EP2775803B1 - Electrificateur de clôture électrique - Google Patents

Electrificateur de clôture électrique Download PDF

Info

Publication number
EP2775803B1
EP2775803B1 EP13194283.1A EP13194283A EP2775803B1 EP 2775803 B1 EP2775803 B1 EP 2775803B1 EP 13194283 A EP13194283 A EP 13194283A EP 2775803 B1 EP2775803 B1 EP 2775803B1
Authority
EP
European Patent Office
Prior art keywords
transformer
impedance
energy
electric fence
energizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13194283.1A
Other languages
German (de)
English (en)
Other versions
EP2775803A1 (fr
Inventor
Ludovic Chapron
Jean-François Lebehot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lemenager Chapron
Original Assignee
Lemenager Chapron
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lemenager Chapron filed Critical Lemenager Chapron
Publication of EP2775803A1 publication Critical patent/EP2775803A1/fr
Application granted granted Critical
Publication of EP2775803B1 publication Critical patent/EP2775803B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05CELECTRIC CIRCUITS OR APPARATUS SPECIALLY DESIGNED FOR USE IN EQUIPMENT FOR KILLING, STUNNING, OR GUIDING LIVING BEINGS
    • H05C1/00Circuits or apparatus for generating electric shock effects
    • H05C1/04Circuits or apparatus for generating electric shock effects providing pulse voltages

Definitions

  • the present invention relates to the field of electric fence electricians.
  • a fence energizer operates on the principle of pulsed electrical discharges of several thousand volts, usually less than 1 ms duration and repetition frequency of the order of 1 Hz.
  • the peak intensity of the pulse reaches about ten amperes, but the effective intensity calculated over the repetition period remains below the ten mA.
  • the energizer supplies electrical pulses to the fence itself.
  • the power source is either the 230 V sector or a battery or battery.
  • Mixed feeding devices exist. Battery-powered devices can be equipped with a photovoltaic generator or a wind turbine.
  • Electric fences are designed to avoid any danger to humans or animals by limiting the energy delivered during a discharge to a few tens of joules.
  • the current passes through a wire rope without an insulating envelope but away from the ground (the electrical ground in the system) thanks to poles insulated electrically from this wire.
  • the slightest contact of an animal with the cable allows the electric current to be in contact with the earth via the body of the animal. This gives him an unpleasant electric shock that forces him to stop contact.
  • the animals recognize these devices and continue to be wary of the wires even if the power supply is cut off (especially if they were wet at their first contact). They are now educated but forget just as quickly as after a winter in the stable for example.
  • An international (IEC 60335-2-76) or European (EN 60335-2-76) safety standard defines the limiting characteristics of the output pulse of an energizer.
  • the IEC TS60479-1 whose 4th edition was published in July 2005 states that the human body impedance values can reach values as low as 50 ohms and the standardization group of French national committee recommended that the energizers verify that the energy of the pulses does not exceed 5 joules and 20 amperes-peak over an impedance range of 50 to 500 ohms.
  • the document WO 88/10059 discloses a method for generating pulses in an energizer whereby pulses are regularly sent at time intervals of the order of one second.
  • a load control device is implemented to detect the load present in the fence wire. This device generates the sending of a pulse much larger than the pulses regularly sent as soon as the load exceeds a value determined as representing the fact that an animal touches the fence. Such a larger impulse is sent as long as the load exceeds the threshold value.
  • This prior art energizer comprises a circuit for modifying the current output as a function of the change in the detected electrical charge.
  • This circuit comprises a microprocessor receiving a signal from a sensor providing information controlling storing and outputting energy from a set of capacitors.
  • the patent application is also known EP2356888 describing a method of operating an electric fence energizer, comprising the steps of storing energy in an energy storage element, and transferring energy from the energy storage element to an inductive element, the method being characterized by the steps of using a rectifying element to prevent the transfer of energy from the inductive element into a load on the output of the energizer while the energy transfer from the energy storage element to the inductive element takes place, and by releasing the energy held by the inductive element once an energy threshold of the inductive element is reached.
  • the patent application is also known WO2009013412 disclosing an electric fence energizer, having a measurement and control circuit having periodic measurement means, of sufficiently short period for the measurement to be repeated several times during the duration of the pulse, of at least one characteristic electrical parameter instantaneous impedance present at the terminals of said energizer, comparison means for comparing the measurement results of said at least one parameter with reference values and control means able, in case of deviation, between the measurement results and the reference values, likely to correspond to the arrival of a human body in contact with the fence, to instantly modify the characteristics of the current pulse so that it is safe for the human body.
  • the process proposed by the patent FR2914137 involves the ability to determine the presence of a human body.
  • a determination is impossible in reality.
  • the indirect means such as the measurement of the electric charge do not make it possible to distinguish the presence of a human body, compared to other phenomena such as the presence of an animal or an object such as a tree branch or vegetation.
  • a human body does not have an electrical characteristic that is sufficiently reproducible and reliable to allow effective detection: a person wearing rubber boots, forming an electrical insulator, will have a very different electrical characteristic from a person moving on wet ground with wet and non-insulating shoes.
  • the clamping does not make it possible to optimize the electrical consumption of the equipment.
  • the invention relates, in its most general sense, to an electric fence energizer comprising a high-voltage pulse generator comprising an electrical transformer powered by a control circuit receiving a signal representative of the impedance of the line.
  • closing device provided by a measuring coil and controlling the frequency and the energy of the pulses according to the impedance of the closing installation connected to the output of said transformer characterized in that said transformer comprises two primary coils connected in parallel and two secondary coils connected in series, said transformer further comprising a soft iron frame consisting of two magnetic circuits mechanically connected to each other, each of the circuits being surrounded by one of said primary coils and one of said secondary coils, one at least one of said circuits being further surrounded by by said measuring coil.
  • This transformer makes it possible to supply high voltages, typically of 15000 volts instead of 8000 volts, under conditions of supply and consumption comparable to those of the equipment of the prior art, and to deliver information for controlling the discharge circuit. able to comply with safety standards.
  • the signal delivered by said measuring coil is sampled, the digital signal then being compared with a table of concordance between the voltage and the predetermined impedance of the line, for controlling said control circuit.
  • the result of said comparison controls the number of active capacitors for each of the pulses.
  • the energizer according to the invention comprises a delay circuit associated with said circuit of control to control the number of active capacitors for each of the pulses.
  • it further comprises a capacitor connected in parallel to the output of the two secondary circuits in series, to form a resonant circuit.
  • said capacitor has a capacitance of between 1 and 10 nanofarads.
  • the figure 1 is a simplified schematic view of an electric fence energizer according to an embodiment of the invention.
  • the primary of the transformer (1) is connected on the one hand to the phase of a voltage source, for example the mains, or an accumulator or a battery and on the other hand to a set of capacitors (7 to 10) of increasing capacities each controlled by a thyristor respectively (11 to 14) and a diode respectively (15 to 18).
  • a voltage source for example the mains, or an accumulator or a battery
  • the selection of one of the capacitors determines the energy applied to the primary of the transformer.
  • the storage capacitors (7 to 10) connected in parallel are charged at a voltage of a few hundred volts, for example 700 volts.
  • the corresponding thyristor (11 to 14) is made conductive with a period of the order of one second.
  • the corresponding capacitor discharges through the thyristor and the two primary coils (2, 3) of the transformer (1).
  • This discharge generates in the two secondary coils (4, 5) of the transformer (1) a pulse whose amplitude is a few kilovolts, for example 15 kV.
  • This impulse, applied to the electric fence produces in case of contact by an animal or a human a sensation clearly perceptible and unpleasant, but never lethal or even dangerous because of the limitation of the energy.
  • the output of the secondary circuit further comprises a capacitor (19) of a few nanofarad, for example 4.9 nanofarad, to form an LC resonant circuit.
  • the control circuit receives the signal delivered by the measuring coil (6) electromagnetically coupled with the yoke of the transformer (1).
  • This signal is sampled and then processed by a microprocessor comparing with the reference values recorded in a table determining the capacitor to be activated according to the result of the comparison between the signal delivered by the measurement coil (6) and the values recorded. in the table.
  • the figure 2 is a schematic view of the magnetic circuit of the transformer (1). It comprises a stack of sheets (21, 22) of soft iron cut into the shape of "E" to allow the winding of the primary coil respectively (2, 3) and secondary respectively (4, 5) around a central tooth respectively (23, 24).
  • the yokes (21, 22) are closed by a piece of soft iron respectively (25, 26).
  • the two yokes (21, 22) are mechanically connected by a weld (27) or any equivalent connecting means. By separating the two magnetic circuits, the saturation effect of the sheets is reduced when the transformer is subjected to a high voltage.
  • the operation uses a programmable peak to ensure the management of the entire operation of the energizer, in compliance with the rules imposed by standard EN NF 60335-2-76 and its amendments A11 and A12 of March 2010.
  • the closing energizer is composed of four distinct parts that interact to periodically calculate the precise impedance of the fence line, to determine the amount of energy required to be sent online, based on this impedance allowing ensure full compliance with Amendment A12 of EN 60335-2-76. All data encrypted in terms of energy and time, frequency etc ... are indicative and adapt by simple correction in an assembly type program to the full respect of the said standard NF EN 60335-2-76 A11 + A12.
  • the first part has a power supply circuit that draws its energy from the 230 V 50 Hz distribution network, this circuit composed of various protection devices, aimed at protecting the rest of the electronics, but also to ensure that the charge voltage of the different capacitors that will be used in the power circuit will not go beyond a maximum value because of a momentary or recurring overvoltage of the said network, in order to limit any additional energy at the moment of the discharge of these said capacities responsible for the quantity of energy sent on the closing line (expressed in Joules).
  • These clipping devices may comprise zinc oxide varistors, and / or "Transil” type diodes, preceded by fast fuses in order to automatically cut off all the devices of the fence energizer, powered via this first part of the device. circuit, as soon as an overvoltage start occurs. A few nanoseconds will suffice to stop momentarily or permanently all or part of the supply voltage.
  • This first part also supplies the corrected and filtered direct current type voltages necessary for the operation of the analysis systems, control card piloting.
  • the second so-called control portion is composed of a measurement circuit:
  • a first low energy pulse is sent online by the microcontroller via a control device which empties a small capacitor into the transformer described below.
  • a sample of the voltage at the two secondary of a special transformer composed of a specific mechanical assembly of two identical transformers with windings mounted in series for the secondary, and in parallel for the primary; is rectified, clipped if its value is greater than 150 Vdc then filtered and sent to an operational amplifier system (AOP).
  • AOP operational amplifier system
  • This AOP has a primary role that is to amplify the signal so that it is electrically exploitable, then send a so-called low voltage (LV) part to a first analog input of a microcontroller to calculate (by a table of correspondence that has been predetermined by laboratory measurements); (analog / digital conversion) the precise impedance of the fence line to determine the maximum amount of energy that will need to be sent, ensuring a maximum level of safety, as well as driving the Alarm LED and its audible signal. delay effect.
  • LV low voltage
  • HT High Voltage
  • the microcontroller knowing the very precise value of the impedance of the closing line, will be able to determine, (after different periods of delay in correspondence with what the standard EN 60335-2-76 A12 imposes) the quantity of energy that it will be possible to send (via the power section and its transformer described below by activating again one or more control device based on triacs or thyristors).
  • each of the circuits called AOP these HV and LV signals are adjustable using variable resistive elements in order to compensate for the permissible error percentage of each transformer (plus or minus 10%). These two signals will be adjusted by varying a resistive element in order to adapt them as accurately as possible during the assembly of the measurement system with the specific transformer, which will compose the final fence energizer.
  • each measuring circuit is adapted to its respective specific transformer, regardless of its tolerance, thus increasing the accuracy of the values measured at a very high rate. (Adaptation of scale and adjustment to the specific transformer).
  • This microcontroller before any measurement interpretation, send a virtual signal called "pulse test" without going through the "power", in order to perform a survey on both the LV channel and the HT channel, to ensure that the measuring circuit is not cut, and works well.
  • the microcontroller will accept to take measurements into account, then convert them to digital format and continue the normal operation of the fence energizer with a managed output energy and meeting the standard in force.
  • it will limit itself to sending the information to the energy limiting power circuit at 3 Joules.
  • the microcontroller will display the word "FAILURE RETURN 5AV" on the screen. control.
  • the microcontroller ( ⁇ C) not only scans the impedance of the fence line, but then manages the amount of energy to be sent online via a more or less long delay, framed by the standard EN 60335-2-76 + A11 + A12. Measurement and punishment are done in a very short time, which corresponds to a pulse less than 10ms and the frequency of 0.58Hz.
  • the alarm starts sound, a light called "DELAY EFFECT" lights, and the device sends energy 1 pulse to 3. It is a "security” mode imposed. It lasts 10 minutes. Beyond the energizer resumes a normal mode of operation.
  • the microcontroller When the microcontroller sees the closing line impedance change and fall below 500 Ohms, it adapts the amount of energy to be sent after a certain number of pulses determined by the said standard (minimum 15 pulses) and goes to the higher power level. If this is enough, the ⁇ C will continue to control the power section to send this same level of energy until the next impedance change of the fence line. It will again take this regulatory time of at least 15 seconds before switching to the next level of energy.
  • the fence energizer can have as many energy levels as desired without ever exceeding the energy values listed in the table given by the said standard relating to the amount of energy compared to the impedance of the closing line.
  • the ⁇ C recalculates the impedance of the said fence line and allows to immediately return without delay, directly to the lower power level maximum imposed by the said standard to this impedance value.
  • Example 4 If no more faults are present, the impedance will be greater than 1200 Ohms, the fence energizer will be limited to 5 Joules without any delay. The ramp up is done in stages, but the power reduction in line is immediately at the next pulse as imposed by the said standard.
  • a watchdog system is provided at the microcontroller to make a kind of automatic restart (BOOT) in case of crash of the microcontroller program. Any inconsistency switches the set to those security levels that sometimes go to the point of system shutdown. But this defect may be accidental or occasional; then there is an automatic restart system (BOOT) that starts the program at the starting point (minimum energy value at the closing energizer). The restart is done three times to follow if the fault is still present. After three times, it is considered that the defect is redundant, and that a service intervention is necessary.
  • BOOT automatic restart
  • the microcontroller is also requested to make a self-test diagnosis. Just remove a specific jumper for it to go into mode debugging. This mode makes it possible to know the digitized values in the digital analog conversion table. Thus it is easy to know the state and the stability of the measuring circuit. This allows to know where the program has planted to better understand the failures of the microcontroller or the power card, since all its operation is relayed to the microcontroller via these opto-couplers.
  • Debug mode is a troubleshooting aid. Some characters are in Hexadecimal code in order to limit the number of digits and to display a maximum of information. This debugging portion is reserved for savvy people or technicians who wish to troubleshoot the entire fence energizer.
  • the third so-called power part is completely controlled by the control part described above, via opto-coupling systems for reasons of galvanic isolation between the low voltage of the control circuits such as the microcontroller and the triggers of the devices. switching devices such as thyristors or triacs.
  • This power section is composed of capacitors of different values, or the combination of one or two, or more or all of the capacitive elements allow to obtain different energy levels sent to the specific transformer with a maximum of 15 Joules under 50 Ohms .
  • the charge of the various capacitive elements is ensured by diodes of recovery in full alternation as well as by a series capacitor allowing an isolation vis-à-vis the network of distribution.
  • each capacitor to its control circuit and it can in no case be emptied into the specific transformer via another switching device such as triac or thyristor.
  • the fourth part called transformer (1) specific is composed of two transformers themselves composed of a primary winding (2; 3) and a secondary winding (6; 7).
  • the primary winding is composed of stranded wires to withstand without damage and with a very low ohmic resistance the strong currents sent by the different capacitors and their associations between them.
  • the primary windings (2, 3) of the two transformers are connected in parallel.
  • the secondary windings (6, 7) being 2, their voltage added, the section of their copper has been voluntarily increased compared to a lambda energizer ensuring a very low impedance at the transformer outputs. Hence the name of Ultra Low Impedance.
  • the secondary windings of the two transformers are put in series so that the voltages are added.
  • Each transformer is encapsulated with steel type EI 84 1W6, and are mechanically assembled next to each other to form a single magnetic circuit. The size of this circuit makes it possible to be able to transfer the energy sent to the primaries in order to obtain energies of 15 Joules at 50 Ohms secondary, and to have a high voltage without any saturation.
  • a specific high-voltage capacitance of between 1 and 10 nF connected in parallel with the secondary circuits is used to make these so-called oscillating secondary circuits (resonance frequency) to obtain a output voltage of a minimum of 15 Kv.
  • a very chopped characteristic curve is recorded at the output side of the secondary windings of the transformer allowing an ionization of the ambient air giving a click sound during the production of sparks with a higher decibel rate than the closing energizers of the state of the technical.
  • a tetanization of the muscles sometimes in positive direction sometimes in negative direction gives a sensation of pain much more important than a single curve of a single alternation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Housing For Livestock And Birds (AREA)
  • Catching Or Destruction (AREA)

Description

    Domaine de l'invention
  • La présente invention concerne le domaine des électricateurs de clôture électrique.
  • Un électrificateur de clôture fonctionne sur le principe de décharges électriques impulsionnelles de plusieurs milliers de volts, de durée en général inférieure à la ms et de fréquence de répétition de l'ordre de 1 Hz.
  • L'intensité crête de l'impulsion atteint une dizaine d'ampères mais l'intensité efficace calculée sur la période de répétition reste inférieure à la dizaine de mA.
  • L'électrificateur alimente en impulsions électriques la clôture proprement dite.
  • La source d'énergie est soit le secteur 230 V soit une pile ou une batterie. Des appareils à alimentation mixte existent. Les appareils fonctionnant sur batterie peuvent être dotés d'un générateur photovoltaïque ou d'une éolienne.
  • Les clôtures électriques sont conçues pour éviter tout danger pour les humains ou les animaux en limitant l'énergie délivrée durant une décharge à quelques dizaines de joules.
  • Le courant passe dans un câble métallique sans enveloppe isolante mais éloigné du sol (la masse électrique dans le système) grâce à des piquets isolés électriquement de ce fil. Le moindre contact d'un animal avec le câble permet au courant électrique d'être en contact avec la terre via le corps de l'animal. Cela lui administre une décharge électrique désagréable qui le force à cesser le contact.
  • Les animaux reconnaissent ces dispositifs et continuent à se méfier des fils même si l'alimentation électrique est coupée (surtout s'ils étaient mouillés lors de leur premier contact). Ils sont dorénavant éduqués mais oublient tout aussi vite comme après un hivernage à l'étable par exemple.
  • Une norme de sécurité internationale (IEC 60335-2-76) ou européenne (EN 60335-2-76) définit les caractéristiques limites de l'impulsion de sortie d'un électrificateur.
  • Par ailleurs, la norme CEI TS60479-1 dont la 4ème édition a été publiée en juillet 2005 précise que les valeurs d'impédances du corps humain peuvent atteindre des valeurs aussi basses que 50 Ohms et le groupe de normalisation du comité national français préconisait que les électrificateurs vérifient que l'énergie des impulsions ne dépasse pas 5 joules et 20 ampères-crête sur une plage d'impédance allant de 50 à 500 Ohms.
  • Etat de la technique
  • Le document WO 88/ 10059 décrit un procédé pour générer des impulsions dans un électrificateur par lequel des impulsions sont régulièrement envoyées à des intervalles de temps de l'ordre d'une seconde. Un dispositif de contrôle de charge est mis en oeuvre pour détecter la charge présente dans le fil de clôture. Ce dispositif génère l'envoi d'une impulsion beaucoup plus importante que les impulsions régulièrement envoyées dès que la charge dépasse une valeur déterminée comme représentant le fait qu'un animal touche la clôture. Une telle impulsion plus importante est envoyée tant que la charge dépasse la valeur de seuil.
  • On connaît également dans l'état de la technique un électrificateur de clôture électrique décrit dans le brevet PCT/NZ99/00212 . Cet électrificateur de l'art antérieur comporte un circuit destiné à modifier la sortie de courant en fonction du changement de la charge électrique détectée. Ce circuit comprend un microprocesseur recevant un signal provenant d'un capteur fournissant une information commandant le stockage et la sortie d'énergie d'un ensemble de condensateurs.
  • On connaît aussi la demande de brevet EP2356888 décrivant un procédé de fonctionnement d'un électrificateur de clôture électrique, comprenant les étapes consistant à stocker de l'énergie dans un élément de stockage d'énergie, et transférer de l'énergie à partir de l'élément de stockage d'énergie à un élément inductif, le procédé étant caractérisé par les étapes consistant à utiliser un élément de redressement pour empêcher le transfert de l'énergie à partir de l'élément inductif en une charge sur la sortie de l'électrificateur tandis que le transfert d'énergie à partir de l'élément de stockage d'énergie à l'élément inductif a lieu, et en libérant l'énergie détenue par l'élément inductif fois un seuil d'énergie de l'élément inductif est atteint.
  • On connaît aussi la demande de brevet WO2009013412 divulguant un électrificateur de clôture électrique, comportant un circuit de mesure et de contrôle comportant des moyens de mesure périodique, de période suffisamment courte pour que la mesure soit répétée plusieurs fois pendant la durée de l'impulsion, d'au moins un paramètre électrique caractéristique de l'impédance instantanée présente aux bornes dudit électrificateur, des moyens de comparaison pour comparer les résultats de mesure dudit au moins un paramètre à des valeurs de référence et des moyens de commande aptes, en cas d'écart, entre les résultats de mesure et les valeurs de référence, susceptible de correspondre à l'arrivée d'un corps humain au contact de la clôture, à modifier instantanément les caractéristiques de l'impulsion en cours pour qu'elle soit sans danger pour le corps humain.
  • On connaît encore le brevet français FR2914137 décrivant un procédé de contrôle d'un électrificateur de clôture électrique de puissance quelconque, garantissant lors de chaque impulsion émise par l'électrificateur que tout corps humain qui serait arrivé au contact de la clôture électrique depuis une impulsion récente, ne risque pas de recevoir du fait de l'impulsion en cours, un choc électrique dangereux.
  • Ce procédé prévoit :
    • des moyens de détermination d'un risque de présence d'un corps humain en contact de ladite clôture électrique, ou l'absence d'un tel risque,
    • des moyens de calcul de la proportion d'une impulsion susceptible de traverser un corps humain au contact de la clôture
    • des moyens de bridage d'une impulsion.
    Inconvénients de l'art antérieur
  • Les solutions de l'art antérieur présentent différents inconvénients.
  • Le procédé proposé par le brevet FR2914137 implique la capacité à déterminer la présence d'un corps humain. Or, une telle détermination est impossible en réalité. En effet, les moyens indirects tels que la mesure de la charge électrique ne permettent pas de distinguer la présence d'un corps humain, par rapport à d'autres phénomènes tels que la présence d'un animal ou d'un objet telle qu'une branche d'arbre ou une végétation. Par ailleurs, un corps humain ne présente pas une caractéristique électrique suffisamment reproductible et fiable pour permettre une détection efficace : une personne chaussée de bottes en caoutchouc, formant un isolant électrique, aura une caractéristique électrique très différente d'une personne évoluant sur un terrain humide avec des chaussures humides et non isolantes.
  • Par ailleurs, le bridage ne permet pas d'optimiser la consommation électrique de l'équipement.
  • Solution apportée par l'invention
  • Afin de remédier à ces inconvénients, l'invention concerne selon son acception la plus générale un électrificateur de clôture électrique comportant un générateur de haute tension impulsionnel comprenant un transformateur électrique alimenté par un circuit de contrôle recevant un signal représentatif de l'impédance de la ligne de clôture fourni par une bobine de mesure et commandant la fréquence et l'énergie des impulsions en fonction de l'impédance de l'installation de clôture reliée à la sortie dudit transformateur caractérisé en ce que ledit transformateur comprend deux bobines primaires reliées en parallèle et deux bobines secondaires reliées en série, ledit transformateur comprenant en outre une carcasse en fer doux constituée de deux circuits magnétiques reliés mécaniquement entre eux, chacun des circuits étant entouré par l'une desdites bobines primaires et l'une desdites bobines secondaires, l'un au moins desdits circuits étant en outre entouré par ladite bobine de mesure.
  • Ce transformateur permet de fournir des tensions élevées, typiquement de 15000 volts au lieu de 8000 volts, dans des conditions d'alimentation et de consommation comparables à celles des équipements de l'art antérieur, et de délivrer une information de pilotage du circuit de décharge apte au respect des normes de sécurité.
  • Avantageusement, le signal délivré par ladite bobine de mesure est échantillonnée, le signal numérique étant ensuite comparé à une table de concordance entre la tension et l'impédance prédéterminée de la ligne, pour commander ledit circuit de contrôle.
  • Selon un mode de réalisation préféré, le résultat de ladite comparaison commande le nombre de condensateurs actifs pour chacune des impulsions.
  • De préférence, l'électrificateur selon l'invention comporte un circuit de temporisation associé audit circuit de contrôle pour commander le nombre de condensateurs actifs pour chacune des impulsions.
  • Selon une variante avantageuse, il comporte en outre un condensateur branché en parallèle sur la sortie des deux circuits secondaires en série, pour former un circuit résonnant.
  • De préférence, ledit condensateur présente une capacité comprise entre 1 et 10 nanofarad.
  • Description détaillée d'un exemple non limitatif de réalisation
  • L'invention sera mieux comprise à la lecture de la description qui suit, se référant à un exemple non limitatif de réalisation illustré par les dessins annexés où :
    • la figure 1 représente le schéma de principe de l'équipement
    • la figure 2 représente une vue de la culasse magnétique du transformateur.
    Description générale du circuit électrique de puissance
  • La figure 1 est une vue schématique simplifiée d'un électrificateur de clôture électrique selon un mode de réalisation de l'invention.
  • L'électrificateur comprend un transformateur (1) comportant :
    • deux bobines primaires (2 ; 3) connectées en parallèles
    • deux bobines secondaires (4, 5) connectées en série
    • une bobine de mesure (par exemple formé par une seule boucle) (6) dont la sortie est reliée à un circuit électronique de contrôle.
  • Le primaire du transformateur (1) est relié d'une part à la phase d'une source de tension, par exemple le secteur, ou un accumulateur ou une pile et d'autre part à un ensemble de condensateurs (7 à 10) de capacités croissantes commandées chacun par un thyristor respectivement (11 à 14) et une diode respectivement (15 à 18).
  • La sélection de l'un des condensateurs détermine l'énergie appliquée au primaire du transformateur.
  • Les condensateurs de stockage (7 à 10) montés en parallèle sont chargés à une tension de quelques centaines de volts, par exemple 700 volts. Sur commande du circuit de contrôle sélectionnant l'un des condensateurs, le thyristor correspondant (11 à 14) est rendu conducteur avec une période de l'ordre d'une seconde. Lorsqu'un thyristor (11 à 14) est rendu conducteur, le condensateur correspondant se décharge à travers le thyristor et les deux bobines primaires (2, 3) du transformateur (1). Cette décharge engendre dans les deux bobines secondaires (4, 5) du transformateur (1) une impulsion dont l'amplitude est de quelques kilovolts, par exemple 15 kV. Cette impulsion, appliquée à la clôture électrique produit en cas de contact par un animal ou un humain une sensation nettement perceptible et déplaisante, mais jamais létale ni même dangereuse en raison de la limitation de l'énergie.
  • La sortie du circuit secondaire comprend par ailleurs un condensateur (19) de quelques nanofarad, par exemple 4,9 nanofarad, pour former un circuit résonnant LC.
  • Le circuit de contrôle reçoit le signal délivré par la bobine de mesure (6) couplée éléctromagnétiquement avec la culasse du transformateur (1).
  • Ce signal est échantillonné puis traité par un microprocesseur procédant à une comparaison avec les valeurs de référence enregistrées dans une table déterminant le condensateur à activer en fonction du résultat de la comparaison entre le signal délivré par la bobine de mesure (6) et les valeurs enregistrées dans la table.
  • La figure 2 représente une vue schématique du circuit magnétique du transformateur (1). Il comprend un empilement de tôles (21, 22) en fer doux découpées en forme de « E » pour permettre l'enroulement des bobines primaires respectivement (2, 3) et secondaires respectivement (4, 5) autour d'une dent centrale respectivement (23, 24). Les culasses (21, 22) sont fermées par une pièce en fer doux respectivement (25, 26).
  • Les deux culasses (21, 22) sont reliées mécaniquement par une soudure (27) ou tout moyen de liaison équivalent. En séparant les deux circuits magnétiques, on réduit l'effet de saturation des tôles lorsque le transformateur est soumis à une tension élevée.
  • Description détaillée du fonctionnement général
  • L'électrificateur selon cet exemple non limitatif permet de proposer un système dit à Ultra Basse Impédance (UBI) intelligent capable d'ajuster un niveau de puissance sur la ligne de clôture en fonction de l'impédance de celle-ci, comprenant :
    • Un système de mesure de l'impédance caractéristique de ligne de clôture,
    • un dispositif d'analyse et de commande, une dispositif de puissance et
    • un dispositif de transformation en haute tension.
  • Le fonctionnement fait appel à un pic programmable pour assurer la gestion de l'ensemble du fonctionnement de l'électrificateur, dans le respect des règles imposées par la norme EN NF 60335-2-76 et de ses amendements A11 et A12 de mars 2010.
  • L'électrificateur de clôture est composé de quatre parties distinctes qui interagissent entres-elles pour calculer périodiquement l'impédance précise de la ligne de clôture, afin de déterminer la quantité d'énergie nécessaire à envoyer en ligne, en fonction de cette impédance permettant de s'assurer d'un parfait respect de l'Amendement A12 de la norme EN 60335-2-76. Toutes les données chiffrées en terme d'énergie et de temps, de fréquence etc... sont à titre indicatif et s'adaptent par simple correction dans un programme de type assembleur au parfait respect de la dite norme NF EN 60335-2-76 A11+A12.
  • La première partie comporte un circuit d'alimentation qui puise son énergie à partir du réseau de distribution 230 V 50 Hz, ce circuit composé de différents dispositifs de protection, visant à protéger le reste de l'électronique, mais aussi à s'assurer que la tension de charge des différentes capacités qui seront utilisées dans le circuit de puissance n'ira pas au-delà d'une valeur maximale à cause d'une surtension momentanée ou récurrente du dit réseau, afin de limiter tout surcroit d'énergie au moment de la décharge de ces dites capacités responsables de la quantité d'énergie envoyée sur la ligne de clôture (exprimée en Joules).
  • Ces dispositifs d'écrêtages peuvent comporter des varistances à oxyde zinc, et/ou des diodes de type « Transil », précédées de fusibles rapides afin de couper automatiquement l'ensemble des dispositifs de l'électrificateur de clôture, alimentés via cette première partie du circuit, dès l'apparition d'un début de surtension. Quelques nanosecondes suffiront pour stopper momentanément ou définitivement toute ou partie de la tension d'alimentation. Cette première partie fourni également les tensions de type courant continu redressées et filtrées nécessaires au fonctionnement des systèmes d'analyses, pilotages de la carte de commande.
  • La seconde partie dite de commande, est composée d'un circuit de mesure : Une première impulsion de faible énergie est envoyée en ligne par le microcontrôleur via un dispositif de commande qui vide un petit condensateur dans le transformateur ci-après décrit. Un échantillon de la tension présente aux deux secondaires d'un transformateur spécial composé d'un assemblage mécanique spécifique de deux transformateurs identiques avec des enroulements montés en séries pour les secondaires, et en parallèle pour les primaires ; est redressé, écrêté si sa valeur est supérieure à 150 Vdc puis filtré et envoyé vers un système d'amplificateur opérationnel (AOP). Cet AOP à un premier rôle qui est d'amplifier le signal pour qu'il soit électriquement exploitable, puis d'en envoyer une partie dite Basse Tension (BT) vers une première entrée analogique d'un microcontrôleur pour calculer (par un tableau de correspondance que l'on a prédéterminé par des mesures de laboratoire) ; (conversion analogique/numérique) l'impédance précise de la ligne de clôture afin de déterminer la quantité d'énergie maximum qu'il faudra envoyer, en garantissant un niveau de sécurité maximal, ainsi que piloter la LED Alarme et son signal sonore d'effet retard. Puis d'en envoyer une autre partie dite Haute Tension (HT) vers une seconde entrée analogique du dit microcontrôleur, pour calculer via une formule mathématique de conversion (autre forme de conversion analogique/numérique) afin de donner lieu à l'affichage de diverses informations sous forme de LEDS, tension maximale de sortie à l'instant T, valeur de l'impédance de la ligne sur écran LCD.
  • Le microcontrôleur, connaissant la valeur très précise de l'impédance de la ligne de clôture, pourra déterminer, (après différentes périodes de temporisation en correspondance avec ce que la norme EN 60335-2-76 A12 impose) la quantité d'énergie qu'il sera possible d'envoyer (via la partie puissance et son transformateur ci-après décrit en activant à nouveau un ou plusieurs dispositif de commandes a base de triacs ou thyristors).
  • Précisions sur la BT et HT
  • Certes l'amplitude du signal (de 0 Ohms à une valeur maximale) étant très grande, entre la valeur minimum de ce dit signal, et son maximum, il a donc été créé une amplification dite basse tension (BT), facilement exploitable et très précise pour une impédance de ligne comprise entre 0 et 500 ohms destinée à la partie « énergie de punition sur la ligne de clôture », et une amplification dite haute tension (HT) demandant moins de précision, mais utile jusqu'à 15 000 Volts à vide avec une impédance supérieure à 1200 Ohms, destinée à la partie « affichage d'informations ».
  • A une valeur d'impédance supérieure à 1200 Ohms, le circuit BT est déjà à saturation, mais cela ne pose pas souci, puisqu'il n'y a pas d'adaptation d'énergie au-dessus 500 ohms. Ainsi, en exploitant ce signal BT (0 à 500 Ohms) et ce signal HT(jusqu'à plus de 1200 Ohms), l'on crée une échelle de mesure appropriée, donnant le maximum de précision quant à la valeur d'impédance réelle de la ligne de clôture, plutôt que d'avoir une seule tension de mesure qui « balaie » toute la plage d'impédance de 0 Ohms à supérieur à 1200 Ohms, avec une précision moindre. C'est le principe de l'adaptation d'échelle de tout système de mesure, où il convient de toujours choisir l'échelle dont 98% de cette dernière sera exploitée lorsque l'on arrive au maximum des valeurs à interpréter.
  • Dans Chacun des circuits dit AOP, ces signaux HT et BT sont ajustables à l'aide d'éléments résistifs variables afin de palier au pourcentage d'erreur admissible de chaque transformateur (plus ou moins 10%). Ces deux signaux seront réglés par variation d'un élément résistif afin de les adapter le plus précisément possible lors de l'assemblage du système de mesure avec le transformateur spécifique, qui composera l'électrificateur de clôture final. Ainsi chaque circuit de mesure est adapté à son transformateur spécifique respectif, quel que soit sa tolérance, augmentant ainsi la précision des valeurs mesurées à un taux très élevé. (Adaptation d'échelle et ajustement au transformateur spécifique).
  • Ce microcontrôleur, va avant toute interprétation de mesure, envoyer un signal virtuel dit « impulsion test » sans passer par la partie « puissance », afin d'en effectuer un relevé aussi bien sur la voie BT que la voie HT, pour s'assurer que le circuit de mesure n'est pas coupé, et fonctionne bien. Dans le cas d'un résultat favorable, le microcontrôleur acceptera de prendre en compte les mesures, puis de les convertir au format numérique et de continuer le fonctionnement normal de l'électrificateur de clôture avec une énergie de sortie gérée et répondant à la norme en vigueur. Dans le cas d'un résultat défavorable, il se limitera à envoyer l'information au circuit de puissance limitant l'énergie à 3 Joules. Une sorte de « service minimum » afin d'électrifier le fil de clôture et tenter de garder les animaux, mais avec une quantité d'énergie nettement inférieure à la limite autorisée par cette dite norme , ne pouvant pas interpréter de mesures permettant de calculer l'impédance réelle de la ligne de clôture (cas où le circuit de mesure est hors service , fil coupé, AOP détruit ou ne donnant plus les bonnes valeurs).Le microcontrôleur, fera afficher le mot « FAILURE RETOUR 5AV » sur l'écran de contrôle.
  • Le microcontrôleur (µC), non seulement numérise l'impédance de la ligne de clôture, mais il gère ensuite la quantité d'énergie à envoyer en ligne via une temporisation plus ou moins longue, encadrée par la norme EN 60335-2-76 +A11 +A12. La mesure et la punition se font dans un temps très court, ce qui correspond à une impulsion inférieure à 10ms et à la fréquence de 0.58Hz.
  • Exemple 1 :
  • Si l'impédance de la ligne de clôture déterminée chute rapidement de >à 1200 Ohms à moins de 400 Ohms, le temps d'une impulsion, et que cela dure le temps indiqué dans la norme citée en référence, l'alarme se met à retentir, un voyant appelé « EFFET RETARD » s'allume, et l'appareil envoie de l'énergie 1 impulsion sur 3. C'est un mode « sécurité » imposé. Cela dure 10 minutes. Au-delà l'électrificateur reprend un mode normal de fonctionnement.
  • Exemple 2 :
  • Lorsque le microcontrôleur voit l'impédance de ligne de clôture changer et descendre en dessous de 500 Ohms, il adapte la quantité d'énergie à envoyer au bout d'un certain nombre d'impulsions déterminées par la dite norme (minimum 15 impulsions) et passe au niveau de puissance supérieur. Si celui-ci suffit, l'µC continuera de commander la partie puissance pour envoyer ce même niveau d'énergie jusqu'au prochain changement d'impédance de la ligne de clôture. Il faudra à nouveau ce temps réglementaire de 15 secondes minimum avant tout passage au niveau supérieur d'énergie. L'électrificateur de clôture peut comporter autant de niveaux d'énergie que l'on souhaite sans jamais dépasser les valeurs d'énergie inscrites dans le tableau donné par la dite norme relatif à la quantité d'énergie par rapport à l'impédance de la ligne de clôture. Au cas où l'augmentation d'énergie d'un niveau ne suffit pas, et qu'il est possible d'augmenter encore d'un niveau de façon immédiate, car l'impédance de la ligne de clôture a chuté, il y a un temps dit « temps d'adaptation » par la dite norme, qui est d'un minimum de 5 impulsions sera nécessaire avant une nouvelle montée en énergie en sortie de l'électrificateur de clôture. L'augmentation en puissance se fait donc par paliers successifs de 5 impulsions entre chaque, sauf si à un moment donné le palier a été atteint, auquel cas il faut un minimum de 15 secondes avant changement de puissance. Ces temps permettent à tout animal emmêler dans un fil, de lui laisser le temps de partir avant qu'il ne soit considéré comme défaut permanent, et que l'augmentation d'énergie sur la ligne de clôture électrique n'ait lieu.
  • Exemple 3 :
  • Si de façon soudaine un défaut vient à disparaitre, l'impédance de ligne s'en trouve immédiatement changée, l'µC recalcule l'impédance de la dite ligne de clôture et permet de repasser immédiatement sans délai, directement au niveau de puissance inférieur maximum imposé par la dite norme a cette dite valeur d'impédance.
  • Exemple 4 : Si plus aucun défaut n'est présent, l'impédance sera supérieure à 1200 Ohms, l'électrificateur de clôture sera limité à 5 Joules sans aucun délai. La montée en puissance se fait par paliers, mais la diminution de puissance en ligne se fait immédiatement à l'impulsion suivante tel que l'impose la dite norme.
  • Ainsi il est certain que toute personne ou animal venant toucher la ligne de clôture électrique ne reçoit jamais plus de 5 joule d'énergie quel que soit l'impédance de la dite ligne de clôture. Ce fonctionnement rentre également dans ce que la dite norme impose de par son amendement 12.
  • Pour augmenter le niveau de sécurité de l'électrificateur de clôture, d'autres fonctions ont été confiée au microcontrôleur: entre autre ce dernier s'assure que tous les condensateurs utilisés dans l'électrificateur de clôture sont bien chargés à la bonne valeur. La surveillance se fait par opto-couplage. Ces opto-coupleurs informent également l'µC que tous les condensateurs qui doivent se décharger pour donner le niveau d'énergie requis, le sont bien. En cas d'anomalie d'un des deux critères précédents, l'µC décide de mettre en veille l'électrificateur, afin d'éviter la charge de condensateurs peut-être en courts circuit provoquant un surchauffe inhabituelle des éléments résistifs du circuit de charge (résistances de puissance) ainsi que de mauvais niveaux d'énergie par la commutation simultanée de deux dispositifs de commande, par erreur ou effet parasite pouvant accidentellement augmenter à un niveau d'énergie anormalement fort. C'est un point de sécurité supplémentaire dont la norme fait abstraction. La coupure en alimentation du circuit de puissance se fait via un relais directement piloté par le microcontrôleur, ce qui réduit à néant la charge de tous les condensateurs et stoppe le fonctionnement de l'appareil. L'électrificateur a donc un niveau de sécurité maximum. Un message invitant à contacter le service après-vente est affiché sur un écran de type LDD.
  • Un système de chien de garde est prévu au niveau du microcontrôleur afin de faire une sorte de redémarrage (BOOT) automatique en cas de plantage du programme du microcontrôleur. Toute incohérence fait basculer l'ensemble sur ces niveaux de sécurité qui parfois vont jusqu'à l'arrêt du système. Mais ce défaut peut-être accidentel ou occasionnel ; alors il est prévu un système de redémarrage (BOOT) automatique qui fait repartir le programme au point de départ (valeur d'énergie minimum au niveau de l'électrificateur de clôture). Le redémarrage se fait trois fois à suivre si le défaut est toujours présent. Au bout de trois fois, l'on considère que le défaut est redondant, et qu'une intervention du SAV est nécessaire.
  • Le microcontrôleur est également sollicité pour faire un diagnostic en autotest. Il suffit d'enlever un cavalier spécifique pour que ce dernier passe en mode débogage. Ce mode permet de connaitre les valeurs numérisées dans le tableau de conversion analogique numérique. Ainsi il est facile de connaitre l'état et la stabilité du circuit de mesure. Cela permet de savoir à quel endroit le programme a planté afin de mieux comprendre les pannes du microcontrôleur ou de la carte puissance, puisque tout son fonctionnement est retransmis au microcontrôleur via ces opto-coupleurs. Le mode débogage sert d'aide au dépannage. Certains caractères sont en code Hexadécimal afin de limiter le nombre de chiffre et d'afficher un maximum d'informations. Cette partie débogage est réservée aux gens avertis ou techniciens qui souhaitent dépanner l'ensemble de l'électrificateur de clôture.
  • La troisième partie dite de puissance est complètement commandée par la partie commande décrite ci-dessus, via des systèmes d'opto-couplage pour des raisons d'isolations galvaniques entre la basse tension des circuits de contrôle tels que le microcontrôleur et les gâchettes des dispositifs de commutation tels que thyristors ou triacs. Cette partie puissance est composée de condensateurs de différentes valeurs, ou la combinaison d'un ou deux, ou plusieurs ou tous les éléments capacitifs permettent d'obtenir des niveaux d'énergie différents envoyés au transformateur spécifique avec un maximum de 15 Joules sous 50 Ohms. La charge des différents éléments capacitifs est assurée par des diodes de redressement en double alternance ainsi que par un condensateur série permettant une isolation vis-à-vis du réseau de distribution. Cela permet d'obtenir des tensions d'environ 650Vdc à partir des 230Vac nominal du réseau de distribution. Les autres diodes évitent que les condensateurs se déchargent simultanément. Ainsi chaque condensateur à son circuit de contrôle et il ne peut en aucun cas être vidé dans le transformateur spécifique via un autre dispositif de commutation tel que triac ou thyristor.
  • La quatrième partie dite transformateur (1) spécifique est composée de deux transformateurs eux même composés d'un enroulement primaire (2 ; 3) et d'un enroulement secondaire (6 ; 7). L'enroulement primaire est composé de fils multibrins afin de supporter sans dommage et avec une résistance ohmique très faible les fortes intensités envoyées par les différents condensateurs et leurs associations entre eux.
  • Les enroulements primaires (2, 3) des deux transformateurs sont mis en parallèle. Les enroulements secondaires (6, 7) étant au nombre de 2, leur tension s'ajoutant, la section de leur cuivre a été volontairement augmentée par rapport à un électrificateur lambda garantissant une très faible impédance au niveau des sorties de transformateur. D'où le nom de Ultra Basse Impédance. Les enroulements secondaires des deux transformateurs sont mis en série de telle sorte que les tensions s'ajoutent. Chaque transformateur est entôlé avec de l'acier de type EI 84 1W6, et sont mécaniquement assemblés l'un à côté de l'autre afin de former un seul et unique circuit magnétique. La taille de ce circuit permet de pouvoir transférer l'énergie envoyée au primaires afin d'obtenir des énergies de 15 Joules sous 50 Ohms au secondaire, et d'avoir une tension à vide importante sans aucune saturation. Pour accroître cette tension à vide, il est fait appel à une capacité haute tension spécifique d'une valeur comprise entre 1 et 10 nF montée en parallèle des circuits secondaires, afin de rendre ces dits circuits secondaires oscillants (fréquence de résonance) pour obtenir une tension de sortie d'un minimum de 15 Kv.
  • Une courbe caractéristique très hachée est relevée en sortie côté enroulements secondaires du transformateur permettant une ionisation de l'air ambiant donnant un bruit de claquement lors de la production d'étincelles avec un taux de décibels supérieurs aux électrificateurs de clôture de l'état de la technique. En cas de contact une tétanisation des muscles tantôt en sens positif tantôt en sens négatif donne une sensation de douleur beaucoup plus importante qu'une simple courbe d'une seule alternance.

Claims (6)

  1. Electrificateur de clôture électrique comportant un générateur de haute tension impulsionnel comprenant un transformateur électrique (1) alimenté par un circuit de contrôle recevant un signal représentatif de l'impédance de la ligne de clôture fourni par une bobine de mesure (6) et commandant la fréquence et l'énergie des impulsions, en fonction de l'impédance de l'installation de clôture reliée à la sortie dudit transformateur caractérisé en ce que ledit transformateur comprend deux bobines primaires (2 ;3) reliées en parallèle et deux bobines secondaires (4 ;5) reliées en série, ledit transformateur comprenant en outre une carcasse en fer doux constituée de deux circuits magnétiques reliés mécaniquement entre eux, chacun des circuits étant entouré par l'une desdites bobines primaires et l'une desdites bobines secondaires, l'un au moins desdits circuits étant en outre entouré par ladite bobine de mesure.
  2. Electrificateur de clôture électrique selon la revendication 1 caractérisé en ce que le signal délivré par ladite bobine de mesure (6) est échantillonnée, le signal numérique étant ensuite comparé à une table de concordance entre la tension et l'impédance prédéterminée de la ligne, pour commander ledit circuit de contrôle.
  3. Electrificateur de clôture électrique selon la revendication 2 caractérisé en ce que le résultat de ladite comparaison commande le nombre de condensateurs actifs (7 ;8 ;9 ;10) pour chacune des impulsions.
  4. Electrificateur de clôture électrique selon la revendication 2 ou 3 caractérisé en ce qu'il comporte un circuit de temporisation associé audit circuit de contrôle pour commander le nombre de condensateurs actifs pour chacune des impulsions.
  5. Electrificateur de clôture électrique selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte en outre un condensateur (19) branché en parallèle sur la sortie des deux circuits secondaires en série, pour former un circuit résonnant.
  6. Electrificateur de clôture électrique selon la revendication 5 caractérisé en ce que ledit condensateur (19) présente une capacité comprise entre 1 et 10 nanofarad.
EP13194283.1A 2013-03-07 2013-11-25 Electrificateur de clôture électrique Active EP2775803B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1352055A FR3003119B1 (fr) 2013-03-07 2013-03-07 Electrificateur de cloture electrique

Publications (2)

Publication Number Publication Date
EP2775803A1 EP2775803A1 (fr) 2014-09-10
EP2775803B1 true EP2775803B1 (fr) 2017-04-12

Family

ID=48741328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13194283.1A Active EP2775803B1 (fr) 2013-03-07 2013-11-25 Electrificateur de clôture électrique

Country Status (2)

Country Link
EP (1) EP2775803B1 (fr)
FR (1) FR3003119B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138207A1 (fr) * 2019-12-31 2021-07-08 Emera Technologies LLC Systèmes et procédés de distribution d'énergie

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939618A (en) * 1986-06-23 1990-07-03 Amco Partnership Lightning protected electric fence controller system and method
SE457497B (sv) * 1987-06-05 1988-12-27 Internationell Affaersutveckli Saett att mata ett elstaengsel samt impulsgivare foer saettets genomfoerande
FR2914137A1 (fr) 2007-03-23 2008-09-26 Lacme Holding Sa Procede de controle d'un electrificateur de cloture electrique a impulsions periodiques.
DE102007024026B4 (de) * 2007-04-02 2017-11-16 Ako-Agrartechnik Gmbh & Co. Kg Weidezaungerät und Verfahren zum Betreiben eines Weidezaungerätes
FR2917940B1 (fr) 2007-06-22 2009-09-11 Lacme Holding Sa Electrificateur de cloture electrique
NZ572826A (en) 2008-11-13 2010-05-28 Gallagher Group Ltd Electric fence energiser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138207A1 (fr) * 2019-12-31 2021-07-08 Emera Technologies LLC Systèmes et procédés de distribution d'énergie

Also Published As

Publication number Publication date
FR3003119A1 (fr) 2014-09-12
EP2775803A1 (fr) 2014-09-10
FR3003119B1 (fr) 2015-03-13

Similar Documents

Publication Publication Date Title
EP0037751B1 (fr) Déclencheur statique perfectionné pour disjoncteur électrique
WO2015104505A1 (fr) Dispositif de mesure électrique pour mesurer la résistance d'une prise de terre d'une installation électrique
FR2504749A1 (fr) Dispositif de protection de charge a semi-conducteurs avec une faculte d'essai
EP3327747B1 (fr) Appareil de protection électrique à bouton test
FR2504746A1 (fr) Dispositif de protection de charge a semi-conducteurs avec une detection des derangements a la terre
EP3399612B1 (fr) Liaison électrique comprenant un dispositif de protection électrique - polarisation en courant
EP2775803B1 (fr) Electrificateur de clôture électrique
FR3074914A1 (fr) Procede de detection de l'etat d'un appareil de protection electrique dans une installation electrique et dispositif de detection mettant en oeuvre ledit procede
FR2914137A1 (fr) Procede de controle d'un electrificateur de cloture electrique a impulsions periodiques.
EP3719947A1 (fr) Procédés et systèmes de protection électrique
WO2012146619A1 (fr) Système de protection et de supervision d'un circuit de distribution d'énergie électrique à courant continu
EP3413419B1 (fr) Liaison électrique comprenant un dispositif de protection électrique - test d'intégrité
FR2643195A1 (fr) Procede et dispositif de protection d'un circuit ou reseau electrique a l'aide d'un disjoncteur a courant differentiel
EP3594699A2 (fr) Dispositif de protection différentielle
EP4189406B1 (fr) Système de gestion de batteries
EP0109914A1 (fr) Dispositif de détection de la présence de tension sur les installations électriques
CA2080133A1 (fr) Dispositif de protection pour appareils, machines et installations electriques
EP0381585B1 (fr) Système de contrôle pour clôtures électriques
FR2628591A1 (fr) Procede de declenchement d'un electrificateur de cloture et son dispositif de mise en oeuvre
CA1227832A (fr) Appareil de detection de la defaillance d'une alimentation electrique a decoupage
WO2019063800A1 (fr) Procédé et système de protection contre les surtensions
WO2009013412A2 (fr) Εlectrificateur de clôture électrique
FR2848351A1 (fr) Paratonnerre a amorcage equipe de moyens de maintenance distants
FR2857554A1 (fr) Procede d'exploitation d'un appareil pour clotures electriques et appareil pour clotures electriques
EP4015901A1 (fr) Module d'alimentation électrique pour installation d'éclairage public, lampadaire comprenant un tel module d'alimentation et installation d'éclairage public comprenant au moins un tel lampadaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05C 1/04 20060101AFI20160831BHEP

INTG Intention to grant announced

Effective date: 20160926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 884974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013019690

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170412

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 884974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013019690

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

26N No opposition filed

Effective date: 20180115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231109

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231108

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 12