EP2776701A1 - Einspritzsystem - Google Patents
EinspritzsystemInfo
- Publication number
- EP2776701A1 EP2776701A1 EP12780090.2A EP12780090A EP2776701A1 EP 2776701 A1 EP2776701 A1 EP 2776701A1 EP 12780090 A EP12780090 A EP 12780090A EP 2776701 A1 EP2776701 A1 EP 2776701A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- line
- branch
- injection
- injection system
- lines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M57/00—Fuel-injectors combined or associated with other devices
- F02M57/02—Injectors structurally combined with fuel-injection pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/31—Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
- F02M2200/315—Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/85978—With pump
- Y10T137/85986—Pumped fluid control
Definitions
- the invention relates to an injection system according to the preamble of claim 1.
- injection systems by means of which, for example, fuel is injected into an engine cylinder.
- injection systems are known in which a pump, in particular a high-pressure pump, is provided, which promotes the fuel from a reservoir to the injection means, in particular injectors.
- the pump is connected via a line with several injection devices connected in series.
- common rail injection systems are known in which the pump also serves to convey fuel from a reservoir and is connected via a line to a pressure storage means, which is also referred to as a rail.
- the individual injection means are each connected to the pressure storage means, wherein the pressure storage means has the task to store the fuel at high pressure.
- a disadvantage of the known injection systems is that the pressure loss in the line between the pump and the injection means is high. The pressure loss in the line must be compensated by a higher power of the pump to allow an exact operation of the injection system.
- no pressure storage means is provided for storing the pressure, disadvantageous that pressure harmonics can arise with high amplitudes in the line system.
- the amplitude of the pressure harmonic depends on the pressure fluctuations caused by the pump and the injection means and the pressure losses arising in the injection system itself.
- the pressure harmonics may damage the components in the injection system, such as the pump, injector, etc.
- the pressure harmonics may adversely affect the accuracy of the amount injected by the individual injectors into, for example, an engine cylinder.
- the object of the invention is to provide an injection system which does not have at least the above-mentioned disadvantages.
- the injection system has a pump for conveying a fluid, in particular fuel, and a line which is connected to the pump.
- the line is connected to at least two branch lines.
- the injection system has at least one injection means, via which the fluid can be injected into, for example, an engine cylinder.
- at least one branch line is connected to at least one injection means.
- the line By connecting the line to at least two branch lines, it is achieved that the fluid flowing in the line, in particular the volume flow of the fluid, is divided between the at least two branch lines. Due to the division of the fluid flow, the resulting pressure loss decreases in the injection system, in particular in the branch lines, since the pressure loss in the Line or the branch line depends inter alia on the flow rate. As a result, compared to the prior art, the power output by the pump can be reduced while ensuring at the same time that the pressure prevailing at the injection means is sufficiently high, so that an exact injection quantity is delivered by the injection means.
- Another advantage of connecting the line to at least two branch lines is that the amplitude of the pressure harmonics can be significantly reduced. This increases the life of the components in the injection system and the accuracy of the injected by the individual injector amount can be precisely metered in contrast to the prior art and is not adversely affected.
- branching point is understood to be the region of the line in which the line is connected to at least one further line.
- Branch pipe is understood to mean any fluid line which is arranged downstream of the branching point.
- the further line is referred to as a branch line.
- the division of the fluid flowing in the line into the at least two branch lines can be controlled by a valve which is connected to a control unit.
- the control unit can cause the fluid flowing in the line to divide in equal parts onto the at least two branch lines.
- the at least two branch lines can be connected in the branch point with the end of the line facing away from the pump.
- a pressure storage means may be provided in at least one branch line.
- the injection means may be connected to the pressure storage means and as a solenoid valve injector or as a piezo injector be educated.
- the pressure storage means may be a cylindrical container.
- the provision of the pressure storage means has the advantage that pressure oscillations, which arise, for example, due to the pulsating pump delivery and / or the injections of the injection means, can be damped.
- the at least two branch lines can be connected to one another via a throttle.
- a throttle By providing the throttle pressure fluctuations in the line and thus in the at least two branch lines can be reduced or compensated, which arise during injection of the fluid through the injection means in, for example, the engine cylinder and / or by a promotion of the fluid through the pump.
- the provision of the throttle ensures that the same pressure prevails in the interconnected branch lines, thereby enabling accurate injection via the injection means, since the injection quantity depends inter alia on the pressure prevailing at the injection means.
- the at least two branch lines which are provided with a pressure storage means, may be connected to each other via the throttle.
- the throttle may be arranged in the respective branch line such that it connects the ends of the at least two branch lines remote from the line or the branch point.
- At least a first and a second branch line in the branch point can be connected to one another and to the line.
- the distance between the branch point to at least one injection means connected to the first branch line may be equal to a distance between the branch point and at least one other injection means connected to the second branch line. This can be achieved by a corresponding design of the line and / or the at least two branch lines be achieved, since the position of the injection means is fixed, for example, by the engine cylinders.
- the pressure loss also depends on the length of the flow path, all other things being equal in the first and second branch lines, the pressure loss of the fluid flow to the injection means connected to the first or second branch line is the same in the aforementioned embodiment.
- the same pressure prevails at the two injection means of the first and second branch line, the same pressure, which ensures that the same injection quantity can be injected for example in an engine cylinder by the two injection means.
- the distances of the injection means connected to the first branch line to the branch point are different from the distances of the injection means connected to the second branch line to the branch point. This may be necessary, for example, because of the available installation space for the branch lines.
- the individual branch lines can in turn be connected to at least two sub-lines. This ensures that the fluid flow, in particular the volume flow, in the respective branch line further splits. As a result of the distribution of the fluid flow through the branch line on the sub-lines, the fluid flow in the branch line decreases, whereby the pressure loss is reduced.
- the sub-line is connected to at least one injection means.
- the partial line is understood to mean the fluid line which carries the fluid downstream of a connection point between the branch line and another line.
- the at least two branch lines can have a different flow cross section.
- the line and the two branch lines may be formed as a tube having a circular cross-section.
- the line and the branch lines may have a different cross-section than circular.
- the pressure loss can be reduced by forming the line and / or the branch line and / or the sub-line made of steel.
- Made of steel lines and / or branch lines and / or sub-lines have a smooth surface structure and thus a low equivalent sand roughness, so that the pressure loss of the fluid is low at a flow through these lines.
- Another way to reduce the pressure loss is that an inlet of the branch line in the branch point and / or an inlet into the injection means in the transition region between injector and branch line and / or accumulator means is rounded.
- the injection system may be designed such that it is adapted to a predetermined ignition sequence of engine cylinders.
- the branch lines can be designed in such a way that the injection means respectively associated with the engine cylinder are connected to different branch lines by engine cylinders to be ignited one after the other. It can thereby be achieved that the pressure fluctuations caused by an injection can not adversely affect the injection of the fluid into another engine cylinder. In particular, the pressure fluctuations caused in the injection can not affect an injection quantity of the subsequent injection means, since this is connected to another branch line.
- connection of the injection means with the respective branch lines does not depend on the firing order of the engine cylinder. It merely has to be ensured that, for example by means of a throttle and / or via an accumulator means, the pressure is kept sufficiently constant to ensure a reliable and controlled injection.
- the injection system can be operated in a pressure range between 200-2,500 bar. In this case, the injection system, in particular fuel injection system, can be used in a motor vehicle. Of course, the use of the injection system in another object, in particular in all objects in which a diesel engine is used, possible.
- FIG. 1 shows a schematic representation of the injection system according to the invention according to a first embodiment
- Figure 2 is a schematic representation of the injection system according to the invention according to a second embodiment.
- the injection system 1 shown in Figure 1 comprises a pump 10 for conveying a fluid, in particular a fuel, and a conduit 2, which is connected to the pump 10.
- the line 2 is connected at its end remote from the pump 10 in a branch point 22 with a first and a second branch lines 20, 21.
- the first and second branch lines 20, 21 are each connected to two injection means 23, 23 '.
- the individual injection means 23, 23 ' are arranged successively in the first and second branch lines 20, 21 as viewed in the flow direction. Via the injection means 23, 23 ', the pumped fluid from the pump is injected into the engine cylinders 30-33.
- the injection means 23, 23 ' are connected in accordance with the firing order of the engine cylinders 30-33 with the corresponding branch lines 20, 21, wherein the firing order of the engine cylinder is fixed.
- the ignition of the engine cylinder according to the ascending numbering of the engine cylinders.
- ignition of the engine cylinder 30 and then the engine cylinder 31 followed by the engine cylinder 32 takes place first and, finally, the engine cylinder 33 is ignited.
- the injection means 23 assigned to the engine cylinder 30 is connected to the first branch line 20.
- the injection means 23 'associated with the engine cylinder 31 to be ignited subsequently to the engine cylinder 30 is connected to the second branch pipe 21.
- the pump 10 and the line 2 are arranged in the injection system 1 such that a distance between the branch point 22 and another injection means 23 ', which is connected to the first branch line, equal to a distance between the branch point 22 and an injection means 23 which is connected to the second branch line.
- the pressure loss between the branch line and the respective injection means 23, 23 'in both branch lines 20, 21 is the same.
- the injection system 1 shown in FIG. 2 differs from the injection system illustrated in FIG. 1 in that the first and second branch lines 20, 21 are connected to one another via a throttle 3.
- the throttle 3 connects the ends of the two branch lines 20, 21 remote from the branch point 22 with each other.
- the injection process by means of the injection system 1 will be described. Although the description of the injection operation is made by the reference numerals, the injection process is not limited to the injection system 1 shown in the figures.
- the pumped by the pump 10 in the conduit 2 fluid flow is divided into the branch lines 20, 21. Via the injection means 23, 23 'connected to the respective branch line 20, 21, the fluid is injected into the engine cylinders 30-33.
- the injection of the fluid takes place in accordance with the firing order of Engine cylinder, wherein the two injection means 23, 23 ', which are assigned to be ignited motor cylinders 30, 31, are not connected to the same branch line 23, 23'.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Die Erfindung betrifft ein Einspritzsystem (1), das eine Leitung (2) aufweist, die mit einer Pumpe (10) verbunden ist. Ferner weist das Einspritzsystem (l) wenigstens zwei Abzweigleitungen (20,21) auf, die mit der Leitung (2) derart verbunden sind, dass sich das in der Leitung (2) strömende Fluid auf die wenigstens zwei Abzweigleitungen (20,21) aufteilt. Dabei ist wenigstens eine Abzweigleitung (20,21) mit wenigstens einem Einspritzmittel (23) verbunden.
Description
Einspritzsystem
Die Erfindung betrifft ein Einspritzsystem nach dem Oberbegriff des Anspruchs 1 .
Aus dem Stand der Technik ist eine Vielzahl von Einspritzsystemen bekannt, mittels denen beispielsweise Kraftstoff in einen Motorzylinder eingespritzt wird. So sind Einspritzsysteme bekannt, bei denen eine Pumpe, insbesondere eine Hochdruckpumpe, vorgesehen ist, die den Kraftstoff von einem Vorratsbehälter zu den Einspritzmitteln, insbesondere Injektoren, fördert. Die Pumpe ist über eine Leitung mit mehreren in Serie geschalteten Einspritzmitteln verbunden.
Daneben sind Common-Rail Einspritzsysteme bekannt, bei denen die Pumpe ebenfalls zum Fördern von Kraftstoff aus einem Vorratsbehälter dient und über eine Leitung mit einem Druckspeichermittel, das auch als Rail bezeichnet wird, verbunden ist. Die einzelnen Einspritzmittel sind jeweils mit dem Druckspeichermittel verbunden, wobei das Druckspeichermittel die Aufgabe besitzt, den Kraftstoff bei hohem Druck zu speichern.
Nachteilig an den bekannten Einspritzsystemen ist, dass der Druckverlust in der Leitung zwischen der Pumpe und den Einspritzmitteln hoch ist. Der Druckverlust in der Leitung muss durch eine höhere Leistung der Pumpe ausgeglichen werden, um einen exakten Betrieb des Einspritzsystems zu ermöglichen. Des Weiteren ist, insbesondere bei dem Einspritzsystem, bei dem kein Druckspeichermittel zum Speichern des Drucks vorgesehen ist, nachteilig, dass Druckoberwellen mit hohen Amplituden im Leitungssystem entstehen können. Die Amplitude der Druckoberwelle hängt von den durch die Pumpe und die Einspritzmittel verursachten Druckschwankungen und den in dem Einspritzsystem selbst entstehenden Druckverlusten ab. Die Druckoberwellen können die in dem Einspritzsystem befindlichen Bauteile, wie z.B. Pumpe, Einspritzmittel, etc., beschädigen. Zusätzlich können die Druckoberwellen die Genauigkeit der durch die einzelnen Einspritzmittel eingespritzten Menge in beispielsweise einen Motorzylinder nachteilig beeinflussen.
Die Aufgabe der Erfindung besteht darin, ein Einspritzsystem vorzusehen, das wenigstens die oben genannten Nachteile nicht aufweist.
Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Erfindungsgemäß weist das Einspritzsystem eine Pumpe zum Fördern eines Fluids, insbesondere Kraftstoff, und eine Leitung auf, die mit der Pumpe verbunden ist. Die Leitung ist mit wenigstens zwei Abzweigleitungen verbunden. Ferner weist das Einspritzsystem wenigstens ein Einspritzmittel auf, über das das Fluid in beispielsweise einen Motorzylinder eingespritzt werden kann. Dabei ist wenigstens eine Abzweigleitung mit wenigstens einem Einspritzmittel verbunden.
Durch das Verbinden der Leitung mit wenigstens zwei Abzweigleitungen wird erreicht, dass sich das in der Leitung strömende Fluid, insbesondere der Volumenstrom des Fluids, auf die wenigstens zwei Abzweigleitungen aufteilt. Infolge der Aufteilung des Fluidstroms verringert sich der resultierende Druckverlust im Einspritzsystem, insbesondere in den Abzweigleitungen, da der Druckverlust in der
Leitung bzw. der Abzweigleitung unter anderem von dem Volumenstrom abhängt. Dadurch kann im Vergleich zum Stand der Technik die durch die Pumpe abgegebene Leistung verringert werden, wobei gleichzeitig sichergestellt ist, dass der an den Einspritzmitteln herrschende Druck ausreichend groß ist, so dass durch die Einspritzmittel eine exakte Einspritzmenge abgegeben wird.
Ein weiterer Vorteil der Verbindung der Leitung mit wenigstens zwei Abzweigleitungen besteht darin, dass die Amplitude der Druckoberwellen signifikant verringert werden kann. Dadurch erhöht sich die Lebensdauer der in dem Einspritzsystem befindlichen Bauteile und die Genauigkeit der durch die einzelnen Einspritzmittel eingespritzten Menge kann im Gegensatz zum Stand der Technik präziser dosiert sein und wird nicht nachteilig beeinflusst.
Im Sinne der Erfindung wird als Abzweigstelle derjenige Bereich der Leitung verstanden, in dem die Leitung mit wenigstens einer weiteren Leitung verbunden ist. Als Abzweigleitung wird jede Fluidleitung verstanden, die stromabwärts der Abzweigstelle angeordnet ist. Somit wird im Folgenden die weitere Leitung als Abzweigleitung bezeichnet.
Die Aufteilung des in der Leitung strömenden Fluids in die wenigstens zwei Abzweigleitungen kann durch ein Ventil gesteuert werden, das mit einer Steuereinheit verbunden ist. Insbesondere kann die Steuereinheit bewirken, dass sich das in der Leitung strömende Fluid zu gleichen Teilen auf die wenigstens zwei Abzweigleitungen aufteilt. Natürlich ist es möglich, dass sich durch die konstruktive Ausbildung der wenigstens zwei Abzweigleitungen im Verbindungsbereich mit der Leitung ein konstantes Aufteilungsverhältnis des Fluidstroms in die wenigstens zwei Abzweigleitungen ausbildet. Die wenigstens zwei Abzweigleitungen können in der Abzweigstelle mit dem von der Pumpe abgewandten Ende der Leitung verbunden sein.
In einer bevorzugten Ausführung kann in wenigstens einer Abzweigleitung ein Druckspeichermittel vorgesehen sein. Das Einspritzmittel kann mit dem Druckspeichermittel verbunden und als ein Magnetventilinjektor oder als ein Piezoinjektor
ausgebildet sein. Bei dem Druckspeichermittel kann es sich um einen zylinderförmigen Behälter handeln. Das Vorsehen des Druckspeichermittels bietet den Vorteil, dass Druckschwingungen, die beispielsweise durch die pulsierende Pumpenförderung und/oder die Einspritzungen des Einspritzmittels entstehen, gedämpft werden können. Durch das Ausbilden des Einspritzmittels als Magnetventilinjektor oder als Piezoinjektor kann ermöglicht werden, dass genaue Einspritzmengen in beispielsweise den Motorzylinder eingespritzt werden.
Die wenigstens zwei Abzweigleitungen können über eine Drossel miteinander verbunden sein. Durch das Vorsehen der Drossel können Druckschwankungen in der Leitung und damit in den wenigstens zwei Abzweigleitungen verringert bzw. ausgeglichen werden, die beim Einspritzen des Fluids durch das Einspritzmittel in beispielsweise den Motorzylinder und/oder durch eine Förderung des Fluids durch die Pumpe entstehen. Im Ergebnis wird durch das Vorsehen der Drossel erreicht, dass in den miteinander verbundenen Abzweigleitungen der gleiche Druck herrscht, wodurch eine genaue Einspritzung über die Einspritzmittel ermöglicht wird, da die Einspritzmenge unter anderem von dem an den Einspritzmitteln herrschenden Druck abhängt.
Natürlich können auch die wenigstens zwei Abzweigleitungen, die mit einem Druckspeichermittel versehen sind, über die Drossel miteinander verbunden sein. Die Drossel kann derart in der jeweiligen Abzweigleitung angeordnet sein, dass sie die von der Leitung bzw. der Abzweigstelle entfernten Enden der wenigstens zwei Abzweigleitungen miteinander verbindet.
In einer bevorzugten Ausführung können wenigstens eine erste und eine zweite Abzweigleitung in der Abzweigstelle miteinander und mit der Leitung verbunden sein. Der Abstand zwischen der Abzweigstelle zu wenigstens einem Einspritzmittel, das mit der ersten Abzweigleitung verbunden ist, kann gleich sein zu einem Abstand zwischen der Abzweigstelle und wenigstens einem anderen Einspritzmittel, das mit der zweiten Abzweigleitung verbunden ist. Dies kann durch eine entsprechende Ausbildung der Leitung und/oder der wenigstens zwei Abzweigleitungen
erreicht werden, da die Position der Einspritzmittel beispielsweise durch die Motorzylinder fest vorgegeben wird.
Da der Druckverlust auch von der Länge des Strömungswegs abhängt, ist, bei sonst gleichen Bedingungen in der ersten und zweiten Abzweigleitung, der Druckverlust der Fluidströmung zu den Einspritzmitteln, die mit der ersten oder zweiten Abzweigleitung verbunden sind, in der zuvor genannten Ausführung gleich. Somit herrscht an den beiden Einspritzmitteln der ersten und zweiten Abzweigleitung der gleiche Druck, wodurch sichergestellt ist, dass durch die beiden Einspritzmittel die gleiche Einspritzmenge beispielsweise in einen Motorzylinder eingespritzt werden kann. Natürlich ist es möglich, dass sich die Abstände der mit der ersten Abzweigleitung verbunden Einspritzmittel zu der Abzweigstelle von den Abständen der mit der zweiten Abzweigleitung verbundenen Einspritzmittel zu der Abzweigstelle unterscheiden. Dies kann beispielsweise aufgrund des zur Verfügung stehenden Bauraums für die Abzweigleitungen notwendig sein.
Die einzelnen Abzweigleitungen können selbst wiederum mit wenigstens zwei Teilleitungen verbunden sein. Dadurch wird erreicht, dass sich der Fluidstrom, insbesondere der Volumenstrom, in der jeweiligen Abzweigleitung weiter aufteilt. Infolge der Aufteilung des Fluidstroms durch die Abzweigleitung auf die Teilleitungen verringert sich der Fluidstrom in der Abzweigleitung, wodurch der Druckverlust verkleinert wird. Die Teilleitung ist mit wenigstens einem Einspritzmittel verbunden. Im Sinne der Erfindung wird als Teilleitung die Fluidleitung verstanden, die das Fluid stromabwärts einer Verbindungsstelle zwischen der Abzweigleitung und einer anderen Leitung führt.
Die wenigstens zwei Abzweigleitungen können einen unterschiedlichen Strömungsquerschnitt aufweisen. Durch eine entsprechende Wahl des Strömungsquerschnitts der Abzweigleitung oder eines Bereichs einer Abzweigleitung kann der Druckverlust beeinflusst werden. Dabei können die Leitung und die zwei Abzweigleitungen als Rohr mit einem kreisförmigen Querschnitt ausgebildet sein. Natürlich
können die Leitung und die Abzweigleitungen einen anderen Querschnitt als kreisförmig aufweisen.
Des Weiteren kann der Druckverlust dadurch verringert werden, dass die Leitung und/oder die Abzweigleitung und/oder die Teilleitung aus Stahl ausgebildet ist. Aus Stahl ausgebildete Leitungen und/oder Abzweigleitungen und/oder Teilleitungen weisen eine glatte Oberflächenstruktur und damit eine geringe äquivalente Sandrauhigkeit auf, so dass der Druckverlust des Fluids bei einer Strömung durch diese Leitungen gering ist.
Eine weitere Möglichkeit, den Druckverlust zu verringern, besteht darin, dass ein Einlauf der Abzweigleitung in der Abzweigstelle und/oder ein Einlauf in das Einspritzmittel im Übergangsbereich zwischen Einspritzmittel und Abzweigleitung und/oder Druckspeichermittel abgerundet ausgebildet ist.
Das Einspritzsystem kann derart ausgebildet sein, dass es an eine vorgegebene Zündfolge von Motorzylindern angepasst ist. Insbesondere können die Abzweigleitungen derart ausgebildet sein, dass das zu dem Motorzylinder jeweils zugehörige Einspritzmittel von nacheinander zu zündenden Motorzylindern mit unterschiedlichen Abzweigleitungen verbunden ist. Dadurch kann erreicht werden, dass die durch eine Einspritzung verursachten Druckschwankungen die Einspritzung des Fluids in einen anderen Motorzylinder nicht negativ beeinflussen können. Insbesondere können die bei der Einspritzung verursachten Druckschwankungen eine Einspritzmenge des nachfolgenden Einspritzmittels nicht beeinträchtigen, da dieses mit einer anderen Abzweigleitung verbunden ist.
Es ist dabei natürlich auch denkbar, dass die Verbindung der Einspritzmittel mit den jeweiligen Abzweigleitungen nicht von der Zündreihenfolge der Motorzylinder abhängt. Dabei muss lediglich sichergestellt werden, dass, beispielsweise mittels einer Drossel und/oder über ein Druckspeichermittel, der Druck ausreichend konstant gehalten wird, um eine zuverlässige und kontrollierte Einspritzung zu gewährleisten.
Das Einspritzsystem kann in einem Druckbereich zwischen 200-2.500 bar betrieben werden. Dabei kann das Einspritzsystem, insbesondere Kraftstoffeinspritzsystem, in einem Kraftfahrzeug eingesetzt werden. Natürlich ist der Einsatz des Einspritzsystems auch in einem anderen Gegenstand, insbesondere in allen Gegenständen, in denen ein Dieselverbrennungsmotor eingesetzt wird, möglich.
In der Zeichnung ist der Erfindungsgegenstand schematisch dargestellt und wird anhand der Figuren nachfolgend beschrieben, wobei gleiche oder gleich wirkende Elemente zumeist mit denselben Bezugszeichen versehen sind.
Dabei zeigen:
Figur 1 : eine schematische Darstellung des erfindungsgemäßen Einspritzsystems nach einer ersten Ausführungsform,
Figur 2: eine schematische Darstellung des erfindungsgemäßen Einspritzsystems nach einer zweiten Ausführungsform.
Das in Figur 1 gezeigte Einspritzsystem 1 weist eine Pumpe 10 zum Fördern eines Fluids, insbesondere eines Kraftstoffes, und eine Leitung 2 auf, die mit der Pumpe 10 verbunden ist. Die Leitung 2 ist an ihrem von der Pumpe 10 entfernten Ende in einer Abzweigstelle 22 mit einer ersten und einer zweiten Abzweigleitungen 20, 21 verbunden. Die erste und zweite Abzweigleitung 20, 21 sind jeweils mit zwei Einspritzmitteln 23, 23' verbunden. Die einzelnen Einspritzmittel 23, 23' sind in der ersten und zweiten Abzweigleitung 20, 21 in Strömungsrichtung gesehen nacheinander angeordnet. Über die Einspritzmittel 23, 23' wird das von der Pumpe geförderte Fluid in die Motorzylinder 30-33 eingespritzt.
Die Einspritzmittel 23, 23' sind dabei entsprechend der Zündfolge der Motorzylinder 30-33 mit den entsprechenden Abzweigleitungen 20, 21 verbunden, wobei die Zündfolge der Motorzylinder fest vorgegeben ist. So erfolgt die Zündung der Motor-
zylinder entsprechend der aufsteigenden Nummerierung der Motorzylinder. Das bedeutet hier, dass zuerst eine Zündung des Motorzylinders 30 und im Anschluss daran des Motorzylinders 31 gefolgt von Motorzylinder 32 erfolgt und als letztes der Motorzylinder 33 gezündet wird. Wie aus Figur 1 zu erkennen ist, ist das dem Motorzylinder 30 zugeordnete Einspritzmittel 23 mit der ersten Abzweigleitung 20 verbunden. Das Einspritzmittel 23', das dem dem Motorzylinder 30 nachfolgend zu zündenden Motorzylinder 31 zugeordnet ist, ist mit der zweiten Abzweigleitung 21 verbunden.
Die Pumpe 10 bzw. die Leitung 2 ist in dem Einspritzsystem 1 derart angeordnet, dass ein Abstand zwischen der Abzweigstelle 22 und einem anderem Einspritzmittel 23', das mit der ersten Abzweigleitung verbunden ist, gleich einem Abstand zwischen der Abzweigstelle 22 und einem Einspritzmittel 23 ist, das mit der zweiten Abzweigleitung verbunden ist. Dadurch ist der Druckverlust zwischen der Abzweigleitung und dem jeweiligen Einspritzmittel 23, 23' in beiden Abzweigleitungen 20, 21 gleich.
Das in Figur 2 gezeigte Einspritzsystem 1 unterscheidet sich von dem in Figur 1 dargestellten Einspritzsystem darin, dass die erste und zweite Abzweigleitung 20, 21 über eine Drossel 3 miteinander verbunden sind. Die Drossel 3 verbindet die jeweils von der Abzweigstelle 22 entfernten Enden der beiden Abzweigleitungen 20, 21 miteinander.
Im Folgenden wird der Einspritzvorgang mittels des Einspritzsystems 1 beschrieben. Auch wenn die Beschreibung des Einspritzvorgangs mit Hilfe der Bezugszeichen erfolgt, ist der Einspritzvorgang nicht auf das in den Figuren gezeigte Einspritzsystem 1 beschränkt.
Der durch die Pumpe 10 in der Leitung 2 geförderte Fluidstrom wird in die Abzweigleitungen 20, 21 aufgeteilt. Über die mit der jeweiligen Abzweigleitung 20, 21 verbundenen Einspritzmittel 23, 23' erfolgt eine Einspritzung des Fluids in die Motorzylinder 30-33. Die Einspritzung des Fluids erfolgt entsprechend der Zündfolge der
Motorzylinder, wobei die beiden Einspritzmittel 23, 23', die nachfolgend zu zündenden Motorzylindern 30, 31 zugeordnet sind, nicht mit der gleichen Abzweigleitung 23, 23' verbunden sind.
Bezugszeichenliste Einspritzsystem
Leitung
Drossel
Pumpe
erste Abzweigleitung
zweite Abzweigleitung
Abzweigstelle
,23' Einspritzmittel
-33 Motorzylinder
Claims
1 . Einspritzsystem (1 ) mit wenigstens einem Einspritzmittel (23), einer Pumpe zum Fördern eines Fluids, insbesondere Kraftstoff, und einer Leitung (2), die mit der Pumpe (10) verbunden ist, dadurch gekennzeichnet, dass die Leitung (2) mit wenigstens zwei Abzweigleitungen (20, 21 ) derart verbunden ist, dass sich das in der Leitung (2) strömende Fluid auf die wenigstens zwei Abzweigleitungen (20, 21 ) aufteilt, wobei wenigstens eine Abzweigleitung (20, 21 ) mit wenigstens einem Einspritzmittel (23) verbunden ist.
2. Einspritzsystem (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass in wenigstens einer Abzweigleitung (20, 21 ) ein Druckspeichermittel vorgesehen und das Einspritzmittel (23) mit dem Druckspeichermittel verbunden ist.
3. Einspritzsystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens zwei Abzweigleitungen (20, 21 ) über eine Drossel (3) miteinander verbunden sind.
4. Einspritzsystem (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass die Drossel (3) an dem von der Leitung (2) entfernten Ende der Abzweigleitung (20, 21 ) angeordnet ist.
5. Einspritzsystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens zwei Abzweigleitungen (20, 21 ) einen unterschiedlichen Strömungsquerschnitt aufweisen.
6. Einspritzsystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine erste und eine zweite Abzweigleitung (20, 21 ) in einer Abzweigstelle (22) miteinander und mit der Leitung (2) verbunden sind, wobei der Abstand zwischen der Abzweigstelle (22) zu einem Einspritzmittel (23), das mit der ersten Abzweigleitung verbunden ist, gleich ist dem Abstand zwischen der Abzweigstelle (22) zu einem anderen Einspritzmittel (23'), das mit der zweiten Abzweigleitung verbunden ist.
7. Einspritzsystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die jeweilige Abzweigleitung (20, 21 ) mit wenigstens zwei Teilleitungen verbunden ist, wobei wenigstens ein Einspritzmittel (23) mit der jeweiligen Teilleitung verbunden ist.
8. Einspritzsystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einspritzsystem (1 ) jeweils einen zum Einspritzmittel (23) zugehörigen Motorzylinder aufweist, wobei die Einspritzmittel (23) von nacheinander zu zündenden Motorzylindern mit unterschiedlichen Abzweigleitungen (20, 21 ) verbunden sind. Einspritzsystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leitung (2) und/oder die Abzweigleitung (20, 21 ) aus Stahl ausgebildet sind.
Kraftfahrzeug mit einem Einspritzsystem (1 ), insbesondere einem Kraftstoffeinspritzsystem, nach einem der vorhergehenden Ansprüche.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01784/11A CH705729A1 (de) | 2011-11-07 | 2011-11-07 | Einspritzsystem. |
PCT/EP2012/004244 WO2013068069A1 (de) | 2011-11-07 | 2012-10-10 | Einspritzsystem |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2776701A1 true EP2776701A1 (de) | 2014-09-17 |
Family
ID=47115724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12780090.2A Withdrawn EP2776701A1 (de) | 2011-11-07 | 2012-10-10 | Einspritzsystem |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140299207A1 (de) |
EP (1) | EP2776701A1 (de) |
CN (1) | CN104066966A (de) |
CH (1) | CH705729A1 (de) |
RU (1) | RU2014123313A (de) |
WO (1) | WO2013068069A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2522070A (en) * | 2014-01-14 | 2015-07-15 | Caterpillar Motoren Gmbh & Co | Gaseous fuel feeding system |
WO2017193224A1 (de) * | 2016-05-11 | 2017-11-16 | Peter Fuchs Technology Group Ag | Hochdruckleitung |
JP7102755B2 (ja) * | 2018-02-02 | 2022-07-20 | マツダ株式会社 | エンジンの燃料供給装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63189669A (ja) * | 1987-01-30 | 1988-08-05 | Mazda Motor Corp | デイ−ゼルエンジンの燃料噴射装置 |
DE19712135C1 (de) * | 1997-03-22 | 1998-08-13 | Mtu Friedrichshafen Gmbh | Kraftstoffeinspritzsystem für eine Brennkraftmaschine |
US20040069277A1 (en) * | 2002-10-09 | 2004-04-15 | Kazuteru Mizuno | Method and apparatus for attenuating pressure pulsation in opposed engines |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL292443A (de) * | 1962-05-09 | |||
US3507263A (en) * | 1969-06-13 | 1970-04-21 | Emile David Long | Fluid compression and expansion wave converter for precision fuel metering system |
DE3788406T2 (de) * | 1986-09-25 | 1994-04-14 | Ganser Hydromag Zuerich | Elektronisch gesteuertes Einspritzsystem. |
JP3763698B2 (ja) * | 1998-10-22 | 2006-04-05 | 株式会社日本自動車部品総合研究所 | 圧力脈動を緩和し得る燃料供給システムの設計方法 |
DE19958565B4 (de) * | 1999-12-04 | 2009-04-16 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Kraftstoffversorgungseinrichtung für eine mehrzylindrige Brennkraftmaschine |
JP2005146882A (ja) * | 2003-11-11 | 2005-06-09 | Toyota Motor Corp | 内燃機関の燃料噴射装置 |
DE102004060003A1 (de) * | 2004-12-14 | 2006-07-06 | Man B & W Diesel Ag | Kraftstoffversorgungsanlage in Form eines Common-Rail-Systems für mehrere Zylinder einer Brennkraftmaschine |
US7159569B2 (en) * | 2005-05-11 | 2007-01-09 | Delphi Technologies, Inc. | Fabricated fuel rail assembly for direct injection of fuel |
DE102006003639A1 (de) * | 2006-01-26 | 2007-08-02 | Robert Bosch Gmbh | Hochdruckspeicherkörper mit integriertem Verteilerblock |
JP5033345B2 (ja) * | 2006-04-13 | 2012-09-26 | 臼井国際産業株式会社 | 燃料噴射管用鋼管 |
DE102008054805B4 (de) * | 2008-12-17 | 2022-07-07 | Robert Bosch Gmbh | Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine |
US8166943B2 (en) * | 2009-07-31 | 2012-05-01 | Ford Global Technologies, Llc | Fuel system control |
-
2011
- 2011-11-07 CH CH01784/11A patent/CH705729A1/de not_active Application Discontinuation
-
2012
- 2012-10-10 CN CN201280054670.0A patent/CN104066966A/zh active Pending
- 2012-10-10 US US14/356,714 patent/US20140299207A1/en not_active Abandoned
- 2012-10-10 EP EP12780090.2A patent/EP2776701A1/de not_active Withdrawn
- 2012-10-10 WO PCT/EP2012/004244 patent/WO2013068069A1/de active Application Filing
- 2012-10-10 RU RU2014123313/06A patent/RU2014123313A/ru not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63189669A (ja) * | 1987-01-30 | 1988-08-05 | Mazda Motor Corp | デイ−ゼルエンジンの燃料噴射装置 |
DE19712135C1 (de) * | 1997-03-22 | 1998-08-13 | Mtu Friedrichshafen Gmbh | Kraftstoffeinspritzsystem für eine Brennkraftmaschine |
US20040069277A1 (en) * | 2002-10-09 | 2004-04-15 | Kazuteru Mizuno | Method and apparatus for attenuating pressure pulsation in opposed engines |
Non-Patent Citations (1)
Title |
---|
See also references of WO2013068069A1 * |
Also Published As
Publication number | Publication date |
---|---|
RU2014123313A (ru) | 2015-12-20 |
CN104066966A (zh) | 2014-09-24 |
WO2013068069A1 (de) | 2013-05-16 |
CH705729A1 (de) | 2013-05-15 |
US20140299207A1 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69619949T2 (de) | Speicherkraftstoffeinspritzvorrichtung | |
EP2657502B1 (de) | Hochdruckeinspritzleiste für ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine | |
EP2206897B1 (de) | Fördereinrichtung für ein SCR-System | |
DE102011105351B4 (de) | Treibstoffsystem, das Speicher und Strömungsbegrenzer aufweist | |
EP2638276B1 (de) | Kraftstoffeinspritzsystem einer brennkraftmaschine | |
EP3464870A1 (de) | Hochdruckspeicher und verfahren zur herstellung eines hochdruckspeichers | |
EP1611342B1 (de) | Hochdruckleitung für eine kraftstoffeinspritzanlage | |
WO2013068069A1 (de) | Einspritzsystem | |
EP1826396B1 (de) | Common-Rail-Kraftstoffsystem | |
DE102006037179A1 (de) | Kraftstoffeinspritzsystem mit einem Druckschwingungsdämpfer | |
EP3759337A1 (de) | Verteilervorrichtung eines common-rail-systems | |
WO2013037538A1 (de) | Niederdruckkreislauf für ein kraftstoffeinspritzsystem sowie kraftstoffeinspritzsystem | |
WO2012055610A1 (de) | Kraftstoffeinspritzsystem für eine brennkraftmaschine | |
DE102009055037A1 (de) | Common Rail Minimaldruck zum schnellen Druckaufbau | |
CH712276A1 (de) | Speichereinspritzsystem für Verbrennungskraftmaschinen. | |
EP3353410B1 (de) | Druckpulsationsdämpfer für ein kraftstoffeinspritzsystem sowie kraftstoffeinspritzsystem | |
EP1359318A1 (de) | Kraftstoffhochdruckspeicher mit verbesserten Dämpfungseigenschaften | |
WO2019162107A1 (de) | Vorrichtung und verfahren zum fördern von kraftstoff und additiv | |
DE19900562C2 (de) | Common-Rail-System | |
DE102014201597A1 (de) | Kraftstoffleitung für einen Niederdruckkreis eines Kraftstoffeinspritzsystems, Niederdruckkreis sowie Kraftstoffeinspritzsystem | |
EP1627146B1 (de) | Einspritzsystem für eine brennkraftmaschine, insbesondere für einen dieselmotor | |
DE102009047488A1 (de) | Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine | |
DE102011087760A1 (de) | Kraftstoff-Fördereinrichtung und Verfahren zu ihrem Betrieb | |
WO2013127668A1 (de) | Kraftstoffversorgungssystem für eine brennkraftmaschine | |
DE102013213621A1 (de) | Fluidfördersystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150603 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20151014 |