EP2782447A1 - 2-iod-imidazol-derivate - Google Patents

2-iod-imidazol-derivate

Info

Publication number
EP2782447A1
EP2782447A1 EP12798652.9A EP12798652A EP2782447A1 EP 2782447 A1 EP2782447 A1 EP 2782447A1 EP 12798652 A EP12798652 A EP 12798652A EP 2782447 A1 EP2782447 A1 EP 2782447A1
Authority
EP
European Patent Office
Prior art keywords
plants
alkyl
optionally substituted
halogen
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12798652.9A
Other languages
German (de)
English (en)
French (fr)
Inventor
Hendrik Helmke
Sebastian Hoffmann
Carl Friedrich Nising
Alexander Sudau
Tomoki Tsuchiya
Jürgen BENTING
Peter Dahmen
Ulrike Wachendorff-Neumann
David Bernier
Stephane Brunet
Marie-Claire Grosjean-Cournoyer
Hélène LACHAISE
Philippe Rinolfi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property GmbH filed Critical Bayer Intellectual Property GmbH
Priority to EP12798652.9A priority Critical patent/EP2782447A1/de
Publication of EP2782447A1 publication Critical patent/EP2782447A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/761,3-Oxazoles; Hydrogenated 1,3-oxazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/213Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/255Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/68Halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/32Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/24Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/34Compounds containing oxirane rings with hydrocarbon radicals, substituted by sulphur, selenium or tellurium atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0814Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring is substituted at a C ring atom by Si

Definitions

  • the present invention relates to novel 2-iodo-imidazole derivatives, processes for preparing these compounds, compositions containing these compounds, and their use as biologically active compounds, in particular for controlling harmful microorganisms in crop protection and in the protection of materials and as plant growth regulators.
  • X is OR 1 , CN or hydrogen
  • Y is O, S, SO, S0 2 , -CH 2 - or a direct bond
  • n 0 or 1
  • n 0 or 1
  • R is in each case optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl or aryl,
  • R 1 is hydrogen, optionally substituted alkylcarbonyl or trialkylsilyl
  • R 2 is hydrogen, halogen or optionally substituted alkyl
  • R 3 is hydrogen, halogen or optionally substituted alkyl
  • R 2 and R 3 may also together represent optionally substituted C 2 -C 8 -alkylene
  • R and R 2 may also together represent optionally substituted C 2 -C 8 -alkylene,
  • R and R 1 may also together be in each case optionally substituted by halogen, alkyl or halogenoalkyl-substituted Ci-C i-alkylene or Ci-C i-Alkylenoxy, wherein the oxygen of this group is connected to R, so that an optionally substituted tetrahydrofuran-2 yl, l, 3-dioxetan-2-yl, 1,3-dioxolan-2-yl, l, 3-dioxan-2-yl or l, 3-dioxepan-2-yl ring is formed,
  • R 1 and R 2 may also be a direct bond when n is 1,
  • Y and R 3 may also together form a double bond when m and n are simultaneously 1,
  • A represents optionally substituted aryl and optionally substituted heteroaryl,
  • the available salts also have fungicidal and / or plant growth regulatory properties.
  • heterocyclic thio-substituted alkanol derivatives which can be used in accordance with the invention are generally defined by the formula (I).
  • Preferred radical definitions of the above and below formulas are given below. These definitions apply equally to the end products of formula (I) as well as to all intermediates (see also below under “Explanatory Notes on Processes and Intermediates”).
  • X is preferably OR 1 .
  • Y is preferably O.
  • Y is also preferably -CH 2 -.
  • Y is also preferably a direct bond.
  • Y is also preferably S or SO2.
  • Y is particularly preferably oxygen.
  • Y is also particularly preferably CH2.
  • Y is also particularly preferably a direct bond.
  • m is preferably 0.
  • n is preferably 0.
  • n is also preferably 1.
  • R preferably represents in each case optionally branched C3-C7-alkyl, Ci-Cs-haloalkyl, C2-C7 alkenyl, C 2 -C 7 haloalkenyl, C 2 -C 7 alkynyl, C 2 -C 7 haloalkynyl, C C4-alkoxy-Ci-C3-alkyl, Ci-C4-haloalkoxy-Ci-C3-alkyl, tri (Ci-C3-alkyl) silyl-Ci-C3-alkyl, in each case in the cycloalkyl moiety optionally by halogen, Ci-C i-alkyl, Ci-C i-haloalkyl, Ci-C i-alkoxy, Ci-C i -haloalkoxy, C1-C4-haloalkylthio, Ci-C4-alkylthio or phenoxy (which in turn is substituted by halogen or Ci
  • R particularly preferably represents in each case optionally branched C3-C6 alkyl, Ci-C6-haloalkyl, C3-C5 alkenyl, C3-C5 haloalkenyl, C3-C5 alkynyl, C3-C5 haloalkynyl, Ci-C3 Alkoxy-GC 2- alkyl, C 1 -C 3 -haloalkoxy-C 1 -C 2 -alkyl, tri (C 1 -C 2 -alkyl) -silyl-C 1 -C 2 -alkyl, in each case in the cycloalkyl part, where appropriate by halogen, C 4 alkyl, Ci-C4-haloalkyl, Ci-C4-haloalkoxy, Ci-C4-alkoxy, Ci-C 4 alkylthio -Halogenal-, Ci-C 4 alkylthio or phenoxy (which, in turn, by fluorine, chlorine ,
  • R very particularly preferably represents tert-butyl, isopropyl, 1,1,2,2-tetrafluoroethoxymethyl, trimethylsilylmethyl, 1-chlorocyclopropyl, 1-fluorocyclopropyl, 1-methylcyclopropyl, 1-methoxycyclopropyl, 1 Methylthiocyclopropyl, 1-trifluoromethylcyclopropyl, 1-phenoxycyclopropyl, 1- (2-chlorophenoxy) cyclopropyl, 1- (2-fluoro-phenoxy) -cyclopropyl, 1- (4-fluoro-phenoxy) -cyclopropyl, 1- (2,4-difoxybenzoxy) cyclopropyl, (3E) -4-chloro-2-methylbut-3-en-2-yl, C 1 -C 4 haloalkyl, cyclopropylmethyl, 1-cyclopropylethyl, 2-cyclopropylethyl, 1-fluorophenyl,
  • R 1 preferably represents hydrogen, (C 1 -C 3 -alkyl) carbonyl, (C 1 -C 3 -haloalkyl) carbonyl or tri (C 1 -C 3 -alkyl) silyl.
  • R 1 particularly preferably represents hydrogen, methylcarbonyl or trimethylsilyl.
  • R 1 very particularly preferably represents hydrogen.
  • R 2 is preferably hydrogen, fluorine, chlorine, bromine, iodine, Ci-C i-alkyl or Ci-C i -haloalkyl.
  • R 2 particularly preferably represents hydrogen, fluorine, chlorine, methyl, ethyl or trifluoromethyl.
  • R 2 is very particularly preferably hydrogen or methyl.
  • R 3 is preferably hydrogen, fluorine, chlorine, bromine, iodine, Ci-C / i-alkyl or Ci-C i -haloalkyl.
  • R 3 particularly preferably represents hydrogen, fluorine, chlorine, methyl, ethyl or trifluoromethyl.
  • R 3 very particularly preferably represents hydrogen or methyl.
  • R 2 and R 3 are also together preferably straight-chain or branched and optionally through
  • Halogen in particular fluorine, chlorine or bromine, substituted C 2 -CsAlkylen.
  • R 2 and R 3 together are particularly preferably - (CH 2) 2-, - (CH 2) 4 -, - (CH 2) s- or
  • R and R 2 are also together preferably straight-chain or branched and optionally substituted by halogen or Ci-C i-alkyl, in particular fluorine, chlorine, bromine or methyl, substituted C 2 -CsAlkylen.
  • R and R 2 are also more preferably together especially preferred for - (CH 2) 2-, - (CH 2) 4 -, - (CH 2) s-, - (CH 2) 2 C (CH 3 ) 2, -C (CH 3 ) 2 (CH 2 ) 2- or - (CH 2 ) CH (CH 3 ) -.
  • R and R 2 together are most preferably together for - (CH 2) 2-.
  • R and R 1 together also preferably represent optionally substituted by fluorine, chlorine, bromine, Ci-C 4 alkyl or GC i -haloalkyl substituted - (CH 2) 3-, -CH 2 O-, - (CH 2) 20-, - (CEh ⁇ O-, where the oxygen of this group is in each case connected to R so that an optionally substituted tetrahydrofuran-2-yl, 1,3-dioxetan-2-yl, 1,3-dioxolan-2-yl or 1, 3-dioxan-2-yl ring is formed.
  • R and R 1 together are particularly preferably together optionally substituted by methyl, ethyl, n-propyl, n-butyl - (CEb ⁇ O-, wherein the oxygen of this group is connected to R, so that an optionally substituted l, 3-dioxolane -2-yl.
  • R 1 and R 2 may also preferably be a direct bond when n is 1,
  • A is preferably unsubstituted or mono- to trisubstituted by Z 1 phenyl, wherein
  • Z 2 also preferably represents in each case optionally mono- or polysubstituted by Z 2 substituted five- or six-membered heteroaryl selected from furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, pyridinyl, Pyridazinyl, pyrimidinyl, pyrazinyl and triazinyl, wherein Z 2 represents halogen, Ci-C4-alkyl, Ci-C 4 alkylthio, Ci-C 4 alkoxy, Ci-C4-haloalkyl, Ci-C4-halo-alkylthio, Ci-C4-haloalkoxy, C3 C7-cycloalkyl, or represents optionally halogen- or Ci-C 4 alkyl-
  • A likewise preferably represents in each case optionally monosubstituted or polysubstituted by Z 2 substituted five- or six-membered heteroaryl selected from 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl,
  • Triazol-4-yl 1H-tetrazol-1-yl, 1H-tetrazol-5-yl, 2H-tetrazol-2-yl, 2H-tetrazol-5-yl, 1, 2,4-oxadiazol-3-yl, l, 2,4-oxadiazol-5-yl, l, 2,4-thiadiazol-3-yl, l, 2,4-thiadiazol-5-yl, l, 3,4-oxadiazol-2-yl, 1, 3,4-thiadiazol-2-yl, l, 2,3-oxadiazol-4-yl, l, 2,3-oxadiazol-5-yl, l, 2,3-thiadiazol-4-yl, 2,3-thiadiazol-5-yl, 1,2,5-oxadiazol-3-yl, 1, 2,5-thiadiazol-3-yl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazin
  • Z 2 represents halogen, Ci-C 4 alkyl, C 2 alkylthio, Ci-C 2 alkoxy, Ci-C 2 haloalkyl, Ci-C 2-halo-thioalkyl, Ci-C 2 haloalkoxy, C3 C6-cycloalkyl, in each case optionally monosubstituted by halogen or Ci-C 4 alkyl phenyl or phenoxy.
  • A is also very particularly preferably in each case optionally mono- or polysubstituted by Z 2 substituted five- or six-membered heteroaryl selected from 2-furyl, 3-furyl, 2-thienyl, 3-thienyl,
  • Z 2 is fluorine, chlorine, bromine, iodine, methyl, ethyl, n-propyl, isopropyl, n-, i-, s- or t-butyl, cyclopropyl, trifluoromethyl, trifluoromethoxy, trifluoromethylthio, trichloromethyl, difluoromethyl, difluoro- ormethoxy, difluoromethylthio, dichloromethyl, difluorochloromethyl, difluorochloromethoxy, Z 2 also represents phenyl, which is substituted by fluorine, chlorine or methyl.
  • Halogen (also in combinations such as haloalkyl, haloalkoxy, etc.) fluorine, chlorine, bromine and iodine;
  • Alkyl (also in combinations such as alkylthio, alkoxy, etc.) saturated, straight-chain or branched hydrocarbon radicals having 1 to 8 carbon atoms, e.g. C 1 -C 6 -alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2 Dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl , 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3
  • Haloalkyl (also in combinations such as haloalkylthio, haloalkoxy, etc.) straight-chain or branched alkyl groups having 1 to 8 carbon atoms (as mentioned above), wherein in these groups, partially or completely, the hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g.
  • C 1 -C 3 -haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2-di-fluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1, l, l-Trifluo ⁇ rop-2-yl.
  • Alkenyl unsaturated, straight-chain or branched hydrocarbon radicals having 2 to 8 carbon atoms and having one double bond in any position, for example C 2 -C 6 alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2 -Butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl,
  • 2-methyl-2-propenyl 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, Methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl
  • Cycloalkyl monocyclic saturated hydrocarbon groups having 3 to 8 carbon ring members such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • Aryl unsubstituted or substituted, aromatic, mono-, bi- or tricyclic ring, for example phenyl, naphthyl, anthracenyl (anthryl), phenanthracenyl (phenanthryl).
  • Hetaryl unsubstituted or substituted, unsaturated heterocyclic 5- to 7-membered ring containing up to 4 nitrogen atoms or alternatively 1 nitrogen atom and up to 2 further heteroatoms selected from N, O and S: e.g.
  • the 2-iodo-imidazole derivatives of the formula (I) can be prepared in different ways. In the following, the possible methods are first shown schematically. Unless indicated otherwise, the radicals given have the meanings given above.
  • the imidazole derivatives of the formula (II) required as starting materials for carrying out the process A according to the invention are known and can be prepared in a known manner (cf., EP-A 0 040 345, EP-A 0 793 657, EP-A 0 297 345, EP-A 0 421 125, EP-A 0 386 557, EP-A 0 378 953).
  • the iodination agents likewise required in carrying out process A according to the invention are known. Examples are: elemental iodine or, iodine monochloride, N-iodoacetamide, N-iodosuccinimide.
  • the process A according to the invention is carried out in the presence of a base.
  • a base Suitable for this purpose are the customary inorganic or organic bases, preferably alkali metal hydrides, such as, for example, sodium or potassium hydride, amides, such as sodium amide, sodium bis (trimethylsilyl) amide (Na-HDMS), lithium bis (trimethylsilyl) amide (Li-HDMS). , Lithium diisopropylamide (LDA), or lithium tetramethylpiperidide (LiTMP), or organometallic compounds such as n-, sec- or tert-butyllithium (n-BuLi, sec-BuLi, tert-BuLi) or phenyllithium
  • LDA lithium diisopropylamide
  • LiTMP lithium tetramethylpiperidide
  • organometallic compounds such as n-, sec- or tert-butyllithium (n-BuLi, sec-BuL
  • the process A of the invention is usually carried out in the presence of a diluent at temperatures of -78 ° C to + 100 ° C.
  • Preferred diluents are ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, glycol dimethyl ether or diethylene glycol dimethyl ether, or hydrocarbons such as benzene, xylene or toluene.
  • the reaction according to the invention is preferably carried out under inert gas, in particular nitrogen or argon.
  • oxidizing agents in particular peroxides or peracids (for example hydrogen peroxide or meta-chloroperbenzoic acid).
  • the process B according to the invention is usually carried out in the presence of a diluent, for example dichloromethane, at temperatures of -20.degree. C. to + 100.degree. ⁇
  • a diluent for example dichloromethane
  • the epoxide derivatives of the formula (III) required as starting materials for carrying out the process C according to the invention are known and can be prepared in a known manner (for example DE-A 40 27 608, DE-A 35 37 817).
  • the 2-iodo-1H-imidazole also required in carrying out the process C according to the invention is commercially available or can be prepared from commercially available precursors according to instructions described in the literature ⁇ Molecules 2005, 10, 401-406).
  • Process C according to the invention is carried out in the presence of a base.
  • a base Suitable for this purpose are the customary inorganic or organic bases, preferably alkali metal or alkaline earth metal acetates, carbonates, hydro gencarbonates, hydrides, hydroxides or alkoxides, such as, for example, sodium, potassium or calcium acetate, sodium, potassium, calcium or cesium carbonate, sodium, potassium or calcium bicarbonate, lithium, sodium, potassium or calcium hydride, lithium, sodium, potassium or calcium hydroxide, sodium or potassium methoxide, ethanolate, n- or iso-propanolate, n-, iso-, sec- or tert-butoxide.
  • the customary inorganic or organic bases preferably alkali metal or alkaline earth metal acetates, carbonates, hydro gencarbonates, hydrides, hydroxides or alkoxides, such as, for example, sodium, potassium or calcium acetate, sodium, potassium, calcium or cesium carbonate
  • the inventive method C is usually carried out in the presence of a diluent at temperatures of -78 ° C to + 100 ° C.
  • Suitable diluents are preferably amides, e.g. Dimethylformamide, dimethylacetamide and N-methylpyrrolidone, as well as dimethylsulfoxide, tetramethylenesulfone and hexamethylphosphoric triamide and DMPU; Ketones such as acetone, methyl ethyl, methyl isopropyl or methyl isobutyl ketone.
  • the reaction according to the invention is preferably carried out under inert gas, in particular nitrogen or argon.
  • the epoxide derivatives of the formula (IV) required as starting materials for carrying out the process D according to the invention are known and can be prepared in a known manner (for example EP-A 0 421 125, EP-A 0 386 557).
  • 2-iodo-1H-imidazole which is likewise required in carrying out process D according to the invention, is commercially available or can be prepared from commercially available precursors according to specifications described in the literature (Molecules 2005, 10, 401-406).
  • Process D according to the invention is carried out in the presence of a base.
  • a base Suitable for this purpose are the customary inorganic or organic bases, preferably alkali metal or alkaline earth metal acetates, carbonates, hydro gencarbonates, hydrides, hydroxides or alkoxides, such as, for example, sodium, potassium or calcium acetate, sodium, potassium, calcium or cesium carbonate, sodium, potassium or calcium bicarbonate, lithium, sodium, potassium or calcium hydride, lithium, sodium, potassium or calcium hydroxide, sodium or potassium methoxide, ethanolate, n- or iso-propanolate, n-, iso-, sec- or tert-butoxide.
  • pyridine or 4-dimethylaminopyridine alkali metal amides such as sodium and potassium amide.
  • the reaction accelerators are preferably metal halides such as sodium iodide or potassium iodide, quaternary ammonium salts such as tetrabutylammonium chloride, bromide, iodide or hydrogen sulfate, benzyltriethylammonium chloride or bromide or crown ethers such as 12-crown-4, 15-crown-5, 18-crown -6, dibenzo-18-crown-6 or dicyclohexano-18-crown-6 in question.
  • metal halides such as sodium iodide or potassium iodide
  • quaternary ammonium salts such as tetrabutylammonium chloride, bromide, iodide or hydrogen sulfate, benzyltriethylammonium chloride or bromide or crown ethers such as 12-crown-4, 15-crown-5, 18-crown -6, dibenzo-18
  • the inventive method D is usually carried out in the presence of a diluent at temperatures of -78 ° C to + 100 ° C.
  • Suitable diluents are preferably amides such as di- methylformamide, diethylformamide, dimethylacetamide, diethylacetamide and N-methylpyrrolidone, and also dimethylsulfoxide, tetramethylenesulfone and hexamethylphosphoric triamide and DMPU.
  • the reaction according to the invention is preferably carried out under inert gas, in particular nitrogen or argon.
  • the 2-iodo-imidazole derivatives of the general formula (I) according to the invention can be converted into acid addition salts or metal salt complexes.
  • hydrohalic acids such as e.g. Hydrochloric and hydrobromic acids, especially hydrochloric acid, also phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid, lactic acid and sulfonic acids, e.g. p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid.
  • hydrohalic acids such as e.g. Hydrochloric and hydrobromic acids, especially hydrochloric acid, also phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid, lactic
  • the acid addition salts of the compounds of the general formula (I) can be prepared in a simple manner by customary salt-forming methods, e.g. by dissolving a compound of general formula (I) in a suitable inert solvent and adding the acid, e.g. Hydrochloric acid, and in a known manner, e.g. by filtration, isolated and optionally purified by washing with an inert organic solvent.
  • customary salt-forming methods e.g. by dissolving a compound of general formula (I) in a suitable inert solvent and adding the acid, e.g. Hydrochloric acid, and in a known manner, e.g. by filtration, isolated and optionally purified by washing with an inert organic solvent.
  • salts of metals of the IIth to IVth main groups and of the 1st and 2nd and IVth to VIIIth subgroups of the Periodic Table where copper, zinc, Manganese, magnesium, tin, iron and nickel are exemplified.
  • Suitable anions of the salts are those which are preferably derived from the following acids: hydrohalic acids, e.g. Hydrochloric acid and hydrobromic acid, further phosphoric acid, nitric acid and sulfuric acid.
  • the metal salt complexes of compounds of the general formula (I) can be obtained in a simple manner by conventional methods, e.g. by dissolving the metal salt in alcohol, e.g. Ethanol and adding to the compound of general formula I.
  • Metal salt complexes can be prepared in known manner, e.g. isolate by filtration and optionally purified by recrystallization.
  • the usable 2-iodo-imidazole derivatives according to the invention may optionally be used as mixtures of various possible isomeric forms, in particular of stereoisomers, such as. B. E and Z, threo and erythro, and optical isomers, but optionally also of tautomers. Both the E and the Z isomers, as well as the threo and erythro, and the optical isomers, any mixtures of these isomers, as well as the possible tautomeric forms claimed.
  • the compounds of the formula (I) are in particular optionally present in the form of enantiomers:
  • the present invention further relates to a crop protection agent for controlling unwanted microorganisms, in particular unwanted fungi, comprising the active compounds according to the invention.
  • fungicidal compositions which contain agriculturally useful auxiliaries, solvents, carriers, surface-active substances or extenders.
  • the invention relates to a method for controlling unwanted microorganisms, characterized in that the active compounds according to the invention are applied to the phytopathogenic fungi and / or their habitat.
  • the carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients for better applicability, v. A. for application to plants or plant parts or seeds, mixed or combined.
  • the carrier which may be solid or liquid, is generally inert and should be useful in agriculture.
  • Suitable solid or liquid carriers are: e.g. Ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as highly-dispersed silicic acid, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used.
  • Suitable solid carriers for granules are: e.g.
  • Suitable liquefied gaseous diluents or carriers are those liquids which are gaseous at normal temperature and under normal pressure, e.g. Aerosol propellants, such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-form polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins, and synthetic phospholipids.
  • Other additives may be mineral and vegetable oils.
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or dichloromethane, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulfoxide, and water.
  • alcohols such as butanol or glycol
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide
  • the agents of the invention may additionally contain other ingredients, e.g. surfactants.
  • Suitable surface-active substances are emulsifying and / or foam-forming agents, dispersants or wetting agents having ionic or nonionic properties or mixtures of these surface-active substances.
  • Examples thereof are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (preferably alkyltaurates), Phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, eg Alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates, protein hydrolysates, lignin sulfite waste liquors and methyl cellulose.
  • the presence of a surfactant is necessary when
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • additional components may also be included, e.g. protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration enhancers, stabilizers, sequestering agents, complexing agents.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90%. Active ingredient, most preferably between 10 and 70 weight percent.
  • active compounds or compositions according to the invention can be used as such or, depending on their respective physical and / or chemical properties, in the form of their formulations or the applications prepared therefrom.
  • compositions mentioned can be prepared in a manner known per se, e.g. by mixing the active compounds with at least one customary diluent, solvent or diluent, emulsifier, dispersing and / or binding or fixing agent, wetting agent, water repellent, optionally siccatives and UV stabilizers and optionally dyes and pigments, antifoams, Preservatives, secondary thickeners, adhesives, gibberellins and other processing aids.
  • the compositions according to the invention comprise not only formulations which are already ready to use and can be applied to the plant or seed by suitable equipment, but also commercial concentrates which must be diluted with water before use.
  • the active compounds according to the invention as such or in their (commercial) formulations and in the formulations prepared from these formulations in admixture with other (known) agents such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers , Safeners or semiochemicals.
  • other agents such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers , Safeners or semiochemicals.
  • the treatment according to the invention of the plants and plant parts with the active ingredients or agents is carried out directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, spraying, sprinkling, evaporating, atomizing, atomizing, sprinkling, foaming, brushing, spreading, drenching, drip irrigation and propagating material, in particular for seeds by dry pickling, wet pickling, slurry pickling, encrusting, single or multilayer coating, etc. It is also possible to apply the active ingredients by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil.
  • the invention further comprises a method of treating seed.
  • the invention further relates to seed which has been treated according to one of the methods described in the previous paragraph.
  • the seeds according to the invention are used in methods for the protection of seed from undesirable microorganisms. In these, a seed treated with at least one active ingredient according to the invention is used.
  • the active compounds or compositions according to the invention are also suitable for the treatment of seed.
  • Much of the damage to crops caused by harmful organisms is due to infestation of the seeds during storage or after sowing, and during and after germination of the plant. This phase is particularly critical because the roots and shoots of the growing plant are particularly sensitive and can cause only a small damage to the death of the plant. There is therefore a great interest in protecting the seed and the germinating plant by using suitable means.
  • the control of phytopathogenic fungi by the treatment of the seed of plants has long been known and is the subject of constant improvement. Nevertheless, there are a number of problems in the treatment of seeds that can not always be satisfactorily resolved.
  • methods for protecting the seed and the germinating plant which eliminate or at least significantly reduce the additional application of crop protection agents after sowing or after emergence of the plants. It is also desirable to optimize the amount of active ingredient used so that the seed and the germinating plant are best protected against attack by phytopathogenic fungi, but without damaging the plant itself by the active ingredient used.
  • methods for treating seed should also include the intrinsic fungicidal properties of transgenic plants in order to achieve optimum protection of the seed and the germinating plant with a minimum of pesticide use.
  • the present invention therefore also relates to a method of protecting seed and germinating plants from the infestation of phytopathogenic fungi by treating the seed with an agent according to the invention.
  • the invention also relates to the use of the seed treatment agents of the invention for protecting the seed and the germinating plant from phytopathogenic fungi.
  • the invention relates to seed which has been treated with an agent according to the invention for protection against phytopathogenic fungi.
  • One of the advantages of the present invention is that due to the particular systemic properties of the active compounds or compositions according to the invention, the treatment of the seeds with these active ingredients or agents protects not only the seed itself, but also the resulting plants after emergence from phytopathogenic fungi , In this way, the immediate treatment of the crop at the time of sowing or shortly afterwards can be omitted.
  • the active compounds or agents according to the invention can also be used in particular in the case of transgenic seed, wherein the plant growing from this seed is capable of expressing a protein which acts against pests.
  • the active compounds or agents according to the invention By treating such seeds with the active compounds or agents according to the invention, it is possible to combat pests already determined by the expression of, for example, insecticidal protein.
  • a further synergistic effect can be observed, which additionally increases the effectiveness for protection against pest infestation.
  • the compositions according to the invention are suitable for the protection of seed of any plant variety used in agriculture, in the greenhouse, in forests or in horticulture and viticulture.
  • these are seeds of cereals such as wheat, barley, rye, triticale, millet and oats
  • cereals such as wheat, barley, rye, triticale, millet and oats
  • corn cotton, soybean, rice, potatoes, sunflower, bean, coffee, turnip (eg sugarbeet and fodder beet), peanut, Rapeseed, poppy, olive, coconut, cocoa, sugarcane, tobacco, vegetables (such as tomato, cucumber, onions and lettuce), turf and ornamental plants (see also below).
  • cereals such as wheat, barley, rye, triticale and oats
  • corn and rice are seeds of cereals (such as wheat, barley, rye, triticale and oats), corn and rice.
  • transgenic seed As also described below, the treatment of transgenic seed with the active compounds or agents according to the invention is of particular importance.
  • the heterologous gene in transgenic seed may e.g. from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • this heterologous gene is derived from Bacillus sp., Wherein the gene product has an activity against the European corn borer and / or Western Com Rootworm.
  • the heterologous gene is particularly preferably derived from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a condition that is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • seed may be used which has been harvested, cleaned and dried to a moisture content of below 15% by weight.
  • seed may also be used which, after drying, e.g. treated with water and then dried again.
  • the agents according to the invention can be applied directly, ie without containing further components and without being diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417, US 4,245,432, US 4,808,430, US 5,876,739, US 2003/0176428 AI, WO 2002/080675, WO 2002/028186.
  • the active compounds which can be used according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • These formulations are prepared in a known manner by mixing the active ingredients with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds.
  • Preferably used are alkylnaphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates.
  • Suitable dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active compounds.
  • Preferably usable are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Particularly suitable nonionic dispersants are, in particular, ethylene oxide / propylene oxide, block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • Preservatives which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples which may be mentioned are dichlo- rophene and benzyl alcohol hemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly dispersed silicic acid.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds, including seed of transgenic plants. In this case, additional synergistic effects may occur in interaction with the substances formed by expression.
  • the seed dressing formulations which can be used according to the invention or the preparations prepared therefrom by the addition of water
  • all mixing devices customarily usable for the dressing can be considered.
  • the seed is placed in a mixer which adds either desired amount of seed dressing formulations either as such or after prior dilution with water and mixes until evenly distributed the formulation on the seed.
  • a drying process follows.
  • the active compounds or compositions according to the invention have a strong microbicidal action and can be used to combat unwanted microorganisms, such as fungi and bacteria, in crop protection and in the protection of materials.
  • Fungicides can be used for the control of Plasmodiophoromycetes, Oomycetes, Chytriomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection to combat Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • the fungicidal compositions according to the invention can be used curatively or protectively for controlling phytopathogenic fungi.
  • the invention therefore also relates to curative and protective methods for controlling phytopathogenic fungi by the use of the active compounds or agents according to the invention, which is applied to the seed, the plant or plant parts, the fruits or the soil in which the plants grow.
  • compositions of the invention for controlling phytopathogenic fungi in crop protection comprise an effective but non-phytotoxic amount of the active compounds according to the invention.
  • Effective but non-phytotoxic amount means an amount of the agent of the invention sufficient to control or completely kill the fungal disease of the plant and at the same time not cause any significant symptoms of phytotoxicity It depends on several factors, for example on the fungus to be controlled, the plant, the climatic conditions and the ingredients of the agents according to the invention.
  • the good plant tolerance of the active ingredients in the necessary concentrations for controlling plant diseases allows treatment of aboveground plant parts, of plant and seed, and Soil.
  • plants and parts of plants can be treated.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • Plant parts are to be understood as meaning all aboveground and subterranean parts and organs of the plants, such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, such as cuttings, tubers, rhizomes, offshoots and seeds.
  • the active compounds according to the invention are suitable for good plant tolerance, favorable toxicity to warm-blooded animals and good environmental compatibility for the protection of plants and plant organs, for increasing crop yields, improving the quality of the harvested crop. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • plants which can be treated according to the invention the following main crops are mentioned: maize, soybean, cotton, Brassica oilseeds such as Brassica napus (eg canola), Brassica rapa, B. juncea (eg (field) mustard) and Brassica carinata, rice, Wheat sugar beet, cane, oats, rye, barley, millet, triti- cale, flax, wine and various fruits and vegetables of various botanical taxa such as Rosaceae sp.
  • Brassica oilseeds such as Brassica napus (eg canola), Brassica rapa, B. juncea (eg (field) mustard) and Brassica carinata
  • rice Wheat sugar beet
  • cane oats
  • rye rye
  • millet triti- cale
  • flax flax
  • wine various fruits and vegetables of various botanical taxa
  • pome fruits such as apple and pear, but also drupes such as apricots, cherries, almonds and peaches and soft fruits such as strawberries
  • Ribesioidae sp. Juglandaceae sp.
  • Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp. , Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for example, banana trees and plantations), Rubiaceae sp.
  • Theaceae sp. for example, coffee
  • Theaceae sp. Sterculiceae sp.
  • Rutaceae sp. for example, lemons, oranges and grapefruit
  • Solanaceae sp. for example, tomatoes, potatoes, peppers, eggplants
  • Liliaceae sp. Compositae sp.
  • lettuce, artichoke and chicory - including root chicory, endive or common chicory for example, Umbelliferae sp.
  • Umbelliferae sp. for example, carrots, parsley, celery and celeriac
  • Cucurbitaceae sp. for example cucumber - including gherkin, squash, watermelon, gourd and melons
  • Cruciferae sp. for example, white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage
  • Leguminosae sp. for example, peanuts, peas, and beans - such as barley bean and field bean
  • Chenopodiaceae sp. for example, Swiss chard, fodder beet, spinach, beetroot), Malvaceae (for example okra), asparagaceae (for example asparagus); Useful plants and ornamental plants in the garden and forest; and each genetically modified species of these plants.
  • all plants and their parts can be treated.
  • wild-type or plant species obtained by conventional biological breeding methods such as crossing or protoplast fusion, and plant cultivars and their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering if appropriate in combination with conventional methods (genetically modified organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “plant parts” has been explained above, plants according to the invention being treated according to the invention are in each case commercially available or in use. , which have been bred either by conventional breeding, by mutagenesis or by recombinant DNA techniques. These may be varieties, breeds, biotypes and genotypes.
  • the treatment method of the invention may be used for the treatment of genetically modified organisms (GMOs), e.g. As plants or seeds are used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene essentially refers to a gene that is provided or assembled outside the plant and that when introduced into the nuclear genome, chloroplast genome or mitochondrial genome imparts new or improved agronomic or other properties to the transformed plant expressing a protein or polypeptide of interest or that it downregulates or shuts down another gene present in the plant or other genes present in the plant (for example by means of antisense technology, cosuppression technology or RNAi technology [RNA Interference])
  • a heterologous gene present in the genome is also referred to as a transgene
  • a transgene defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects.
  • the following effects are possible expected effects: reduced rates of application and / or extended spectrum of activity and / or increased efficacy of the active ingredients and compositions which can be used according to the invention, improved plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or water or soil salt content, increased Flowering, harvest relief, ripening, higher yields, larger fruits, greater plant height, intense green color of the leaf, earlier flowering, higher quality and / or higher nutritional value of the harvested products, higher sugar concentration in the F crops, better shelf life and / or processability of the harvested products.
  • the active compounds according to the invention can also exert a strengthening effect on plants. They are therefore suitable for mobilizing the plant defense system against attack by undesirable phytopathogenic fungi and / or microorganisms and / or viruses. This may optionally be one of the reasons for the increased effectiveness of the combinations according to the invention, for example against fungi.
  • Plant-strengthening (resistance-inducing) substances in the present context should also mean those substances or substance combinations capable of stimulating the plant defense system in such a way that the treated plants, when subsequently inoculated with undesirable phytopathogenic fungi, have a considerable degree of resistance to these undesired ones exhibit phytopathogenic fungi.
  • the substances according to the invention can therefore be used to protect plants against attack by the mentioned _
  • the period of time over which a protective effect is achieved generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active substances.
  • Plants and plant varieties which are preferably treated according to the invention include all plants which have genetic material conferring on these plants particularly advantageous, useful features (whether obtained by breeding and / or biotechnology).
  • Plants and plant varieties which are also preferably treated according to the invention are resistant to one or more biotic stressors, i. H. These plants have an improved defense against animal and microbial pests such as nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and / or viroids.
  • Examples of nematode-resistant plants are e.g. in the following US patent applications: 11 / 765,491, 11 / 765,494, 10 / 926,819, 10 / 782,020, 12 / 032,479, 10 / 783,417, 10 / 782,096, 11 / 657,964, 12 / 192,904, 11 / 396,808, 12 / 166,253, 12 / 166,239, 12 / 166,124, 12 / 166,209, 11 / 762,886, 12 / 364,335, 11 / 763,947, 12 / 252,453, 12 / 209,354, 12 / 491,396 and 12 / 497,221.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are resistant to one or more abiotic stress factors.
  • Abiotic stress conditions may include, for example, drought, cold and heat conditions, osmotic stress, waterlogging, increased soil salinity, increased exposure to minerals, ozone conditions, high light conditions, limited availability of nitrogen nutrients, limited availability of phosphorous nutrients, or avoidance of shade.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are characterized by increased yield chats specifically. An increased yield can in these plants z. These include, for example, improved plant physiology, improved plant growth, and improved plant development, such as water efficiency, water retention, improved nitrogen utilization, increased carbon assimilation, improved photosynthesis, enhanced germination, and accelerated maturation.
  • Yield can be further influenced by improved plant architecture (under stress and non-stress conditions), including early flowering, control of flowering for hybrid seed production, seedling growth, plant size, internode count and spacing, root growth, seed size, Fruit size, pod size, pod or ear number, number of seeds per pod or ear, seed mass, increased seed filling, reduced seed drop, reduced pod popping and stability.
  • plant architecture under stress and non-stress conditions
  • Other yield-related traits include seed composition such as carbohydrate content, protein content, oil content and oil composition, nutritional value, reduction in nontoxic compounds, improved processability, and improved shelf life.
  • Plants which can be treated according to the invention are hybrid plants which already express the properties of the heterosis or the hybrid effect, which generally leads to higher yield, higher vigor, better health and better resistance to biotic and abiotic stress factors. Such plants are typically produced by cultivating an inbred male sterile parental line (the female "
  • Crossing partner with another inbred male fertile parent line (the male crossover partner).
  • the hybrid seed is typically harvested from the male sterile plants and sold to propagators.
  • Pollen sterile plants can sometimes be produced (e.g., in maize) by delaving (i.e., mechanically removing the male genitalia (s)); however, it is more common for male sterility to be due to genetic determinants in the plant genome. In this case, especially when the desired product, as one wants to harvest from the hybrid plants, is the seeds, it is usually beneficial to ensure that the pollen fertility in hybrid plants containing the genetic determinants responsible for male sterility , completely restored.
  • Genetic determinants of pollen sterility may be localized in the cytoplasm. Examples of cytoplasmic male sterility (CMS) have been described, for example, for Brassica species. However, genetic determinants of pollen sterility may also be localized in the nuclear genome. Pollen sterile plants can also be obtained using plant biotechnology methods such as genetic engineering. A particularly convenient means of producing male-sterile plants is described in WO 89/10396, wherein, for example, a ribonuclease such as a barnase is selectively expressed in the tapetum cells in the stamens. The fertility can then be restorated by expression of a ribonuclease inhibitor such as barstar in the tapetum cells.
  • Plants or plant varieties obtained by plant biotechnology methods, such as genetic engineering which can be treated according to the invention are herbicide-tolerant plants, i. H. Plants tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection of plants containing a mutation conferring such herbicide tolerance.
  • Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, ie plants that have been tolerated to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate by various methods. Thus, for example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the bacterium Agrobacterium sp. (Barry et al., 1992, Curr.
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • herbicidally resistant plants are, for example, plants which have been tolerated against herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme which detoxifies the herbicide or a mutant of the enzyme glutamine synthase, which is resistant to inhibition.
  • an effective detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described.
  • hydroxyphenylpyruvate dioxygenase HPPD
  • HPPD hydroxyphenylpyruvate dioxygenase
  • the hydroxyphenylpyruvate di- oxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogenate.
  • Plants tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutant or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants are described in WO 99/34008 and WO 02/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants, in addition to a gene coding for an HPPD-tolerant enzyme, with a gene coding for a prephenate dehydrogenase enzyme, as in WO 2004 / 024928.
  • plants can be made even more tolerant to HPPD inhibitors by incorporating into their genome a gene encoding an enzyme which metabolizes or degrades HPPD inhibitor, such as e.g.
  • CYP450 enzymes see WO 2007/103567 and WO 2008/150473.
  • Other herbicide-resistant plants are plants that have been tolerated to acetolactate synthase (ALS) inhibitors.
  • ALS inhibitors include sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides.
  • ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • the preparation of sulfonylurea tolerant plants and imidazolinone tolerant plants is described.
  • Other sulfonylurea and imidazolinone- tolerant plants are also described.
  • plants which are tolerant to imidazolinone and / or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding (cf., for example, for soybean US 5,084,082, for rice WO 97/41218, for sugar beet US 5,773,702 and WO 99/057965, for salad US 5,198,599 or for sunflower WO 01/065922).
  • mutation breeding cf., for example, for soybean US 5,084,082, for rice WO 97/41218, for sugar beet US 5,773,702 and WO 99/057965, for salad US 5,198,599 or for sunflower WO 01/065922.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention are insect-resistant transgenic plants, i. Plants that have been made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such insect resistance.
  • insect-resistant transgenic plant includes any plant containing at least one transgene comprising a coding sequence encoding:
  • an insecticidal crystal protein from Bacillus thuringiensis or an insecticide part thereof such as the insecticidal crystal proteins listed by Crickmore et al. (Microbiology and Molecular Biology Reviews 1998, 62, 807-813), updated by Crickmore et al. (2005) in the Bacillus thuringiensis toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk Home / Neil_Crickmore / Bt /), or insecticidal parts thereof, e.g.
  • Cry protein class proteins CrylAb, CrylAc, CrylB, CrylC, CrylD, CrylF, Cry2Ab, Cry3Aa, or Cry3Bb, or insecticidal portions thereof (eg, EP-A 1999141 and WO 2007/107302), or such proteins encoded by synthetic genes as in US Patent Application 12 / 249,016; or
  • a crystal protein from Bacillus thuringiensis or a part thereof which is insecticidal in the presence of a second, other crystal protein than Bacillus thuringiensis or a part thereof such as the binary toxin consisting of the crystal proteins Cy34 and Cy35 (Nat. Biotechnol. 19, 668-72, Applied Environment Microbiol., 2006, 71, 1765-1774) or the binary toxin consisting of the CrylA or CrylF proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (US Patent Application 12 / 214,022 and EP08010791.5 ); or
  • an insecticidal hybrid protein comprising parts of two different insecticides of Bacillus thuringiensis crystal proteins, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g. The protein CrylA.105 produced by the corn event MON98034 (WO 2007/027777); or
  • VIPs vegetative insecticidal proteins
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which acts in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus insecticide, such as the binary toxin consisting of the proteins VTP1A and VIP2A (WO 94 / 21795); or
  • an insecticidal hybrid protein comprising parts of various secreted proteins of Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins of 1) or a hybrid of the proteins of 2) above; or
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus that is insecticidal in the presence of a crystal protein of Bacillus thuringiensis, such as the binary toxin derived from the proteins VIP3 and CrylA or
  • CrylF exists (US Patent Applications 61/126083 and 61/195019), or the binary toxin consisting of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (US Patent Application 12 / 214,022 and EP 08010791.5); or
  • insect-resistant transgenic plants in the present context also include any plant comprising a combination of genes coding for the proteins of any of the above-mentioned classes 1 to 10.
  • an insect resistant plant contains more than one transgene encoding a protein of any one of the above 1 to 10 in order to extend the spectrum of the corresponding target insect species or to delay the development of resistance of the insects to the plants by use different proteins which are insecticidal for the same target insect species, but have a different mode of action, such as binding to different receptor binding sites in the insect.
  • An "insect-resistant transgenic plant” as used herein further includes any plant containing at least one transgene comprising a sequence for producing a double-stranded RNA which prevents the growth of that pest after ingestion by an insect pest.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant to abiotic stressors. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such stress resistance. Particularly useful plants with stress tolerance include the following:
  • Plants which contain a transgene capable of reducing the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants.
  • PARP poly (ADP-ribose) polymerase
  • Plants which contain a stress tolerance enhancing transgene encoding a plant functional enzyme of the nicotimmide adenine dinucleotide salvage biosynthetic pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase.
  • nicotimmide adenine dinucleotide salvage biosynthetic pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosy
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention have a changed amount, quality and / or storability of the harvested product and / or altered characteristics of certain components of the harvested product, such as:
  • Transgenic plants which synthesize a modified starch with respect to their physicochemical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the gel strength, the starch grain size and / or starch comorphology as compared to the synthesized starch in wild-type plant cells or plants, so that this modified starch is better suited for certain applications.
  • physicochemical properties in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the gel strength, the starch grain size and / or starch comorphology as compared to the synthesized starch in wild-type plant cells or plants, so that this modified starch is better suited for certain applications.
  • Transgenic plants that synthesize non-starch carbohydrate polymers or non-starch carbohydrate polymers whose properties are altered compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, particularly of the inulin and levan type, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans, and plants that produce Produce alcohol.
  • Transgenic plants or hybrid plants such as onions with certain properties such as "high soluble solids content", low pungency (LP) and / or long storage (LS)
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering) which can also be treated according to the invention are plants such as cotton plants with altered fiber properties Contain mutation conferring such altered fiber properties, which include:
  • plants such as cotton plants containing an altered form of cellulose synthase genes; b) plants such as cotton plants containing an altered form of rsw2 or rsw3 homologous nucleic acids, such as cotton plants having increased expression of sucrose phosphate synthase;
  • plants such as cotton plants with increased expression of sucrose synthase
  • plants such as cotton plants with modified reactivity fibers, e.g.
  • N-acetylglucosamine transferase gene including nodC, and chitin synthase genes.
  • Plants or plant varieties obtained by plant biotechnology methods, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brasica plants with altered oil composition properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include:
  • oilseed rape plants which produce oil of high oleic acid content
  • ⁇ b plants such as oilseed rape plants, which produce oil with a low linolenic acid content.
  • plants such as rape plants that produce oil with a low saturated fatty acid content.
  • Plants or plant varieties (which can be obtained by plant biotechnology methods such as genetic engineering), which can also be treated according to the invention, are plants such as potatoes which are virus-resistant, e.g. against the potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), which are resistant to diseases such as potato late blight (eg RB gene), or which show a decreased cold-induced sweetness (which the genes Nt-Inh, ⁇ -INV) or which show the dwarf phenotype (gene A-20 oxidase).
  • viruses which are virus-resistant, e.g. against the potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), which are resistant to diseases such as potato late blight (eg RB gene), or which show a decreased cold-induced sweetness (which the genes Nt-Inh, ⁇ -INV) or which show the dwarf phenotype (gene A-20 oxidase).
  • Plants or plant varieties which have been obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brasica plants with altered seed shattering properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered properties, and include plants such as oilseed rape with delayed or reduced seed failure.
  • transgenic plants that can be treated according to the present invention are plants with transformation events or combinations of transformation events which have been the subject of issued orphaned in the USA by the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) pending petitions for non-regulated status.
  • APIS Animal and Plant Health Inspection Service
  • USA United States Department of Agriculture
  • Information is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), e.g. via the website http://www.aphis.usda.gov/brs/not_reg.html.
  • APHIS had either received or pending the petition with the following information:
  • Transgenic phenotype the trait conferred on the plant by the transformation event.
  • Trans formationevent or line the name of the event or events (sometimes referred to as line (s)) for which the unregulated status is requested.
  • APHIS Documente various documents that may be published by APHIS regarding the petition or may be obtained from APHIS upon request.
  • transgenic plants which can be treated according to the invention are plants with one or more genes coding for one or more toxins, the transgenic plants offered under the following commercial names: YIELD GARD® (for example maize, cotton, soybean NEN), KnockOut® (for example maize), BiteGard® (for example maize), BT-Xtra® (for example corn), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton) , Nucotn 33B® (cotton), NaturalGard® (for example corn), Protecta® and NewLeaf® (potato).
  • YIELD GARD® for example maize, cotton, soybean NEN
  • KnockOut® for example maize
  • BiteGard® for example maize
  • BT-Xtra® for example corn
  • StarLink® for example maize
  • Bollgard® cotton
  • Nucotn® cotton
  • Nucotn 33B® cotton
  • NaturalGard® for example corn
  • Herbicide-tolerant crops to be mentioned are, for example, corn, cotton and soybean varieties sold under the following trade names: Roundup Ready® (glyphosate tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example Oilseed rape), ⁇ ® (imidazolinone tolerance) and SCS® (Sylfonylureas tolerance), for example maize.
  • Herbicide-resistant plants (plants traditionally grown for herbicide tolerance) to be mentioned include the varieties sold under the name Clearfield® (for example corn).
  • the active compounds or compositions according to the invention can also be used in the protection of materials for the protection of industrial materials against infestation and destruction by undesired microorganisms, such as fungi and insects.
  • the compounds according to the invention can be used alone or in combinations with other active substances as antifouling agents.
  • Technical materials as used herein mean non-living materials that have been prepared for use in the art.
  • engineering materials to be protected from microbial change or destruction by the active compounds of the present invention may be adhesives, glues, paper, wallboard and board, textiles, carpets, leather, wood, paints and plastics, coolants, and other materials used by Microorganisms can be attacked or decomposed.
  • parts of production plants and buildings e.g. Cooling water circuits, cooling and heating systems and ventilation and air conditioning systems, which may be affected by the proliferation of microorganisms.
  • technical materials which may be mentioned are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer fluids, particularly preferably wood.
  • the active compounds or compositions according to the invention can prevent adverse effects such as decay, deterioration, decomposition, discoloration or mold.
  • the compounds of the invention for protection against fouling of objects in particular of hulls, screens, nets, structures, quays and signal systems, which come in contact with seawater or brackish water, can be used.
  • the inventive method for controlling unwanted fungi can also be used for the protection of so-called storage goods.
  • Storage Goods natural substances are plant- _
  • Storage goods of plant origin such as Plants or parts of plants, such as stems, leaves, tubers, seeds, fruits, grains, can be protected when freshly harvested or after being processed by (pre) drying, wetting, crushing, grinding, pressing or roasting.
  • Storage goods also include timber, be it unprocessed, such as timber, power poles and barriers, or in the form of finished products, such as furniture.
  • Storage goods of animal origin include, for example, skins, leather, furs and hair.
  • the active compounds according to the invention can prevent adverse effects such as decay, deterioration, decomposition, discoloration or mold.
  • Blumeria species such as Blumeria graminis
  • Podosphaera species such as Podosphaera leucotricha
  • Sphaerotheca species such as Sphaerotheca fuliginea
  • Uncinula species such as Uncinula necator
  • Gymnosporangium species such as, for example, Gymnosporangium sabinae
  • Hemileia species such as Hemileia vastatrix
  • Phakopsora species such as Phakopsora pachyrhizi and Phakopsora meibomiae
  • Puccinia species such as Puccinia recondita or Puccinia triticina
  • Uromyces species such as Uromyces appendiculatus
  • Bremia species such as Bremia lactucae
  • Peronospora species such as Peronospora pisi or P. brassicae
  • Phytophthora species such as Phytophthora infestans
  • Plasmopara species such as Plasmopara viticola
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Pythium species such as Pythium ultimum
  • Phaeosphaeria species such as Phaeosphaeria nodorum
  • Pyrenophora species such as, for example, Pyrenophora teres
  • Ramularia species such as Ramularia collo-cygni
  • Rhynchosporium species such as Rhynchosporium secalis
  • Septoria species such as Septoria apii
  • Typhula species such as Typhula incarnata
  • Venturia species such as Venturia inaequalis
  • Ear and panicle diseases caused by e.g. Alternaria species, such as Alternaria spp .; Aspergillus species, such as Aspergillus flavus; Cladosporium species, such as Cladosporium cladosporioides; Claviceps species, such as Claviceps purpurea; Fusarium species such as Fusarium culmorum; Gibberella species, such as Gibberella zeae; Monographella species, such as Monographella nivalis; Septoria species such as Septoria nodorum; Diseases caused by fire fungi, e.g.
  • Alternaria species such as Alternaria spp .
  • Aspergillus species such as Aspergillus flavus
  • Cladosporium species such as Cladosporium cladosporioides
  • Claviceps species such as Claviceps purpurea
  • Fusarium species such as Fusarium
  • Sphacelotheca species such as Sphacelotheca reiliana
  • Tilletia species such as Tilletia caries, T. controversa
  • Urocystis species such as U rocystis occulta
  • Ustilago species such as Ustilago nuda, U. nuda tritici
  • Verticilium species such as Verticilium alboatrum
  • Nectria species such as Nectria galligena
  • Botrytis species such as Botrytis cinerea
  • Diseases of plant tubers caused by e.g. Rhizoctonia species, such as Rhizoctonia solani
  • Helminthosporium species such as Helminthosporium solani
  • Xanthomonas species such as Xantomonas campestris pv. Oryzae
  • Pseudomonas species such as Pseudomonas syringae pv. Lachrymans
  • Erwinia species such as Erwinia amylovora
  • the following diseases of soybean beans can be controlled:
  • Fungus diseases on leaves, stems, pods and seeds caused by, for example, Alternaria leaf spot (Alternaria spec. Atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var.
  • Phytophthora red (Phytophthora megasperma), Brown Stem Red (Phialophora gregata), Pythium Red (Pythium aphanidermatum, Pythium irregular , Pythium de- baryanum, Pythium myriotylum, Pythium ultimum), Rhizoctonia Root Red, Stem Decay, and Damping Off (Rhizoctonia solani), Sclerotinia Stem Decay (Sclerotinia sclerotiorum), Sclerotinia Southern Blight (Sclerotinia rolfsii), Thielaviopsis Root Red (Thielaviopsis basicola).
  • microorganisms that can cause degradation or a change in the technical materials, for example, bacteria, fungi, yeasts, algae and mucus organisms may be mentioned.
  • the active compounds according to the invention preferably act against fungi, in particular molds, wood-discolouring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera Alternaria, such as Alternaria tenuis; Aspergillus, such as Aspergillus niger; Chaetomium, like Chaetomium globosum; Coniophora, like Coniophora puetana; Lentinus, like Lentinus tigrinus; Penicillin, such as Penicillium glaucum; Polyporus, such as Polyporus versicolor; Aureobasidium, such as Aureobasidium pullulans; Sclerophoma, such as Sclerophoma pityophila; Trichoderma, such as Trichoderma viride; Escherichia, such as Escherichia coli; Pseudomonas, such as Pseudomonas aeruginosa; Staphylococcus, such as Staphylococcus aureus.
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Asperg
  • the active compounds according to the invention also have very good antifungal effects. They have a very broad antimycotic spectrum of activity, in particular against dermatophytes and yeasts, mold and diphasic fungi (for example against Candida species such as Candida albicans, Candida glabrata) as well as Epidemermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus furnigatus, Trichophyton species such as Trichophyton mentagrophytes, Microsporon species such as Microsporon canis and audouinii.
  • Candida species such as Candida albicans, Candida glabrata
  • Epidemermophyton floccosum Aspergillus species such as Aspergillus niger and Aspergillus furnigatus
  • Trichophyton species such as Trichophyton mentagrophytes
  • Microsporon species such as Microsporon canis and audouinii.
  • the list of these fungi is by no means a
  • the active compounds according to the invention can therefore be used both in medical and in non-medical applications.
  • the application rates can be varied within a relatively wide range, depending on the mode of administration.
  • the application rate of the active compounds according to the invention is
  • leaves from 0.1 to 10,000 g / ha, preferably from 10 to 1,000 g / ha, particularly preferably from 50 to 300 g / ha (when applied by pouring or drop, the application rate may even be reduced, especially when inert substrates such as rockwool or perlite are used);
  • seed treatment from 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, most preferably from 2.5 to 12, 5 g per 100 kg of seed;
  • the active compounds or compositions according to the invention can therefore be used to protect plants within a certain period of time after the treatment against attack by the mentioned pathogens.
  • the period within which protection is induced generally extends to 1 to 28 days, preferably to 1 to 14 days, more preferably to 1 to 10 days, most preferably to 1 to 7 days after the treatment of the plants with the active substances or up to 200 days after seed treatment.
  • mycotoxins include: deoxynivalenol (DON), nivalenol, 15-Ac-DON, 3-Ac-DON, T2 and HT2 toxin, fumonisins, zearalenone, moniliformin, fusarin, diaceotoxyscirpenol (DAS) , Beauvericin, enniatin, fusaroproliferin, fusarenol, ochratoxins, patulin, ergot alkaloids and aflatoxins, which may be caused, for example, by the following fungi: Fusarium spec., Such as Fusarium acuminatum, F.
  • the compounds according to the invention may also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or agents for improving plant properties, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including anti-viral agents) or as anti-MLO agents ( Mycoplasma-like-organism) and RLO (Rickettsia-like-organism). If appropriate, they can also be used as intermediates or precursors for the synthesis of further active ingredients.
  • the active compounds according to the invention intervene in the metabolism of the plants and can therefore also be used as growth regulators.
  • Plant growth regulators can exert various effects on plants.
  • the effects of the substances depend essentially on the time of application, based on the stage of development of the plant and on the amounts of active substance applied to the plants or their surroundings and on the mode of administration. In any case, growth regulators are intended to influence crops in some desired manner.
  • Plant growth-regulating substances can be used, for example, for inhibiting the vegetative growth of the plants. Such growth inhibition is among others of grasses of economic interest, ""
  • An inhibition of vegetative growth allows for many crops a denser planting, so that multi-carrier can be achieved based on the floor area.
  • An advantage of the smaller plants thus obtained is that the culture can be more easily processed and harvested.
  • An inhibition of the vegetative growth of the plants can also lead to increased yields that the nutrients and assimilates benefit the flower and fruit formation to a greater extent than the vegetative plant parts.
  • Growth regulators can often be used to promote vegetative growth. This is of great benefit when harvesting the vegetative plant parts. At the same time, promotion of vegetative growth can also promote generative growth by producing more asila- lates so that more or more fruits are produced.
  • Yield increases can in some cases be achieved through an intervention in the plant metabolism, without any noticeable changes in vegetative growth.
  • a change in the composition of the plants can be achieved, which in turn can lead to an improvement in the quality of the harvested products.
  • the degradation of desirable ingredients such.
  • Sugar in sugar beet or cane with growth regulators before or after harvesting.
  • the production or the discharge of secondary plant ingredients can be positively influenced.
  • An example is the stimulation of latex flow in gum trees. Under the influence of growth regulators, parthenocarp fruits may develop. Finer the sex of the flowers can be influenced.
  • a sterility of the pollen can be produced, which has a great importance in the breeding and production of hybrid seed.
  • the branching of the plants can be controlled.
  • the development of lateral shoots can be promoted by breaking the apicoid dominance, which can be very desirable, especially in ornamental plant production, also in connection with growth inhibition.
  • the foliage of the plants can be controlled so that a defoliation of the plants is achieved at a desired time.
  • Such defoliation plays a major role in the mechanical harvesting of cotton but is also important in other crops such as e.g. in viticulture to facilitate the harvest of interest.
  • Defoliation of the plants may also be done to reduce the transpiration of the plants before transplanting.
  • Growth regulators can also be used to accelerate or retard the ripeness of the crop before or after harvesting. This is of particular advantage, because this can bring about an optimal adaptation to the needs of the market. In addition, growth regulators may in some cases improve the color of the fruit. In addition, with growth regulators, a temporal concentration of maturity can be achieved. This creates the conditions for e.g. in the case of tobacco, tomatoes or coffee a complete mechanical or manual harvesting can be carried out in one operation.
  • the seed or bud rest of the plants can be influenced so that the plants, such as e.g. Pineapples or ornamental plants in nurseries to germinate, sprout or flower at a time when they normally do not show any willingness to do so. Delaying bud sprouting or seed germination using growth regulators may be desirable in areas prone to frost to prevent damage from late frosts.
  • growth regulators can induce plant resistance to frost, dryness or high soil salinity. This makes it possible to cultivate plants in areas that are normally unsuitable for this purpose.
  • the plants listed can be treated particularly advantageously according to the invention with the compounds of the general formula (I) the agents according to the invention.
  • the preferred ranges given above for the active compounds or agents also apply to the treatment of these plants. Particularly emphasized is the plant treatment with the compounds or agents specifically mentioned in the present text.
  • Table 1 illustrates, in a nonlimiting manner, examples of compounds of the invention.
  • the calibration was carried out with unbranched alkanones (having 3 to 16 carbon atoms) whose logP values are known (determination of the logP values by means of the retention times by linear interpolation between consecutive alkanones).
  • the lambda-maX values were determined on the basis of the UV spectra from 200 nm to 400 nm in the maxima of the chromatographic signals.
  • NMR data of selected examples are listed either in classical form ( ⁇ values, number of H atoms, multiplet splitting) or as NMR peak lists.
  • the peak list of an example therefore has the form: ⁇ (intensity i); 82 (intensity2); ; ⁇ ; (Intensity; ⁇ ⁇ (intensity n )
  • the intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the true ratios of the signal intensities. For wide signals can ⁇ several peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum are shown.
  • the peaks of stereoisomers of the target compounds and / or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (for example with a purity of> 90%).
  • Such stereoisomers and / or impurities may be typical of the particular preparation process. Their peaks can thus help to identify the reproduction of our manufacturing process through "by-product fingerprints.”
  • An expert calculating the peaks of the target compounds by known methods can isolate the peaks of the target compounds as needed, using additional intensity filters if necessary. This isolation would be similar to peak picking in classical 1H NMR interpretation.
  • Example A Alternaria test (tomato) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young tomato plants are sprayed with the preparation of active compound in the stated application rate.
  • the plants are inoculated with a spore suspension of Alternaria solani and then stand for 24 h at 100% relative humidity and 22 ° C.
  • the plants are at 96% relative humidity and a temperature of 20 ° C. 7 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example B Sphaerotheca test (cucumber) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young cucumber plants are sprayed with the preparation of active compound in the stated application rate.
  • the plants are inoculated with a spore suspension of Sphaerotheca fuliginea.
  • the plants are placed in a greenhouse at 70% relative humidity and a temperature of 23 ° C. 7 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example C Pyricularia test (rice) / protective
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young rice plants are sprayed with the preparation of active compound in the stated application rate.
  • the plants are inoculated with an aqueous spore suspension of Pyricularia oryzae and then left for 48 h at 100% relative humidity and 24 ° C.
  • the plants are placed in a greenhouse at 80% relative humidity and a temperature of 24 ° C. 7 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example D Venturia test (apple) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of the apple scab pathogen Venturia inaequalis and then remain in an incubation cabin for 1 day at about 20 ° C. and 100% relative atmospheric humidity. The plants are then placed in the greenhouse at about 21 ° C and a relative humidity of about 90%. 10 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example E Uromyces test (bean) / protective Solvent: 24.5 parts by weight of acetone
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of the bean rust pathogen Uromyces appendiculatus and then remain for 1 day at about 20 ° C. and 100% relative atmospheric humidity in an incubation booth. The plants are then placed in the greenhouse at about 21 ° C and a relative humidity of about 90%.
  • Example F Phakopsora test (soybean) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of the soybean seed pathogen Phakopsora pachyrhizi and then remain in the dark for 24 h in an incubation cabin at about 24 ° C. and about 95% relative humidity. The further incubation is carried out at about 24 ° C and a relative humidity of about 80% in a day / night rhythm of 12 h light / 12 h darkness. 7 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example G Blumeria graminis test (barley) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried, the plants are planted with spores of Blumeria graminis f.sp. hordei pollinated. The plants are placed in a greenhouse at a temperature of about 18 ° C and a relative humidity of about 80% to promote the development of mildew pustules. 7 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example H Leptosphaeria nodorum test (wheat) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are sprayed with spores with a spore suspension of Leptosphaeria nodorum. The plants remain for 48 hours at 20 ° C and 100% relative humidity in an incubation cabin.
  • the plants are placed in a greenhouse at a temperature of about 22 ° C and a relative humidity of about 80%. 8 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • the following compounds according to the invention show an efficacy of 70% or more at an active ingredient concentration of 500 ppm:
  • Example I Septoria tritici test (wheat) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are sprayed with a spore suspension of Septoria tritici. The plants remain for 48 hours at 20 ° C and 100% relative humidity in an incubation cabin. Thereafter, the plants are placed under a transparent hood at 15 ° C and 100% relative humidity for another 60 hours. The plants are placed in a greenhouse at a temperature of about 15 ° C and a relative humidity of 80%. 21 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example K Pyrenophora teres test (barley) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried, the plants are sprayed with a spore suspension of Pyrenophora teres. The plants remain for 48 hours at 20 ° C and 100% relative humidity in an incubation cabin. The plants are placed in a greenhouse at a temperature of about 20 ° C and a relative humidity of about 80%. 8 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example L Puccinia triticina test (wheat) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are sprayed with spores with a spore suspension of Puccinia triticina. The plants remain for 48 hours at 20 ° C and 100% relative humidity in an incubation cabin. The plants are placed in a greenhouse at a temperature of about 20 ° C and a relative humidity of about 80%. 8 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example M Fusarium nivale (var.majus) test (wheat) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are sprayed with spores with a spore suspension of Fusarium nivale (var.majus).
  • the plants are placed in a greenhouse chamber under a translucent incubation hood at 10 ° C and 100% relative humidity. 5 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example N Fusarium graminearurn test (barley) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are sprayed with spores with a spore suspension of Fusarium graminearum. The plants are placed in a greenhouse chamber under a translucent incubation hood at 22 ° C and 100% relative humidity. 5 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example O Preventive in vivo test with Alternaria brassicae (leaf spot on radishes)
  • the tested drugs are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired drug concentration.
  • Radish plants (variety "Pernod Clair") seeded in a 50/50 peat soil / pozzolanic substrate and cultured at 17 ° C are treated at the 2-leaf stage by spraying with the active ingredient prepared as described above. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient.
  • the plants are inoculated by spraying the leaves with an aqueous suspension of Alternaria brassicae spores.
  • the inoculated radish plants are incubated at 20 ° C and a relative humidity of 100%.
  • the evaluation takes place 5 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example P Preventive in vivo test with Botrytis cinerea (gray mold)
  • the tested active ingredients are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired active ingredient concentration.
  • Cucumber plants (variety "Vert petit de Paris") seeded in a 50/50 peat soil / pozzolan soil substrate and cultured at 24 ° C are treated in the ZI 1-cotyledon stage by spraying with the active ingredient prepared as described above. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient.
  • the plants are inoculated by spraying the cotyledons with an aqueous suspension of cryopreserved Botrytis cinerea spores.
  • the inoculated cucumber plants are incubated at 17 ° C and a relative humidity of 80%.
  • the evaluation takes place 4-5 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example Q Preventive in vivo test with Phytophthora infestans (cabbage and brown rot of tomatoes)
  • the tested drugs are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired drug concentration.
  • Tomato plants ("Rentita" variety) seeded in a 50/50 peat soil / pozzolan soil substrate and cultured at 20-25 ° C are treated by spraying with the drug prepared as described above at the Z12 leaf stage. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient.
  • the plants are inoculated by spraying the leaves with an aqueous suspension of Phytophthora infestans spores.
  • the inoculated tomato plants are incubated at 16-18 ° C under a humid atmosphere.
  • the evaluation (% efficacy) takes place 5 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example R Preventive in vivo test with Pyrenophora teres (net blotch on barley)
  • the tested drugs are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired drug concentration.
  • Barley plants (variety "Plaisant"), seeded in a 50/50 peat soil / pozzolan soil substrate and cultivated at 22 ° C (12 h) / 20 ° C (12 h), are grown in the 1-leaf stage (height 10 cm) by spraying with the active ingredient prepared as described above. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient. After 24 hours, the plants are inoculated by spraying the leaves with an aqueous suspension of Pyrenophora teres spores. The inoculated barley plants are incubated for 48 hours at 20 ° C and a relative humidity of 100% and then for 12 days at a relative humidity of 80%.
  • the evaluation takes place 12 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example S Preventive in vivo test with Pyricularia oryzae (rice blast)
  • the tested drugs are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired drug concentration. ⁇
  • Rice plants (variety "Koshihikari") seeded in a 50/50 peat soil / pozzolan soil substrate and cultured at 25 ° C are treated in the 2-leaf stage (height 10 cm) by spraying with the active ingredient prepared as described above. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient.
  • the plants are inoculated by spraying the leaves with an aqueous suspension of Pyricularia oryzae spores.
  • the inoculated rice plants are incubated at 25 ° C and a relative humidity of 80%.
  • the evaluation takes place 6 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example T Preventive in vivo test with Puccinia recondita (brown rust on wheat)
  • the tested drugs are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired drug concentration.
  • Wheat plants (“Scipion” variety), seeded in a 50/50 peat soil / pozzolan soil substrate and cultured at 22 ° C (12 h) / 20 ° C (12 h), are grown in the 1-leaf stage (height 10 cm) by spraying with the active ingredient prepared as described above. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient.
  • the plants are inoculated by spraying the leaves with an aqueous suspension of Puccinia recondita spores.
  • the inoculated wheat plants are incubated for 24 hours at 20 ° C and a relative humidity of 100% and then for 10 days at 20 ° C and a relative humidity of 70%.
  • the evaluation takes place 10 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example U Preventive in vivo test with Septoria tritici (leaf spot disease on wheat)
  • the tested active ingredients are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired active ingredient concentration.
  • Wheat plants (“Scipion” variety), seeded in a 50/50 peat soil / pozzolan soil substrate and cultured at 22 ° C (12 h) / 20 ° C (12 h), are grown in the 1-leaf stage (height 10 cm) by spraying with the active ingredient prepared as described above. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient. After 24 hours, the plants are inoculated by spraying the leaves with an aqueous suspension of cryopreserved Septoria tritici spores. The inoculated wheat plants are incubated for 72 hours at 18 ° C and a relative humidity of 100% and then for 21 to 28 days at a relative humidity of 90%.
  • the evaluation takes place 21 to 28 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example V Preventive in vivo test with Sphaerotheca fuliginea (powdery mildew on cucumber)
  • the tested drugs are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired drug concentration.
  • Cucumber plants (variety "Vert petit de Paris") seeded in a 50/50 peat soil / pozzolan soil substrate and cultured at 24 ° C are treated in the ZI 1-cotyledon stage by spraying with the active ingredient prepared as described above. Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient.
  • the plants are inoculated by spraying the cotyledons with an aqueous suspension of Sphaerotheca fuliginea spores.
  • the inoculated cucumber plants are incubated at about 20 ° C / 25 ° C and a relative humidity of 60/70%.
  • the evaluation takes place 12 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed.
  • Example W Preventive in vivo test with Uromyces appendiculatus (bean rust)
  • the tested active ingredients are prepared by homogenization in a mixture of acetone / Tween / DMSO and then diluted with water to the desired active ingredient concentration.
  • Bean plants (variety "Saxa") seeded in a 50/50 peat soil / pozzolan soil substrate and cultured at 24 ° C are treated in the 2-leaf stage (height 9 cm) by spraying with the active ingredient prepared as described above , Plants used as control are treated with the mixture of acetone / Tween / DMSO / water without the active ingredient.
  • the plants are inoculated by spraying the leaves with an aqueous suspension of Uromyces appendiculatus spores.
  • the inoculated bean plants are incubated for 24 hours at 20 ° C and a relative humidity of 100% and then for 10 days at 20 ° C and a relative humidity of 70%.
  • the evaluation takes place 10 days after the inoculation in comparison with the control plants. In this case, 0% means an efficiency which corresponds to that of the control plants, while an efficiency of 100% means that no infestation is observed. ⁇
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • Example Y Uromyces test (beans) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • 0% means an efficiency that corresponds to that of the untreated control, while an efficiency of 100% means that no infestation is observed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
EP12798652.9A 2011-11-25 2012-11-23 2-iod-imidazol-derivate Withdrawn EP2782447A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12798652.9A EP2782447A1 (de) 2011-11-25 2012-11-23 2-iod-imidazol-derivate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11190683 2011-11-25
PCT/EP2012/073427 WO2013076228A1 (de) 2011-11-25 2012-11-23 2-iod-imidazol-derivate
EP12798652.9A EP2782447A1 (de) 2011-11-25 2012-11-23 2-iod-imidazol-derivate

Publications (1)

Publication Number Publication Date
EP2782447A1 true EP2782447A1 (de) 2014-10-01

Family

ID=47326088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12798652.9A Withdrawn EP2782447A1 (de) 2011-11-25 2012-11-23 2-iod-imidazol-derivate

Country Status (13)

Country Link
US (1) US9095136B2 (zh)
EP (1) EP2782447A1 (zh)
JP (1) JP2014534251A (zh)
KR (1) KR20140098145A (zh)
CN (1) CN104039146A (zh)
AR (1) AR088982A1 (zh)
BR (1) BR112014012583A2 (zh)
CA (1) CA2856591A1 (zh)
CO (1) CO6960557A2 (zh)
EA (1) EA201491036A1 (zh)
MX (1) MX2014006072A (zh)
TW (1) TW201335140A (zh)
WO (1) WO2013076228A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516237A (ja) 2015-04-02 2018-06-21 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 新規な5−置換イミダゾール誘導体
BR112019004858A2 (pt) 2016-09-13 2019-06-11 Bayer Ag combinações de composto ativo que compreendem um derivado de imidazol 5-substituído
EP3519392A1 (en) 2016-09-29 2019-08-07 Bayer CropScience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2018060075A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft 1 -[2-(1 -chlorocyclopropyl)-2-hydroxy-3-(3-phenyl-1,2-oxazol-5-yl)propyl]-1h-imidazole-5-carbonitrile derivatives and related compounds as fungicides for crop protection
US20200029563A1 (en) 2016-09-29 2020-01-30 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazolylmethyldioxolane derivatives
EA201990783A1 (ru) * 2016-09-29 2019-10-31 Производные 5-замещенного имидазолилметилоксирана в качестве фунгицидов
WO2018060093A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft 1,5-substituted imidazole derivatives as fungicides for crop protection.
EP3519391A1 (en) 2016-09-29 2019-08-07 Bayer CropScience Aktiengesellschaft Novel 5-substituted imidazolylmethyl derivatives
CR20190165A (es) 2016-09-29 2019-07-09 Bayer Ag Novedosos derivados de imidazolilmetilo 5-sustituidos

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118461A (en) 1975-12-18 1978-10-03 Rohm And Haas Company 1-Substituted aralkyl imidazoles
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
AU542623B2 (en) 1980-05-16 1985-02-28 Bayer Aktiengesellschaft 1-hydroxyethyl-azole derivatives
GB2078719B (en) * 1980-06-02 1984-04-26 Ici Ltd Heterocyclic compounds
AU4327585A (en) * 1984-06-21 1986-01-02 Imperial Chemical Industries Plc Antifungal azole compounds
DE3537817A1 (de) 1985-10-24 1987-04-30 Bayer Ag Verfahren zur herstellung von oxiranen
US4729986A (en) 1986-04-24 1988-03-08 E. I. Du Pont De Nemours And Company Fungicidal triazoles and imidazoles
US5084465A (en) * 1986-06-23 1992-01-28 Du Pont Merck Pharmaceutical Company Antifungal carbinols
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
DE3812967A1 (de) 1987-06-24 1989-01-05 Bayer Ag Azolylmethyl-cyclopropyl-derivate
GB8728235D0 (en) 1987-12-02 1988-01-06 Sandoz Ltd Novel azole compounds
GB8810120D0 (en) 1988-04-28 1988-06-02 Plant Genetic Systems Nv Transgenic nuclear male sterile plants
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
MA21706A1 (fr) 1988-12-29 1990-07-01 Rhone Poulenc Agrochimie Benzolidene azolylmethylcycloalcane et utilisation comme fongicide.
US5256683A (en) 1988-12-29 1993-10-26 Rhone-Poulenc Agrochimie Fungicidal compositions containing (benzylidene)-azolylmethylcycloalkane
DE3907729A1 (de) 1989-03-10 1990-09-13 Basf Ag Trifluormethylphenylazolylmethyloxirane, verfahren zu ihrer herstellung und deren verwendung als pflanzenschutzmittel
YU47834B (sr) 1989-08-10 1996-01-09 Schering Agrochemical Limited Azolni pesticid
IL95493A0 (en) 1989-09-09 1991-06-30 Basf Ag Azolylmethyloxiranes,their manufacture and their use as fungicides
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
DE4018927A1 (de) * 1990-06-13 1991-12-19 Bayer Ag Azolyl-propanol-derivate
DE4027608A1 (de) 1990-08-31 1992-03-05 Bayer Ag Verfahren zur herstellung von 1-chlor-2-(1-chlor-cyclopropyl)-3-(2-chlor-phenyl)-propan-2-ol und/oder 2-(1-chlor-cyclopropyl)-2-(2-chlor-benzyl)-oxiran
EP0690916B1 (en) 1993-03-25 2005-03-02 Syngenta Participations AG Pesticidal proteins and strains
DE19528046A1 (de) 1994-11-21 1996-05-23 Bayer Ag Triazolyl-Derivate
FR2734842B1 (fr) 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
US5773704A (en) 1996-04-29 1998-06-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
DE19620408A1 (de) * 1996-05-21 1997-11-27 Bayer Ag Mercapto-imidazolyl-Derivate
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
FR2770854B1 (fr) 1997-11-07 2001-11-30 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un tel gene, tolerantes aux herbicides
FR2772789B1 (fr) 1997-12-24 2000-11-24 Rhone Poulenc Agrochimie Procede de preparation enzymatique d'homogentisate
DE19821614A1 (de) 1998-05-14 1999-11-18 Hoechst Schering Agrevo Gmbh Sulfonylharnstoff-tolerante Zuckerrübenmutanten
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
PT1261252E (pt) 2000-03-09 2013-07-22 Du Pont Plantas de girassol tolerantes a sulfonilureia
US6803501B2 (en) 2000-03-09 2004-10-12 Monsanto Technology, Llc Methods for making plants tolerant to glyphosate and compositions thereof using a DNA encoding an EPSPS enzyme from Eleusine indica
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
FR2815969B1 (fr) 2000-10-30 2004-12-10 Aventis Cropscience Sa Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
FR2844142B1 (fr) 2002-09-11 2007-08-17 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
CA2771677A1 (en) 2005-08-31 2007-03-08 Monsanto Technology Llc Nucleotide sequences encoding insecticidal proteins
US20070214515A1 (en) 2006-03-09 2007-09-13 E.I.Du Pont De Nemours And Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
AU2007228981B2 (en) 2006-03-21 2012-10-04 BASF Agricultural Solutions Seed US LLC Novel genes encoding insecticidal proteins
CA2688682A1 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
CN101998993A (zh) 2008-04-14 2011-03-30 拜耳生物科学股份有限公司 新的突变羟基苯基丙酮酸双加氧酶,dna序列和耐受hppd抑制剂除草剂的植物分离
WO2012009678A1 (en) * 2010-07-16 2012-01-19 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their method of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013076228A1 *

Also Published As

Publication number Publication date
KR20140098145A (ko) 2014-08-07
CO6960557A2 (es) 2014-05-30
US9095136B2 (en) 2015-08-04
WO2013076228A1 (de) 2013-05-30
AR088982A1 (es) 2014-07-23
CN104039146A (zh) 2014-09-10
US20140336232A1 (en) 2014-11-13
TW201335140A (zh) 2013-09-01
MX2014006072A (es) 2014-08-08
EA201491036A1 (ru) 2014-11-28
BR112014012583A2 (pt) 2017-06-13
JP2014534251A (ja) 2014-12-18
CA2856591A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
EP2609088B1 (de) 5-iod-triazol-derivate
US20200008427A1 (en) Triazole derivatives, intermediates thereof and their use as fungicides
WO2013076228A1 (de) 2-iod-imidazol-derivate
EP2576525B1 (de) Heterocyclische Alkanolderivate als Fungizide
WO2013076227A1 (de) Neue heterocyclische alkanol-derivate
EP2576528A1 (de) Heterocyclische alkanolderivate als fungizide
EP2576527B1 (de) Heterocyclische alkanolderivate als fungizide
EP2576526A1 (de) Heterocyclische thiosubstituierte alkanolderivate als fungizide
EP2576529B1 (de) Heterocyclische Alkanolderivate als Fungizide
WO2011003527A1 (de) Phenyl(oxy/thio)alkanol-derivate
WO2011051198A2 (de) Pyridin-derivate als pflanzenschutzmittel
EP2451785A2 (de) Substituierte phenyl(oxy/thio)alkanol-derivate
WO2012028587A1 (de) Dithiin-tetra (thio) carboximide zur bekämpfung phytopathogener pilze
EP2601199B1 (de) Dithiinopyridazinon-derivate
EP2646418B1 (de) Pyrimidin-derivate und ihre verwendung als schädlingsbekämpfungsmittel
WO2012062749A1 (de) Benzimidazolidinone verwendbar als fungizide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160712

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160923