EP2786071B1 - Chemical-looping-combustion mit entfernung von asche und feinstoffen aus dem oxidationsbereich und anlage zur durchführung des verfahrens - Google Patents

Chemical-looping-combustion mit entfernung von asche und feinstoffen aus dem oxidationsbereich und anlage zur durchführung des verfahrens Download PDF

Info

Publication number
EP2786071B1
EP2786071B1 EP12799235.2A EP12799235A EP2786071B1 EP 2786071 B1 EP2786071 B1 EP 2786071B1 EP 12799235 A EP12799235 A EP 12799235A EP 2786071 B1 EP2786071 B1 EP 2786071B1
Authority
EP
European Patent Office
Prior art keywords
zone
particles
oxygen
solid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12799235.2A
Other languages
English (en)
French (fr)
Other versions
EP2786071A1 (de
Inventor
Florent Guillou
Thierry Gauthier
Ali Hoteit
Sébastien RIFFLART
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
TotalEnergies SE
Original Assignee
IFP Energies Nouvelles IFPEN
Total SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Total SE filed Critical IFP Energies Nouvelles IFPEN
Priority to PL12799235T priority Critical patent/PL2786071T3/pl
Publication of EP2786071A1 publication Critical patent/EP2786071A1/de
Application granted granted Critical
Publication of EP2786071B1 publication Critical patent/EP2786071B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/01Fluidised bed combustion apparatus in a fluidised bed of catalytic particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/005Suspension-type burning, i.e. fuel particles carried along with a gas flow while burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/027Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using cyclone separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the field of the invention is that of the chemical oxidation-reduction loop combustion of solid hydrocarbon feedstocks, to produce energy, synthesis gas and / or hydrogen.
  • the invention relates to the removal of ashes and fines produced in the chemical loop combustion plant.
  • CLC Chemical Looping Combustion
  • devolatilization During a heat treatment, the organic compounds lose volatile matter, first water and carbon dioxide, then liquid and gaseous hydrocarbons, then carbon monoxide and finally hydrogen. This process is called devolatilization.
  • the devolatilization temperature and the amplitude of the phenomenon depend on the starting organic compound. Thus, for coals of increasing rank, devolatilization occurs at a higher and higher temperature.
  • riser in the remainder of the description, the term “riser” denotes a vertical enclosure of tubular form in which the fluids are subjected to an upward movement.
  • oxygen carrier materials such as metal oxides which yield their oxygen in a reduction zone (called “Fuel Reactor”) under the appropriate operating conditions, are used. Once reduced, the material is then transported to an oxidation zone (called “Air Reactor”) in which it is reoxidized in contact with an oxidizing gas (such as for example air or water vapor).
  • an oxidizing gas such as for example air or water vapor
  • a chemical loop combustion process comprises one or more reaction zones constituting a reduction zone, in which the combustion of a fuel (for example a hydrocarbon feedstock) is carried out by placing it in contact with a solid oxygen carrier. which is then reoxidized in at least one oxidation zone by contacting with air or steam before being returned to the zone (s) of combustion (or reduction) .
  • the reaction zones for carrying out chemical loop combustion reactions generally consist of fluidized beds or transported beds.
  • Chemical loop combustion (CLC) of solid hydrocarbon feedstocks is a process that allows the production of energy (steam, electricity, etc.) by recovering the heat released by the combustion reactions while producing CO2-rich fumes. . It is therefore possible to consider capturing CO 2 after condensation of fumes and compression of fumes. It is also possible to consider the production of synthesis gas, or even hydrogen, by controlling the combustion and by carrying out the purifications required downstream of the combustion process.
  • the solid fuel passes through a phase of gasification, favored by the presence of water vapor or carbon dioxide and the temperature, then that the gas produced by the gasification step oxidizes in contact with the oxygen carrier material. If the solid fuel contains volatile materials, then they devolatilize at least partially in contact with the hot oxygen carrier material and are then oxidized thereby. It is also possible, in the case where the oxygen-carrying material naturally releases oxygen depending on the operating conditions, to have a direct oxidation of the solid fuel by the gaseous oxygen released from the material in the fuel reactor.
  • the chemical loop combustion of the solid charges requires severe and restrictive operating conditions in order to carry out the combustion reactions.
  • it is necessary to set itself at high temperatures, generally between 800 and 1100 ° C., preferably between 850 and 1000 ° C.
  • the time required for the gasification decreases with the temperature and is generally between 30 seconds and 30 minutes. Therefore, it may be advantageous to perform partial gasification, to separate the effluent non-gasified fuel residue and recycle.
  • conversion rates (by gasification) per pass between 50 and 80% in a temperature range of between 850 ° C. and 1000 ° C. with reaction times of between 1 minute and 10 minutes. typically between 3 and 5 minutes.
  • By increasing the partial pressure of the oxidizing gas (H 2 O, CO 2 ) it is possible to reduce the gasification times.
  • Fly ash generally represents 50 to 99% of the ash formed, typically 70 to 90%. Their particle size is relatively fine with in general at least 25% of fines smaller than 10 microns and 90% of fines less than 100 microns.
  • the average Sauter diameter representative of the particle size of the fly ash is generally between 5 and 30 microns, typically about 10 microns.
  • the grain density of these ashes is in general between 2000 and 3000 kg / m3, generally close to 2500 kg / m3.
  • the particle size of the agglomerated ash is more difficult to estimate and depends on the conditions of implementation of the process. In general, it is estimated that these ashes have a particle size greater than 100 microns and their size can be up to several millimeters.
  • the patent application FR 2,850,156 discloses a chemical loop combustion method for which the solid fuel is ground prior to entering the reduction reactor operating in a circulating fluidized bed, to allow more complete and faster combustion.
  • the process produces almost 100% fly ash which is separated from the circulating oxides.
  • the downstream separation of the circulating bed is first ensured by a cyclone and then by a device comprising a fluidized bed by steam to separate the unburnt particles from the metal oxide particles.
  • the entrainment of unburnt in the oxidation zone and thus the CO 2 emissions in the effluents of the oxidation reactor is thus avoided.
  • the fly ash is separated from the oxide particles in a second circuit comprising a separator operating in a fluidized bed.
  • This device consists of an oxidation reactor using metal particles, a cyclone allowing the separation of particles and depleted air after oxidation, a fluidized bed supplied with oxidized metal oxides by the leg of return located under the cyclone, in which the reduction of the metal oxide by burning coal.
  • the coal is fed into the upper part of the fluidized bed in the dilute phase.
  • the combustion of the coal takes place progressively: the coal particles begin to descend and devolatilize in the diluted phase, in countercurrent of the fluidization gases, and in which metal oxides are only present in small quantities; then they come into contact with the dense phase fluidized metal oxides.
  • the high residence time makes it possible to gasify the coal and to produce combustion gases containing large amounts of carbon monoxide and hydrogen which pass into the dilute phase.
  • the reduction reactor is equipped with a particle separator integrated in the dense phase which requires the addition of additional gas to achieve the separation.
  • a particle separator integrated in the dense phase which requires the addition of additional gas to achieve the separation.
  • the applicants have developed a chemical loop combustion process which makes it possible, even from coarse fuel particles, to obtain a total combustion of the solid charge. by minimizing the amount of solid charge to be recycled, which maximizes the energy efficiency of the process.
  • This combustion process according to the invention makes it possible to capture at least 90% of the CO 2 emitted by the combustion in the flue gases directly at the outlet of the combustion reactor, the capture rate being defined by the ratio between the quantity of CO 2 emitted in the flue gases from the combustion reactor on the amount of CO 2 emitted in the chemical loop combustion process.
  • the CO / CO 2 molar ratio of the fumes downstream of the cyclones is less than 0.05 and the H 2 / H 2 O ratio is less than 0.05. This is achieved on the one hand by optimizing the initial contact between the particles transporting oxygen and the solid fuel to promote coal gasification reactions, and on the other hand, by optimizing the contact between the products. gasification and metal oxides to produce fully burned effluents (H 2 , CO and HC ⁇ 1% vol in fumes).
  • the unburned fuel particle separation of the metal oxide particles is carried out upstream of the flue gas dedusting stage of the reduction reactor in order to best utilize the maximum kinetic energy of the fumes for the separation of the two types of metal oxide particles. particles.
  • a dedusting system comprising for example one or more stages of cyclones can be provided to separate the particles entrained in the flue gases from the combustion zone of the combustion zone.
  • Fuel Reactor. The fly ash is entrained in the flue gas to this dedusting system with unburned solid fuel particles. In order to maximize the energy efficiency of the installation, it is necessary to recover most of the unburned fuel particles and thus to carry out a thorough dusting. This dedusting will then recover unburned particles, but also a significant portion of the fly ash which will be recycled to the Fuel Reactor.
  • the applicant has developed an improvement of this process using a particular configuration of the reduction zone with: a first reaction zone operating in a dense fluidized bed; a second reaction zone; a fast separation zone for separating unburned solid charge particles, fly ash and particles of oxygen-carrying material in a mixture from the second reaction zone; dust removal of the fumes; a division zone of the particle stream, a portion of the particles being directly recycled to the first reaction zone, the other sent to an elutriation separation zone to recover the ashes and recycle the dense particles to the first reaction zone.
  • ashes can also be transported to the oxidation zone. Indeed, during the combustion in the reduction zone, the degradation of the charge produces ash of two types: either agglomerated furnace ash that is not transported pneumatically with the driven bed of metal oxides, or ashes flying that are driven along with the solid bed. If the former are easily removed at the bottom of the reactor in a fluidized bed by simple gravity flow, the seconds accompany the oxide and in the absence of a control device of their population in the bed, they will accumulate there. Thus, ash from the reduction zone has been transported to the oxidation zone, even more so when no ash population control device is implanted in the reduction zone.
  • a new configuration of the oxidation zone (or "air reactor") is proposed which makes it possible to use the kinetic energy of the air (oxidizing gas) available during the reoxidation of the solid to effect the separation between the particles of oxygen transporter (metal oxide) and the particles that it is desired to eliminate: the ashes and the fines of metal oxides, then to perform the separation of ashes in a capacity placed on a solid circulation line, but in an area where the unburnt solids are absent, namely downstream of R1 and upstream of (R0).
  • air oxygen transporter
  • the oxygen carrier particles are circulated in a loop in the reactive zone R1 by means of a pipe (11) allowing the sedimented oxygen carrier particles to be recycled in the dense fluidized phase since the bottom of the separation zone S3 towards the bottom of the reactive zone R1.
  • heat is recovered within the dense fluidized phase formed at the bottom of the separation zone by dense phase elutriation S3 by means of a heat exchanger E4.
  • the dense phase elutriation separation zone S3 is fluidized with a fluidization velocity of between 0.5 and 1 m / s.
  • the particles of oxygen-carrying material initially comprise less than 10% of particles smaller than 100 microns in diameter.
  • the invention also relates to an installation according to the subject of claim 7 for carrying out the combustion of a solid hydrocarbon feedstock in a chemical oxidation-reduction loop according to the method described above.
  • the installation comprises a heat exchanger E4 within the dense fluidized phase formed at the bottom of the dense phase separation zone S3.
  • the installation comprises a pipe coming from the dense phase separation zone S3 for recycling to the reactive zone R1 a stream of particles (11) comprising a part of the solid particles separated in the zone of separation by dense phase elutriation S3.
  • the plant may also comprise a dedusting zone S5 downstream of the dense phase elutriation separation zone S3, provided with an intake pipe for receiving a predominantly gaseous effluent (9) issuing from the separation zone S3, an outlet pipe for discharging a gas stream (13) containing most of the ash and fines, and a transport pipe to the reduction zone R0 of a particle stream (14) comprising most of the oxygen carrier material.
  • a dedusting zone S5 downstream of the dense phase elutriation separation zone S3 provided with an intake pipe for receiving a predominantly gaseous effluent (9) issuing from the separation zone S3, an outlet pipe for discharging a gas stream (13) containing most of the ash and fines, and a transport pipe to the reduction zone R0 of a particle stream (14) comprising most of the oxygen carrier material.
  • the invention may be generally described as an assembly as described in the Figure 1 .
  • the oxygen carrier material (MTO) is in the partially reduced state after reaction with a carbon source that it has contributed for all or part to oxidize in a combustion reactor called "Fuel reactor" (R0) .
  • the oxygen-carrying material in the form of a stream of solid particles (1) is conveyed to the reactive zone R1 described by the present invention, for example by pneumatic transport, or by dense phase transport in pipelines, the particle transport being controlled by non-mechanical valves for example of the type of L-shaped valves, to be oxidized in contact with the air by enriching its crystalline structure in oxygen atoms. It is because of this oxidation function in contact with the air that the reactive zone R1 can be described as an oxidation zone or "air reactor".
  • the stream of particles of oxygen-carrying material (1) is introduced through a pipe into the air reactor R1, in which the particles of oxygen-carrying material are reoxidized in contact with an air stream (2) generally supplied in oxygen surstoechiometry of the order of 0% to 20%, preferably 5 to 15%.
  • the geometry of the reactor is such that the speed of the gas phase under the reaction conditions in this zone preferably varies between 3 and 30 m / s, preferably between 5 and 15 m / s and the flow of transported oxygen carrier solid varies. generally between 25 and 200 kg / s / m2, and is preferably in the range of 30 to 100 kg / s / m2 to promote good contact between the gases and the metal oxide particles.
  • a reactor in such a configuration can then be described as reactive "riser".
  • the residence time of the solid particles is advantageously between 1 s and 1 min, preferably between 2 s and 20 s.
  • an optional (3) booster of particles of oxygen carrier material can be used. by a booster pipe in the reactive zone R1.
  • hearth ash The majority of agglomerated ash known as hearth ash as described above is formed during the combustion of the hydrocarbon feed in the fuel reactor where they are removed during their formation. However, if the particular configuration of implementation of the invention were to these are present in the stream (1), mixed with the particles of oxygen-carrying material they can be removed by gravity flow at the bottom of the reactive zone R1. Bed ashes are not generally transported pneumatically under the process conditions. These are found at the bottom of the reactor R1 and can be extracted by a pipe (4) supplying extraction means which can be for example a cooled worm.
  • the dense phase elutriation separation zone S3 can take the form of a dense fluidized bed whose main function according to the present invention is to separate the fly ash from the particles of oxygen-carrying material.
  • the reactor is fluidized by a fluidization gas (8) chosen from those which are not likely to reduce the oxidation state of the oxygen-carrying material, preferably steam, nitrogen or even air; the latter being able to participate in increasing the degree of oxidation of the solid.
  • a fluidization gas (8) chosen from those which are not likely to reduce the oxidation state of the oxygen-carrying material, preferably steam, nitrogen or even air; the latter being able to participate in increasing the degree of oxidation of the solid.
  • Potentially reducing gases such as light hydrocarbons, carbon monoxide or hydrogen should be avoided.
  • the gas phase velocity in the dense phase separation zone S3 is adapted such that the particles of oxygen-carrying material, larger and denser than the ashes remain in the fluidized bed, while the fly ash, less dense and smaller than the particles of oxygen-carrying material, is entrained with the gas phase by pneumatic transport.
  • the gas velocity is between 0.3 and 1.5 m / s, preferably in the range 0.4 and 1 m / s, to reach entrained particle flux values ranging between 0.01 and 5 kg. / s / m 2, preferably between 0.05 and 0.5 kg / s / m2.
  • a gaseous effluent comprising a mixture of particles rich in fly ash containing less than 30% by weight of oxygen carrier particles and preferably less than 15% by weight of oxygen carrier particles.
  • a solid flow containing less than 5% by weight of ash and preferably less than 1% by weight of ash.
  • an E4 heat exchanger can be implemented within the dense fluidized phase formed at the bottom of the separation zone S3 by the accumulation of oxygen carrier particles.
  • a heat transfer fluid (12) circulates in the exchanger E4 in purely monophasic flow (gas or liquid) or, if it is desired to generate steam and maximize the heat exchange, in vaporized form in whole or in part.
  • the dense phase fluidized bed thus advantageously has a secondary function such as the control of the circulation of the oxygen carrier around the air reactor, and / or an additional oxidation of the carrier of oxygen if the gas chosen to fluidize it is oxidizing and / or a heat recovery function.
  • the gaseous effluent rich in fly ash (9) advantageously comprises less than 30% by weight of oxygen carrier particles and preferably less than 15% by weight of oxygen carrier particles, derived from the S3 dense phase elutriation separation zone is sent to the dust collection area S5.
  • a gaseous transported flow (13) mainly comprising fly ash and fines and a solid stream (14) comprising the majority of the particles of oxygen carrier material of the gaseous effluent (9) which is sent to the reduction zone R0 of the chemical loop.
  • the solid stream (14) can be joined to the solid stream (10) from the dense phase separation zone S3 in a common supply line of the reduction zone R0.
  • the oxygen-carrying material (usually a metal oxide) injected into the installation initially contains less than 10% of particles with a diameter of less than 100 microns, which allows easy separation of the ash and the metal oxide. by elutriation.
  • the example relates to the figure 1 , without the optional recycling of the flow (11) or the heat recovery E4, in the preferred embodiment where it is used a dust dedusting zone S5, here a cyclone.
  • a chemical loop is considered in which circulates an oxygen-carrying metal oxide with a gross thermal power of the order of 300 MWth, ie a solid circulation equivalent to 1077 kg / s.
  • the combustion of a coal containing 14% of ash feeding the unit at 11.6 kg / s is considered.
  • the coal is fed into the fuel reactor with a particle size characterized in that less than 2% of the coal has a particle size greater than 200 microns.
  • the oxygen carrier used is a selected solid type Illmenite with a density close to 5,000 kg / m3.
  • the present example deals with the removal of ashes at the outlet of the air reactor according to the present invention such that the ash removed is equivalent in mass flow to the flow of ash entering the unit (corresponding to the ash of the feed introduced continuously. ), ie an ash flow to be removed of 1.62 kg / s.
  • the ashes are only eliminated at the level of the zone of separation by dense phase elutriation S3 as described in figure 1 after passing through a cyclone S2.
  • the flow (7) is directed towards the dense fluidized bed separator S3 with a carrier gas velocity (8) of 0.75 m / s.
  • a carrier gas velocity (8) 0.75 m / s.
  • 50% of the ash and 20% of the population of the metal oxide fines are entrained.
  • the device must eliminate 1.67 kg / s of ash, which corresponds to a mass flux of ash in the stream (5) of 18.3 kg / s, ie 1.7% by mass of the total flow. of oxygen carrier material and ash (5).
  • For the flow of oxygen carrier material this results in a removal of the fines at 0.17 kg / sec of MTO for the stream (11) which is added to the 1.67 kg / s of ash removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treating Waste Gases (AREA)

Claims (10)

  1. Verfahren zur Chemical Looping-Verbrennung einer Kohlenwasserstofffraktion fester Partikel, wobei ein Sauerstoff transportierendes Material in der Form von Partikeln zirkuliert wird, wobei:
    - Partikel der Kohlenwasserstofffraktion mit den Partikeln des Sauerstoff transportierenden Materials in einer Reduktionszone R0 in Kontakt gebracht werden;
    - die Partikel des Sauerstoff transportierenden Materials (1) aus der Reduktionszone R0 mit einem Strom eines Oxidationsgases (2) in einer reaktiven Oxidationszone R1 in Kontakt gebracht werden;
    - die transportierte Phase (5) aus der reaktiven Zone R1, umfassend Gas und Feststoff, zu einer Gas-Feststoff-Trennzone S2 geschickt wird, um zu trennen: eine mehrheitlich gasförmige transportierte Phase (6), umfassend Flugasche und Feinstoffe des Sauerstoff transportierenden Materials, und einen festen Strom (7), umfassend den Großteil der Feinstoffe, der Flugasche und den Großteil der Partikel des Sauerstoff transportierenden Materials;
    dadurch gekennzeichnet, dass
    - der feste Strom (7) aus der Gas-Feststoff-Trennzone S2 zu einer Trennzone durch Elutriation in dichter Phase S3, fluidisiert durch ein Nicht-Reduktionsgas (8), geschickt wird, wodurch es ermöglicht wird, die Feinstoffe und die Flugasche von den Partikeln des Sauerstoff transportierenden Materials zu trennen, um einen Partikelstrom (10), umfassend den Großteil der Partikel des Sauerstoff transportierenden Materials, zur Reduktionszone R0 zu schicken, und durch eine Austrittsleitung einen mehrheitlich gasförmigen Abstrom (9), umfassend den Großteil der Flugasche und der Feinstoffe des Sauerstoff transportierenden Materials, abzuziehen.
  2. Verfahren nach Anspruch 1, wobei in der reaktiven Zone R1 die Partikel des Sauerstoff transportierenden Materials mittels einer Leitung (11) in einer Schleife zirkuliert werden, wodurch es ermöglicht wird, dass die Partikel des Sauerstoff transportierenden Materials, die in der dichten fluidisierten Phase sedimentiert haben, vom Boden der Trennzone S3 zur Unterseite der reaktiven Zone R1 rückgeführt werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, wobei die Wärme im Inneren der dichten fluidisierten Phase, die am Boden der Trennzone durch Elutriation in dichter Phase S3 gebildet wird, mittels eines Wärmetauschers E4 abgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Trennzone durch Elutriation in dichter Phase S3 mit einer Fluidisierungsgeschwindigkeit zwischen 0,5 und 1 m/s fluidisiert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Partikel des Sauerstoff transportierenden Materials anfänglich weniger als 10 % Partikel mit einem Durchmesser kleiner als 100 Mikron umfassen.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei:
    - der mehrheitlich gasförmige Abstrom (9) aus der Trennzone durch Elutriation in dichter Phase S3 zu einer Entstaubungszone S5 geschickt wird, um einen Gasstrom (13), enthaltend den Großteil der Asche und der Feinstoffe, und einen Partikelstrom (14), umfassend den Großteil des Sauerstoff transportierenden Materials, abzuziehen, wobei der Partikelstrom durch eine Transportleitung zu der Reduktionszone R0 geschickt wird.
  7. Anlage zur Durchführung der Chemical Looping-Redox-Verbrennung einer festen Kohlenwasserstofffraktion gemäß dem Verfahren nach einem der Ansprüche 1 bis 6, wobei die Anlage mindestens umfasst:
    - eine Reduktionszone R0;
    - eine reaktive Oxidationszone R1, die mit einer Zufuhr Sauerstoff transportierender Partikel (1) aus der Reduktionszone R0, mit einer Zufuhr von Fluidisierungsoxidationsgas (2) und einer Austrittsleitung versehen ist, um eine transportierte Phase (5) abzuziehen, umfassend Gas und feste Partikel;
    - eine Gas-Feststoff-Trennzone S2, die stromabwärts von der reaktiven Zone R1 angeordnet ist, und die von der Austrittsleitung gespeist wird, und umfassend eine Abzugsleitung einer mehrheitlich gasförmigen transportierten Phase (6) und eine Abzugsleitung eines festen Stroms (7), umfassend den Großteil des Sauerstoff transportierenden Materials;
    - eine Trennzone durch Elutriation in dichter Phase S3, die stromabwärts von der Gas-Feststoff-Trennzone S2 angeordnet ist, umfassend eine Aufnahme des festen Stroms (7), eine Leitung, die das Einbringen eines Fludisierungsgases (8) gestattet, eine Transportleitung eines Stroms fester Partikel (10) reich an Sauerstoff transportierenden Partikeln zur Reduktionszone R0, und eine Abzugsleitung eines Gasstroms reich an Flugasche (9),
    dadurch gekennzeichnet, dass die dichte fluidisierte Phase der Trennzone durch Elutriation in dichter Phase S3 ausgelegt ist, dass die Geschwindigkeit des Gases der Gasphase in der Trennzone in dichter Phase S3 derart angepasst wird, dass die Partikel des Sauerstoff transportierenden Materials, die größer und dichter sind als die Flugasche, im Fließbett verbleiben, während die Flugasche, die weniger dicht und kleiner ist als die Partikel des Sauerstoff transportierenden Materials, mit der Gasphase durch einen pneumatischen Transport mitgeführt wird.
  8. Anlage nach Anspruch 7, umfassend einen Wärmetauscher E4 im Inneren der dichten fluidisierten Phase, die an der Unterseite der Trennzone in dichter Phase S3 gebildet wird.
  9. Anlage nach einem der Ansprüche 7 bis 8, umfassend eine Leitung aus der Trennzone in dichter Phase S3, um zur reaktiven Zone R1 einen Partikelstrom (11) zurückzuführen, umfassend einen Teil der festen Partikel, die in der Trennzone durch Elutriation in dichter Phase S3 getrennt werden.
  10. Anlage nach einem der Ansprüche 7 bis 9, umfassend eine Entstaubungszone S5 stromabwärts von der Trennzone durch Elutriation in dichter Phase S3, die versehen ist mit einer Aufnahmeleitung, um einen mehrheitlich gasförmigen Abstrom (9) aus der Trennzone S3 aufzunehmen, einer Austrittsleitung, die es ermöglicht, einen Gasstrom (13), enthaltend den Großteil der Asche und der Feinstoffe, abzuziehen, und einer Transportleitung eines Partikelstroms (14), umfassend den Großteil des Sauerstoff transportierenden Materials, zur Reduktionszone R0.
EP12799235.2A 2011-12-02 2012-10-29 Chemical-looping-combustion mit entfernung von asche und feinstoffen aus dem oxidationsbereich und anlage zur durchführung des verfahrens Not-in-force EP2786071B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12799235T PL2786071T3 (pl) 2011-12-02 2012-10-29 Sposób spalania w pętli chemicznej z usuwaniem popiołów i drobnych cząstek na wylocie ze strefy utleniania oraz instalacja wykorzystująca taki sposób

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103697A FR2983488B1 (fr) 2011-12-02 2011-12-02 Procede de combustion en boucle chimique avec elimination des cendres et fines en sortie de la zone d'oxydation et installation utilisant un tel procede
PCT/FR2012/000441 WO2013079818A1 (fr) 2011-12-02 2012-10-29 Procédé de combustion en boucle chimique avec elimination des cendres et fines en sortie de la zone doxydation et installation utilisant un tel procede

Publications (2)

Publication Number Publication Date
EP2786071A1 EP2786071A1 (de) 2014-10-08
EP2786071B1 true EP2786071B1 (de) 2019-07-24

Family

ID=47351855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12799235.2A Not-in-force EP2786071B1 (de) 2011-12-02 2012-10-29 Chemical-looping-combustion mit entfernung von asche und feinstoffen aus dem oxidationsbereich und anlage zur durchführung des verfahrens

Country Status (14)

Country Link
US (1) US9494315B2 (de)
EP (1) EP2786071B1 (de)
JP (1) JP2015507732A (de)
KR (1) KR20140101336A (de)
CN (1) CN103958967B (de)
AU (1) AU2012343707B2 (de)
BR (1) BR112014011388A2 (de)
CA (1) CA2850612C (de)
ES (1) ES2751383T3 (de)
FR (1) FR2983488B1 (de)
PL (1) PL2786071T3 (de)
RU (1) RU2603942C2 (de)
WO (1) WO2013079818A1 (de)
ZA (1) ZA201402473B (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983489B1 (fr) 2011-12-02 2013-11-15 IFP Energies Nouvelles Procede de combustion en boucle chimique avec elimination en phase diluee des cendres et finess dans la zone d'oxydation et installation utilisant un tel procede
FR3007105B1 (fr) * 2013-06-13 2015-07-17 IFP Energies Nouvelles Procede et installation de combustion par oxydo-reduction en boucle chimique d'une charge hydrocarbonee solide avec elimination des cendres de foyer
CN104119960B (zh) * 2014-07-31 2016-07-20 新奥科技发展有限公司 一种飞灰分离方法
JP6390334B2 (ja) * 2014-10-15 2018-09-19 株式会社Ihi ケミカルループ燃焼装置、及びケミカルループ燃焼方法
KR101594799B1 (ko) * 2015-01-12 2016-02-26 한국에너지기술연구원 회재분리기 및 이를 이용한 고체연료 매체순환연소기
CN104776427B (zh) * 2015-04-03 2017-02-01 武汉江河长能源科技有限公司 一种基于燃气/燃油锅炉改造的生物质微米流态燃烧设备
US9890949B2 (en) * 2015-09-10 2018-02-13 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Hydrocarbon fuel reactor for separating and purifying carbon dioxide
CN106554826B (zh) * 2015-09-30 2020-04-07 中国科学院工程热物理研究所 带细粉灰熔融的循环流化床煤气化方法及装置
CN106238443B (zh) * 2016-09-22 2018-07-10 新奥科技发展有限公司 一种二旋飞灰的处理方法
CN110551529B (zh) * 2019-09-03 2020-09-15 中国科学院工程热物理研究所 一种气化飞灰资源化处理及热能再利用系统及方法
RU2740349C1 (ru) * 2020-04-24 2021-01-13 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук Способ безотходного сжигания углеродного топлива
CN111998335B (zh) * 2020-09-02 2022-11-18 中国石油化工股份有限公司 一种辅助燃烧载氧体组合物及其制备方法和应用
CN112708470B (zh) * 2020-12-23 2021-11-12 华阳新材料科技集团有限公司 一种多喷嘴气化炉生产合成气的装置及方法
FR3125441B1 (fr) * 2021-07-23 2023-07-14 Ifp Energies Now Procédé et installation CLC avec récupération d’oxygène gazeux produit par un porteur d’oxygène
NL2031665B1 (en) * 2022-04-22 2023-11-07 Renewable Iron Fuel Tech B V Boiler for iron fuel combustion arrangement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2394710A (en) * 1943-08-30 1946-02-12 Universal Oil Prod Co Contacting fluids with solids
US3729551A (en) * 1971-01-07 1973-04-24 Cons Coal Co Conversion of calcium sulfate to calcium oxide and elemental sulfur
CH566489A5 (de) 1974-05-28 1975-09-15 Schneeberger W Ag Maschinenfab
FR2556983B1 (fr) * 1983-12-23 1986-05-16 Creusot Loire Procede et installation de traitement de matieres en lit fluidise, en particulier pour la combustion ou gazeification de matiere combustible
JPH0830566B2 (ja) * 1987-09-22 1996-03-27 三井造船株式会社 循環型流動層ボイラ
FR2850156B1 (fr) * 2003-01-16 2005-12-30 Alstom Switzerland Ltd Installation de combustion avec recuperation de co2
ITMI20041371A1 (it) * 2004-07-09 2004-10-09 Magaldi Power Spa Sistema integrato di estrazione ceneri pesanti trasformazione delle stesse in ceneri leggere e riduzione degli incombusti
FR2883773B1 (fr) * 2005-04-01 2007-05-11 Alstom Sa Dispositif de combustion produisant de l'hydrogene avec reutilisation de co2 capte
WO2007014984A1 (fr) * 2005-08-01 2007-02-08 Alstom Technology Ltd Reacteur a lit fluidise modulaire
US7540893B2 (en) * 2005-12-06 2009-06-02 General Electric Company System and method for producing synthesis gas
DE112007000518A5 (de) * 2006-03-16 2009-01-22 Alstom Technology Ltd. Anlage zur Erzeugung von Elektrizität
US7824574B2 (en) * 2006-09-21 2010-11-02 Eltron Research & Development Cyclic catalytic upgrading of chemical species using metal oxide materials
FR2919813B1 (fr) * 2007-08-06 2010-08-27 Air Liquide Procede de desoxygenation de fumees et installation pour sa mise en oeuvre
AT505526B1 (de) * 2007-08-14 2010-09-15 Univ Wien Tech Wirbelschichtreaktorsystem
RU79977U1 (ru) * 2008-10-10 2009-01-20 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" Установка для сжигания твердого топлива в химическом цикле с газификацией и при использовании циркулирующих частиц оксидов металла в качестве переносчиков кислорода
WO2010052415A2 (fr) * 2008-11-04 2010-05-14 Jean-Xavier Morin Procede d'adaptation a tout type d'oxydes, d'une installation a cycle thermochimique et installation pour la mise en oeuvre de ce procede
FR2941689B1 (fr) * 2009-01-30 2011-02-18 Inst Francais Du Petrole Procede integre d'oxydation, reduction et gazeification pour production de gaz de synthese en boucle chimique
ES2421210T3 (es) * 2009-06-12 2013-08-29 Alstom Technology Ltd Sistema para conversión de material combustible
FR2960869B1 (fr) * 2010-06-02 2014-08-08 Inst Francais Du Petrole Procede et installation de production d'oxygene par boucle chimique en lit fluidise

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2850612C (fr) 2020-01-14
US20140302444A1 (en) 2014-10-09
PL2786071T3 (pl) 2020-02-28
KR20140101336A (ko) 2014-08-19
CN103958967B (zh) 2016-11-23
BR112014011388A2 (pt) 2017-05-02
CN103958967A (zh) 2014-07-30
ZA201402473B (en) 2015-03-25
RU2014126802A (ru) 2016-02-10
ES2751383T3 (es) 2020-03-31
RU2603942C2 (ru) 2016-12-10
US9494315B2 (en) 2016-11-15
CA2850612A1 (fr) 2013-06-06
EP2786071A1 (de) 2014-10-08
FR2983488A1 (fr) 2013-06-07
AU2012343707B2 (en) 2017-05-25
AU2012343707A1 (en) 2014-07-24
WO2013079818A1 (fr) 2013-06-06
JP2015507732A (ja) 2015-03-12
FR2983488B1 (fr) 2013-11-15

Similar Documents

Publication Publication Date Title
EP2786071B1 (de) Chemical-looping-combustion mit entfernung von asche und feinstoffen aus dem oxidationsbereich und anlage zur durchführung des verfahrens
EP2786069B1 (de) Chemisches kreislaufverbrennungsverfahren mit verdünnungsphasenentfernung von asche und feinstoffen in der oxidierungszone sowie anlage zur durchführung eines solchen verfahrens
EP2758711B1 (de) Chemical-looping-combustion mit entfernung von asche und feinstoffen im reduktionsbereich und anlage zur durchführung des verfahrens
EP2577162B1 (de) Chemical-looping-combustion verfahren mit zwei sukzessiven reaktionsbereichen und einem abscheidungsbereich und einrichtung mit diesem verfahren
EP3008384B1 (de) Verfahren und anlage zur verbrennung einer festen kohlenwasserstoffbeschickung mit oxidationsreduktion durch eine chemische schleife
FR2895413A1 (fr) Installation de conversion d'hydrocarbures petroliers a installation de combustion integree comprenant une capture du dioxyde de carbone
EP3390585B1 (de) Verfahren zur wirbelbettvergasung von reifen
FR3007105A1 (fr) Procede et installation de combustion par oxydo-reduction en boucle chimique d'une charge hydrocarbonee solide avec elimination des cendres de foyer
EP3827201B1 (de) Clc-anlage mit einem feststoff-feststoff-separator mit mitteln zur verteilung eines gas-feststoff-gemisches
WO2020126703A1 (fr) Installation clc comportant un separateur solide/solide integrant une enceinte cyclonique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: TOTAL S.A.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012062295

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23C0099000000

Ipc: F23C0010010000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23C 10/10 20060101ALI20190128BHEP

Ipc: F23C 10/01 20060101AFI20190128BHEP

Ipc: F23C 10/28 20060101ALI20190128BHEP

Ipc: F23C 10/24 20060101ALI20190128BHEP

INTG Intention to grant announced

Effective date: 20190213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012062295

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1158637

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1158637

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2751383

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012062295

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191029

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20201023

Year of fee payment: 9

Ref country code: GB

Payment date: 20201027

Year of fee payment: 9

Ref country code: FR

Payment date: 20201027

Year of fee payment: 9

Ref country code: ES

Payment date: 20201126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20201019

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201228

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121029

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012062295

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211029

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211029