EP2776611A1 - Compartiment anodique pour cellules d'extraction électrolytique de métaux - Google Patents
Compartiment anodique pour cellules d'extraction électrolytique de métauxInfo
- Publication number
- EP2776611A1 EP2776611A1 EP12780713.9A EP12780713A EP2776611A1 EP 2776611 A1 EP2776611 A1 EP 2776611A1 EP 12780713 A EP12780713 A EP 12780713A EP 2776611 A1 EP2776611 A1 EP 2776611A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- anodic compartment
- anode
- frame
- skeleton
- valve metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 22
- 239000002184 metal Substances 0.000 title claims abstract description 22
- 238000005363 electrowinning Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 230000003197 catalytic effect Effects 0.000 claims abstract description 9
- 230000007797 corrosion Effects 0.000 claims abstract description 4
- 238000005260 corrosion Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 238000005341 cation exchange Methods 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 239000002984 plastic foam Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 239000002253 acid Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000000443 aerosol Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000004070 electrodeposition Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 230000001473 noxious effect Effects 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/04—Diaphragms; Spacing elements
Definitions
- the invention relates to an anodic compartment of a cell for metal electrowinning equipped with an anode consisting of a metal substrate provided with a coating comprising a catalytic layer.
- the anodic compartment is designed for containing oxygen bubbles generated by the anodic reaction on the surface of the anode.
- Electrowinning processes are generally carried out in undivided electrochemical cells containing an electrolytic bath and a multiplicity of anodes and cathodes; in such processes, such as for instance copper electrodeposition, the electrochemical reaction taking place at the cathode, generally made of stainless steel, leads to the deposition of copper in metallic form on the cathode itself.
- the anode generally made of lead, as the result of the electrochemical reaction gaseous oxygen is produced, which is detached from the electrode surface in form of bubbles migrating toward the electrolyte surface. Once they reach the free surface of the electrolyte, bubbles break giving rise to an acidic mist (aerosol), fundamentally consisting of acid electrolyte droplets suspended in the atmosphere overlying the electrolytic bath.
- Acid mists besides being noxious for the health of people working in the surrounding environment, are corrosive and dangerous for all metal parts of the cell room and may damage the instrumentation present.
- Several chemical and physical techniques are known and used for controlling the concentration of acid mists released in the environment surrounding metal electrodeposition cells; these include the employment of surfactants and mechanical methods such as for instance the use of layers of beads floating on the electrolyte surface, which force the gas bubbles along a tortuous path where separation of acid mists takes place.
- the invention relates to an anodic compartment of a metal electrowinning cell delimited by a frame-shaped skeleton comprising one anode obtained starting from a valve metal substrate coated with at least one corrosion-resistant catalytic layer, said anode being inserted inside an envelope consisting of a permeable separator, said permeable separator being secured to said frame-shaped skeleton by means of a an also frame-shaped flange, a demister being located above the anode and delimited by said permeable separator and said skeleton.
- a configuration of such kind has the advantage of keeping microbubbles confined in an enclosed space.
- the frame-shaped skeleton for securing the permeable separator may be of plastic material, for instance being formed by four straight segments fixed at the extremities.
- the flange element for securing the permeable separator to the frame can also be of plastic material and fixed for instance by bolting.
- anodic compartment as used herein is meant a structure which is applied for each anode present in the electrodeposition cell, optionally to replace a pre-existing lead anode.
- the anodic compartment comprises an anode with a mechanical structure consisting of an expanded mesh, a punched sheet or a planar sheet.
- the anodic compartment comprises an anode having a mechanical structure consisting of a pair of expanded meshes or punched sheets arranged in parallel and facing each other.
- the latter solution providing an anode subdivided into two parallel facing elements can have the advantage of minimising the ohmic drop and homogenising current distribution.
- the anodic compartment according to the invention comprises an anode having a single or double mechanical structure wherein the valve metal of the substrate is titanium and at least one catalytic layer applied on the substrate comprises oxides of iridium and of tantalum.
- the anodic compartment comprises a permeable separator which may consist of a porous sheet or a cation-exchange membrane, for instance of the hydrocarbon type.
- a permeable separator which may consist of a porous sheet or a cation-exchange membrane, for instance of the hydrocarbon type.
- the porous separator is a porous sheet
- the portion of sheet in contact with the gas phase may optionally be provided with an impervious layer in order to prevent the possible leakage of oxygen to the environment.
- the demister is made of a plastic material or of a layer of expanded plastic foam or of closely packed thin blades.
- the demister has the purpose of detaining the acidic electrolyte mists drafted by oxygen separated from the liquid phase. After passing across the demister, oxygen is vented to the atmosphere or preferably sent to a manifold connected to an aspirator to further reduce the possible residual acid mist traces preventing inasmuch as possible their release to the external environment.
- the invention relates to an electrochemical cell for metal electrowinning comprising at least one anodic compartment as above described.
- the proposed structure is suitable for installation in plants of metal extraction by
- Figure 1 shows a front view and the corresponding side view of a possible embodiment of an anodic compartment comprising an anode formed by a pair of expanded meshes having two current-collecting bars arranged in their interior.
- Figure 1 shows a front view and the corresponding side view of one embodiment of the anodic compartment delimited by a plastic skeleton 2, a securing flange 3 whereto a porous separator 4 is fixed, an anode formed by a pair of parallel expanded meshes facing each other 5, a lining 6 directed to prevent the leakage of oxygen to the external environment, gaskets 7, a demister 8, current-collecting bars 9 and oxygen outlet nozzle 1.
- FIG. 1 An anodic compartment as shown in figure 1 was assembled in a lab experimental cell.
- the cell comprised two 100 cm tall and 70 cm wide stainless steel cathodes with an anodic
- anodic compartment comprising an anode obtained starting from a substrate consisting of a pair of 70x70 cm parallel expanded meshes facing each other made of titanium, having a tantalum and iridium oxide-based catalytic layer with an overall loading of 9 g/m 2 and a molar ratio Ta:lr of 35:65 referred to the elements.
- the anodic compartment further comprised two sheets of porous polypropylene hydrophilised with silica powder, equipped in the top part with a thin layer of gas-impervious neoprene, and a demister consisting of an open cell expanded polyurethane body having pores of 100 ⁇ average diameter. Copper was electrowon for 5 hours at constant current density of 700 A m 2 .
- the electrolyte contained 60 g/l cupric sulphate and 100 g/l sulphuric acid. Acid aerosols
- a cell was assembled comprising two 100 cm tall and 70 cm wide stainless steel cathodes with an anode placed in-between obtained starting from a substrate consisting of a pair of 70x70 cm parallel expanded meshes facing each other made of titanium, having a tantalum and iridium oxide-based catalytic layer with an overall loading of 9 g/m 2 and a molar ratio Ta:lr of 35:65 referred to the elements. Copper was electrowon for 5 hours at constant current density of 700 A/m 2 .
- the electrolyte contained 60 g/l cupric sulphate and 100 g/l sulphuric acid.
- Three layers of hollow polypropylene beads with a diameter of 19 mm were placed on the exposed surface of the electrolyte. Acid aerosols characterisations were carried out at an approximate height of 40 cm above the cell level on the whole perimeter for a time of 45 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Prevention Of Electric Corrosion (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12780713T PL2776611T3 (pl) | 2011-10-26 | 2012-10-25 | Komora anodowa do elektrolizerów do otrzymywania metali |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT001938A ITMI20111938A1 (it) | 2011-10-26 | 2011-10-26 | Comparto anodico per celle per estrazione elettrolitica di metalli |
PCT/EP2012/071172 WO2013060786A1 (fr) | 2011-10-26 | 2012-10-25 | Compartiment anodique pour cellules d'extraction électrolytique de métaux |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2776611A1 true EP2776611A1 (fr) | 2014-09-17 |
EP2776611B1 EP2776611B1 (fr) | 2015-10-07 |
Family
ID=45315882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12780713.9A Active EP2776611B1 (fr) | 2011-10-26 | 2012-10-25 | Compartiment anodique pour cellules d'extraction électrolytique de métaux |
Country Status (19)
Country | Link |
---|---|
US (1) | US9206517B2 (fr) |
EP (1) | EP2776611B1 (fr) |
JP (1) | JP6113178B2 (fr) |
KR (1) | KR101947369B1 (fr) |
CN (1) | CN103890238B (fr) |
AR (1) | AR088479A1 (fr) |
AU (1) | AU2012330375B2 (fr) |
BR (1) | BR112014009801B1 (fr) |
CA (1) | CA2847819C (fr) |
CL (1) | CL2014001071A1 (fr) |
EA (1) | EA025814B1 (fr) |
ES (1) | ES2556039T3 (fr) |
IT (1) | ITMI20111938A1 (fr) |
MX (1) | MX346758B (fr) |
PE (1) | PE20142085A1 (fr) |
PL (1) | PL2776611T3 (fr) |
TW (1) | TWI563127B (fr) |
WO (1) | WO2013060786A1 (fr) |
ZA (1) | ZA201401934B (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20130505A1 (it) * | 2013-04-04 | 2014-10-05 | Industrie De Nora Spa | Cella per estrazione elettrolitica di metalli |
TWI655324B (zh) * | 2014-02-19 | 2019-04-01 | 義大利商第諾拉工業公司 | 電解槽之陽極結構以及金屬電解場中金屬澱積方法和系統 |
CN105018972A (zh) * | 2014-04-21 | 2015-11-04 | 上海奇谋能源技术开发有限公司 | 一种降低电解槽电压的方法 |
CL2014001133A1 (es) * | 2014-04-30 | 2014-11-03 | Propipe Maqunarias Limitada | Dispositivo electródico insertable (dei) que reemplaza al ánodo tradicional en procesos de electro obtencion de metales, que no genera neblina ácida u otros gases, que comprende un marco perimetral dispuesto en ambos lados del dispositivo, membranas de intercambio ionico, electrodo estrategico que es un conductor o semiconductor, ducto de entrada y salida, barras conductoras electricas verticales; procedimiento de aplicacion del dispositivo. |
TWI687550B (zh) * | 2014-08-01 | 2020-03-11 | 義大利商第諾拉工業公司 | 金屬電煉電解槽之單位電池及其陽極元件,和從電解浴初步萃取金屬用之電解槽,以及從含亞銅離子和/或銅離子之溶液取得銅之製法 |
ITUB20152450A1 (it) * | 2015-07-24 | 2017-01-24 | Industrie De Nora Spa | Apparato elettrodico per elettrodeposizione di metalli non ferrosi |
CN107208291B (zh) | 2015-11-25 | 2021-03-19 | 普罗特股份有限公司 | 用于电解沉积或电解精炼的ews模块器件及其操作过程 |
ES2580552B1 (es) * | 2016-04-29 | 2017-05-31 | Industrie De Nora S.P.A. | Ánodo seguro para celda electroquímica. |
ES2818224B2 (es) | 2019-10-07 | 2021-11-16 | Pueo Felix Prado | Instalacion de electro-deposicion con barras inter-celda activas |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1022005A (en) * | 1963-12-06 | 1966-03-09 | Electro Chem Eng | Improvements relating to the control of mists or sprays evolved from liquids |
US4075069A (en) * | 1975-04-10 | 1978-02-21 | Mitsui Mining & Smelting Co., Ltd. | Processes for preventing the generation of a mist of electrolyte and for recovering generated gases in electrowinning metal recovery, and electrodes for use in said processes |
JPS51117904A (en) * | 1975-04-10 | 1976-10-16 | Mitsui Mining & Smelting Co Ltd | A method for collecting gas generated in metal winning by the wet elec trolytic process |
US4040914A (en) * | 1976-04-28 | 1977-08-09 | Diamond Shamrock Technologies S.A. | Cathode starting blanks for metal deposition |
CA1092056A (fr) * | 1977-10-11 | 1980-12-23 | Victor A. Ettel | Cellule d'extraction par voie electrolytique, avec anode sous enveloppe poreuse |
US4226685A (en) * | 1978-10-23 | 1980-10-07 | Kennecott Copper Corporation | Electrolytic treatment of plating wastes |
JPS5558390A (en) * | 1978-10-25 | 1980-05-01 | Honny Chem Ind Co Ltd | Method and apparatus for prevention of scatter of acid mist caused by anodic oxidation treatment |
US4441977A (en) * | 1980-11-05 | 1984-04-10 | Olin Corporation | Electrolytic cell with sealing means |
JPS6465286A (en) * | 1987-09-07 | 1989-03-10 | Mitsubishi Metal Corp | Method for preventing electrolyte mist |
DE4003516C2 (de) * | 1990-02-06 | 1994-06-23 | Heraeus Elektrochemie | Elektrodenelement für elektrolytische Zwecke und dessen Verwendung |
JP2526734B2 (ja) * | 1991-11-22 | 1996-08-21 | 住友金属鉱山株式会社 | 金属電解採取方法に用いる不溶性アノ―ドボックス |
IT1263898B (it) * | 1993-02-12 | 1996-09-05 | Permelec Spa Nora | Catodo attivato per celle cloro-soda e relativo metodo di preparazione |
US6054027A (en) * | 1996-01-19 | 2000-04-25 | Ebert; William Arthur | Edge brush for electrodes |
US5700549A (en) * | 1996-06-24 | 1997-12-23 | International Business Machines Corporation | Structure to reduce stress in multilayer ceramic substrates |
US6129822A (en) * | 1996-09-09 | 2000-10-10 | Ferdman; Alla | Insoluble titanium-lead anode for sulfate electrolytes |
US6017428A (en) * | 1997-07-16 | 2000-01-25 | Summit Valley Equipment And Engineering, Inc. | Electrowinning cell |
US6120658A (en) * | 1999-04-23 | 2000-09-19 | Hatch Africa (Pty) Limited | Electrode cover for preventing the generation of electrolyte mist |
ITMI20012379A1 (it) * | 2001-11-12 | 2003-05-12 | Uhdenora Technologies Srl | Cella di elettrolisi con elettrodi a diffusione di gas |
ITMI20020535A1 (it) * | 2002-03-14 | 2003-09-15 | De Nora Elettrodi Spa | Anodo per sviluppo di ossigeno e relativo substrato |
NO321256B1 (no) * | 2002-08-26 | 2006-04-10 | Oro As | Elektrodekonstruksjoner, samt anvendelse derav |
US7258778B2 (en) * | 2003-03-24 | 2007-08-21 | Eltech Systems Corporation | Electrocatalytic coating with lower platinum group metals and electrode made therefrom |
US7393438B2 (en) * | 2004-07-22 | 2008-07-01 | Phelps Dodge Corporation | Apparatus for producing metal powder by electrowinning |
US8608914B2 (en) * | 2006-07-07 | 2013-12-17 | Asahi Glass Co. Ltd. | Electrolysis system and method |
WO2008034212A1 (fr) * | 2006-09-21 | 2008-03-27 | Qit-Fer & Titane Inc. | Procédé électrochimique pour la récupération de valeurs de fer métallique et de chlore à partir de déchets de chlorures métalliques riches en fer |
US8022004B2 (en) * | 2008-05-24 | 2011-09-20 | Freeport-Mcmoran Corporation | Multi-coated electrode and method of making |
-
2011
- 2011-10-26 IT IT001938A patent/ITMI20111938A1/it unknown
-
2012
- 2012-08-10 TW TW101128858A patent/TWI563127B/zh not_active IP Right Cessation
- 2012-10-22 AR ARP120103940A patent/AR088479A1/es active IP Right Grant
- 2012-10-25 EA EA201400330A patent/EA025814B1/ru unknown
- 2012-10-25 US US14/350,863 patent/US9206517B2/en active Active
- 2012-10-25 ES ES12780713.9T patent/ES2556039T3/es active Active
- 2012-10-25 PL PL12780713T patent/PL2776611T3/pl unknown
- 2012-10-25 MX MX2014004999A patent/MX346758B/es active IP Right Grant
- 2012-10-25 PE PE2014000604A patent/PE20142085A1/es active IP Right Grant
- 2012-10-25 WO PCT/EP2012/071172 patent/WO2013060786A1/fr active Application Filing
- 2012-10-25 CA CA2847819A patent/CA2847819C/fr active Active
- 2012-10-25 BR BR112014009801-8A patent/BR112014009801B1/pt active IP Right Grant
- 2012-10-25 JP JP2014537621A patent/JP6113178B2/ja active Active
- 2012-10-25 AU AU2012330375A patent/AU2012330375B2/en active Active
- 2012-10-25 CN CN201280052503.2A patent/CN103890238B/zh active Active
- 2012-10-25 EP EP12780713.9A patent/EP2776611B1/fr active Active
- 2012-10-25 KR KR1020147012388A patent/KR101947369B1/ko active IP Right Grant
-
2014
- 2014-03-17 ZA ZA2014/01934A patent/ZA201401934B/en unknown
- 2014-04-25 CL CL2014001071A patent/CL2014001071A1/es unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2013060786A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN103890238B (zh) | 2017-05-10 |
AR088479A1 (es) | 2014-06-11 |
ITMI20111938A1 (it) | 2013-04-27 |
CA2847819A1 (fr) | 2013-05-02 |
EA201400330A1 (ru) | 2014-07-30 |
AU2012330375A1 (en) | 2014-03-27 |
PE20142085A1 (es) | 2015-01-10 |
EP2776611B1 (fr) | 2015-10-07 |
CN103890238A (zh) | 2014-06-25 |
PL2776611T3 (pl) | 2016-03-31 |
BR112014009801B1 (pt) | 2020-08-11 |
CL2014001071A1 (es) | 2014-07-11 |
US9206517B2 (en) | 2015-12-08 |
US20140246306A1 (en) | 2014-09-04 |
ZA201401934B (en) | 2016-01-27 |
EA025814B1 (ru) | 2017-01-30 |
WO2013060786A1 (fr) | 2013-05-02 |
JP6113178B2 (ja) | 2017-04-12 |
KR20140082788A (ko) | 2014-07-02 |
BR112014009801A2 (pt) | 2017-04-18 |
JP2014530961A (ja) | 2014-11-20 |
TWI563127B (en) | 2016-12-21 |
MX2014004999A (es) | 2014-10-17 |
TW201317398A (zh) | 2013-05-01 |
MX346758B (es) | 2017-03-31 |
CA2847819C (fr) | 2019-07-16 |
AU2012330375B2 (en) | 2016-10-13 |
ES2556039T3 (es) | 2016-01-12 |
KR101947369B1 (ko) | 2019-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2847819C (fr) | Compartiment anodique pour cellules d'extraction electrolytique de metaux | |
EP2816141B1 (fr) | Cellule d'électrolyse, et cuve d'électrolyse | |
WO2006127633A3 (fr) | Systeme de production d'eau electrolysee acide et membrane de protection | |
AU2011328887B2 (en) | System for confining and evacuating aerosols of two or three - phases | |
KR20150140347A (ko) | 한정-갭 전해 셀들의 개장의 방법 | |
US9932683B2 (en) | Method for metal electrowinning and an electrowinning cell | |
US9976222B2 (en) | Bubble collector guide and use thereof | |
CN103958741A (zh) | 框架和电解系统 | |
JPS63134685A (ja) | 電解槽 | |
JP3928013B2 (ja) | めっき用不溶性陽極 | |
SU1615231A1 (ru) | Электролизер | |
RU2266982C2 (ru) | Нерастворимый анод для электроэкстракции металлов из водных растворов | |
US2573788A (en) | Electrolytic cell | |
FI67729B (fi) | Katod foer framstaellning av elektrolytiskt vaete | |
CZ304861B6 (cs) | Elektrolyzér pro výrobu vodíku | |
WO2014096534A1 (fr) | Electrode pour un procédé électrolytique et utilisation d'une électrode | |
JPH059770A (ja) | 塩化アルカリの電解方法 | |
IE51293B1 (en) | Electrolytic cells | |
AU2012297505A1 (en) | Mini cleaning appliance for cleaning two-phase or three-phase aerosol flows generated in an electrolytic cell for producing metals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150429 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 753819 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012011398 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: FIAMMENGHI-FIAMMENGHI, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2556039 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160112 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 753819 Country of ref document: AT Kind code of ref document: T Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160207 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160208 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012011398 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
26N | No opposition filed |
Effective date: 20160708 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20201021 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231019 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231227 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231019 Year of fee payment: 12 Ref country code: NO Payment date: 20231025 Year of fee payment: 12 Ref country code: FR Payment date: 20231025 Year of fee payment: 12 Ref country code: FI Payment date: 20231020 Year of fee payment: 12 Ref country code: DE Payment date: 20231020 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231013 Year of fee payment: 12 Ref country code: BE Payment date: 20231019 Year of fee payment: 12 |