area of the rings with high material temperatures, which arise due to the combustion chamber arranged radially further out, the stresses and the creep deformations that may result from this are reduced. This will extend the life of each ring.
Bisher wurde die Hohlwelle durch Übertragung der vom Verdichter benötigten Energie über ihre axiale Länge besonders auf Torsion beansprucht. Mittels der Erfindung ist die axiale Länge eines Ringes gegenüber den bisherigen Baulängen der Hohlwelle stark verkürzt, so dass jeder Ring wesentlich geringer auf Torsion beansprucht wird. Daher werden mit der Erfindung die mechanischen Belastungen weiter verringert .So far, the hollow shaft has been particularly stressed by torsion by transmitting the energy required by the compressor over its axial length. By means of the invention, the axial length of a ring is compared to the previous ones The length of the hollow shaft is greatly shortened, so that each ring is subjected to less torsional stress. The mechanical loads are therefore further reduced with the invention.
Des Weiteren bewirken die Ringe mit ihren in Radialrichtung sich erstreckenden Stegen durch einen zwischengeschalteten weiteren Hohlraum eine bessere thermische Isolation des zentralen Hohlraums gegenüber einem radial weiter außen liegenden Außenbereich, so dass kältere Luft im Hohlraum an den Oberflächen des Bauteils ansteht. Folglich werden die Bereiche mit besonders hohen mechanischen Belastungen beim Betrieb der Strömungsmaschine unterhalb einer für das Kriechen erforderlichen Übergangstemperatur (Aktivierungsenergie) betrieben, so dass besonders an dieser Stelle Kriechverformungen vermieden werden können. Es wird also die thermische Belastung der Ringe weiter reduziert, welches eine höhere mechanische Belastung ermöglicht.Furthermore, the rings, with their webs extending in the radial direction, provide better thermal insulation of the central cavity from a radially more external area through an intermediate cavity, so that colder air is present in the cavity on the surfaces of the component. Consequently, the areas with particularly high mechanical loads during operation of the turbomachine are operated below a transition temperature (activation energy) required for creep, so that creep deformations can be avoided at this point in particular. The thermal load on the rings is thus further reduced, which enables a higher mechanical load.
Zudem ermöglicht der I-förmige Querschnitt der Ringe eine besonders steife, leichte und mechanisch belastbare Ausgestaltung des Rings.In addition, the I-shaped cross section of the rings enables the ring to be designed to be particularly rigid, light and mechanically resilient.
Darüber hinaus kann dem allgemeinen Bestreben zur Minderung der Herstellungskosten Rechnung getragen werden, da aufgrund der geringeren Beanspruchung ein preiswerterer Werkstoff, beispielsweise 26NiCrMo26145mod für die Ringe eingesetzt werden kann, verglichen mit dem Werkstoff für eine einstückige Hohlwelle aus dem Stand der Technik.In addition, the general effort to reduce the manufacturing costs can be taken into account, since, due to the lower stress, a cheaper material, for example 26NiCrMo26145mod, can be used for the rings compared to the material for a one-piece hollow shaft from the prior art.
Gemäß einer Weiterbildung der Erfindung weist der Rotor zumindest einen parallel zur Drehachse verlaufenden Zuganker auf. Die Abschnitte des Rotors werden jeweils durch eine Scheibe gebildet, wobei der zumindest eine Zuganker zum Verspannen der Scheiben und der Ringe sich durch diese erstreckt. Dieser komponentenartige Aufbau des Rotors ermöglicht im unwahrscheinlichen Falle eines Defektes am Ring oder an einer Scheibe das Ersetzen des betroffenen Bauteils.According to a development of the invention, the rotor has at least one tie rod running parallel to the axis of rotation. The sections of the rotor are each formed by a disk, the at least one tie rod for bracing the disks and the rings extending through them. This component-like structure of the rotor enables in the unlikely event of a defect on the ring or on a pane, the replacement of the affected component.
In einer besonders vorteilhaften Weiterbildung der Erfindung erstreckt der Zuganker sich zentral durch die Scheiben und durch die Ringe. Somit kann der zu der Drehachse zentrisch angeordnete Zuganker die gestapelten Ringe und Scheiben des Verdichters und der Turbineneinheit verspannen und gleichzeitig zum axialen und radialen Lagern des Rotors verwendet werden.In a particularly advantageous development of the invention, the tie rod extends centrally through the disks and through the rings. Thus, the tie rod, which is arranged centrally to the axis of rotation, can brace the stacked rings and disks of the compressor and the turbine unit and, at the same time, can be used for the axial and radial bearing of the rotor.
Im Rahmen einer vorteilhaften Weiterbildung weist der Rotor mehrere zur Drehachse beabstandete Zuganker auf, die sich durch die Scheiben und die Ringe erstrecken. Die Anwendung der mehrstückig ausgebildeten Hohlwelle ist somit auch auf Rotoren anwendbar, welche die Verspannung mit mehreren Zugankern vorsieht.In the context of an advantageous development, the rotor has a plurality of tie rods spaced apart from the axis of rotation, which extend through the disks and the rings. The use of the multi-piece hollow shaft is therefore also applicable to rotors that provide bracing with several tie rods.
Gemäß einer besonders bevorzugten Weiterbildung weist jeder Ring und jeder Abschnitt formschlüssige Mittel zur Übertra- gung des Drehmoments des Rotors von einem der beiden Abschnitte zum gegenüberliegenden Abschnitt auf. Eine als Schlupf bekannte verlustbehaftete Relativbewegung in Umfangs- richtung zwischen den unmittelbar benachbarten Ringen bzw. zwischen einem Ring und einem Abschnitt kann somit wirksam vermieden werden.According to a particularly preferred development, each ring and each section has form-fitting means for transmitting the torque of the rotor from one of the two sections to the opposite section. A lossy relative movement known as slip in the circumferential direction between the immediately adjacent rings or between a ring and a section can thus be effectively avoided.
Zweckmäßigerweise sind die Mittel zur Übertragung des Drehmoments an den Stirnseiten des Rings und an denen der Abschnitte als Stirnverzahnung nach Art einer Hirthverzahnung ausgebildet. Diese formschlüssige Verzahnung ermöglicht einen schlupffreien Betrieb des Rotors. Insbesondere, wenn eine der beiden Abschnitte als eine Verdichterscheibe und die andere als Turbinenscheibe ausgebildet ist, wird die zum Verdichten der angesaugten Umgebungsluft am Verdichter erforderliche Leistung verlustfrei von der Turbineneinheit zum Verdichter mittels der dazwischen angeordneten Ringe übertragen. In einer besonders vorteilhaften Ausgestaltung ist an jedem Ende des Stegs jeweils ein sich in Axialrichtung erstreckender Flansch angeordnet, so dass zwischen zwei benachbarten Ringen und zwischen deren radial inneren Flanschen und deren radial äußeren Flanschen ein weiterer Hohlraum gebildet ist. Dies ermöglicht eine räumliche Trennung eines im Bereich der Brennkammer radial außen liegenden und vergleichsweise heißen Außenbereichs von einem von den Ringen eingeschlossenen zentralen Hohlraum. Der Wärmeeintrag aus dem Außenbereich in die Ringe, insbesondere in die radial inneren Flansche der Ringe, kann verringert werden, da der weitere Hohlraum den zentralen Hohlraum gegenüber dem Außenbereich isoliert, so dass kältere Luft im Hohlraum an den Oberflächen des Bauteils ansteht.The means for transmitting the torque are expediently formed on the end faces of the ring and on those of the sections as end serrations in the manner of a Hirth serration. This positive toothing enables a slip-free operation of the rotor. In particular, if one of the two sections is designed as a compressor disk and the other as a turbine disk, the power required for compressing the ambient air drawn in at the compressor is transmitted losslessly from the turbine unit to the compressor by means of the rings arranged between them. In a particularly advantageous embodiment, an axially extending flange is arranged at each end of the web, so that a further cavity is formed between two adjacent rings and between their radially inner flanges and their radially outer flanges. This enables a spatial separation of a comparatively hot outer area lying radially on the outside in the combustion chamber from a central cavity enclosed by the rings. The heat input from the outside into the rings, in particular into the radially inner flanges of the rings, can be reduced since the further cavity insulates the central cavity from the outside, so that colder air is present in the cavity on the surfaces of the component.
Unabhängig davon, ob der weitere Hohlraum als nicht durchströmter Isolierraum oder zur Führung eines weiteren Kühlfluids genutzt wird, können zumindest teilweise die weiteren Hohlräume über in den Stegen befindlichen Pasagen miteinander in Strömungsverbindung stehen. Entweder führt die Verbindungen zwischen zwei benachbarten weiteren Hohlräumen zu einer schnelleren und gleichmäßigeren Isolierwirkung, oder sie dienen als Verbindungskanäle für das Kühlmedium, wenn dieses in Form von Verdichterluft verdichterseitig in den weiteren Hohlraum zuführbar und turbinenseitig entnehmbar ist . Dabei kann im Verdichter die Verdichterluft sowohl durch im Rotor angeordnete Entnahmeöffnungen erfolgen oder hinter dem Verdichter durch eine geeignete Vorrichtung.Regardless of whether the further cavity is used as an insulating space through which no flow passes or for guiding a further cooling fluid, the further cavities can be at least partially in flow communication with one another via passages located in the webs. Either the connections between two adjacent further cavities lead to a faster and more uniform insulating effect, or they serve as connecting channels for the cooling medium if this can be supplied in the form of compressor air on the compressor side into the further cavity and can be removed on the turbine side. In this case, the compressor air in the compressor can take place both through removal openings arranged in the rotor or behind the compressor by means of a suitable device.
Diese Ausgestaltungen führen jeweils zu einerThese configurations lead to one
Temperatursenkung des Ringmaterials, so dass schädliche Kriechverformungen vermieden werden.Lowering the temperature of the ring material so that harmful creep deformations are avoided.
Ferner ist der Hohlraum in Axialrichtung von einem Kühlmedium durchströmbar. Dabei weisen die Ringe und die Abschnitte zum Abdichten des Hohlraums labyrinthartige Dichtmittel auf. Da die Ringe gegeneinander und gegenüber den Abschnitten den Hohlraum nach außen abdichten, kann die Kühlluft vom Verdichter durch den Hohlraum zur Turbineneinheit verlustfrei geleitet werden, ohne dass Leckagen auftreten. Die Dichtmittel können dabei an den Flanschen der Ringe vorgesehen sein, an denen keine Mittel zur Übertragung desFurthermore, a cooling medium can flow through the cavity in the axial direction. The rings and the sections for sealing the cavity have labyrinthine sealants. Since the rings against each other and opposite the sections If the cavity is sealed to the outside, the cooling air can be conducted from the compressor through the cavity to the turbine unit without loss, without leakage occurring. The sealant can be provided on the flanges of the rings, on which no means for transmitting the
Drehmoments vorgesehen sind. Somit kann ein Flansch des Rings in seiner radialen Materialstärke vergleichsweise breit ausgelegt sein, der dann das Drehmoment überträgt, und der andere Flansch vergleichsweise schmal ausgelegt sein, der dann lediglich zum Abdichten des Hohlraums nach außen hin und zur Bildung der weiteren Hohlraums dient.Torque are provided. Thus, one flange of the ring can be designed to be comparatively wide in its radial material thickness, which then transmits the torque, and the other flange can be designed to be comparatively narrow, which then only serves to seal the cavity to the outside and to form the further cavity.
Darüber hinaus kühlt die Kühlluft die Ringe, so dass sich die mittlere Bauteiltemperatur verringert.In addition, the cooling air cools the rings so that the average component temperature is reduced.
Die Erfindung führt zur Lösung der auf eine eingangs genannte Strömungsmaschine gerichteten Aufgabe an, dass der Rotor nach einem der Ansprüche 1 bis 11 ausgebildet ist.The invention leads to the solution of the object directed to a flow machine mentioned at the outset that the rotor is designed according to one of claims 1 to 11.
Besonders vorteilhaft ist die Weiterbildung, bei der dieThe further training in which the
Strömungsmaschine als Gasturbine ausgebildet ist und bei der die Gasturbine entlang des Rotors aufeinander folgend einen Verdichter, zumindest eine Brennkammer und eine Turbineneinheit aufweist, wobei einer der beiden Abschnitte durch eine im Verdichter angeordnete Verdichterscheibe und der andere Abschnitt durch eine in der Turbineneinheit angeordnete Turbinenscheibe gebildet ist.Turbomachine is designed as a gas turbine and in which the gas turbine has a compressor, at least one combustion chamber and a turbine unit in succession along the rotor, one of the two sections being formed by a compressor disk arranged in the compressor and the other section being formed by a turbine disk arranged in the turbine unit ,
Ferner gelten die für den Rotor beschriebenen Vorteile sinngemäß auch für die Strömungsmaschine.Furthermore, the advantages described for the rotor also apply analogously to the turbomachine.
Die Erfindung wird anhand einer Zeichnung erläutert. Es zeigt :The invention is explained with reference to a drawing. It shows :
FIG 1 einen Rotor einer Gasturbine mit einem zentralen Zuganker in einem Längsschnitt im Bereich zwischen Verdichter und Turbineneinheit,1 shows a rotor of a gas turbine with a central tie rod in a longitudinal section in the area between Compressor and turbine unit,
FIG 2 einen Rotor einer Gasturbine mit mehreren Zugankern in einem Längsschnitt im Bereich zwischen Verdichter und Turbineneinheit,2 shows a rotor of a gas turbine with a plurality of tie rods in a longitudinal section in the region between the compressor and the turbine unit,
FIG 3 einen alternativ ausgestalteten Rotor einer Gasturbine mit einem zentralen Zuganker in einem Längsschnitt im Bereich zwischen Verdichter und Turbineneinheit und3 shows an alternatively designed rotor of a gas turbine with a central tie rod in a longitudinal section in the area between the compressor and the turbine unit
FIG 4 eine Gasturbine nach dem Stand der Technik in einem Längsteilschnitt .4 shows a gas turbine according to the prior art in a partial longitudinal section.
Eine gemäß dem vorab beschriebenen Stand der Technik ausgebildete Gasturbine 1 zeigt FIG 4.4 shows a gas turbine 1 designed according to the prior art described above.
FIG 1 zeigt einen Rotor 3 einer Gasturbine 1 mit einem zentralen Zuganker 7 in einem Längsschnitt im Bereich zwischen Verdichter 5 und Turbineneinheit 11. Von dem1 shows a rotor 3 of a gas turbine 1 with a central tie rod 7 in a longitudinal section in the area between the compressor 5 and the turbine unit 11
Verdichter 5 ist ein Strδmungskanal 23 mit lediglich der letzten Verdichterstufe 21 dargestellt. Entlang des um die Drehachse 2 drehbaren Rotors 3 folgt einem Verdichterausgang 25 ein Diffusor 27 und eine Brennkammer 29. Letztere weist einen Verbrennungsraum 31 auf, der in einen Heißgaskanal 33 einer Turbineneinheit 11 mündet.Compressor 5 shows a flow channel 23 with only the last compressor stage 21. Along the rotor 3, which is rotatable about the axis of rotation 2, a compressor outlet 25 is followed by a diffuser 27 and a combustion chamber 29. The latter has a combustion chamber 31 which opens into a hot gas duct 33 of a turbine unit 11.
Im Strömungskanal 23 des Verdichters 5 sind in Kränzen 19 drehfeste Leitschaufeln 12 befestigt. Diesen sind Laufschaufeln 15 vorgeschaltet, welche am Rotor 3 mittels einer Verdichterscheibe 26 montiert sind.In the flow channel 23 of the compressor 5 19 non-rotatable guide vanes 12 are fixed in rings. These are preceded by blades 15, which are mounted on the rotor 3 by means of a compressor disk 26.
Der Heißgaskanal 33 weist Leitschaufeln 35 und weiter stromabwärts Laufschaufeln 37 auf. Die feststehenden Leitschaufeln 35 sind mit dem Gehäuse der Gasturbine 1 verbunden, wohingegen die Laufschaufeln 37 an einer Turbinenscheibe 39 befestigt sind. Der Rotor 3 weist zwischen der Verdichterscheibe 26 und der Turbinenscheibe 39 anstelle der aus dem Stand der Technik bekannten einstückigen Hohlwelle drei axial aufeinander folgende Ringe 43 auf. Dabei ist jeder Ring 43 im Querschnitt I-förmig, so dass zwei in Axialrichtung des Zugankers 7 erstreckende Flansche 45, 46 über einen in Radialrichtung verlaufenden Steg 47 miteinander verbunden sind.The hot gas channel 33 has guide vanes 35 and further downstream rotor blades 37. The fixed guide blades 35 are connected to the housing of the gas turbine 1, whereas the rotor blades 37 are attached to a turbine disk 39. The rotor 3 has three axially consecutive rings 43 between the compressor disk 26 and the turbine disk 39 instead of the one-piece hollow shaft known from the prior art. Each ring 43 is I-shaped in cross section, so that two flanges 45, 46 extending in the axial direction of the tie rod 7 are connected to one another via a web 47 extending in the radial direction.
Zwischen dem Außenumfang des zentralen Zugankers 7 und einer von den radial inneren Flanschen 46 gebildeten, inneren Oberfläche 49 ist ein sich in Axialrichtung erstreckender zentraler Hohlraum 51 geformt, welcher zur Führung eines Kühlfluids, beispielsweise Verdichterluft, geeignet ist. Bei der in FIG 1 gezeigten Ausgestaltung des Rotors 3 mit einem zentralen Zuganker 7 ist der Hohlraum 51 in Querschnitt ringförmig.Between the outer circumference of the central tie rod 7 and an inner surface 49 formed by the radially inner flanges 46 is formed an axially extending central cavity 51 which is suitable for guiding a cooling fluid, for example compressor air. In the embodiment of the rotor 3 shown in FIG. 1 with a central tie rod 7, the cavity 51 is annular in cross section.
An den Stirnseiten 55 der radial außenliegenden Flansche 45 ist die Hirthverzahnung angeordnet, mit welcher dasOn the end faces 55 of the radially outer flanges 45, the serration is arranged, with which the
Drehmoment des Rotors 3 von der Turbinenscheibe 39 über die Ringe 43 an die Verdichterscheibe 26 weitergegeben wird. Dazu weisen die Stirnseiten 57 der Turbinenscheibe 39 und der Verdichterscheibe 26 ebenfalls die Hirthverzahnung auf.Torque of the rotor 3 is passed on from the turbine disk 39 to the compressor disk 26 via the rings 43. For this purpose, the end faces 57 of the turbine disk 39 and the compressor disk 26 likewise have the serration teeth.
Die radial innenliegenden Flansche 46 der Ringe 43 weisen an ihren Stirnseiten 59 labyrinthartige Dichtungen 62 auf, welche den Hohlraum 51 gegen den außenliegenden Bereich 61 abdichten.The radially inner flanges 46 of the rings 43 have labyrinth-like seals 62 on their end faces 59, which seal the cavity 51 against the outer region 61.
Da die außen liegenden Flansche 45 das Drehmoment von einer Stirnseite 55 zur ihrer gegenüberliegenden Stirnseite 55 durchreichen, weisen die äußeren Flansche 45 in Radialrichtung eine größere Breite auf als die inneren Flansche 46, welche lediglich die Dichtungen 62 tragen. Beim Betrieb der Gasturbine 1 wird Luft vom Verdichter 5 im Strömungskanal 23 des Verdichters 5 verdichtet, wobei ein Anteil der verdichteten Luft als Kühlluft durch Scheibenbohrungen 24 entnommen und gemäß den Pfeilen 63 entlang des Zugankers 7 vom verdichterseitigen Ende des Hohlraums 51 zum turbinenseitigen Ende geführt wird. In der Turbinenscheibe 39 vom inneren Durchmesser bis zum äußeren Durchmesser befindliche Scheibenbohrungen 24 führen die Kühlluft zu den Laufschaufeln 37 der ersten Turbinenstufe 34. Die Kühlluft kühlt die Laufschaufeln 37 und entweicht anschließend in den Heißgaskanal 33.Since the outer flanges 45 pass the torque from one end face 55 to their opposite end face 55, the outer flanges 45 have a greater width in the radial direction than the inner flanges 46, which only carry the seals 62. During operation of the gas turbine 1, air is compressed by the compressor 5 in the flow channel 23 of the compressor 5, a portion of the compressed air being extracted as cooling air through disk bores 24 and being guided along the tie rod 7 from the compressor-side end of the cavity 51 to the turbine-side end according to the arrows 63 , Disc bores 24 located in the turbine disk 39 from the inner diameter to the outer diameter lead the cooling air to the rotor blades 37 of the first turbine stage 34. The cooling air cools the rotor blades 37 and then escapes into the hot gas duct 33.
Die zwischen Zuganker 7 und Scheiben 26, 39 vorgesehenen Labyrinthdichtungen 65 und die Dichtungen 62 verhindern ein Entweichen der Kühlluft aus dem Hohlraum 51.The labyrinth seals 65 and the seals 62 provided between tie rods 7 and disks 26, 39 prevent the cooling air from escaping from the cavity 51.
FIG 2 zeigt einen Rotor 3 einer Gasturbine 1 mit mehreren Zugankern 8 in einem Längsschnitt im Bereich zwischen Verdichter 5 und Turbineneinheit 11.2 shows a rotor 3 of a gas turbine 1 with a plurality of tie rods 8 in a longitudinal section in the area between the compressor 5 and the turbine unit 11.
Wie FIG 1 zeigt FIG 2 den Verdichter 5, die Brennkammer 6, die Turbineneinheit 11 und den aus Verdichterscheiben 26, Turbinenscheiben 39 und Ringen 43 zusammengebauten Rotor 3. Anstelle des in FIG 1 gezeigten zentralen Zugankers 7 ist in FIG 2 einer von mehreren zur Drehachse 2 beabstandeten dezentralen Zugankern 8 gezeigt . Der dezentrale Zuganker 8 ist dabei derart zur Drehachse 2 beabstandet, dass die Stege 47 der Ringe 43 von ihm durchdrungen werden. Alternativ dazu könnte auch der Abstand so gewählt werden, dass der Zuganker 8 die Flansche 45 der Ringe durchbohrt.As shown in FIG. 1, FIG. 2 shows the compressor 5, the combustion chamber 6, the turbine unit 11 and the rotor 3 assembled from compressor disks 26, turbine disks 39 and rings 43. Instead of the central tie rod 7 shown in FIG. 1, FIG. 2 shows one of several to the axis of rotation 2 spaced decentralized tie rods 8 shown. The decentralized tie rod 8 is spaced from the axis of rotation 2 such that the webs 47 of the rings 43 are penetrated by it. Alternatively, the distance could also be chosen so that the tie rod 8 pierces the flanges 45 of the rings.
Im Abweichung zur FIG 1 zeigt FIG 3 einen mit einem zentralen Zuganker verspannten Rotor, in dem beispielsweise in einem radial äußeren Flansch 45 des verdichterseitig angeordneten Rings 43 Bohrungen 71 vorgesehen sein können, durch welche noch vergleichsweise kühle Verdichterendluft in einen zwischen den radial inneren und radial äußeren Flanschen 45, 46 geformten Hohlraum 66'' einleitbar ist. Dies führt zu einer gleichmäßigeren und schnelleren Temperierung des Rotors 3 , was zur positiven Beeinflussung des von Laufschaufeln und Führungsringen gebildeten Radialspalts genutzt werden kann. Die in die den weiteren Hohlraum 66'' einströmende Kühlluft wird durch in den Stegen 47 befindlichen Passagen 72 in Richtung der Turbineneinheit und weiter über Scheibenbohrungen 24 zu den Turbinenschaufeln 27 der ersten Turbinenstufe geführt, wo sie als Kühlluft eingesetzt werden kann.In contrast to FIG. 1, FIG. 3 shows a rotor braced with a central tie rod, in which 43 bores 71 can be provided, for example, in a radially outer flange 45 of the ring arranged on the compressor side, through which holes still comparatively cool compressor end air into one between the radially inner and the radial outer flanges 45, 46 shaped cavity 66 '' can be introduced. This leads to a more uniform and faster temperature control of the rotor 3, which can be used to positively influence the radial gap formed by rotor blades and guide rings. The cooling air flowing into the further cavity 66 ″ is led through passages 72 located in the webs 47 in the direction of the turbine unit and further via disk bores 24 to the turbine blades 27 of the first turbine stage, where it can be used as cooling air.
Der zentrale Hohlraum 51 dient für diesen Fall als Versorgungskanal für Kühlluft für die Turbinenschaufeln 37 der zweiten Turbinenstufe 34.In this case, the central cavity 51 serves as a supply duct for cooling air for the turbine blades 37 of the second turbine stage 34.
Es kann optional ein Spalt 69 zwischen der Verdichterscheibe 26 und dem radial inneren Flansch 46 des an ihr anliegenden Rings 43 ermöglicht sein, um eine gezielte Zuführung von Kühlluft in einen von den Flanschen 45, 46 radial begrenzten weiteren Hohlraums 66' herbeizuführen. A gap 69 can optionally be made possible between the compressor disk 26 and the radially inner flange 46 of the ring 43 lying against it, in order to bring about a targeted supply of cooling air into a further cavity 66 ′, which is radially delimited by the flanges 45, 46.

Claims

Patentansprüche claims
1. Rotor (3) für eine Strömungsmaschine, mit einer zu seiner Drehachse koaxial angeordneten Hohlwelle (13) , welche sich beidseitig stirnseitig an zwei axial gegenüberliegenden Abschnitten des Rotors (3) abstützt und einen inneren Hohlraum (51) umschließt und in Axialrichtung des Rotors (3) aus mehreren aneinander liegenden Ringen (43) gebildet ist, so dass die aneinander liegenden und an den Abschnitten anliegenden Ringe (43) den Hohlraum (51) nach außen begrenzen, dadurch gekennzeichnet, dass jeder Ring (43) im Querschnitt I-förmig ausgebildet ist, wobei der Steg (47) der I-Form in Radialrichtung des Rotors (3) verläuft.1.Rotor (3) for a turbomachine, with a hollow shaft (13) arranged coaxially with its axis of rotation, which is supported on both ends at two axially opposite sections of the rotor (3) and encloses an inner cavity (51) and in the axial direction of the rotor (3) is formed from a plurality of rings (43) lying against one another, so that the rings (43) lying against one another and adjoining the sections delimit the cavity (51) to the outside, characterized in that each ring (43) has a cross-section I - is shaped, the web (47) of the I-shape extending in the radial direction of the rotor (3).
2. Rotor (3) nach Anspruch 1, dadurch gekennzeichnet, dass der Rotor (3) zumindest einen parallel zur Drehachse verlaufenden Zuganker (7, 8) aufweist und dass die Abschnitte des Rotors (3) jeweils durch eine Scheibe (26, 39), insbesondere durch eine Verdichterscheibe (26) und einer Turbinenscheibe (39) gebildet ist, wobei der zumindest eine Zuganker (7, 8) zum Verspannen der Scheiben (26, 39) und der Ringe (43) sich durch diese erstreckt .2. Rotor (3) according to claim 1, characterized in that the rotor (3) has at least one tie rod (7, 8) running parallel to the axis of rotation and that the sections of the rotor (3) each by a disc (26, 39) , in particular by a compressor disk (26) and a turbine disk (39), the at least one tie rod (7, 8) for bracing the disks (26, 39) and the rings (43) extending through them.
3. Rotor (3) nach Anspruch 2, dadurch gekennzeichnet, dass der Zuganker (7) sich zentral durch die Scheiben (26, 39) und die Ringe (43) erstreckt.3. Rotor (3) according to claim 2, characterized in that the tie rod (7) extends centrally through the disks (26, 39) and the rings (43).
4. Rotor (3) nach Anspruch 2, dadurch gekennzeichnet, dass der Rotor (3) mehrere zur Drehachse beabstandete Zuganker (8) aufweist, die sich durch die Scheiben (26, 39) und die Ringe (43) erstrecken.4. Rotor (3) according to claim 2, characterized in that the rotor (3) has a plurality of tie rods (8) spaced apart from the axis of rotation, which extend through the disks (26, 39) and extend the rings (43).
5. Rotor (3) nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, dass jeder Ring (43) und jeder Abschnitt formschlüssige Mittel zur Übertragung des Drehmoments des Rotors (3) von einem der beiden Abschnitte zum gegenüberliegenden Abschnitt aufweist.5. Rotor (3) according to claim 1, 2, 3 or 4, characterized in that each ring (43) and each section has positive means for transmitting the torque of the rotor (3) from one of the two sections to the opposite section.
6. Rotor (3) nach Anspruch 5, dadurch gekennzeichnet, dass die Mittel zur Übertragung des Drehmoments an den Stirnseiten (55) des Rings (43) und den der Abschnitte nach Art einer Hirthverzahnung ausgebildet sind.6. Rotor (3) according to claim 5, characterized in that the means for transmitting the torque on the end faces (55) of the ring (43) and that of the sections are designed in the manner of a serration.
7. Rotor (3) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass an jedem Ende des Stegs (47) jeweils ein sich in Axialrichtung erstreckender Flansch (45, 46) angeordnet, so dass zwischen zwei benachbarten Ringen (43) und zwischen deren radial inneren Flanschen (46) und deren radial äußeren Flanschen (45) ein weiterer Hohlraum (66) zur Führung eines Kühlfluids gebildet ist.7. Rotor (3) according to one of claims 1 to 6, characterized in that at each end of the web (47) each have an axially extending flange (45, 46) arranged so that between two adjacent rings (43) and a further cavity (66) for guiding a cooling fluid is formed between the radially inner flanges (46) and the radially outer flanges (45) thereof.
8. Rotor nach Anspruch 7, dadurch gekennzeichnet, dass zumindest teilweise die Hohlräume (66) über in den Stegen (47) befindlichen Passagen (72) miteinander in Strömungsverbindung stehen.8. Rotor according to claim 7, characterized in that the cavities (66) are at least partially in flow connection with one another via passages (72) located in the webs (47).
9. Rotor nach Anspruch 7 oder 8 , dadurch gekennzeichnet, dass als Kühlfluid Verdichterluft in den weiteren Hohlraum (66) zuführbar ist und im Bereich der Turbinenstufe entnehmbar ist. 9. Rotor according to claim 7 or 8, characterized in that the cooling fluid can be supplied with compressor air into the further cavity (66) and can be removed in the region of the turbine stage.
10. Rotor (3) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Ringe (43) an ihren gegenüberliegenden Flanschen (45) Bereiche aufweisen, an denen die Hirthverzahnung vorgesehen ist.10. Rotor (3) according to one of claims 1 to 9, characterized in that the rings (43) on their opposite flanges (45) have areas on which the serration is provided.
11. Rotor (3) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Hohlraum (51) in Axialrichtung von einem Kühlfluid durchströmbar ist und dass die Ringe (43) und die Abschnitte zum Abdichten des Hohlraums (51) labyrinthartige Dichtmittel aufweisen.11. Rotor (3) according to one of claims 1 to 10, characterized in that the cavity (51) in the axial direction can be flowed through by a cooling fluid and that the rings (43) and the sections for sealing the cavity (51) have labyrinthine sealants ,
12. Strömungsmaschine mit einem Rotor (3), dadurch gekennzeichnet, dass der Rotor (3) nach einem der Ansprüche 1 bis 11 ausgebildet ist.12. Turbomachine with a rotor (3), characterized in that the rotor (3) is designed according to one of claims 1 to 11.
13. Strömungsmaschine nach Anspruch 10, dadurch gekennzeichnet, dass die Strömungsmaschine als Gasturbine (1) ausgebildet ist .13. Turbomachine according to claim 10, characterized in that the turbomachine is designed as a gas turbine (1).
14. Strömungsmaschine nach Anspruch 11, dadurch gekennzeichnet, dass die Gasturbine (1) entlang des Rotors (3) aufeinander folgend einen Verdichter (5) , zumindest eine Brennkammer (6) und eine Turbineneinheit (11) aufweist, wobei der eine der beiden Abschnitte durch eine im Verdichter (5) angeordnete Verdichterscheibe (26) und der andere Abschnitt durch eine in der Turbineneinheit (11) angeordnete Turbinenscheibe (39) gebildet ist. 14. Turbomachine according to claim 11, characterized in that the gas turbine (1) along the rotor (3) in succession has a compressor (5), at least one combustion chamber (6) and a turbine unit (11), the one of the two sections is formed by a compressor disk (26) arranged in the compressor (5) and the other section is formed by a turbine disk (39) arranged in the turbine unit (11).
EP05715935.2A 2004-03-17 2005-03-10 Rotor for a turbomachine Active EP1725741B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05715935.2A EP1725741B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine
EP14002196.5A EP2787168B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine with hollow shaft

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04006393A EP1577493A1 (en) 2004-03-17 2004-03-17 Turbomachine and rotor for a turbomachine
PCT/EP2005/002559 WO2005093219A1 (en) 2004-03-17 2005-03-10 Non-positive-displacement machine and rotor for a non-positive-displacement machine
EP05715935.2A EP1725741B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP14002196.5A Division-Into EP2787168B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine with hollow shaft
EP14002196.5A Division EP2787168B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine with hollow shaft

Publications (2)

Publication Number Publication Date
EP1725741A1 true EP1725741A1 (en) 2006-11-29
EP1725741B1 EP1725741B1 (en) 2014-09-24

Family

ID=34833623

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04006393A Withdrawn EP1577493A1 (en) 2004-03-17 2004-03-17 Turbomachine and rotor for a turbomachine
EP05715935.2A Active EP1725741B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine
EP14002196.5A Active EP2787168B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine with hollow shaft

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04006393A Withdrawn EP1577493A1 (en) 2004-03-17 2004-03-17 Turbomachine and rotor for a turbomachine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14002196.5A Active EP2787168B1 (en) 2004-03-17 2005-03-10 Rotor for a turbomachine with hollow shaft

Country Status (6)

Country Link
US (1) US7585148B2 (en)
EP (3) EP1577493A1 (en)
JP (1) JP4722120B2 (en)
CN (1) CN101010486B (en)
RU (1) RU2347912C2 (en)
WO (1) WO2005093219A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1970530A1 (en) 2007-03-12 2008-09-17 Siemens Aktiengesellschaft Rotor of a thermal fluid flow engine and fluid flow engine
RU2482336C1 (en) * 2009-04-01 2013-05-20 Сименс Акциенгезелльшафт Rotor for hydraulic machine
IT1399904B1 (en) * 2010-04-21 2013-05-09 Nuovo Pignone Spa STACKED ROTOR WITH TIE AND BOLTED FLANGE AND METHOD
US9133729B1 (en) * 2011-06-08 2015-09-15 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US20130264779A1 (en) * 2012-04-10 2013-10-10 General Electric Company Segmented interstage seal system
US9032738B2 (en) * 2012-04-25 2015-05-19 Siemens Aktiengeselischaft Gas turbine compressor with bleed path
JP5865204B2 (en) * 2012-07-20 2016-02-17 株式会社東芝 Axial turbine and power plant
KR101665887B1 (en) * 2015-09-23 2016-10-12 두산중공업 주식회사 Cooling system of the gas turbine
KR101744411B1 (en) * 2015-10-15 2017-06-20 두산중공업 주식회사 Cooling apparatus of the gas turbine
JP6554736B2 (en) * 2015-10-23 2019-08-07 三菱日立パワーシステムズ株式会社 Gas turbine rotor, gas turbine, and gas turbine equipment
KR101747550B1 (en) * 2015-12-01 2017-06-27 두산중공업 주식회사 Disk assembly and a turbine using the same
KR101788413B1 (en) * 2015-12-01 2017-10-19 두산중공업 주식회사 Disk assembly and a turbine using the same
FR3047075B1 (en) * 2016-01-27 2018-02-23 Safran Aircraft Engines REVOLUTION PIECE FOR TURBINE TEST BENCH OR FOR TURBOMACHINE, TURBINE TESTING BENCH COMPRISING THE TURBINE, AND PROCESS USING THE SAME
EP3214266A1 (en) 2016-03-01 2017-09-06 Siemens Aktiengesellschaft Rotor of a gas turbine with cooling air path
KR102052029B1 (en) * 2016-03-01 2019-12-04 지멘스 악티엔게젤샤프트 Compressor bleed cooling system for mid-frame torque disks downstream from the compressor assembly in a gas turbine engine
EP3219911A1 (en) * 2016-03-17 2017-09-20 Siemens Aktiengesellschaft Gas turbine rotor with bolted rotor discs
US10024170B1 (en) * 2016-06-23 2018-07-17 Florida Turbine Technologies, Inc. Integrally bladed rotor with bore entry cooling holes
KR101772334B1 (en) 2016-07-07 2017-08-28 두산중공업 주식회사 Disk assembly and a turbine using the same
KR101834647B1 (en) * 2016-07-07 2018-04-13 두산중공업 주식회사 Disk assembly and a turbine using the same
KR101794451B1 (en) 2016-07-07 2017-11-06 두산중공업 주식회사 Disk assembly and a turbine using the same
EP3269926B1 (en) * 2016-07-07 2020-10-07 Doosan Heavy Industries & Construction Co., Ltd. Disk assembly and turbine including the same
KR101882107B1 (en) * 2016-12-22 2018-07-25 두산중공업 주식회사 Gas turbine
FR3063775B1 (en) * 2017-03-07 2022-05-06 Ifp Energies Now TURBOPUMP FOR A FLUID CIRCUIT, IN PARTICULAR FOR A CLOSED CIRCUIT IN PARTICULAR OF THE RANKINE CYCLE TYPE
WO2019162989A1 (en) * 2018-02-20 2019-08-29 三菱重工エンジン&ターボチャージャ株式会社 Supercharger
US10794190B1 (en) 2018-07-30 2020-10-06 Florida Turbine Technologies, Inc. Cast integrally bladed rotor with bore entry cooling
US11428104B2 (en) 2019-07-29 2022-08-30 Pratt & Whitney Canada Corp. Partition arrangement for gas turbine engine and method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB599809A (en) 1945-01-15 1948-03-22 Bristol Aeroplane Co Ltd Improvements in axial flow compressors, turbines and the like
US2452782A (en) * 1945-01-16 1948-11-02 Power Jets Res & Dev Ltd Construction of rotors for compressors and like machines
GB661078A (en) * 1948-07-27 1951-11-14 Westinghouse Electric Int Co Improvements in or relating to gas turbine power plants
BE534314A (en) * 1953-12-24
US2858101A (en) * 1954-01-28 1958-10-28 Gen Electric Cooling of turbine wheels
DE1023933B (en) * 1954-03-08 1958-02-06 Canadian Patents Dev Shaft coupling, especially for gas turbine engines
US2741454A (en) * 1954-09-28 1956-04-10 Clifford R Eppley Elastic fluid machine
GB836920A (en) * 1957-05-15 1960-06-09 Napier & Son Ltd Rotors for multi-stage axial flow compressors or turbines
US3059901A (en) * 1958-04-01 1962-10-23 Carrier Corp Rotor construction
DE2250484A1 (en) * 1972-10-14 1974-04-18 Bulawin STATOR OF THE MULTISTAGE FLOW MACHINE
US4173120A (en) * 1977-09-09 1979-11-06 International Harvester Company Turbine nozzle and rotor cooling systems
US4292008A (en) * 1977-09-09 1981-09-29 International Harvester Company Gas turbine cooling systems
US4184797A (en) * 1977-10-17 1980-01-22 General Electric Company Liquid-cooled turbine rotor
DE3606597C1 (en) * 1986-02-28 1987-02-19 Mtu Muenchen Gmbh Blade and sealing gap optimization device for compressors of gas turbine engines
JPS63253125A (en) * 1987-04-08 1988-10-20 Hitachi Ltd Cooling air centrifugal accelerator for gas turbine
US5054996A (en) * 1990-07-27 1991-10-08 General Electric Company Thermal linear actuator for rotor air flow control in a gas turbine
FR2685936A1 (en) * 1992-01-08 1993-07-09 Snecma DEVICE FOR CONTROLLING THE GAMES OF A TURBOMACHINE COMPRESSOR HOUSING.
JP3149774B2 (en) * 1996-03-19 2001-03-26 株式会社日立製作所 Gas turbine rotor
US5755556A (en) * 1996-05-17 1998-05-26 Westinghouse Electric Corporation Turbomachine rotor with improved cooling
JP3621523B2 (en) * 1996-09-25 2005-02-16 株式会社東芝 Gas turbine rotor blade cooling system
EP0965726B1 (en) * 1996-11-29 2004-06-30 Hitachi, Ltd. Refrigerant recovery type gas turbine
US6053701A (en) * 1997-01-23 2000-04-25 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor for steam cooling
DE69934570T2 (en) * 1999-01-06 2007-10-04 General Electric Co. Cover plate for a turbine rotor
ATE318994T1 (en) * 1999-08-24 2006-03-15 Gen Electric STEAM COOLING SYSTEM FOR A GAS TURBINE
US6287079B1 (en) * 1999-12-03 2001-09-11 Siemens Westinghouse Power Corporation Shear pin with locking cam
JP3361501B2 (en) * 2000-03-02 2003-01-07 株式会社日立製作所 Closed-circuit blade cooling turbine
JP3762661B2 (en) * 2001-05-31 2006-04-05 株式会社日立製作所 Turbine rotor
JP2003206701A (en) * 2002-01-11 2003-07-25 Mitsubishi Heavy Ind Ltd Turbine rotor for gas turbine, and gas turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005093219A1 *

Also Published As

Publication number Publication date
EP1725741B1 (en) 2014-09-24
JP2007529668A (en) 2007-10-25
RU2347912C2 (en) 2009-02-27
CN101010486B (en) 2011-06-01
EP2787168A2 (en) 2014-10-08
WO2005093219A1 (en) 2005-10-06
EP2787168A3 (en) 2015-04-15
US20080159864A1 (en) 2008-07-03
US7585148B2 (en) 2009-09-08
RU2006136413A (en) 2008-04-27
EP1577493A1 (en) 2005-09-21
EP2787168B1 (en) 2016-01-06
CN101010486A (en) 2007-08-01
JP4722120B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
EP2787168B1 (en) Rotor for a turbomachine with hollow shaft
EP1945911B1 (en) Steam turbine
EP2148977B1 (en) Gas turbine
EP1183444B1 (en) Turbomachine and sealing element for a rotor thereof
WO2008110429A1 (en) Rotor of a gas turbine
DE69935745T2 (en) Steam-cooled gas turbine
DE102007031712A1 (en) Device and method for clamping bladed rotor disks of a jet engine
EP2173972B1 (en) Rotor for an axial flow turbomachine
EP2078137B1 (en) Rotor for a turbo-machine
WO2006087267A1 (en) Sealing element for use in turbomachinery
WO2010052053A1 (en) Gas turbine with securing plate between blade base and disk
EP2823154B1 (en) Coolant bridging line, corresponding turbine vane, gas turbine and power plant
DE102012208263A1 (en) Compressor device for turbomachine of jet engine, has secondary compressor that is designed such that air withdrawn after last compressor stage is supplied to secondary compressor, which is driven by gearbox of auxiliary device carrier
WO2011088819A2 (en) Housing system for an axial turbomachine
EP2378103A2 (en) Aircraft gas turbine drive
EP1564376B1 (en) Turbomachine rotor construction
EP3004741A1 (en) Tubular combustion chamber having a flame tube end region and gas turbine
EP3029268A1 (en) Turbine rotor blade
WO2000029721A1 (en) Turbo-machine, especially a turbo-generator comprising a turbo-machine and an electric machine
EP2551453A1 (en) Cooling device of a gas turbine compressor
EP3587748B1 (en) Housing structure for a turbo engine, turbo engine and method for cooling a housing section of a structure of a turbo engine
EP1707758B1 (en) Shell Element for a Combustion Chamber and Combustion Chamber
DE102020134759A1 (en) Turbomachine and method of operating a turbomachine
DE10233881A1 (en) Ring element for use in turbines, for example, has an outer and an inner ring component, and fitted in between them connecting elements allowing radial and circumferential relative movement
WO2010020487A1 (en) Gas turbine arrangement having a non-cylindrical inner housing hub, and method for directing flow to a turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 20070309

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140416

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014524

Country of ref document: DE

Effective date: 20141106

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014524

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005014524

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220811 AND 20220817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 19

Ref country code: IT

Payment date: 20230321

Year of fee payment: 19

Ref country code: GB

Payment date: 20230321

Year of fee payment: 19

Ref country code: DE

Payment date: 20220617

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 19