EP2775784A1 - Cooking system, and method for operating the same - Google Patents

Cooking system, and method for operating the same Download PDF

Info

Publication number
EP2775784A1
EP2775784A1 EP20140401009 EP14401009A EP2775784A1 EP 2775784 A1 EP2775784 A1 EP 2775784A1 EP 20140401009 EP20140401009 EP 20140401009 EP 14401009 A EP14401009 A EP 14401009A EP 2775784 A1 EP2775784 A1 EP 2775784A1
Authority
EP
European Patent Office
Prior art keywords
cooking
sensor
partially
magnetic shielding
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20140401009
Other languages
German (de)
French (fr)
Other versions
EP2775784B1 (en
Inventor
Volker Backherms
Dominic Beier
Bastian Michl
Sonja Schöning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Publication of EP2775784A1 publication Critical patent/EP2775784A1/en
Application granted granted Critical
Publication of EP2775784B1 publication Critical patent/EP2775784B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/082Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination
    • F24C7/083Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination on tops, hot plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0258For cooking
    • H05B1/0261For cooking of food
    • H05B1/0266Cooktops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the present invention relates to a cooking device and a method of operating such.
  • the cooking device is used in particular for the preparation of food.
  • the cooking device comprises at least one hob with at least one cooking point and at least one heating device provided for heating at least one cooking area.
  • a prerequisite for an automatic operation of a cooking device is sometimes an accurate detection of various parameters that are characteristic of the cooking process, such. As the temperature of the cookware or Gargut technicallyers. Depending on the detected parameters z. B. the heat source automatically controlled to z. B. to avoid overheating of the food. The reproducibility and the accuracy of the recorded parameters is therefore important for the functionality of the automatic function and thus an important quality feature of a modern cooking appliance with automatic functions.
  • One way of determining temperature during cooking and cooking processes is, for example, a temperature sensor integrated in the food container.
  • a temperature sensor integrated in the food container.
  • the user must use special food containers and could not use his previous cookware.
  • a temperature sensor which is placed with the food in the cookware, since the sensor must be "fished out" of the food later and should not be eaten by mistake.
  • the WO 2008/148 529 A1 provides a heat sensor below the hob plate, which detects heat radiation and from it a temperature determined. This has the advantage that the heat sensor does not restrict the freedom of movement of the user. Another advantage is that the heat sensor can not be inadvertently obscured by an item placed on the hob.
  • the known devices and methods are with regard to a use in automatic functions of cooking appliances, such. As a stove, but still capable of improvement.
  • an automatic boil-up of milk without overcooking the milk places very high demands on the corresponding devices and methods with regard to the reproducibility and the accuracy.
  • the automatic function should also with different food containers such as copper pans and z. B. stainless steel pots work satisfactorily.
  • the cooking device comprises at least one hob with at least one cooking point and at least one heating device which is provided for heating at least one cooking area.
  • At least one sensor device is provided for detecting at least one physical variable characterizing a state of the cooking region.
  • the sensor device has at least one magnetic shielding device.
  • the cooking device according to the invention has many advantages.
  • a significant advantage is that the sensor device has at least one magnetic shielding device, whereby disturbing magnetic fields are shielded to a considerable extent.
  • the sensor device can in preferred embodiments as a separate module and z. B. be designed as a so-called sensor module or optical module.
  • the sensor device is preferably provided for detecting at least one characteristic parameter for temperatures.
  • the heating device comprises at least one induction device.
  • the induction device is designed in particular as an induction heating source and comprises at least one induction coil. It is possible that the induction device comprises a plurality or a plurality of smaller induction coils. Then it is possible that the cooking area, for example, flexible results by placing a cookware. It is also possible that fixed cooking areas are specified.
  • the magnetic shielding device is designed and suitable in particular for shielding electromagnetic interactions and in particular for shielding from the electromagnetic field of the induction device.
  • the magnetic shielding means is provided and adapted to shield the sensor device.
  • the magnetic shielding device preferably surrounds at least partially and particularly preferably at least substantially annularly at least part of the sensor device and / or at least one sensor unit of the sensor device.
  • the magnetic shielding device is designed and suitable to shield at least partially against the magnetic field of the induction device.
  • Such a shielding of the magnetic field of the induction device is very advantageous, because thereby an induction of an electric field is counteracted at least in parts of the sensor device.
  • the unwanted induction of an electric field at least in parts of the sensor device could, for. B. lead to a warming of the sensor device, which would have a negative impact on the reproducibility of detection. Since the magnetic shielding device counteracts heating of the sensor device, it has an advantageous and considerable influence on the reproducibility of the detection or on the reliability of the variables or parameters detected by the sensor device.
  • a thermal insulation device is also provided by the magnetic shielding device since heat radiation is also prevented.
  • the magnetic shielding means consists of at least one at least partially magnetic material and one at least partially electrically non-conductive material. Also possible is the at least partial use of a material with low electrical conductivity and / or an electrical insulator.
  • the magnetic material and the electrically non-conductive material may be arranged alternately and in layers, as is the case with electrical transformers.
  • no annular current can flow in the magnetic ring shield device, which is in particular a ring-like design, which would lead to considerable heating of the magnetic shielding device.
  • cylindrical or annular magnetic shielding device which may be embodied for example as a ferrite ring, thermal heaters are reliably reduced by induced ring currents or largely or even largely prevented.
  • the magnetic shielding device is at least partially made of a ferrimagnetic material and / or of a ferrite material. Also possible is a ferrimagnetic ceramic material.
  • the magnetic shielding device may comprise at least one metal oxide and in particular at least one iron oxide, such as. Hematite (Fe2O3) and / or magnetite (Fe3O4). Also possible are other materials or materials which have at least partially magnetic properties and also have electrically insulating properties or at least low electrical conductivity.
  • the electrical conductivity is preferably ⁇ 10 -3 S / m.
  • the magnetic shielding device is designed as a ferrite ring and / or a ferrite body or comprises at least one such.
  • the hob has at least one carrier device which is suitable and designed for positioning at least one cookware and / or food container.
  • the sensor device is provided in the installation position of the hob at least partially below the support means and adjacent to at least a portion of the heater and in particular adjacent to the induction device and / or to the or at least one induction coil.
  • the sensor device is arranged in the immediate vicinity and / or in a central region of the heating device. It is possible and preferred for the sensor device to be completely or substantially completely surrounded by the heating device in a plane parallel to the carrier device.
  • the support means may comprise at least one glass plate or glass ceramic plate and / or the like or be formed as such.
  • the support device may also be at least partially formed as a so-called ceran field.
  • At least one sealing device is preferably provided.
  • at least part of the sealing device is arranged at least partially between the carrier device and a part of the sensor device and / or the magnetic shielding device.
  • the sealing device consists in particular of a material with low heat conduction, such. As silicone or the like.
  • the sealing device also consists at least partially of at least one mica material and in particular of micanite.
  • the sealing device can also serve at least in sections for thermal insulation of the carrier device from the heating device.
  • the sensor device has at least one optical screen device.
  • the optical screen device is preferably at least partially surrounded by the magnetic shielding device.
  • the optical screen device can be configured as a wall, which surrounds the sensor device at least partially and preferably like a ring.
  • the optical shield device may be formed as a tubular body and / or a ring and / or cylinder or the like or include such. Also possible is a configuration as a cone or as a so-called Winston cone.
  • the optical screen device is at least partially hollow in an inner region and / or has at least one recess.
  • the optical shielding device has a high reflectance for light and thermal radiation on at least one surface area and particularly preferably on an inner and / or outer surface area. It is also preferred that the optical shielding device is at least partially made of a metallic material and in particular of a stainless steel.
  • the isolation device is particularly suitable and designed to thermally isolate.
  • the isolation device preferably comprises at least one medium with a correspondingly low heat conduction, such.
  • the isolation device comprises at least one Gas layer and / or air layer or is formed from such.
  • the air layer is bounded in particular by boundary walls or provided in an at least partially limited space.
  • the isolation device has at least one area with a reduced pressure, wherein the pressure may be less than 1000mbar and preferably less than 100mbar. It is also possible a rough vacuum or a fine vacuum or a vacuum of a different quality.
  • the sensor device comprises at least one sensor unit.
  • at least one of the at least one sensor unit is suitable for non-contact detection of at least one characteristic parameter for temperatures.
  • the sensor unit is preferably designed and suitable for detecting or absorbing electromagnetic radiation, in particular in the wavelength range of the infrared radiation.
  • the sensor unit is designed as a thermopile or a thermopile or comprises at least one such.
  • the sensor unit can also have at least one thermocouple and in particular a plurality of thermocouples operatively connected to one another. Also possible are other thermal and / or pyroelectric sensors and / or bolometers and / or photoelectric detectors or photodiodes.
  • the sensor unit may also be at least partially incorporated in an at least approximately vacuum.
  • the sensor device may comprise at least two, three or more sensor units. In this case, the same and / or at least partially different sensor units may be provided. Preferably, at least two sensor units are designed for non-contact detection of at least one characteristic parameter for temperatures. It can also be formed at least one sensor unit for touching detection of at least one characteristic parameter for temperatures, for. B. as a resistance thermometer and / or as a thermistor and / or as a thermistor NTC and / or as a semiconductor temperature sensor.
  • the sensor device preferably has at least one filter device.
  • the filter device is in particular designed and suitable for reflecting and / or transmitting electromagnetic radiation as a function of the wavelength and / or the polarization and / or the angle of incidence.
  • at least one filter device is provided for each sensor unit, which is designed for non-contact detection of at least one characteristic parameter for temperatures.
  • the filter device is at least partially designed as an interference filter or comprises at least one such filter.
  • the sensor device can have at least one radiation source.
  • the radiation source preferably emits at least one signal, in particular in the wavelength range of the infrared light and / or visible light.
  • the radiation source can be designed as a lamp and / or as a diode or the like.
  • the sensor device may also comprise at least one thermal compensation device.
  • the thermal compensation device has in particular at least one coupling device which is suitable and designed to at least partially thermally conductively connect at least one of the at least one sensor unit to the thermal compensation device.
  • Such a configuration is particularly advantageous because temperature peaks can be compensated thereby and the sensor unit is thus subject to relatively constant conditions over time.
  • a thermal compensation is advantageous for the reliability of the detection.
  • the thermal compensation device consists in particular at least partially, and preferably at least substantially, of a material with a high heat capacity and / or a high thermal conductivity, and preferably a metallic material, such as a copper material.
  • the thermal compensation device may be at least partially suitable and configured as a reflector for the radiation source.
  • the thermal compensation device may also have at least one at least partially reflective coating, such as.
  • As a metal-containing or metallic coating It is also possible to provide at least one coating or protective layer which at least partially protects the thermal compensation device from corrosion.
  • the coating may be at least partially made of a metal. Possible and preferred are precious metal coatings such. B. a thin layer of gold.
  • the sensor device has at least one holding device.
  • the holding device at least two units in a defined arrangement are receivable each other.
  • the units are taken from a group of units comprising the sensor unit and the magnetic shielding device and the optical shielding device and the insulation device and the radiation source and the thermal compensation device and the filter device.
  • the holding device is at least partially suitable and designed to define the distances of at least two or more units from each other.
  • the inventive method is provided for operating a cooking device, wherein the cooking device at least one hob with at least one cooking point and at least a heating device provided for heating at least one cooking area comprises.
  • At least one sensor device is provided for detecting at least one physical variable characterizing a state of the cooking region.
  • At least one magnetic shielding device at least partially shields electromagnetic interactions from the sensor device.
  • the method according to the invention has many advantages.
  • a significant advantage is that electromagnetic interactions, such as a magnetic field of an induction device, are at least partially shielded from the sensor device.
  • the influence of interfering interactions on the sensor device can be considerably reduced, which significantly increases the reliability of the detection performed with the sensor device.
  • the cooking device operated in the method and in particular the magnetic shielding device are preferably designed in accordance with a previously described embodiment.
  • a full-surface induction in which a large number of small induction coils is provided.
  • a plurality of sensor device in the form of z.
  • optical modules may be provided so that at any position of a Gargut mattersers at least one sensor device is arranged to detect a temperature of the bottom of the Gargut mattersers.
  • At least one temperature of at least one Gargefäßêts should be detected without contact.
  • at least one automatic function such as, in particular, a roasting and / or cooking automatic for the cooktop, should be realized.
  • an increased measuring accuracy of the sensor device which is designed in particular as an optical module, is achieved, which is useful and optionally also necessary for automatic functions.
  • the construction of the sensor device enables a smaller influence of the heat flows present in the sensor device or the optical module on the measurement signal.
  • the thickness of the magnetic shielding device designed in particular as a ferrite ring or the like is preferably greater than 1.5 mm and, in particular, between approximately 2 mm and 7 mm and particularly preferably between approximately 3 mm and 5 mm.
  • the thickness of the insulating device designed in particular as a heat-insulating layer is preferably greater than 0.3 mm.
  • the thickness is between about 0.5 mm and 5 mm, and more preferably between about 0.8 mm and 2 mm.
  • the thickness of the thermal compensation device designed in particular as a copper plate or the like is preferably more than 0.3 mm. In particular, the thickness is between about 0.5 mm and 5 mm, and more preferably between about 0.75 mm and 2 mm.
  • the thickness of the holding device which consists in particular of at least one plastic, is preferably more than 0.5 mm and in particular more than 1 mm.
  • the holding device isolates the sensor device or the sensor units downwards.
  • a radiation device is preferably used to z. B. to obtain a measure of the temperature of the running as a glass ceramic plate support means or to determine.
  • the radiation device can be designed, for example, as a lamp.
  • Embodiments without a radiation device are also possible.
  • a solution without a radiation device can, for. B. be realized when z. B. the emissivity of the cooking vessel is assumed to be constant, which can be ensured for example via the use of a proposed manufacturer by the cookware. Also possible is the preparation of the Gargefäßêts with a device proposed by the manufacturer or the like.
  • the optical shielding device in particular embodied as a tube-like body, cone or cylinder, preferably serves for shielding from the influence of radiation outside a detection area or visual spot of the sensor device and in particular also for directing the heat radiation from the bottom of the cookware or from the cooking vessel bottom and the carrier device, in particular as a glass ceramic ,
  • the optical screen device in the form of z. B. substantially a cylinder or tubular body is preferred because it is preferably not necessary to reinforce the incident heat radiation as with a Winston cone or bundle.
  • a Winston cone and / or z As cuboid shapes and / or conical shapes and / or other shapes also possible.
  • the material and the surface condition of this cylinder preferably have a correspondingly high reflectivity.
  • different coated and uncoated metals are used or non-metallic cylinder or body, which are provided with a reflective layer.
  • a preferred material is a stainless steel, such as. B. stainless steel, since this does not need to be additionally coated to z. B. long-term stability.
  • the insulating device embodied in particular as a heat-insulating layer is preferably located between the optical shield device and the magnetic shielding device, which is designed in particular as a ferrite ring, and may in a simple case consist of air. But it can also be used other materials, which have a sufficiently low heat conduction. It is advantageous if as little heat as possible passes from the ferrite ring to the particular cylindrical optical screen device.
  • the magnetic shielding device is used in particular for electromagnetic shielding.
  • an effective electromagnetic shielding uncontrolled heating of a plurality of, and in particular of all metallic, components of the sensor device, in particular embodied as an optical module, can be largely avoided.
  • the sensor device is preferably arranged at least approximately in the center of a large induction coil or between a plurality of smaller induction coils.
  • the magnetic flux from the optical module or its metallic components preferably most and in particular the essential components, and particularly preferably all metallic components with a z. B. enclosed as a ferrite ring or ferrite cylinder, which serves as one or the magnetic shielding device.
  • Ferrites have the property that they conduct the magnetic flux very well in the non-saturated case with low self-heating.
  • the z. B. can be performed as thermopiles, in a substantially or even almost field-free space.
  • the magnetic shielding device in combination with a sealing device provided between the magnetic shielding device and the carrier device, protects the sensor device as a whole and in particular the sensor units, filter devices and the optical shielding device from possibly occurring ambient atmospheric moisture.
  • the magnetic shielding device protects the sensor unit or sensor units and also the thermal compensation device from any ambient light or ambient heat radiation present.
  • Sealing means between the magnetic shielding means and the support means contribute to heat insulation.
  • the sealing device significantly reduces heat flow from a hot glass ceramic plate into the magnetic shielding device and / or into the optical shielding device. This reduces additional heat radiation to the sensor units.
  • the sealing device further contributes to a mechanical insulation.
  • the sealing device additionally mechanically insulates the glass-ceramic plate from the magnetic shielding device, in particular as a ferrite ring, and thus has a damping effect. If the sealing device is missing, there is possibly the possibility that the glass ceramic plate or glass ceramic pane is damaged if, in particular in the area of the magnetic shielding device, an object falls onto the glass ceramic plate. Therefore, the sealing device increases the impact resistance. At the same time the seal serves as a dust seal.
  • the sealing device also prevents any existing ambient light or ambient heat radiation from the region of the hob from the sensor units.
  • a sealing device in question.
  • a silicone ring can be used.
  • Such a sealing ring preferably has a small contact surface.
  • a sealing device made of micanite or a Mikanitin It is also possible to use other materials with a low heat conduction.
  • the thermal compensation device serves for a thermal compensation of the components and can in particular consist of copper and be designed, for example, as a copper plate.
  • the sensor device which is embodied in particular as an optical module, is preferably constructed in such a way that the sensor units of the optical module heat up very homogeneously and thus all the sensor units are at substantially the same temperature level.
  • the achievable accuracy decreases, since an inhomogeneous temperature of the z. B. as Thermopiles running sensor units due to system leads to signal components that have their origin not in the heat radiation of the test object, but in the thermopile itself.
  • the housings of the sensor units or thermopiles are preferably connected to a plate made of solid metal and in particular copper or the like, in which the sensor units are embedded in particular and which ensures effective homogenization due to their high heat capacity and thermal conductivity.
  • the thermal compensation device can have a reflector for the radiation source.
  • the executed in particular as a copper plate thermal compensation device can additionally with a non-oxidizing layer such. Be provided with gold.
  • the particular designed as a plastic holder holding device is preferably used as a holder for the sensor units in the form of z.
  • the lamp as a radiation device
  • the ferrite ring as a magnetic shielding device
  • the possibly existing heat-insulating layer as Isolation facility.
  • the holding device can serve as a connecting element to the board and as an assembly aid and as thermal insulation.
  • a support device can be designed in particular as a printed circuit board or board and serves in particular for mechanical and / or electrical contact for the optical module.
  • the heat radiation of only the glass ceramic plate and once the thermal radiation of the cooking vessel bottom, ie a mixed radiation of the cooking vessel bottom and glass ceramic plate, is preferably measured once. These signals are then preferably charged in a separate unit to Gargefäßêttemperatur.
  • the radiation device can be designed as a lamp and in particular also serves to determine the emissivity or the emissivity of the cooking vessel bottom. Furthermore, the lamp can serve as a display element for the user and z. B. clarify an automatic mode.
  • the FIG. 1 shows a cooking device 1 according to the invention, which is designed here as part of a cooking appliance 100.
  • the cooking appliance 1 or the cooking appliance 100 can be designed both as a built-in appliance and as a self-sufficient cooking appliance 1 or stand-alone cooking appliance 100.
  • the cooking device 1 here comprises a hob 11 with four cooking zones 21.
  • Each of the cooking zones 21 here has at least one heatable cooking area 31 for cooking food.
  • a heating device 2 not shown here, is provided in total for each hotplate 21.
  • the heating devices 2 are designed as induction heating sources and each have an induction device 12 for this purpose. But it is also possible that a cooking area 31 is not associated with any particular cooking area 21, but represents any location on the hob 11. In this case, the cooking area 31 may have a plurality of induction devices 12 and in particular a plurality of induction coils and be formed as part of a so-called full-surface induction unit.
  • a pot can be placed anywhere on the hob 11, wherein during cooking only the corresponding induction coils are driven in the pot or are active.
  • Other types of heaters 2 are also possible, such as gas, infrared or somehowsshreddedettin.
  • the cooking device 1 can be operated here via the operating devices 105 of the cooking appliance 100.
  • the cooking device 1 can also be designed as a self-sufficient cooking device 1 with its own operating and control device. Also possible is an operation via a touch-sensitive surface or a touch screen or remotely via a computer, a smartphone or the like.
  • the cooking appliance 100 is here designed as a stove with a cooking chamber 103, which can be closed by a cooking chamber door 104.
  • the cooking chamber 104 can be heated by various heating sources, such as a Um Kunststoffsagenmaschine.
  • Other heating sources such as a top heat radiator and a bottom heat radiator and a microwave heat source or a vapor source and the like may be provided.
  • the sensor device 3 can detect a variable, via which the temperature of a pot can be determined, which is turned off in the cooking area 31.
  • each cooking area 31 and / or each cooking place 21 can be assigned a sensor device 3.
  • the sensor device 3 is operatively connected to a control device 106 here.
  • the control device 106 is designed to control the heating devices 2 as a function of the parameters detected by the sensor device 3.
  • the cooking device 1 is preferably designed for an automatic cooking operation and has various automatic functions.
  • a soup can be boiled briefly and then kept warm, without a user having to supervise the cooking process or set a heating level.
  • he sets the pot with the soup on a hob 21 and selects the corresponding automatic function via the operating device 105, here z.
  • the operating device 105 here z.
  • the temperature of the pot bottom is determined during the cooking process.
  • the control device 106 sets the heating power of the heating device 2 accordingly.
  • the temperature of the bottom of the pot is monitored continuously, so that when the desired temperature or when boiling the soup, the heating power is regulated down.
  • a longer cooking process at one or more to perform various desired temperatures, for. B. to slowly let rice pudding draw.
  • a cooking device 1 is shown in a sectional side view very schematic.
  • the cooking device 1 here has a carrier device 5 designed as a glass ceramic plate 15.
  • the glass ceramic plate 15 may in particular be designed as a ceramic hob or the like or at least comprise such. Also possible are other types of support means 5.
  • On the glass ceramic plate 15 is here a cookware or food containers 200, such as a pot or a pan, in which food or food can be cooked.
  • a sensor device 3 is provided which detects heat radiation in a detection region 83 here.
  • the detection area 83 is provided in the installed position of the cooking device 1 above the sensor device 3 and extends upward through the glass ceramic plate 15 to the food container 200 and beyond, if there is no food container 200 is placed there.
  • an induction device 12 for heating the cooking area 31 is attached below the glass ceramic plate 15, an induction device 12 for heating the cooking area 31 is attached.
  • the induction device 12 is here annular and has in the middle a recess in which the sensor device 3 is mounted.
  • Such an arrangement of the sensor device 3 has the advantage that it is still in the detection range 83 of the sensor device even if the food container 200 is not centered on the cooking point 21.
  • the sensor device 3 may also not be arranged centrally in the induction device. If an induction device has, for example, a dual-circuit induction coil, then at least one sensor device 3 can be arranged in a space provided between the two induction coils of the induction device.
  • the FIG. 3 shows a schematic cooking device 1 in a sectional side view.
  • the cooking device 1 has a glass ceramic plate 15, below which the induction device 12 and the sensor device 3 are mounted.
  • the sensor device 3 has a first sensor unit 13 and another sensor unit 23. Both sensor units 13, 23 are suitable for non-contact detection of thermal radiation and designed as a thermopile or thermopile.
  • the sensor units 13, 23 are each equipped with a filter device 43, 53 and provided for detecting heat radiation emanating from the cooking area 31.
  • the heat radiation originates, for example, from the bottom of a food container 200, penetrates the glass ceramic plate 15 and reaches the sensor units 13, 23.
  • the sensor device 3 is advantageously mounted directly underneath the glass ceramic plate 15 in order to maximize the proportion of the cooking area 31 outgoing heat radiation without being able to detect large losses.
  • the sensor units 13, 23 are provided close to the glass ceramic plate 15.
  • a magnetic shielding device 4 which consists of a ferrite body 14 here.
  • the ferrite body 14 is essentially designed here as a hollow cylinder and surrounds the sensor units 13, 23 in an annular manner.
  • the magnetic shielding device 4 shields the sensor device 3 against electromagnetic interactions and in particular against the electromagnetic field of the induction device 12. Without such shielding, the magnetic field generated by induction device 12 during operation could undesirably heat parts of sensor device 3 as well, resulting in unreliable temperature sensing and inferior measurement accuracy.
  • the magnetic shielding device 4 thus considerably improves the accuracy and reproducibility of the temperature detection.
  • the magnetic shielding device 4 may also consist at least in part of at least one at least partially magnetic material and an at least partially electrically non-conductive material.
  • the magnetic material and the electrically non-conductive material may be arranged alternately and in layers. Also possible are other materials or materials which have at least partially magnetic properties and also have electrically insulating properties or at least low electrical conductivity.
  • the sensor device 3 has at least one optical screen device 7, which is provided to shield radiation influences and in particular heat radiation, which act on the sensor units 13, 23 from outside the detection zone 83.
  • the optical shield device 7 is designed here as a tube or a cylinder 17, wherein the cylinder 17 is hollow and the sensor units 13, 23 surrounds approximately annular.
  • the cylinder 17 is made of stainless steel here. This has the advantage that the cylinder 17 has a reflective surface which reflects a large proportion of the much heat radiation or absorbs as little heat radiation as possible. The high reflectivity of the surface on the outside of the cylinder 17 is particularly advantageous for the shielding against thermal radiation.
  • the high reflectivity of the surface on the inside of the cylinder 17 is also advantageous in order to direct thermal radiation from (and in particular only out) the detection area 83 to the sensor units 13, 23.
  • the optical screen device 7 can also be configured as a wall, which surrounds the sensor device 13, 23 at least partially and preferably annularly.
  • the cross section may be round, polygonal, oval or rounded. Also possible is a configuration as a cone.
  • an insulation device 8 for thermal insulation is provided, which is arranged between the optical shield device 7 and the magnetic shielding device 4.
  • the insulation device 8 consists here of an air layer 18, which is between the ferrite 14 and the cylinder 17.
  • the insulation device 8 in particular a heat conduction from the ferrite 14 to the cylinder 17 is counteracted.
  • the insulation device 8 has, in particular, a thickness of between approximately 0.5 mm and 5 mm and preferably a thickness of 0.8 mm to 2 mm and particularly preferably a thickness of approximately 1 mm.
  • the isolation device 8 may also be at least one medium with a correspondingly low heat conduction, such. B. include a foam material and / or a polystyrene plastic or other suitable insulating material.
  • the sensor units 13, 23 are arranged here in a thermally conductive manner on a thermal compensation device 9 and in particular are coupled in a thermally conductive manner to the thermal compensation device 9.
  • the thermal compensation device 9 has for this purpose two coupling devices 29, which are formed here as depressions in which the sensor units 13, 23 are embedded accurately. This ensures that the sensor units 13, 23 are at a common and relatively constant temperature level.
  • the thermal compensation device 9 ensures a homogeneous temperature of the sensor unit 13, 23, when it heats up during operation of the cooking device 1. An unequal own temperature can lead to artefacts during the detection, in particular in the case of sensor units 13, 23 designed as thermopiles.
  • a spacing between cylinder 17 and thermal compensation device 9 is provided.
  • the copper plate 19 may also be provided as the bottom 27 of the cylinder 17.
  • the thermal compensation device 9 is designed here as a solid copper plate 19. It is possible also at least partly another material with a correspondingly high heat capacity and / or a high thermal conductivity.
  • the sensor device 3 here has a radiation source 63, which can be used to determine the reflection properties of the measuring system or the emissivity of a food container 200.
  • the radiation source 63 is embodied here as a lamp 111, which emits a signal in the wavelength range of the infrared light and the visible light.
  • the radiation source 63 may also be formed as a diode or the like.
  • the lamp 111 is used here in addition to the reflection determination for signaling the operating state of the cooking device 1.
  • a region of the thermal compensation device 9 or the copper plate 19 is formed as a reflector 39.
  • the copper plate 19 has a concave-shaped depression, in which the lamp 111 is arranged.
  • the copper plate 19 is also coated with a gold-containing coating to increase the reflectivity.
  • the gold-containing layer has the advantage that it also protects the thermal compensation device 9 from corrosion.
  • the thermal compensation device 9 is attached to a holding device 10 designed as a plastic holder.
  • the holding device 10 has a connecting device 20, not shown here, by means of which the holding device 10 can be latched to a support means 30.
  • the support device 30 is formed here as a printed circuit board 50. On the support means 30 and the circuit board 50 also other components may be provided, such. B electronic components, control and computing devices and / or mounting or mounting elements.
  • a sealing device 6 is provided between the glass ceramic plate 15 and the induction device 12, which is designed here as a micanite layer 16.
  • the micanite layer 16 is used for thermal insulation, so that the induction device 12 is not heated by the heat of the cooking area 31.
  • a micanite layer 16 for thermal insulation between the ferrite body 14 and the glass-ceramic plate 15 is provided here. This has the advantage that the heat transfer from the hot in the glass ceramic plate 15 to the ferrite 14 is severely limited. As a result, hardly any heat emanates from the ferrite body 14, which could be transmitted to the insulation device 8 or the optical screen device. The micanite layer 16 thus counteracts an undesirable heat transfer to the sensor device 3, which increases the reliability of the measurements.
  • the microlayer 16 seals the sensor device 3 dust-tight against the remaining regions of the cooking device 1.
  • the micanite layer 16 has in particular a thickness between about 0.2 mm and 4 mm, preferably from 0.2 mm to 1.5 mm and particularly preferably a thickness of 0.3 mm to 0.8 mm.
  • the cooking device 1 has on the underside a cover 41, which is designed here as an aluminum plate and covers the Indu Vietnameseseicardi 12.
  • the covering device 41 is connected to a housing 60 of the sensor device 3 via a screw connection 122.
  • the sensor device 3 is arranged elastically relative to the glass ceramic plate 15.
  • a damping device 102 is provided which has a spring device 112 here.
  • the spring device 112 is connected at a lower end to the inside of the housing 60 and at an upper end to the printed circuit board 50.
  • the spring device 112 presses the printed circuit board 50 with the ferrite body 14 and the micanite layer 16 mounted thereon upwards against the glass ceramic plate 15.
  • Such an elastic arrangement is particularly advantageous since the sensor device 3 should be arranged as close as possible to the glass ceramic plate 15 for metrological reasons , This directly adjacent arrangement of the sensor device 3 on the glass ceramic plate 15 could cause damage to the glass ceramic plate 15 in the event of impacts or impacts. Due to the elastic reception of the sensor device 3 relative to the carrier device 5, shocks or impacts are damped on the glass ceramic plate 15 and thus reliably prevent such damage.
  • the first sensor unit 13 is equipped with a filter device 43 which is very permeable to radiation in this wavelength range, while the filter device 43 substantially reflects radiation from other wavelength ranges.
  • the filter devices 43, 53 are here each formed as an interference filter 433 and in particular designed as a bandpass filter or as a long-pass filter.
  • a detection of the radiation in the wavelength range between 3 .mu.m and 5 .mu.m and in particular in the range of 3.1 .mu.m to 4.2 .mu.m be provided, wherein the respective sensor unit and filter device is then respectively formed or adapted accordingly.
  • the determination of a temperature from a specific radiant power is a known method.
  • the decisive factor is that the emissivity of the body is known, from which the temperature is to be determined. In the present case, therefore, the emissivity of the pot bottom must be known or determined for a reliable temperature determination.
  • the sensor device 3 here has the advantage that it is designed to determine the emissivity of a Gargut variousers 200. This is particularly advantageous, since thus any cookware can be used and not just a specific food container whose emissivity must be known in advance.
  • the lamp 111 emits a signal, in particular a light signal, which has a proportion of heat radiation in the wavelength range of the infrared light.
  • the radiant power or thermal radiation of the lamp 111 passes through the glass ceramic plate 15 on the bottom of the pot and is partially reflected there and partially absorbed.
  • the radiation reflected from the bottom of the pot passes through the glass-ceramic plate 15 back to the sensor device 3, where it is detected by the first sensor unit 13.
  • the signal radiation reflected from the bottom of the pot and transmitted by the glass-ceramic plate 15 its own heat radiation from the bottom of the pot and heat radiation from the glass-ceramic plate 15 also reach the first sensor unit 13.
  • the lamp 111 is then switched off and only the Thermal radiation of the pot bottom and the glass ceramic plate 15 detected.
  • At least one reference value with regard to reflected radiation and associated emissivity is deposited in a memory unit which cooperates with the sensor device and is not shown in the figures, wherein the memory unit can be arranged, for example, on the printed circuit board 50.
  • the respective actual emissivity of the pot bottom can then be determined based on a comparison of the reflected signal radiation with the at least one reference value.
  • the proportion of the signal radiation absorbed by the bottom of the pot is determined. This results according to methods known per se from the radiation power emitted by the lamp 111 less the signal radiation reflected from the bottom of the pot.
  • the radiation power of the lamp 111 is either fixed and thus known or is determined for example by a measurement with the other sensor unit 23.
  • the other sensor unit 23 detects a wavelength range of the signal radiation, which is almost completely reflected by the glass ceramic plate 15.
  • the emitted radiation power can be determined in a very suitable approximation, whereby inter alia a wavelength dependence of the radiation line or the spectrum of the lamp 111 must be taken into account.
  • the degree of absorption of the pot bottom can be determined in a known manner. Since the absorption capacity of a body corresponds in principle to the emissivity of a body, the desired emissivity can be derived from the degree of absorption of the pot bottom. With the knowledge of the emissivity and the amount of thermal radiation, which emanates from the bottom of the pot, the temperature of the pot bottom can be determined very reliably.
  • the emissivity is preferably continuously redefined in the shortest possible intervals. This has the advantage that a subsequent change in the emissivity does not lead to a falsified measurement result.
  • a change in the emissivity may occur, for example, when the cookware bottom has different emissivities and is displaced on the cooking surface 21. Different emissivities are very common in cookware trays observed because z. B. already light soiling, corrosion or even different coatings or coatings can have a major impact on the emissivity.
  • the lamp 111 is also used here for signaling the operating state of the cooking device 1 in addition to the determination of the emissivity or the determination of the reflection behavior of the measuring system.
  • the signal of the lamp 111 also includes visible light, which is perceptible by the glass-ceramic plate 15.
  • the lamp 111 indicates to a user that an automatic function is in operation.
  • Such an automatic function can, for. B. be a cooking operation, in which the heater 2 is controlled automatically in dependence of the determined pot temperature. This is particularly advantageous because the lighting up of the lamp 111 does not confuse the user. The user knows from experience that the lighting is an operation indicator and belongs to the normal appearance of the cooking device 1.
  • a flash of the lamp 111 is not a malfunction and the cooking device 1 may not work properly.
  • the lamp 111 may also light up in a certain duration and at certain intervals. It is possible z. B. also that different operating states can be output via different flashing frequencies. Different signals are also possible via different on / off sequences.
  • a sensor device 3 with a radiation source 63 which is suitable for displaying at least one operating state, is provided for each cooking point 21 or each (possible) cooking region 31.
  • At least one arithmetic unit may be provided for the necessary calculations for determining the temperature and for the evaluation of the detected variables.
  • the arithmetic unit can be at least partially provided on the circuit board 50.
  • the control device 106 it is also possible, for example, for the control device 106 to be designed accordingly, or at least one separate arithmetic unit is provided.
  • the FIG. 4 shows a development in which below the glass ceramic plate 15, a security sensor 73 is attached.
  • the safety sensor 73 is designed here as a temperature-sensitive resistor, such as a thermistor, in particular an NTC sensor, and thermally conductively connected to the glass ceramic plate 15.
  • the safety sensor 73 is provided here to be able to detect a temperature of the cooking area 31 and in particular of the glass ceramic plate 15. If the temperature exceeds a certain value, there is a risk of overheating and the heaters 2 are switched off.
  • the safety sensor 73 is operatively connected to a safety device, not shown here, which can trigger a safety state depending on the detected temperature.
  • a security condition has z. B. the shutdown of the heaters 2 and the cooking device 1 result.
  • the safety sensor 73 is assigned here as a further sensor unit 33 of the sensor device 3.
  • the detected by the security sensor 73 Values are also taken into account for the determination of the temperature by the sensor device 3.
  • the values of the safety sensor 73 are used. So z. B. the temperature, which was determined by means of the other sensor unit 23 on the detected thermal radiation, are compared with the temperature detected by the safety sensor 73. This adjustment can on the one hand serve to control the function of the sensor device 3, but on the other hand can also be used for a tuning or adjustment of the sensor device 3.
  • a sensor device 3 is likewise shown, in which a safety sensor 73 is assigned as a further sensor unit 33 to the sensor device 3. Unlike the one in the FIG. 4 described embodiment, but no other sensor unit 23 is provided here. The task of the other sensor unit 23 is taken over here by the safety sensor 73.
  • the safety sensor 73 is used to determine the temperature of the glass ceramic plate 15. For example, with knowledge of this temperature from the thermal radiation, which detects the first sensor unit 13, the proportion of a pot bottom can be determined.
  • the other sensor unit 23 may be referred to as a second sensor unit.
  • the further sensor unit 33 may be referred to as a third sensor unit. In the embodiment according to Fig. 5 only the first sensor unit and the third sensor unit are provided.
  • FIG. 6 Another embodiment of a cooking device 1 is in the FIG. 6 shown.
  • a common sealing device 6 for the induction device 12 and the ferrite body 14 of the sensor device 3 is provided.
  • the sealing device 6 is designed as a micanite layer 16 which has a recess in the detection area 83 of the sensor device 3.
  • the FIG. 7 shows a schematic, magnetic shielding 4, which is formed as a hollow, cylindrical ferrite body 14.
  • a schematic, magnetic shielding 4 which is formed as a hollow, cylindrical ferrite body 14.
  • the wall of the ferrite body 14 has a thickness of about 1 mm to 10 mm and in particular from 2 mm to 5 mm, and particularly preferably from 2.5 mm to 4 mm and in particular of 3 mm or more.
  • FIG. 8 is an optical shield device 7 shown schematically, which is designed here as a cylinder 17.
  • the cylinder has here three locking devices 80, which are suitable for connection to a holding device 10.
  • a thermal compensation device 9 is in the FIG. 9 shown.
  • the thermal compensation device 9 is designed as a copper plate 19.
  • the copper plate has a thickness of 0.5 mm to 4 mm or even 10 mm or more, and more preferably from 0.8 mm to 2 mm, and more preferably 1 mm or more.
  • the copper plate 19 here has two coupling devices 29.
  • the coupling device 29 is suitable and provided to receive a sensor unit 13, 23 thermally conductive.
  • the copper plate 19 has a reflector device 39, which can reflect the radiation of a radiation source 63 and, in particular, can focus.
  • FIG. 10 shows a holding device 10, which is designed as a plastic holder.
  • the holding device 10 preferably has a thickness between 0.3 mm and 3 mm or even 6 mm, and particularly preferably a thickness of 1 mm or more.
  • the holding device 10 includes, for example, three connecting devices, of which only two connecting devices 20 are visible in the figure, by means of which the holding device 10 z. B. is connectable to a support device 30.
  • the holding device 10 on three receiving devices 40, which are formed here as webs.
  • the recording devices 40 are suitable for receiving the optical screen device 7 and arranging it at a defined distance from the magnetic shielding device 4. To carry out contacts receiving openings 70 are provided.
  • the holding device 10 may also have further, not shown receptacles 40 which z. B.
  • Such receiving devices 40 are provided in particular for the defined arrangement of a magnetic shielding device 4, an optical shield device 7, a thermal compensation device 9, an insulation device 8 and / or a support device 30.
  • a sensor unit 13 for non-contact detection of heat radiation is listed.
  • the sensor unit 13 is designed as a thermopile or thermopile.
  • the sensor unit 13 has contacts in order to connect them, for example, to a printed circuit board 50 or board.
  • a filter device 43 is arranged here.
  • FIG. 12a shows a formed as a thermopile sensor unit 13 with a filter device 43 in a sectioned, schematic side view.
  • the filter device 43 is arranged here on the region in which the thermal radiation impinges on the sensor unit 13 and is detected.
  • the filter device 43 is here attached to the sensor unit 13 with an adhesive connection means 430 in a thermally conductive manner.
  • the connecting means 430 here is an adhesive with a thermal conductivity of at least 1 W m -1 K -1 (W / (mK)) and preferably 0.5 W m -1 K -1 (W / (mK)). Also possible and preferred is a thermal conductivity of more than 4 W m -1 K -1 (W / (mK)).
  • heat can be dissipated from the filter device 43 to the sensor unit 43.
  • the dissipation of the heat prevents the sensor unit 13 from detecting the self-heat of the filter device 43, which would lead to a falsified measurement result.
  • the heat from the filter device 43 via the sensor unit 13 can also be forwarded to the thermal compensation device 9 or the copper plate 19.
  • Such indirect dissipation of the heat from the filter device 43 via the sensor unit 13 to the copper plate 19 is also particularly favorable since the copper plate 19 has a high heat capacity.
  • the adhesive may be, for example, a thermosetting, one-component, solvent-free silver-filled epoxy conductive adhesive. Due to the proportion of silver or silver-containing compounds a very favorable thermal conductivity is achieved. Also possible is a proportion of other metals or metal compounds with a corresponding thermal conductivity. Such an adhesive ensures a thermally conductive connection, which is durable and stable even at the temperatures to be expected in a cooking device 1.
  • the filter device 43 is designed as an interference filter 433 and here has four filter layers 432 with a different refractive index and with dielectric properties. In this case, filter layers 432 with higher and lower refractive indices are alternately stacked and connected.
  • the filter layers 432 are, in particular, very thin, preferably a few nanometers to 25 nm.
  • the carrier layer for the filter layers 432 here is a filter base 431 made of a silicon-containing material with a thickness of more than 0.2 mm.
  • the filter device 43 is designed and suitable for transmitting a wavelength range in the infrared spectrum and for substantially reflecting radiation outside this range.
  • FIG. 12b shows a further embodiment of a sensor unit 13 with a filter device 43, wherein the filter device 43 is glued here only partially on the sensor device 13.
  • the region in which the heat radiation strikes and is detected on the sensor unit 13 is surrounded here by a raised edge region.
  • the connecting means 430 was applied only in an edge region. This has the advantage that the heat radiation to be detected does not have to pass through the connection means 430 before it strikes the sensor unit 13.
  • a sensor device 3 is shown in a plan view. For clarity and distinctiveness, some parts or areas are shaded. It can be clearly seen that the sensor device 3 has a concentric structure according to the onion shell principle. Inside is a thermal Balancing device 9 or a copper plate 19, on which two sensor units 13, 23 and designed as a lamp 111 radiation source 63 are arranged. So that no unwanted heat radiation from the side of the sensor units 13, 23 is incident, the sensor units 13, 23 are surrounded by an optical screen device 7 and a cylinder 17. The cylinder 17 is spaced from the copper plate 19, so that as possible no heat transfer between the cylinder 17 and copper plate 19 can take place. The cylinder 17 is surrounded by a magnetic shielding device 4 and a ferrite body 14, respectively. The ferrite body 14 represents the outermost layer of the sensor device 3 and shields it against electromagnetic interactions.
  • the sensor device 3 is preferably provided as close as possible below a carrier device 5, a sealing device 6 or a micanite layer 16 lies on the ferrite body 14, which considerably reduces a heat transfer from the carrier device 5 to the ferrite body 14.
  • an insulation device 8 is formed between the ferrite body 14 and the cylinder 17, an insulation device 8 is formed.
  • the insulation device 8 is here an air layer 18.
  • the air layer 18 counteracts a heat transfer from the ferrite body 14 to the cylinder 17.
  • the sensor units 13, 23 in the interior of the sensor device 3 are thus very effective against interference, such.
  • B. a magnetic field of an induction device 12, heat radiation from outside the detection range 83 and heating by heat conduction, protected.
  • Such a configured, shell-like arrangement of the listed components significantly increases the reliability of the measurements performed with the sensor device 3.
  • FIG. 14 shows a sensor device 3 in an exploded view.
  • the items are here shown spatially separated from each other, whereby the arrangement of the items within the sensor device 3 is clearly visible.
  • the concentric or onion-like structure is also clearly visible here. In addition to an improved measurement accuracy, such a structure also allows a particularly production-friendly and cost-effective installation of the sensor device 3.
  • a sensor unit 13, 23 may already be adhesively bonded to a filter device 43, 53 in a thermally conductive manner.
  • the circuit board 50 may already be partially equipped with electronic components prior to assembly. Preferably z. B. the radiation source 63 already contacted with the circuit board 50.
  • the holding device 10 at least one connecting device 20, not shown here, which is connected to the circuit board 50 and z. B. can be locked.
  • a holding device 10 with three connecting devices 20 is in the FIG. 10 shown.
  • the provided here as a copper plate 19 thermal compensation device 9 is inserted into the holding device 10.
  • the sensor units 13, 23 designed as thermopiles or thermopiles are then passed through receiving openings 70 in the copper plate 19, the holding device 10 and the printed circuit board 50.
  • the mounting of the holding device 10, the copper plate 19 and the sensor units 13, 23 can also be performed in any other order. So z. B. first inserted the copper plate 19 in the holding device 10, then the sensor units 13, 23 inserted and subsequently the holding device 10 is locked to the circuit board 50. The contacting of the sensor units 13, 23 with the printed circuit board 50 can be done at any time during assembly.
  • the contacting of the radiation source 63 designed as a lamp 111 with the printed circuit board 50 can likewise take place at any desired time of assembly. It is preferred to contact the lamp 111 first with the printed circuit board 50 and then to start with the mounting option described above.
  • the optical screen device 7 designed as a cylinder 17.
  • the cylinder 17 has three latching devices 80, which are latched to the three receiving devices 40 of the holding device 10.
  • the ferrite body 14 formed magnetic shield 4 is mounted on the holding device 10.
  • the holding device 10 preferably has a further, not shown here receiving device 40, which may be formed as a recess, survey, web and / or annular groove or the like.
  • the sealing device 6 designed as micanite layer 16 is fastened to the magnetic shielding device 4.
  • Other suitable mounting sequences for the cylinder 17, the ferrite body 14 and the sealing device 6 may be provided.

Abstract

The cooking device (1) has a cooking area (11) provided with a cooking point (21). A heating device (2) is provided for heating a cooking region (31). A sensor device (3) is provided for detecting a physical variable for the detection of the state of the cooking region. The sensor device is provided with magnetic shielding equipment which is provided for shielding of the electromagnetic field of an induction unit (12). An independent claim is included for a method for operating a cooking device.

Description

Die vorliegende Erfindung betrifft eine Kocheinrichtung und ein Verfahren zum Betreiben einer solchen. Die Kocheinrichtung dient insbesondere zur Zubereitung von Speisen. Die Kocheinrichtung umfasst wenigstens ein Kochfeld mit wenigstens einer Kochstelle und wenigstens eine zur Beheizung wenigstens eines Kochbereiches vorgesehene Heizeinrichtung.The present invention relates to a cooking device and a method of operating such. The cooking device is used in particular for the preparation of food. The cooking device comprises at least one hob with at least one cooking point and at least one heating device provided for heating at least one cooking area.

Bei Kocheinrichtungen werden zunehmend Automatikfunktionen gewünscht. Voraussetzung für einen Automatikbetrieb einer Kocheinrichtung ist mitunter eine genaue Erfassung verschiedener Parameter, welche für den Garvorgang charakteristisch sind, wie z. B. die Temperatur des Kochgeschirrs oder Gargutbehälters. In Abhängigkeit der erfassten Parameter wird bei einer Automatikfunktion einer Kocheinrichtung z. B. die Heizquelle automatisch gesteuert, um z. B. eine Überhitzung des Gargutes zu vermeiden. Die Reproduzierbarkeit und die Genauigkeit der erfassten Parameter ist deshalb wichtig für die Funktionalität der Automatikfunktion und somit ein wichtiges Qualitätsmerkmal einer modernen Kocheinrichtung mit Automatikfunktionen.For cooking appliances, automatic functions are increasingly desired. A prerequisite for an automatic operation of a cooking device is sometimes an accurate detection of various parameters that are characteristic of the cooking process, such. As the temperature of the cookware or Gargutbehälters. Depending on the detected parameters z. B. the heat source automatically controlled to z. B. to avoid overheating of the food. The reproducibility and the accuracy of the recorded parameters is therefore important for the functionality of the automatic function and thus an important quality feature of a modern cooking appliance with automatic functions.

Eine Möglichkeit zur Temperaturermittlung bei Gar- und Kochvorgängen ist beispielsweise ein im Gargutbehälter integrierter Temperatursensor. Allerdings muss der Benutzer dazu spezielle Gargutbehälter benutzen und könnte sein bisheriges Kochgeschirr nicht mehr einsetzen. Ebenfalls nachteilig ist auch ein Temperatursensor, welcher mit dem Gargut in das Kochgeschirr gegeben wird, da der Sensor später aus den Speisen "herausgefischt" werden muss und nicht aus Versehen mitgegessen werden sollte.One way of determining temperature during cooking and cooking processes is, for example, a temperature sensor integrated in the food container. However, the user must use special food containers and could not use his previous cookware. Also disadvantageous is a temperature sensor which is placed with the food in the cookware, since the sensor must be "fished out" of the food later and should not be eaten by mistake.

Im Stand der Technik sind daher Vorrichtungen bekannt geworden, welche die Temperatur eines Kochtopfs berührungslos ermitteln. In der DE 10 2007 013 839 A1 ist beispielsweise ein Kochfeldsensor beschrieben, welcher die Temperatur an der Außenseite eines auf einer Kochfeldplatte stehenden Kochtopfs berührungslos ermittelt. Nachteilig an dem Kochfeldsensor der DE 10 2007 013 839 A ist jedoch, dass der Kochfeldsensor oberhalb des Kochfeldes angeordnet ist. Dadurch dürfen bei der Erfassung der Temperaturen andere Gegenstände oder auch andere Töpfe nicht im Weg stehen. Zudem kann der Kochfeldsensor beim Kochbetrieb auch als Hindernis empfunden werden, da er die Bewegungsfreiheit des Benutzers einschränkt.In the prior art, therefore, devices have become known which determine the temperature of a cooking pot without contact. In the DE 10 2007 013 839 A1 For example, a cooktop sensor is described which determines the temperature on the outside of a standing on a cooktop plate cooking pot without contact. A disadvantage of the hob sensor DE 10 2007 013 839 A However, it is that the hob sensor is located above the hob. As a result, other objects or even other pots should not stand in the way when detecting the temperatures. In addition, the cooktop sensor can also be perceived as an obstacle in cooking operation, as it restricts the freedom of movement of the user.

Mit der DE 10 2004 002 058 B3 und der WO 2008/148 529 A1 sind daher Kochfelder und Verfahren bekannt geworden, bei denen Temperaturen an der Unterseite des Gargutbehälters berührungslos ermittelt werden. Die WO 2008/148 529 A1 sieht dazu einen Wärmesensor unterhalb der Kochfeldplatte vor, welcher Wärmestrahlung erfasst und daraus eine Temperatur ermittelt. Das hat den Vorteil, dass der Wärmesensor die Bewegungsfreiheit des Benutzers nicht einschränkt. Ein weiterer Vorteil ist, dass der Wärmesensor nicht unbeabsichtigt durch einen auf dem Kochfeld platzierten Gegenstand verdeckt werden kann.With the DE 10 2004 002 058 B3 and the WO 2008/148 529 A1 Therefore hobs and methods have become known in which temperatures are determined without contact on the underside of the food container. The WO 2008/148 529 A1 provides a heat sensor below the hob plate, which detects heat radiation and from it a temperature determined. This has the advantage that the heat sensor does not restrict the freedom of movement of the user. Another advantage is that the heat sensor can not be inadvertently obscured by an item placed on the hob.

Die bekannten Vorrichtungen und Verfahren sind im Hinblick auf eine Verwendung bei Automatikfunktionen von Kocheinrichtungen, wie z. B. einem Herd, jedoch noch verbesserungsfähig. Beispielsweise stellt ein automatisches Aufkochen von Milch, ohne dass die Milch dabei überkocht, sehr hohe Anforderungen an die entsprechenden Vorrichtungen und Verfahren bezüglich der Reproduzierbarkeit und der Genauigkeit. Weiterhin sollte die Automatikfunktion auch bei unterschiedlichen Gargutbehältern wie Kupferpfannen und z. B. Edelstahltöpfen zufriedenstellend funktionieren.The known devices and methods are with regard to a use in automatic functions of cooking appliances, such. As a stove, but still capable of improvement. For example, an automatic boil-up of milk without overcooking the milk places very high demands on the corresponding devices and methods with regard to the reproducibility and the accuracy. Furthermore, the automatic function should also with different food containers such as copper pans and z. B. stainless steel pots work satisfactorily.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine Kocheinrichtung zur Verfügung zu stellen, welche eine besser reproduzierbare Erfassung einer physikalischen Größe ermöglicht.It is therefore the object of the present invention to provide a cooking device which enables a more reproducible detection of a physical quantity.

Diese Aufgabe wird gelöst durch eine Kocheinrichtung mit den Merkmalen des Anspruchs 1 und durch ein Verfahren zum Betreiben einer Kocheinrichtung mit den Merkmalen des Anspruchs 15. Bevorzugte Merkmale sind Gegenstand der Unteransprüche. Weitere Vorteile und Merkmale ergeben sich aus der allgemeinen Beschreibung der Erfindung und der Beschreibung der Ausführungsbeispiele.This object is achieved by a cooking appliance with the features of claim 1 and by a method for operating a cooking appliance with the features of claim 15. Preferred features are the subject of the dependent claims. Further advantages and features will become apparent from the general description of the invention and the description of the embodiments.

Die erfindungsgemäße Kocheinrichtung umfasst wenigstens ein Kochfeld mit wenigstens einer Kochstelle und wenigstens eine Heizeinrichtung, welche zur Beheizung wenigstens eines Kochbereiches vorgesehenen ist. Es ist wenigstens eine Sensoreinrichtung zur Erfassung wenigstens einer einen Zustand des Kochbereichs charakterisierenden physikalischen Größe vorgesehen. Dabei weist die Sensoreinrichtung wenigstens eine magnetische Abschirmeinrichtung auf.The cooking device according to the invention comprises at least one hob with at least one cooking point and at least one heating device which is provided for heating at least one cooking area. At least one sensor device is provided for detecting at least one physical variable characterizing a state of the cooking region. In this case, the sensor device has at least one magnetic shielding device.

Die erfindungsgemäße Kocheinrichtung hat viele Vorteile. Ein erheblicher Vorteil ist, dass die Sensoreinrichtung wenigstens eine magnetische Abschirmeinrichtung aufweist, wodurch störende magnetische Felder in einem erheblichen Ausmaß abgeschirmt werden.The cooking device according to the invention has many advantages. A significant advantage is that the sensor device has at least one magnetic shielding device, whereby disturbing magnetic fields are shielded to a considerable extent.

Die Sensoreinrichtung kann in bevorzugten Ausgestaltungen als separates Modul und z. B. als sogenanntes Sensormodul oder Optikmodul ausgebildet sein.The sensor device can in preferred embodiments as a separate module and z. B. be designed as a so-called sensor module or optical module.

Die Sensoreinrichtung ist bevorzugt zur Erfassung wenigstens eines charakteristischen Parameters für Temperaturen vorgesehen.The sensor device is preferably provided for detecting at least one characteristic parameter for temperatures.

Besonders bevorzugt umfasst die Heizeinrichtung wenigstens eine Induktionseinrichtung. Die Induktionseinrichtung ist insbesondere als eine Induktionsheizquelle ausgebildet und umfasst wenigstens eine Induktionsspule. Es ist möglich, dass die Induktionseinrichtung eine Mehrzahl oder auch eine Vielzahl kleinerer Induktionsspulen umfasst. Dann ist es möglich, dass sich der Kochbereich beispielsweise flexibel durch Platzierung eines Kochgeschirrs ergibt. Möglich ist es auch, dass feste Kochbereiche vorgegeben werden.Particularly preferably, the heating device comprises at least one induction device. The induction device is designed in particular as an induction heating source and comprises at least one induction coil. It is possible that the induction device comprises a plurality or a plurality of smaller induction coils. Then it is possible that the cooking area, for example, flexible results by placing a cookware. It is also possible that fixed cooking areas are specified.

Die magnetische Abschirmeinrichtung ist insbesondere zur Abschirmung von elektromagnetischen Wechselwirkungen und insbesondere zur Abschirmung vor dem elektromagnetischen Feld der Induktionseinrichtung ausgebildet und geeignet. Insbesondere ist die magnetische Abschirmeinrichtung dazu vorgesehen und ausgebildet, die Sensoreinrichtung abzuschirmen.The magnetic shielding device is designed and suitable in particular for shielding electromagnetic interactions and in particular for shielding from the electromagnetic field of the induction device. In particular, the magnetic shielding means is provided and adapted to shield the sensor device.

Die magnetische Abschirmeinrichtung umgibt vorzugsweise wenigstens teilweise und besonders bevorzugt wenigstens im Wesentlichen ringartig wenigstens einen Teil der Sensoreinrichtung und/oder wenigstens eine Sensoreinheit der Sensoreinrichtung.The magnetic shielding device preferably surrounds at least partially and particularly preferably at least substantially annularly at least part of the sensor device and / or at least one sensor unit of the sensor device.

Die magnetische Abschirmeinrichtung ist dazu ausgebildet und geeignet, wenigstens teilweise gegen das magnetische Feld der Induktionseinrichtung abzuschirmen. Eine solche Abschirmung des magnetischen Feldes der Induktionseinrichtung ist sehr vorteilhaft, weil dadurch einer Induktion eines elektrischen Feldes wenigstens in Teilen der Sensoreinrichtung entgegengewirkt wird. Die unerwünschte Induktion eines elektrischen Feldes wenigstens in Teilen der Sensoreinrichtung könnte z. B. zu einer Erwärmung der Sensoreinrichtung führen, welche einen negativen Einfluss auf die Reproduzierbarkeit der Erfassung hätte. Da die magnetische Abschirmeinrichtung einer Erwärmung der Sensoreinrichtung entgegenwirkt, hat sie einen vorteilhaften und erheblichen Einfluss auf die Reproduzierbarkeit der Erfassung bzw. auf die Zuverlässigkeit der mit der Sensoreinrichtung erfassten Größen bzw. Parameter.The magnetic shielding device is designed and suitable to shield at least partially against the magnetic field of the induction device. Such a shielding of the magnetic field of the induction device is very advantageous, because thereby an induction of an electric field is counteracted at least in parts of the sensor device. The unwanted induction of an electric field at least in parts of the sensor device could, for. B. lead to a warming of the sensor device, which would have a negative impact on the reproducibility of detection. Since the magnetic shielding device counteracts heating of the sensor device, it has an advantageous and considerable influence on the reproducibility of the detection or on the reliability of the variables or parameters detected by the sensor device.

Durch die magnetische Abschirmeinrichtung können so z. B. störende magnetische Einflüsse von der Sensoreinrichtung in erheblichem Ausmaß abgehalten werden. Eine solche Abschirmung wirkt sich sehr vorteilhaft auf die Reproduzierbarkeit der Erfassung der Messwerte aus. Störende magnetische Felder, die auch zur Aufheizung der Sensoreinrichtung führen können, werden so vorzugsweise weitestgehend abgehalten. Durch die wesentliche Reduktion von magnetischen Feldern im Bereich der Sensoreinrichtung kann überraschenderweise eine erheblich genauere Messung durchgeführt werden.Due to the magnetic shielding z. B. disturbing magnetic influences are prevented by the sensor device to a considerable extent. Such a shield has a very advantageous effect on the reproducibility of the acquisition of the measured values. Disturbing magnetic fields, which can also lead to heating of the sensor device, are thus preferably kept as far as possible. Due to the substantial reduction of magnetic fields in the region of the sensor device, surprisingly a considerably more accurate measurement can be carried out.

Eine erstaunliche Erkenntnis bei der Erfindung ist, dass durch eine magnetische Abschirmung der Sensoreinrichtung eine wesentliche Reduktion der thermischen Belastung der Sensoreinrichtung erzielt wird, wodurch die Genauigkeit der Messung durch ein deutlich verbessertes Signal- zu Rauschverhältnis weit erhöht werden kann.An astonishing finding in the invention is that magnetic shielding of the sensor device results in a substantial reduction of the thermal load on the sensor device, whereby the accuracy of the measurement can be greatly increased by a significantly improved signal-to-noise ratio.

Praktisch wird durch die magnetische Abschirmeinrichtung auch eine thermische Isolierungseinrichtung zur Verfügung gestellt, da auch Wärmestrahlung abgehalten wird.In practice, a thermal insulation device is also provided by the magnetic shielding device since heat radiation is also prevented.

Insbesondere besteht die magnetische Abschirmeinrichtung wenigstens zu einem Teil aus wenigstens einem wenigstens teilweise magnetischen Material und einem wenigstens teilweise elektrisch nicht-leitenden Material. Möglich ist auch der wenigstens teilweise Einsatz eines Materials mit geringer elektrischer Leitfähigkeit und/oder eines elektrischen Isolators. Das magnetische Material und das elektrisch nicht-leitende Material können dabei abwechselnd und schichtartig angeordnet sein, wie es bei elektrischen Transformatoren der Fall ist. Dadurch kann in der insbesondere ringartig ausgebildeten magnetischen Abschirmeinrichtung kein Ringstrom fließen, der zu einer erheblichen Erwärmung der magnetischen Abschirmeinrichtung führen würde. Auch andere elektrische Bauteile radial innerhalb der z. B. zylinderförmigen oder ringförmigen magnetischen Abschirmeinrichtung, die beispielsweise als Ferritring ausgeführt sein kann, werden thermische Aufheizungen durch induzierte Ringströme zuverlässig reduziert oder weitgehend oder sogar weitestgehend verhindert.In particular, at least part of the magnetic shielding means consists of at least one at least partially magnetic material and one at least partially electrically non-conductive material. Also possible is the at least partial use of a material with low electrical conductivity and / or an electrical insulator. The magnetic material and the electrically non-conductive material may be arranged alternately and in layers, as is the case with electrical transformers. As a result, no annular current can flow in the magnetic ring shield device, which is in particular a ring-like design, which would lead to considerable heating of the magnetic shielding device. Other electrical components radially within the z. B. cylindrical or annular magnetic shielding device, which may be embodied for example as a ferrite ring, thermal heaters are reliably reduced by induced ring currents or largely or even largely prevented.

Es ist bevorzugt, dass die magnetische Abschirmeinrichtung wenigstens teilweise aus einem ferrimagnetischen Material und/oder aus einem Ferritmaterial gefertigt ist. Möglich ist auch ein ferrimagnetischer keramischer Werkstoff. Die magnetische Abschirmeinrichtung kann wenigstens ein Metalloxid und insbesondere wenigstens ein Eisenoxid umfassen, wie z. B. Hämatit (Fe2O3) und/oder Magnetit (Fe3O4). Möglich sind auch andere Materialien bzw. Werkstoffe, welche wenigstens teilweise magnetische Eigenschaften aufweisen und zudem elektrisch isolierende Eigenschaften oder wenigstens eine geringe elektrische Leitfähigkeit aufweisen. Die elektrische Leitfähigkeit ist dabei vorzugsweise < 10-3 S/m.It is preferred that the magnetic shielding device is at least partially made of a ferrimagnetic material and / or of a ferrite material. Also possible is a ferrimagnetic ceramic material. The magnetic shielding device may comprise at least one metal oxide and in particular at least one iron oxide, such as. Hematite (Fe2O3) and / or magnetite (Fe3O4). Also possible are other materials or materials which have at least partially magnetic properties and also have electrically insulating properties or at least low electrical conductivity. The electrical conductivity is preferably <10 -3 S / m.

Besonders bevorzugt ist die magnetische Abschirmeinrichtung als ein Ferritring und/oder ein Ferritkörper ausgebildet oder umfasst wenigstens einen solchen.Particularly preferably, the magnetic shielding device is designed as a ferrite ring and / or a ferrite body or comprises at least one such.

In einer bevorzugten Weiterbildung weist das Kochfeld wenigstens eine Trägereinrichtung auf, welche zum Positionieren wenigstens eines Kochgeschirrs und/oder Gargutbehälters geeignet und ausgebildet ist. Insbesondere ist die Sensoreinrichtung dabei in Einbaulage des Kochfeldes wenigstens teilweise unterhalb der Trägereinrichtung und benachbart zu wenigstens einem Teil der Heizeinrichtung und insbesondere benachbart zu der Induktionseinrichtung und/oder zu der bzw. wenigstens einer Induktionsspule vorgesehen. Vorzugsweise ist die Sensoreinrichtung in unmittelbarer Nähe und/oder in einem zentrischen Bereich der Heizeinrichtung angeordnet. Möglich und bevorzugt ist es, dass die Sensoreinrichtung in einer Ebene parallel zu der Trägereinrichtung vollständig oder im Wesentlichen vollständig von der Heizeinrichtung umgeben ist.In a preferred development, the hob has at least one carrier device which is suitable and designed for positioning at least one cookware and / or food container. In particular, the sensor device is provided in the installation position of the hob at least partially below the support means and adjacent to at least a portion of the heater and in particular adjacent to the induction device and / or to the or at least one induction coil. Preferably, the sensor device is arranged in the immediate vicinity and / or in a central region of the heating device. It is possible and preferred for the sensor device to be completely or substantially completely surrounded by the heating device in a plane parallel to the carrier device.

Die Trägereinrichtung kann dabei wenigstens eine Glasplatte bzw. Glaskeramikplatte und/oder dergleichen umfassen oder als eine solche ausgebildet sein. Die Trägereinrichtung kann auch wenigstens teilweise als ein sogenanntes Ceranfeld ausgebildet sein.The support means may comprise at least one glass plate or glass ceramic plate and / or the like or be formed as such. The support device may also be at least partially formed as a so-called ceran field.

Bevorzugt ist wenigstens eine Dichtungseinrichtung vorgesehen. Dabei ist insbesondere wenigstens ein Teil der Dichtungseinrichtung wenigstens teilweise zwischen der Trägereinrichtung und einem Teil der Sensoreinrichtung und/oder der magnetischen Abschirmeinrichtung angeordnet ist. Die Dichtungseinrichtung besteht insbesondere aus einem Material mit geringer Wärmeleitung, wie z. B. Silikon oder dergleichen. Vorzugsweise besteht die Dichtungseinrichtung auch wenigstens teilweise aus wenigstens einem Glimmermaterial und insbesondere aus Mikanit.At least one sealing device is preferably provided. In particular, at least part of the sealing device is arranged at least partially between the carrier device and a part of the sensor device and / or the magnetic shielding device. The sealing device consists in particular of a material with low heat conduction, such. As silicone or the like. Preferably, the sealing device also consists at least partially of at least one mica material and in particular of micanite.

Die Dichtungseinrichtung kann auch wenigstens abschnittsweise zur thermischen Isolierung der Trägereinrichtung von der Heizeinrichtung dienen.The sealing device can also serve at least in sections for thermal insulation of the carrier device from the heating device.

Es ist möglich und bevorzugt, dass die Sensoreinrichtung wenigstens eine optische Schirmeinrichtung aufweist. Die optische Schirmeinrichtung ist vorzugsweise wenigstens teilweise von der magnetischen Abschirmeinrichtung umgeben angeordnet. Die optische Schirmeinrichtung kann als eine Wandung ausgestaltet sein, welche die Sensoreinrichtung wenigstens teilweise und bevorzugt ringartig umgibt. Dabei kann die optische Schirmeinrichtung als ein rohrartiger Körper und/oder ein Ring und/oder Zylinder oder dergleichen ausgebildet sein oder einen solchen umfassen. Möglich ist auch eine Ausgestaltung als Konus bzw. als ein sogenannter Winston-Konus. Insbesondere ist die optische Schirmeinrichtung wenigstens bereichsweise in einem Innenbereich hohl ausgebildet und/oder weist wenigstens eine Ausnehmung auf. Vorzugsweise weist die optische Schirmeinrichtung an wenigstens einem Oberflächenbereich und besonders bevorzugt an einem inneren und/oder äußeren Oberflächenbereich ein hohes Reflexionsvermögen für Licht und Wärmestrahlung auf. Bevorzugt ist auch, dass die optische Schirmeinrichtung wenigstens teilweise aus einem metallischen Werkstoff und insbesondere aus einem Edelstahl gefertigt ist.It is possible and preferred that the sensor device has at least one optical screen device. The optical screen device is preferably at least partially surrounded by the magnetic shielding device. The optical screen device can be configured as a wall, which surrounds the sensor device at least partially and preferably like a ring. In this case, the optical shield device may be formed as a tubular body and / or a ring and / or cylinder or the like or include such. Also possible is a configuration as a cone or as a so-called Winston cone. In particular, the optical screen device is at least partially hollow in an inner region and / or has at least one recess. Preferably, the optical shielding device has a high reflectance for light and thermal radiation on at least one surface area and particularly preferably on an inner and / or outer surface area. It is also preferred that the optical shielding device is at least partially made of a metallic material and in particular of a stainless steel.

Es kann auch wenigstens eine Isolierungseinrichtung vorgesehen sein, wobei die Isolierungseinrichtung wenigstens teilweise zwischen der optischen Schirmeinrichtung und der magnetischen Abschirmeinrichtung angeordnet ist. Die Isolierungseinrichtung ist insbesondere dazu geeignet und ausgebildet, thermisch zu isolieren. Dabei umfasst die Isolierungseinrichtung vorzugsweise wenigstens ein Medium mit einer entsprechend geringen Wärmeleitung, wie z. B. ein Schaumstoffmaterial und/oder ein Polystrolkunststoff oder einen anderen geeigneten Isolierstoff. Besonders bevorzugt umfasst die Isolierungseinrichtung wenigstens eine Gasschicht und/oder Luftschicht bzw. ist aus einer solchen gebildet. Die Luftschicht ist insbesondere durch Begrenzungswände eingegrenzt bzw. in einem wenigstens teilweise begrenzten Raum vorgesehen. Möglich ist auch, dass die Isolierungseinrichtung wenigstens einen Bereich mit einem verminderten Druck aufweist, wobei der Druck geringer als 1000mbar und vorzugsweise geringer als 100mbar sein kann. Möglich ist dabei auch ein Grobvakuum oder ein Feinvakuum oder ein Vakuum einer anderen Qualität.It is also possible to provide at least one insulation device, wherein the insulation device is arranged at least partially between the optical shield device and the magnetic shielding device. The isolation device is particularly suitable and designed to thermally isolate. In this case, the isolation device preferably comprises at least one medium with a correspondingly low heat conduction, such. As a foam material and / or a polystyrene plastic or other suitable insulating material. Particularly preferably, the isolation device comprises at least one Gas layer and / or air layer or is formed from such. The air layer is bounded in particular by boundary walls or provided in an at least partially limited space. It is also possible that the isolation device has at least one area with a reduced pressure, wherein the pressure may be less than 1000mbar and preferably less than 100mbar. It is also possible a rough vacuum or a fine vacuum or a vacuum of a different quality.

Es ist bevorzugt, dass die Sensoreinrichtung wenigstens eine Sensoreinheit umfasst. Dabei ist insbesondere wenigstens eine der wenigstens einen Sensoreinheit zur berührungslosen Erfassung wenigstens eines charakteristischen Parameters für Temperaturen geeignet. Die Sensoreinheit ist vorzugsweise dazu ausgebildet und geeignet, elektromagnetische Strahlung, insbesondere im Wellenlängenbereich der Infrarotstrahlung, zu erfassen bzw. zu absorbieren. Besonders bevorzugt ist die Sensoreinheit als eine Thermosäule bzw. ein Thermopile ausgebildet oder umfasst wenigstens eine solche. Die Sensoreinheit kann auch wenigstens ein Thermoelement und insbesondere mehrere miteinander wirkverbundene Thermoelemente aufweisen. Möglich sind auch andere thermische und/oder pyroelektrische Sensoren und/oder Bolometer und/oder fotoelektrische Detektoren bzw. Fotodioden. Die Sensoreinheit kann auch wenigstens teilweise in ein wenigstens annäherndes Vakuum eingelagert sein.It is preferred that the sensor device comprises at least one sensor unit. In particular, at least one of the at least one sensor unit is suitable for non-contact detection of at least one characteristic parameter for temperatures. The sensor unit is preferably designed and suitable for detecting or absorbing electromagnetic radiation, in particular in the wavelength range of the infrared radiation. Particularly preferably, the sensor unit is designed as a thermopile or a thermopile or comprises at least one such. The sensor unit can also have at least one thermocouple and in particular a plurality of thermocouples operatively connected to one another. Also possible are other thermal and / or pyroelectric sensors and / or bolometers and / or photoelectric detectors or photodiodes. The sensor unit may also be at least partially incorporated in an at least approximately vacuum.

Die Sensoreinrichtung kann wenigstens zwei, drei oder mehr Sensoreinheiten umfassen. Dabei können gleiche und/oder wenigstens teilweise unterschiedliche Sensoreinheiten vorgesehen sein. Bevorzugt sind wenigstens zwei Sensoreinheiten zur berührungslosen Erfassung jeweils wenigstens eines charakteristischen Parameters für Temperaturen ausgebildet. Es kann auch wenigstens eine Sensoreinheit zur berührenden Erfassung wenigstens eines charakteristischen Parameters für Temperaturen ausgebildet sein, z. B. als ein Widerstandsthermometer und/oder als ein Thermistor und/oder als ein Heißleiter bzw. NTC und/oder als ein Halbleiter-Temperatur-sensor.The sensor device may comprise at least two, three or more sensor units. In this case, the same and / or at least partially different sensor units may be provided. Preferably, at least two sensor units are designed for non-contact detection of at least one characteristic parameter for temperatures. It can also be formed at least one sensor unit for touching detection of at least one characteristic parameter for temperatures, for. B. as a resistance thermometer and / or as a thermistor and / or as a thermistor NTC and / or as a semiconductor temperature sensor.

Bevorzugterweise weist die Sensoreinrichtung wenigstens eine Filtereinrichtung auf. Die Filtereinrichtung ist insbesondere dazu ausgebildet und geeignet, elektromagnetische Strahlung in Abhängigkeit der Wellenlänge und/oder der Polarisation und/oder des Einfallswinkels zu reflektieren und/oder zu transmittieren. Besonders bevorzugt ist für jede Sensoreinheit, welche zur berührungslosen Erfassung wenigstens eines charakteristischen Parameters für Temperaturen ausgebildet ist, jeweils wenigstens eine Filtereinrichtung vorgesehen. Bevorzugt ist die Filtereinrichtung wenigstens teilweise als ein Interferenzfilter ausgebildet oder umfasst wenigstens ein solches Filter.The sensor device preferably has at least one filter device. The filter device is in particular designed and suitable for reflecting and / or transmitting electromagnetic radiation as a function of the wavelength and / or the polarization and / or the angle of incidence. Particularly preferably, at least one filter device is provided for each sensor unit, which is designed for non-contact detection of at least one characteristic parameter for temperatures. Preferably, the filter device is at least partially designed as an interference filter or comprises at least one such filter.

Die Sensoreinrichtung kann wenigstens eine Strahlungsquelle aufweisen. Die Strahlungsquelle sendet vorzugsweise wenigstens ein Signal insbesondere im Wellenlängenbereich des Infrarotlichts und/oder sichtbaren Lichts aus. Die Strahlungsquelle kann als Lampe und/oder als Diode oder dergleichen ausgebildet sein.The sensor device can have at least one radiation source. The radiation source preferably emits at least one signal, in particular in the wavelength range of the infrared light and / or visible light. The radiation source can be designed as a lamp and / or as a diode or the like.

Die Sensoreinrichtung kann auch wenigstens eine thermische Ausgleichseinrichtung umfassen. Die thermische Ausgleichseinrichtung weist insbesondere wenigstens eine Koppeleinrichtung auf, welche dazu geeignet und ausgebildet ist, wenigstens eine der wenigstens einen Sensoreinheit mit der thermischen Ausgleichseinrichtung wenigstens teilweise thermisch leitend zu verbinden. Eine solche Ausgestaltung ist besonders vorteilhaft, weil dadurch Temperaturspitzen ausgleichbar sind und die Sensoreinheit somit zeitlich relativ konstanten Bedingungen unterliegt. Besonders bei Sensoreinheiten zur berührungslosen Erfassung wenigstens eines charakteristischen Parameters für Temperaturen ist ein solcher thermischer Ausgleich vorteilhaft für die Zuverlässigkeit der Erfassung.The sensor device may also comprise at least one thermal compensation device. The thermal compensation device has in particular at least one coupling device which is suitable and designed to at least partially thermally conductively connect at least one of the at least one sensor unit to the thermal compensation device. Such a configuration is particularly advantageous because temperature peaks can be compensated thereby and the sensor unit is thus subject to relatively constant conditions over time. Particularly in the case of sensor units for the contactless detection of at least one characteristic parameter for temperatures, such a thermal compensation is advantageous for the reliability of the detection.

Die thermische Ausgleichseinrichtung besteht insbesondere wenigstens teilweise und vorzugsweise wenigstens im Wesentlichen insgesamt aus einem Werkstoff mit einer hohen Wärmekapazität und/oder einer hohen Wärmeleitfähigkeit und vorzugsweise aus einem metallischen Werkstoff, wie beispielsweise einem Kupfermaterial. Die thermische Ausgleichseinrichtung kann wenigstens teilweise als ein Reflektor für die Strahlungsquelle geeignet und ausgebildet sein. Dazu kann die thermische Ausgleichseinrichtung auch wenigstens eine wenigstens teilweise reflektierende Beschichtung aufweisen, wie z. B. eine metallhaltige oder metallische Beschichtung. Es kann auch wenigstens eine Beschichtung bzw. Schutzschicht vorgesehen sein, welche die thermische Ausgleichseinrichtung wenigstens teilweise vor Korrosion schützt. Die Beschichtung kann wenigstens teilweise aus einem Metall bestehen. Möglich und bevorzugt sind Edelmetallbeschichtungen, wie z. B. eine dünne Lage Gold.The thermal compensation device consists in particular at least partially, and preferably at least substantially, of a material with a high heat capacity and / or a high thermal conductivity, and preferably a metallic material, such as a copper material. The thermal compensation device may be at least partially suitable and configured as a reflector for the radiation source. For this purpose, the thermal compensation device may also have at least one at least partially reflective coating, such as. As a metal-containing or metallic coating. It is also possible to provide at least one coating or protective layer which at least partially protects the thermal compensation device from corrosion. The coating may be at least partially made of a metal. Possible and preferred are precious metal coatings such. B. a thin layer of gold.

Möglich ist, dass die Sensoreinrichtung wenigstens eine Halteeinrichtung aufweist. Durch die Halteeinrichtung sind wenigstens zwei Einheiten in einer definierten Anordnung zueinander aufnehmbar. Die Einheiten sind dabei einer Gruppe von Einheiten entnommen, umfassend die Sensoreinheit und die magnetische Abschirmeinrichtung und die optische Schirmeinrichtung und die Isolierungseinrichtung und die Strahlungsquelle und die thermische Ausgleichseinrichtung und die Filtereinrichtung. Insbesondere ist die Halteeinrichtung wenigstens teilweise dazu geeignet und ausgebildet, die Abstände von wenigstens zwei oder mehr Einheiten zueinander zu definieren.It is possible that the sensor device has at least one holding device. By the holding device at least two units in a defined arrangement are receivable each other. The units are taken from a group of units comprising the sensor unit and the magnetic shielding device and the optical shielding device and the insulation device and the radiation source and the thermal compensation device and the filter device. In particular, the holding device is at least partially suitable and designed to define the distances of at least two or more units from each other.

Das erfindungsgemäße Verfahren ist zum Betreiben einer Kocheinrichtung vorgesehen, wobei die Kocheinrichtung wenigstens ein Kochfeld mit wenigstens einer Kochstelle und wenigstens eine zur Beheizung wenigstens eines Kochbereiches vorgesehene Heizeinrichtung umfasst. Es ist wenigstens eine Sensoreinrichtung zur Erfassung wenigstens einer einen Zustand des Kochbereichs charakterisierenden physikalischen Größe vorgesehen. Dabei schirmt wenigstens eine magnetische Abschirmeinrichtung elektromagnetische Wechselwirkungen wenigstens teilweise von der Sensoreinrichtung ab.The inventive method is provided for operating a cooking device, wherein the cooking device at least one hob with at least one cooking point and at least a heating device provided for heating at least one cooking area comprises. At least one sensor device is provided for detecting at least one physical variable characterizing a state of the cooking region. At least one magnetic shielding device at least partially shields electromagnetic interactions from the sensor device.

Das erfindungsgemäße Verfahren hat viele Vorteile. Ein erheblicher Vorteil ist, dass elektromagnetische Wechselwirkungen, wie beispielsweise ein magnetisches Feld einer Induktionseinrichtung, wenigstens teilweise von der Sensoreinrichtung abgeschirmt werden. Dadurch kann der Einfluss störender Wechselwirkungen auf die Sensoreinrichtung erheblich verringert werden, was die Zuverlässigkeit der mit der Sensoreinrichtung durchgeführten Erfassung deutlich erhöht.The method according to the invention has many advantages. A significant advantage is that electromagnetic interactions, such as a magnetic field of an induction device, are at least partially shielded from the sensor device. As a result, the influence of interfering interactions on the sensor device can be considerably reduced, which significantly increases the reliability of the detection performed with the sensor device.

Die im Verfahren betriebene Kocheinrichtung und insbesondere die magnetische Abschirmeinrichtung sind vorzugsweise gemäß einer zuvor beschriebenen Ausgestaltung ausgebildet.The cooking device operated in the method and in particular the magnetic shielding device are preferably designed in accordance with a previously described embodiment.

In allen Fällen können neben runden, rechteckigen und abgerundeten Kochzonen auch z. B. ovale Bräterzonen vorgesehen sein.In all cases, in addition to round, rectangular and rounded cooking zones also z. B. oval roaster zones may be provided.

Möglich ist auch die Realisierung einer Vollflächeninduktion, bei der eine Vielzahl kleiner Induktionsspulen vorgesehen ist. Für die Vielzahl der Induktionsspulen kann eine Mehrzahl an Sensoreinrichtung in Form von z. B. Optikmodulen vorgesehen sein, sodass bei beliebiger Positionierung eines Gargutbehälters wenigstens eine Sensoreinrichtung geeignet angeordnet ist, um eine Temperatur des Bodens des Gargutbehälters zu erfassen.It is also possible to realize a full-surface induction, in which a large number of small induction coils is provided. For the plurality of induction coils, a plurality of sensor device in the form of z. As optical modules may be provided so that at any position of a Gargutbehälters at least one sensor device is arranged to detect a temperature of the bottom of the Gargutbehälters.

Vorzugsweise soll mit der Erfindung wenigstens eine Temperatur wenigstens eines Gargefäßbodens berührungslos erfasst werden. Bevorzugterweise soll auf Basis der gemessenen Temperatur(-en) wenigstens eine Automatikfunktion wie insbesondere eine Brat- und/oder Kochautomatik für das Kochfeld realisiert werden.Preferably, with the invention, at least one temperature of at least one Gargefäßbodens should be detected without contact. Preferably, based on the measured temperature (s), at least one automatic function, such as, in particular, a roasting and / or cooking automatic for the cooktop, should be realized.

Durch die Erfindung wird eine gesteigerte Messgenauigkeit der insbesondere als Optikmodul ausgeführten Sensoreinrichtung erreicht, die für Automatikfunktionen sinnvoll und gegebenenfalls auch erforderlich ist. Der Aufbau der Sensoreinrichtung ermöglicht einen geringeren Einfluss der in der Sensoreinrichtung bzw. dem Optikmodul vorliegenden Wärmeflüsse auf das Messsignal.By means of the invention, an increased measuring accuracy of the sensor device, which is designed in particular as an optical module, is achieved, which is useful and optionally also necessary for automatic functions. The construction of the sensor device enables a smaller influence of the heat flows present in the sensor device or the optical module on the measurement signal.

Aus dem Stand der Technik ist ein Verfahren zur berührungslosen Temperaturmessung eines Gargefäßbodens bekannt, welches auf der exakten Messung der Wärmestrahlung des Gargefäßbodens und der Glaskeramikplatte beruht. Durch eine Verrechnung der Signale wird auf die Gargefäßtemperatur geschlossen. Mit der vorliegenden Erfindung wird im Vergleich dazu eine erheblich verbesserte Genauigkeit erreicht. Bei einer konkreten vorteilhaften Ausgestaltung der Erfindung wurden gute Ergebnisse mit folgenden Abmessungen erzielt:

  • Die Dicke der Dichtungseinrichtung zwischen der insbesondere als Ferritring oder dgl. ausgeführten magnetischen Abschirmeinrichtung und der als Glaskeramikplatte realisierten Trägereinrichtung beträgt vorzugsweise wenigstens 0,25 mm und insbesondere zwischen etwa 0,35 mm und 2 mm und besonders bevorzugt etwa 0,5 mm +/- 20%.
From the prior art, a method for non-contact temperature measurement of Gargefäßbodens is known, which is based on the exact measurement of the heat radiation of the Gargefäßbodens and the glass ceramic plate based. By clearing the signals, the cooking vessel temperature is closed. With the present invention, a significantly improved accuracy is achieved in comparison. In a specific advantageous embodiment of the invention, good results were achieved with the following dimensions:
  • The thickness of the sealing device between the magnetic shielding device designed in particular as a ferrite ring or the like and the carrier device realized as a glass ceramic plate is preferably at least 0.25 mm and in particular between about 0.35 mm and 2 mm and particularly preferably about 0.5 mm +/- 20%.

Die Dicke der insbesondere als Ferritring oder dgl. ausgeführten magnetischen Abschirmeinrichtung ist vorzugsweise größer als 1,5 mm und liegt insbesondere zwischen etwa 2 mm und 7 mm und besonders bevorzugt zwischen etwa 3 mm bis 5 mm.The thickness of the magnetic shielding device designed in particular as a ferrite ring or the like is preferably greater than 1.5 mm and, in particular, between approximately 2 mm and 7 mm and particularly preferably between approximately 3 mm and 5 mm.

Die Dicke der insbesondere als wärmeisolierende Schicht ausgeführten Isolierungseinrichtung ist vorzugsweise größer als 0,3 mm. Insbesondere liegt die Dicke zwischen etwa 0,5 mm und 5 mm und besonders bevorzugt zwischen etwa 0,8 mm und 2 mm.The thickness of the insulating device designed in particular as a heat-insulating layer is preferably greater than 0.3 mm. In particular, the thickness is between about 0.5 mm and 5 mm, and more preferably between about 0.8 mm and 2 mm.

Die Dicke der insbesondere als Kupferplatte oder dgl. ausgeführten thermischen Ausgleichseinrichtung beträgt vorzugsweise mehr als 0,3 mm. Insbesondere liegt die Dicke zwischen etwa 0,5 mm und 5 mm und besonders bevorzugt zwischen etwa 0,75 mm und 2 mm.The thickness of the thermal compensation device designed in particular as a copper plate or the like is preferably more than 0.3 mm. In particular, the thickness is between about 0.5 mm and 5 mm, and more preferably between about 0.75 mm and 2 mm.

Die Dicke der insbesondere aus wenigstens einem Kunststoff bestehenden Halteeinrichtung beträgt vorzugsweise mehr als 0,5 mm und insbesondere mehr als 1 mm. Die Halteeinrichtung isoliert die Sensoreinrichtung bzw. die Sensoreinheiten nach unten hin.The thickness of the holding device, which consists in particular of at least one plastic, is preferably more than 0.5 mm and in particular more than 1 mm. The holding device isolates the sensor device or the sensor units downwards.

In allen Ausgestaltungen wird vorzugsweise eine Strahlungseinrichtung eingesetzt, um z. B. ein Maß für die Temperatur der als Glaskeramikplatte ausgeführten Trägereinrichtung zu erhalten bzw. zu ermitteln. Dabei kann die Strahlungseinrichtung zum Beispiel als Lampe ausgeführt sein. Ausgestaltungen ohne eine Strahlungseinrichtung sind auch möglich. Eine Lösung ohne eine Strahlungseinrichtung kann z. B. realisiert werden, wenn z. B. der Emissionsgrad des Gargefäßes als konstant angenommen wird, was beispielsweise über die Verwendung eines vom Hersteller vorgeschlagenen Kochgeschirrs sichergestellt werden kann. Möglich ist auch die Präparation des Gargefäßbodens mit einer vom Hersteller vorgeschlagenen Vorrichtung oder dergleichen.In all embodiments, a radiation device is preferably used to z. B. to obtain a measure of the temperature of the running as a glass ceramic plate support means or to determine. In this case, the radiation device can be designed, for example, as a lamp. Embodiments without a radiation device are also possible. A solution without a radiation device can, for. B. be realized when z. B. the emissivity of the cooking vessel is assumed to be constant, which can be ensured for example via the use of a proposed manufacturer by the cookware. Also possible is the preparation of the Gargefäßbodens with a device proposed by the manufacturer or the like.

Außerdem sind Ausgestaltungen möglich, bei denen jeweils mit und ohne Strahlungseinrichtung

  1. a) zwei z. B. als Thermopile ausgeführte Sensoreinheiten mit jeweils einem Filter eingesetzt werden, oder
  2. b) eine z. B. als Thermopile ausgeführte Sensoreinheit mit einem Filter und ein Kontaktsensor für die Trägerplatte eingesetzt wird (z. B. NTC), oder
  3. c) ein gemeinsames Gehäuse für zwei z. B. als Thermopile ausgeführte Sensoreinheiten vorgesehen ist, dem zwei insbesondere unterschiedliche Filter zugeordnet sind.
In addition, embodiments are possible, in each case with and without radiation device
  1. a) two z. B. designed as thermopile sensor units are each used with a filter, or
  2. b) a z. B. is designed as a thermopile sensor unit with a filter and a contact sensor for the support plate is used (eg., NTC), or
  3. c) a common housing for two z. B. designed as a thermopile sensor units is provided, the two are assigned in particular different filters.

Vorzugsweise dient die insbesondere als rohrartiger Körper, Konus oder Zylinder ausgeführte optische Schirmeinrichtung zur Abschirmung von Strahlungseinflüssen außerhalb eines Erfassungsbereichs oder Sichtflecks der Sensoreinrichtung und insbesondere auch zur gezielten Lenkung der Wärmestrahlung von dem Boden des Kochgeschirrs bzw. von dem Gargefäßboden und der insbesondere als Glaskeramik ausgeführten Trägereinrichtung.The optical shielding device, in particular embodied as a tube-like body, cone or cylinder, preferably serves for shielding from the influence of radiation outside a detection area or visual spot of the sensor device and in particular also for directing the heat radiation from the bottom of the cookware or from the cooking vessel bottom and the carrier device, in particular as a glass ceramic ,

Die optische Schirmeinrichtung in Form von z. B. im Wesentlichen einem Zylinder oder rohrförmigen Körper ist bevorzugt, da es vorzugsweise nicht erforderlich ist, die einfallende Wärmestrahlung wie mit einem Winston-Konus zu verstärken bzw. zu bündeln. Je nach Ausgestaltung ist der Einsatz eines Winston-Konus und/oder von z. B. Quaderformen und/oder Kegelformen und/oder anderer Formen auch möglich.The optical screen device in the form of z. B. substantially a cylinder or tubular body is preferred because it is preferably not necessary to reinforce the incident heat radiation as with a Winston cone or bundle. Depending on the configuration, the use of a Winston cone and / or z. As cuboid shapes and / or conical shapes and / or other shapes also possible.

Besonders bevorzugt ist die Abschirmung von Strahlungseinflüssen außerhalb des Sichtflecks. Das Material und die Oberflächenbeschaffenheit dieses Zylinders weisen vorzugsweise eine entsprechend hohe Reflektivität auf. Hier können z. B. verschiedene beschichtete und unbeschichtete Metalle zum Einsatz kommen oder auch nichtmetallische Zylinder oder Körper, die mit einer reflektierenden Schicht versehen werden. Ein bevorzugter Werkstoff ist ein nichtrostender Stahl, wie z. B. Edelstahl, da dieser nicht zusätzlich beschichtet werden muss, um z. B. langzeitstabil zu sein.Particularly preferred is the shielding of radiation outside the sighting spot. The material and the surface condition of this cylinder preferably have a correspondingly high reflectivity. Here can z. B. different coated and uncoated metals are used or non-metallic cylinder or body, which are provided with a reflective layer. A preferred material is a stainless steel, such as. B. stainless steel, since this does not need to be additionally coated to z. B. long-term stability.

Die insbesondere als wärmeisolierende Schicht ausgeführte Isolierungseinrichtung befindet sich vorzugsweise zwischen der optischen Schirmeinrichtung und der insbesondere als Ferritring ausgeführten magnetischen Abschirmeinrichtung und kann in einem einfachen Fall aus Luft bestehen. Es können aber aber auch andere Materialen zum Einsatz kommen, welche eine hinreichend geringe Wärmeleitung aufweisen. Es ist von Vorteil, wenn möglichst wenig Wärme von dem Ferritring auf die insbesondere zylinderförmige optische Schirmeinrichtung übergeht.The insulating device embodied in particular as a heat-insulating layer is preferably located between the optical shield device and the magnetic shielding device, which is designed in particular as a ferrite ring, and may in a simple case consist of air. But it can also be used other materials, which have a sufficiently low heat conduction. It is advantageous if as little heat as possible passes from the ferrite ring to the particular cylindrical optical screen device.

Die magnetische Abschirmeinrichtung dient insbesondere zur elektromagnetischen Abschirmung. Durch eine effektive elektromagnetische Abschirmung kann eine unkontrollierte Erwärmung mehrerer und insbesondere aller metallischen Komponenten der insbesondere als Optikmodul ausgeführten Sensoreinrichtung weitgehend vermieden werden. Die Sensoreinrichtung ist vorzugsweise wenigstens etwa im Zentrum einer großen Induktionsspule oder zwischen mehreren kleineren Induktionsspulen angeordnet. Durch die magnetische Abschirmeinrichtung wird bei Betrieb einer Induktionskochzone das Optikmodul bzw. die Sensoreinrichtung entsprechend abgeschirmt.The magnetic shielding device is used in particular for electromagnetic shielding. By means of an effective electromagnetic shielding, uncontrolled heating of a plurality of, and in particular of all metallic, components of the sensor device, in particular embodied as an optical module, can be largely avoided. The sensor device is preferably arranged at least approximately in the center of a large induction coil or between a plurality of smaller induction coils. By the magnetic Shielding device is shielded when operating an induction cooking zone, the optical module or the sensor device accordingly.

Um den magnetischen Fluss von dem Optikmodul bzw. dessen metallischen Komponenten wenigstens im Wesentlichen abzuhalten, werden vorzugsweise die meisten und insbesondere die wesentlichen Komponenten und besonders bevorzugt alle metallischen Komponenten mit einem z. B. als Ferritring bzw. Ferritzylinder umschlossen, der als eine oder die magnetische Abschirmeinrichtung dient. Ferrite haben die Eigenschaft, dass sie bei geringer Eigenerwärmung den magnetischen Fluss im nicht gesättigten Fall sehr gut leiten. Bei einer solchen Anordnung liegen alle metallischen Komponenten, wie insbesondere die Sensoreinheiten, die z. B. als Thermopiles ausgeführt werden können, in einem im Wesentlichen oder sogar nahezu feldfreien Raum.In order to at least substantially prevent the magnetic flux from the optical module or its metallic components, preferably most and in particular the essential components, and particularly preferably all metallic components with a z. B. enclosed as a ferrite ring or ferrite cylinder, which serves as one or the magnetic shielding device. Ferrites have the property that they conduct the magnetic flux very well in the non-saturated case with low self-heating. In such an arrangement are all metallic components, in particular the sensor units, the z. B. can be performed as thermopiles, in a substantially or even almost field-free space.

Die magnetische Abschirmeinrichtung schützt in Verbindung mit einer zwischen der magnetischen Abschirmeinrichtung und der Trägereinrichtung vorgesehenen Dichtungseinrichtung die Sensoreinrichtung insgesamt und insbesondere die Sensoreinheiten, Filtereinrichtungen und die optische Schirmeinrichtung vor eventuell auftretender Umgebungs-Luftfeuchtigkeit.The magnetic shielding device, in combination with a sealing device provided between the magnetic shielding device and the carrier device, protects the sensor device as a whole and in particular the sensor units, filter devices and the optical shielding device from possibly occurring ambient atmospheric moisture.

Weiterhin schützt die magnetische Abschirmeinrichtung die Sensoreinheit bzw. Sensoreinheiten und auch die thermische Ausgleichseinrichtung vor eventuell vorhandenem Umgebungslicht bzw. Umgebungswärmestrahlung.Furthermore, the magnetic shielding device protects the sensor unit or sensor units and also the thermal compensation device from any ambient light or ambient heat radiation present.

Eine Dichtungseinrichtung zwischen der magnetischen Abschirmeinrichtung und der Trägereinrichtung trägt zur Wärmeisolierung bei. Die Dichtungseinrichtung mindert einen Wärmefluss von einer warmen Glaskeramikplatte in die magnetische Abschirmeinrichtung und/oder in die optische Schirmeinrichtung hinein erheblich. Dadurch wird zusätzliche Wärmestrahlung auf die Sensoreinheiten reduziert.Sealing means between the magnetic shielding means and the support means contribute to heat insulation. The sealing device significantly reduces heat flow from a hot glass ceramic plate into the magnetic shielding device and / or into the optical shielding device. This reduces additional heat radiation to the sensor units.

Die Dichtungseinrichtung trägt weiterhin auch zu einer mechanischen Isolierung bei. Die Dichtungseinrichtung isoliert zusätzlich die Glaskeramikplatte mechanisch von der insbesondere als Ferritring ausgebildeten magnetischen Abschirmeinrichtung und hat somit eine dämpfende Wirkung. Fehlt die Dichtungseinrichtung, besteht gegebenenfalls die Möglichkeit, dass die Glaskeramikplatte bzw. Glaskeramikscheibe beschädigt wird, falls insbesondere im Bereich der magnetischen Abschirmeinrichtung ein Gegenstand auf die Glaskeramikplatte fällt. Daher erhöht die Dichtungseinrichtung die Schlagfestigkeit. Gleichzeitig dient die Dichtung als Staubdichtung.The sealing device further contributes to a mechanical insulation. The sealing device additionally mechanically insulates the glass-ceramic plate from the magnetic shielding device, in particular as a ferrite ring, and thus has a damping effect. If the sealing device is missing, there is possibly the possibility that the glass ceramic plate or glass ceramic pane is damaged if, in particular in the area of the magnetic shielding device, an object falls onto the glass ceramic plate. Therefore, the sealing device increases the impact resistance. At the same time the seal serves as a dust seal.

Die Dichtungseinrichtung hält auch eventuell vorhandenes Umgebungslicht bzw. Umgebungswärmestrahlung aus dem Bereich des Kochfeldes von den Sensoreinheiten ab. Es kommen verschiedene Materialien für eine derartige Dichtungseinrichtung infrage. Beispielsweise kann ein Silikonring verwendet werden. Ein solcher Dichtungsring hat vorzugsweise eine geringe Auflagefläche. Möglich ist es auch, eine Dichtungseinrichtung aus Mikanit oder einer Mikanitscheibe zu verwenden. Möglich ist es auch, andere Materialien mit einer geringen Wärmeleitung einzusetzen.The sealing device also prevents any existing ambient light or ambient heat radiation from the region of the hob from the sensor units. There are various materials for such a sealing device in question. For example, a silicone ring can be used. Such a sealing ring preferably has a small contact surface. It is also possible to use a sealing device made of micanite or a Mikanitscheibe. It is also possible to use other materials with a low heat conduction.

Die thermische Ausgleichseinrichtung dient zu einem thermischen Ausgleich der Komponenten und kann insbesondere aus Kupfer bestehen und beispielsweise als Kupferplatte ausgeführt sein.The thermal compensation device serves for a thermal compensation of the components and can in particular consist of copper and be designed, for example, as a copper plate.

Die insbesondere als Optikmodul ausgeführte Sensoreinrichtung wird vorzugsweise hinsichtlich der Aufnahme der Sensoreinheit bzw. Sensoreinheiten konstruktiv derart ausgeführt, dass sich alle Sensoreinheiten des Optikmoduls sehr homogen erwärmen und sich somit alle Sensoreinheiten auf im Wesentlichen dem gleichen Temperaturniveau befinden. Mit zunehmender Temperaturabweichung bei den einzelnen Komponenten der Sensoreinrichtung nimmt die erzielbare Messgenauigkeit ab, da eine inhomogene Eigentemperatur der z. B. als Thermopiles ausgeführten Sensoreinheiten systembedingt zu Signalanteilen führt, die ihren Ursprung nicht in der Wärmestrahlung des Messobjekts, sondern im Thermopile selbst haben.The sensor device, which is embodied in particular as an optical module, is preferably constructed in such a way that the sensor units of the optical module heat up very homogeneously and thus all the sensor units are at substantially the same temperature level. With increasing temperature deviation in the individual components of the sensor device, the achievable accuracy decreases, since an inhomogeneous temperature of the z. B. as Thermopiles running sensor units due to system leads to signal components that have their origin not in the heat radiation of the test object, but in the thermopile itself.

Zur Reduktion solcher Effekte sind die Gehäuse der Sensoreinheiten bzw. Thermopiles vorzugsweise an einer Platte aus massivem Metall und insbesondere Kupfer oder dergleichen angebunden, in welche die Sensoreinheiten insbesondere eingelassen werden und welche aufgrund ihrer hohen Wärmekapazität sowie Wärmeleitfähigkeit für eine effektive Homogenisierung sorgt.To reduce such effects, the housings of the sensor units or thermopiles are preferably connected to a plate made of solid metal and in particular copper or the like, in which the sensor units are embedded in particular and which ensures effective homogenization due to their high heat capacity and thermal conductivity.

Vorzugsweise wird dabei ein hinreichend großer Abstand zwischen der Kupferplatte als thermischer Ausgleichseinrichtung und der optischen Schirmeinrichtung eingehalten, damit die Kupferplatte nicht von der optischen Schirmeinrichtung erwärmt wird. Insbesondere ist eine oder die Hautfunktion der thermischen Ausgleichseinrichtung die thermische Homogenisierung. Des Weiteren kann die thermische Ausgleichseinrichtung einen Reflektor für die Strahlungsquelle aufweisen. Die insbesondere als Kupferplatte ausgeführte thermische Ausgleichseinrichtung kann zusätzlich mit einer nicht oxidierenden Schicht wie z .B. Gold versehen sein.Preferably, a sufficiently large distance between the copper plate as a thermal compensation device and the optical shield device is maintained so that the copper plate is not heated by the optical shield device. In particular, one or the skin function of the thermal compensation device is the thermal homogenization. Furthermore, the thermal compensation device can have a reflector for the radiation source. The executed in particular as a copper plate thermal compensation device can additionally with a non-oxidizing layer such. Be provided with gold.

Die insbesondere als Kunststoffhalter ausgeführte Halteeinrichtung dient vorzugsweise als Halterung für die Sensoreinheiten in Form von z. B. Thermopiles, für die optische Schirmeinrichtung, die Lampe als Strahlungseinrichtung, den Ferritring als magnetische Abschirmeinrichtung und die eventuell vorhandene wärmeisolierende Schicht als Isolierungseinrichtung. Weiterhin kann die Halteeinrichtung als Verbindungselement zur Platine und als Montagehilfe sowie als Wärmeisolierung dienen.The particular designed as a plastic holder holding device is preferably used as a holder for the sensor units in the form of z. As thermopiles, for the optical shield device, the lamp as a radiation device, the ferrite ring as a magnetic shielding device and the possibly existing heat-insulating layer as Isolation facility. Furthermore, the holding device can serve as a connecting element to the board and as an assembly aid and as thermal insulation.

Eine Auflageeinrichtung kann insbesondere als Leiterkarte oder Platine ausgeführt sein und dient insbesondere zur mechanischen und/oder elektrischen Kontaktierung für das Optikmodul.A support device can be designed in particular as a printed circuit board or board and serves in particular for mechanical and / or electrical contact for the optical module.

Mit den insbesondere als Thermopiles ausgeführten Sensoreinheiten und mittels geeigneter Filtereinrichtungen wird vorzugsweise einmal die Wärmestrahlung nur der Glaskeramikplatte und einmal die Wärmestrahlung des Gargefäßbodens, also einer Mischstrahlung von Gargefäßboden und Glaskeramikplatte, gemessen. Diese Signale werden dann vorzugsweise in einer separaten Einheit zur Gargefäßbodentemperatur verrechnet.With the sensor units, which are designed in particular as thermopiles, and by means of suitable filter devices, the heat radiation of only the glass ceramic plate and once the thermal radiation of the cooking vessel bottom, ie a mixed radiation of the cooking vessel bottom and glass ceramic plate, is preferably measured once. These signals are then preferably charged in a separate unit to Gargefäßbodentemperatur.

Die Strahlungseinrichtung kann als Lampe ausgeführt sein und dient insbesondere auch dazu, die Emissivität bzw. den Emissionsgrad des Gargefäßbodens zu bestimmen. Weiterhin kann die Lampe für den Benutzer als Anzeigeelement dienen und z. B. einen Automatikbetrieb verdeutlichen.The radiation device can be designed as a lamp and in particular also serves to determine the emissivity or the emissivity of the cooking vessel bottom. Furthermore, the lamp can serve as a display element for the user and z. B. clarify an automatic mode.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Ausführungsbeispielen, welche im Folgenden mit Bezug auf die beiliegenden Figuren erläutert wird.Further advantages and features of the invention will become apparent from the embodiments, which will be explained below with reference to the accompanying figures.

In den Figuren zeigen:

Figur 1
eine schematische Darstellung einer erfindungsgemäßen Kocheinrichtung an einem Gargerät in perspektivischer Ansicht;
Figur 2
eine schematisierte Kocheinrichtung in einer geschnittenen Ansicht;
Figur 3
eine weitere Kocheinrichtung in einer schematischen, geschnittenen Ansicht;
Figur 4
eine weitere Ausgestaltung einer Kocheinrichtung in einer geschnittenen Ansicht;
Figur 5
eine andere Ausgestaltung einer Kocheinrichtung in einer geschnittenen Ansicht;
Figur 6
ein weiteres Ausführungsbeispiel einer Kocheinrichtung;
Figur 7
eine schematische Darstellung einer magnetischen Abschirmeinrichtung in perspektivischer Ansicht;
Figur 8
eine schematische, perspektivische Darstellung einer optischen Schirmeinrichtung;
Figur 9
eine schematische, perspektivische Darstellung einer thermischen Ausgleichseinrichtung;
Figur 10
eine schematische, perspektivische Darstellung einer Halteeinrichtung;
Figur 11
eine schematische, perspektivische Darstellung einer Sensoreinheit;
Figur 12a
eine schematisierte Sensoreinheit mit einer Filtereinrichtung in einer geschnittenen Darstellung;
Figur 12b
ein weiteres Ausführungsbeispiel einer Sensoreinheit mit einer Filtereinrichtung in einer geschnittenen Darstellung;
Figur 13
eine schematisierte Sensoreinrichtung in einer Draufsicht; und
Figur 14
eine Sensoreinrichtung in einer Explosionsdarstellung.
In the figures show:
FIG. 1
a schematic representation of a cooking device according to the invention on a cooking appliance in a perspective view;
FIG. 2
a schematic cooking device in a sectional view;
FIG. 3
another cooking device in a schematic, sectional view;
FIG. 4
a further embodiment of a cooking device in a sectional view;
FIG. 5
another embodiment of a cooking device in a sectional view;
FIG. 6
another embodiment of a cooking device;
FIG. 7
a schematic representation of a magnetic shielding in perspective view;
FIG. 8
a schematic, perspective view of an optical shielding device;
FIG. 9
a schematic, perspective view of a thermal compensation device;
FIG. 10
a schematic, perspective view of a holding device;
FIG. 11
a schematic, perspective view of a sensor unit;
FIG. 12a
a schematic sensor unit with a filter device in a sectional view;
FIG. 12b
a further embodiment of a sensor unit with a filter device in a sectional view;
FIG. 13
a schematic sensor device in a plan view; and
FIG. 14
a sensor device in an exploded view.

Die Figur 1 zeigt eine erfindungsgemäße Kocheinrichtung 1, welche hier als Teil eines Gargerätes 100 ausgeführt ist. Die Kocheinrichtung 1 bzw. das Gargerät 100 können sowohl als Einbaugerät als auch als autarke Kocheinrichtung 1 bzw. alleinstehendes Gargerät 100 ausgebildet sein.The FIG. 1 shows a cooking device 1 according to the invention, which is designed here as part of a cooking appliance 100. The cooking appliance 1 or the cooking appliance 100 can be designed both as a built-in appliance and as a self-sufficient cooking appliance 1 or stand-alone cooking appliance 100.

Die Kocheinrichtung 1 umfasst hier ein Kochfeld 11 mit vier Kochstellen 21. Jede der Kochstellen 21 weist hier wenigstens einen beheizbaren Kochbereich 31 zum Garen von Speisen auf. Zur Beheizung des Kochbereichs 31 ist insgesamt eine oder aber für jede Kochstelle 21 jeweils eine hier nicht dargestellte Heizeinrichtung 2 vorgesehen. Die Heizeinrichtungen 2 sind als Induktionsheizquellen ausgebildet und weisen dazu jeweils eine Induktionseinrichtung 12 auf. Möglich ist aber auch, dass ein Kochbereich 31 keiner bestimmten Kochstelle 21 zugeordnet ist, sondern einen beliebigen Ort auf dem Kochfeld 11 darstellt. Dabei kann der Kochbereich 31 mehrere Induktionseinrichtungen 12 und insbesondere mehrere Induktionsspulen aufweisen und als Teil einer sogenannten Vollflächeninduktionseinheit ausgebildet sein. Beispielsweise kann bei einem solchen Kochbereich 31 einfach ein Topf an einer beliebigen Stelle auf das Kochfeld 11 gestellt werden, wobei während des Kochbetriebes nur die entsprechenden Induktionsspulen im Bereich des Topfes angesteuert werden oder aktiv sind. Andere Arten von Heizeinrichtungen 2 sind aber auch möglich, wie z.B. Gas-, Infrarot- oder Widerstandsheizquellen.The cooking device 1 here comprises a hob 11 with four cooking zones 21. Each of the cooking zones 21 here has at least one heatable cooking area 31 for cooking food. In order to heat the cooking area 31, a heating device 2, not shown here, is provided in total for each hotplate 21. The heating devices 2 are designed as induction heating sources and each have an induction device 12 for this purpose. But it is also possible that a cooking area 31 is not associated with any particular cooking area 21, but represents any location on the hob 11. In this case, the cooking area 31 may have a plurality of induction devices 12 and in particular a plurality of induction coils and be formed as part of a so-called full-surface induction unit. For example, in such a cooking area 31 simply a pot can be placed anywhere on the hob 11, wherein during cooking only the corresponding induction coils are driven in the pot or are active. Other types of heaters 2 are also possible, such as gas, infrared or Widerstandsheizquellen.

Die Kocheinrichtung 1 ist hier über die Bedieneinrichtungen 105 des Gargerätes 100 bedienbar. Die Kocheinrichtung 1 kann aber auch als autarke Kocheinrichtung 1 mit einer eigenen Bedien- und Steuereinrichtung ausgebildet sein. Möglich ist auch eine Bedienung über eine berührungsempfindliche Oberfläche oder einen Touchscreen oder aus der Ferne über einen Computer, ein Smartphone oder dergleichen.The cooking device 1 can be operated here via the operating devices 105 of the cooking appliance 100. The cooking device 1 can also be designed as a self-sufficient cooking device 1 with its own operating and control device. Also possible is an operation via a touch-sensitive surface or a touch screen or remotely via a computer, a smartphone or the like.

Das Gargerät 100 ist hier als ein Herd mit einem Garraum 103 ausgebildet, welcher durch eine Garraumtür 104 verschließbar ist. Der Garraum 104 kann durch verschiedene Heizquellen, wie beispielsweise eine Umluftheizquelle, beheizt werden. Weitere Heizquellen, wie ein Oberhitzeheizkörper und ein Unterhitzeheizkörper sowie eine Mikrowellenheizquelle oder eine Dampfquelle und dergleichen können vorgesehen sein.The cooking appliance 100 is here designed as a stove with a cooking chamber 103, which can be closed by a cooking chamber door 104. The cooking chamber 104 can be heated by various heating sources, such as a Umluftheizquelle. Other heating sources, such as a top heat radiator and a bottom heat radiator and a microwave heat source or a vapor source and the like may be provided.

Weiterhin weist die Kocheinrichtung 1 eine hier nicht dargestellte Sensoreinrichtung 3 auf, welche zur Erfassung wenigstens einer wenigstens einen Zustand des Kochbereichs 31 charakterisierenden physikalischen Größe geeignet ist. Beispielsweise kann die Sensoreinrichtung 3 eine Größe erfassen, über welche die Temperatur eines Topfes bestimmt werden kann, der in dem Kochbereich 31 abgestellt ist. Dabei kann jedem Kochbereich 31 und/oder jeder Kochstelle 21 eine Sensoreinrichtung 3 zugordnet sein. Möglich ist aber auch, dass mehrere Kochbereiche 31 und/oder Kochstellen 21 vorgesehen sind, von denen aber nicht alle eine Sensoreinrichtung 3 aufweisen. Die Sensoreinrichtung 3 ist hier mit einer Steuereinrichtung 106 wirkverbunden. Die Steuereinrichtung 106 ist dazu ausgebildet, die Heizeinrichtungen 2 in Abhängigkeit der von der Sensoreinrichtung 3 erfassten Parameter zu steuern.Furthermore, the cooking device 1 on a sensor device 3, not shown here, which is suitable for detecting at least one at least one state of the cooking area 31 characterizing physical size. For example, the sensor device 3 can detect a variable, via which the temperature of a pot can be determined, which is turned off in the cooking area 31. In this case, each cooking area 31 and / or each cooking place 21 can be assigned a sensor device 3. It is also possible that several cooking areas 31 and / or cooking zones 21 are provided, but not all of which have a sensor device 3. The sensor device 3 is operatively connected to a control device 106 here. The control device 106 is designed to control the heating devices 2 as a function of the parameters detected by the sensor device 3.

Die Kocheinrichtung 1 ist bevorzugt für einen automatischen Kochbetrieb ausgebildet und verfügt über verschiedene Automatikfunktionen. Beispielsweise kann mit der Automatikfunktion eine Suppe kurz aufgekocht und anschließend warm gehalten werden, ohne dass ein Benutzer den Kochvorgang betreuen oder eine Heizstufe einstellen muss. Dazu stellt er den Topf mit der Suppe auf eine Kochstelle 21 und wählt über die Bedieneinrichtung 105 die entsprechende Automatikfunktion, hier z. B. ein Aufkochen mit anschließendem Warmhalten bei 60°C oder 70°C oder dgl.The cooking device 1 is preferably designed for an automatic cooking operation and has various automatic functions. For example, with the automatic function, a soup can be boiled briefly and then kept warm, without a user having to supervise the cooking process or set a heating level. For this he sets the pot with the soup on a hob 21 and selects the corresponding automatic function via the operating device 105, here z. As a boil with subsequent keeping warm at 60 ° C or 70 ° C or the like.

Mittels der Sensoreinrichtung 3 wird während des Kochvorgangs die Temperatur des Topfbodens ermittelt. In Abhängigkeit der gemessenen Werte stellt die Steuereinrichtung 106 die Heizleistung der Heizeinrichtung 2 entsprechend ein. Dabei wird die Temperatur des Topfbodens fortlaufend überwacht, sodass bei Erreichen der gewünschten Temperatur bzw. beim Aufkochen der Suppe die Heizleistung heruntergeregelt wird. Beispielsweise ist es durch die Automatikfunktion auch möglich, einen längeren Garvorgang bei einer oder mehreren verschiedenen gewünschten Temperaturen durchzuführen, z. B. um Milchreis langsam gar ziehen zu lassen.By means of the sensor device 3, the temperature of the pot bottom is determined during the cooking process. Depending on the measured values, the control device 106 sets the heating power of the heating device 2 accordingly. In this case, the temperature of the bottom of the pot is monitored continuously, so that when the desired temperature or when boiling the soup, the heating power is regulated down. For example, it is also possible by the automatic function, a longer cooking process at one or more to perform various desired temperatures, for. B. to slowly let rice pudding draw.

In der Figur 2 ist eine Kocheinrichtung 1 in einer geschnittenen Seitenansicht stark schematisiert dargestellt. Die Kocheinrichtung 1 weist hier eine als Glaskeramikplatte 15 ausgebildete Trägereinrichtung 5 auf. Die Glaskeramikplatte 15 kann insbesondere als Ceranfeld oder dergleichen ausgebildet sein oder wenigstens ein solches umfassen. Möglich sind auch andere Arten von Trägereinrichtungen 5. Auf der Glaskeramikplatte 15 befindet sich hier ein Kochgeschirr oder Gargutbehälter 200, beispielsweise ein Topf oder eine Pfanne, in welchem Gargut bzw. Speisen gegart werden können. Weiterhin ist eine Sensoreinrichtung 3 vorgesehen, welche hier Wärmestrahlung in einem Erfassungsbereich 83 erfasst. Der Erfassungsbereich 83 ist dabei in Einbaulage der Kocheinrichtung 1 oberhalb der Sensoreinrichtung 3 vorgesehen und erstreckt sich nach oben durch die Glaskeramikplatte 15 bis hin zum Gargutbehälter 200 und darüber hinaus, falls dort kein Gargutbehälter 200 platziert ist. Unterhalb der Glaskeramikplatte 15 ist eine Induktionseinrichtung 12 zur Beheizung des Kochbereichs 31 angebracht. Die Induktionseinrichtung 12 ist hier ringförmig ausgebildet und weist in der Mitte eine Ausnehmung auf, in welcher die Sensoreinrichtung 3 angebracht ist. Eine solche Anordnung der Sensoreinrichtung 3 hat den Vorteil, dass auch bei einem nicht mittig auf der Kochstelle 21 ausgerichtetem Gargutbehälter 200 dieser noch in dem Erfassungsbereich 83 der Sensoreinrichtung steht. In anderen, hier nicht gezeigten Ausführungsformen kann die Sensoreinrichtung 3 auch nicht mittig in der Induktionseinrichtung angeordnet sein. Weist eine Induktionseinrichtung beispielsweise eine Zweikreisinduktionsspule auf, so kann wenigstens eine Sensoreinrichtung 3 in einem zwischen den zwei Induktionsspulen der Induktionseinrichtung vorgesehenen Zwischenraum angeordnet sein.In the FIG. 2 a cooking device 1 is shown in a sectional side view very schematic. The cooking device 1 here has a carrier device 5 designed as a glass ceramic plate 15. The glass ceramic plate 15 may in particular be designed as a ceramic hob or the like or at least comprise such. Also possible are other types of support means 5. On the glass ceramic plate 15 is here a cookware or food containers 200, such as a pot or a pan, in which food or food can be cooked. Furthermore, a sensor device 3 is provided which detects heat radiation in a detection region 83 here. The detection area 83 is provided in the installed position of the cooking device 1 above the sensor device 3 and extends upward through the glass ceramic plate 15 to the food container 200 and beyond, if there is no food container 200 is placed there. Below the glass ceramic plate 15, an induction device 12 for heating the cooking area 31 is attached. The induction device 12 is here annular and has in the middle a recess in which the sensor device 3 is mounted. Such an arrangement of the sensor device 3 has the advantage that it is still in the detection range 83 of the sensor device even if the food container 200 is not centered on the cooking point 21. In other embodiments, not shown here, the sensor device 3 may also not be arranged centrally in the induction device. If an induction device has, for example, a dual-circuit induction coil, then at least one sensor device 3 can be arranged in a space provided between the two induction coils of the induction device.

Die Figur 3 zeigt eine schematisierte Kocheinrichtung 1 in einer geschnittenen Seitenansicht. Die Kocheinrichtung 1 weist eine Glaskeramikplatte 15 auf, unterhalb welcher die Induktionseinrichtung 12 und die Sensoreinrichtung 3 angebracht sind.The FIG. 3 shows a schematic cooking device 1 in a sectional side view. The cooking device 1 has a glass ceramic plate 15, below which the induction device 12 and the sensor device 3 are mounted.

Die Sensoreinrichtung 3 weist eine erste Sensoreinheit 13 und eine andere Sensoreinheit 23 auf. Beide Sensoreinheiten 13, 23 sind zur berührungslosen Erfassung von Wärmestrahlung geeignet und als Thermosäule bzw. Thermopile ausgebildet. Die Sensoreinheiten 13, 23 sind mit jeweils einer Filtereinrichtung 43, 53 ausgestattet und zur Erfassung von Wärmestrahlung, welche vom Kochbereich 31 ausgeht, vorgesehen. Die Wärmestrahlung geht beispielsweise vom Boden eines Gargutbehälters 200 aus, durchdringt die Glaskeramikplatte 15 und gelangt auf die Sensoreinheiten 13, 23. Die Sensoreinrichtung 3 ist vorteilhafterweise direkt unterhalb der Glaskeramikplatte 15 angebracht, um einen möglichst großen Anteil der vom Kochbereich 31 ausgehenden Wärmestrahlung ohne große Verluste erfassen zu können. Damit sind die Sensoreinheiten 13, 23 dicht unterhalb der Glaskeramikplatte 15 vorgesehen.The sensor device 3 has a first sensor unit 13 and another sensor unit 23. Both sensor units 13, 23 are suitable for non-contact detection of thermal radiation and designed as a thermopile or thermopile. The sensor units 13, 23 are each equipped with a filter device 43, 53 and provided for detecting heat radiation emanating from the cooking area 31. The heat radiation originates, for example, from the bottom of a food container 200, penetrates the glass ceramic plate 15 and reaches the sensor units 13, 23. The sensor device 3 is advantageously mounted directly underneath the glass ceramic plate 15 in order to maximize the proportion of the cooking area 31 outgoing heat radiation without being able to detect large losses. Thus, the sensor units 13, 23 are provided close to the glass ceramic plate 15.

Weiterhin ist eine magnetische Abschirmeinrichtung 4 vorgesehen, welche hier aus einem Ferritkörper 14 besteht. Der Ferritkörper 14 ist hier im Wesentlichen als ein hohler Zylinder ausgebildet und umgibt ringartig die Sensoreinheiten 13, 23. Die magnetische Abschirmeinrichtung 4 schirmt die Sensoreinrichtung 3 gegen elektromagnetische Wechselwirkungen und insbesondere gegen das elektromagnetische Feld der Induktionseinrichtung 12 ab. Ohne eine solche Abschirmung könnte das magnetische Feld, welches die Induktionseinrichtung 12 beim Betrieb erzeugt, in unerwünschter Weise auch Teile der Sensoreinrichtung 3 erwärmen und somit zu einer unzuverlässigen Temperaturerfassung und einer schlechteren Messgenauigkeit führen. Die magnetische Abschirmeinrichtung 4 verbessert somit die Genauigkeit und Reproduzierbarkeit der Temperaturerfassung erheblich.Furthermore, a magnetic shielding device 4 is provided, which consists of a ferrite body 14 here. The ferrite body 14 is essentially designed here as a hollow cylinder and surrounds the sensor units 13, 23 in an annular manner. The magnetic shielding device 4 shields the sensor device 3 against electromagnetic interactions and in particular against the electromagnetic field of the induction device 12. Without such shielding, the magnetic field generated by induction device 12 during operation could undesirably heat parts of sensor device 3 as well, resulting in unreliable temperature sensing and inferior measurement accuracy. The magnetic shielding device 4 thus considerably improves the accuracy and reproducibility of the temperature detection.

Die magnetische Abschirmeinrichtung 4 kann auch wenigstens zu einem Teil aus wenigstens einem wenigstens teilweise magnetischen Material und einem wenigstens teilweise elektrisch nicht-leitenden Material bestehen. Das magnetische Material und das elektrisch nicht-leitende Material können dabei abwechselnd und schichtartig angeordnet sein. Möglich sind auch andere Materialien bzw. Werkstoffe, welche wenigstens teilweise magnetische Eigenschaften aufweisen und zudem elektrisch isolierende Eigenschaften oder wenigstens eine geringe elektrische Leitfähigkeit aufweisen.The magnetic shielding device 4 may also consist at least in part of at least one at least partially magnetic material and an at least partially electrically non-conductive material. The magnetic material and the electrically non-conductive material may be arranged alternately and in layers. Also possible are other materials or materials which have at least partially magnetic properties and also have electrically insulating properties or at least low electrical conductivity.

Die Sensoreinrichtung 3 weist wenigstens eine optische Schirmeinrichtung 7 auf, welche dazu vorgesehen ist, Strahlungseinflüsse und insbesondere Wärmestrahlung abzuschirmen, die von außerhalb des Erfassungsbereichs 83 auf die Sensoreinheiten 13, 23 wirken. Dazu ist die optische Schirmeinrichtung 7 hier als eine Röhre oder ein Zylinder 17 ausgebildet, wobei der Zylinder 17 hohl ausgestaltet ist und die Sensoreinheiten 13, 23 etwa ringförmig umgibt. Der Zylinder 17 ist hier aus Edelstahl gefertigt. Das hat den Vorteil, dass der Zylinder 17 eine reflektive Oberfläche aufweist, welche einen großen Anteil der viel Wärmestrahlung reflektiert bzw. möglichst wenig Wärmestrahlung absorbiert. Die hohe Reflektivität der Oberfläche an der Außenseite des Zylinders 17 ist besonders vorteilhaft für die Abschirmung gegen Wärmestrahlung. Die hohe Reflektivität der Oberfläche an der Innenseite des Zylinders 17 ist auch vorteilhaft, um Wärmestrahlung aus (und insbesondere nur aus) dem Erfassungsbereich 83 zu den Sensoreinheiten 13, 23 hinzuleiten. Die optische Schirmeinrichtung 7 kann auch als eine Wandung ausgestaltet sein, welche die Sensoreinrichtung 13, 23 wenigstens teilweise und bevorzugt ringartig umgibt. Der Querschnitt kann rund, mehreckig, oval oder abgerundet sein. Möglich ist auch eine Ausgestaltung als Konus.The sensor device 3 has at least one optical screen device 7, which is provided to shield radiation influences and in particular heat radiation, which act on the sensor units 13, 23 from outside the detection zone 83. For this purpose, the optical shield device 7 is designed here as a tube or a cylinder 17, wherein the cylinder 17 is hollow and the sensor units 13, 23 surrounds approximately annular. The cylinder 17 is made of stainless steel here. This has the advantage that the cylinder 17 has a reflective surface which reflects a large proportion of the much heat radiation or absorbs as little heat radiation as possible. The high reflectivity of the surface on the outside of the cylinder 17 is particularly advantageous for the shielding against thermal radiation. The high reflectivity of the surface on the inside of the cylinder 17 is also advantageous in order to direct thermal radiation from (and in particular only out) the detection area 83 to the sensor units 13, 23. The optical screen device 7 can also be configured as a wall, which surrounds the sensor device 13, 23 at least partially and preferably annularly. The cross section may be round, polygonal, oval or rounded. Also possible is a configuration as a cone.

Weiterhin ist eine Isolierungseinrichtung 8 zur thermischen Isolierung vorgesehen, welche zwischen der optischen Schirmeinrichtung 7 und der magnetischen Abschirmeinrichtung 4 angeordnet ist. Die Isolierungseinrichtung 8 besteht hier aus einer Luftschicht 18, welche sich zwischen dem Ferritkörper 14 und dem Zylinder 17 aufhält. Vorzugsweise findet kein Austausch mit der Umgebungsluft statt, um Konvektion zu vermeiden. Möglich ist aber auch ein Austausch mit der Umgebungsluft. Durch die Isolierungseinrichtung 8 wird insbesondere einer Wärmeleitung vom Ferritkörper 14 zum Zylinder 17 entgegen gewirkt. Zudem ist der Zylinder 17, wie bereits oben erwähnt, mit einer reflektierenden Oberfläche ausgerüstet, um einem Wärmeübergang vom Ferritkörper 14 zum Zylinder 17 durch Wärmestrahlung entgegen zu wirken. Eine solche Zwiebelschalen-artige Anordnung mit einer äußeren magnetischen Abschirmeinrichtung 4 und einer inneren optischen Schirmeinrichtung 7 sowie einer dazwischen liegenden Isolierungseinrichtung 8 bietet eine besonders gute Abschirmung der Sensoreinheiten 13, 23 vor Strahlungseinflüssen von außerhalb des Erfassungsbereichs 83. Das wirkt sich sehr vorteilhaft auf die Reproduzierbarkeit bzw. Zuverlässigkeit der Temperaturerfassung aus. Die Isolierungseinrichtung 8 hat insbesondere eine Dicke zwischen etwa 0,5 mm und 5 mm und bevorzugt eine Dicke von 0,8 mm bis 2 mm und besonders bevorzugt eine Dicke von circa 1 mm.Furthermore, an insulation device 8 for thermal insulation is provided, which is arranged between the optical shield device 7 and the magnetic shielding device 4. The insulation device 8 consists here of an air layer 18, which is between the ferrite 14 and the cylinder 17. Preferably, there is no exchange with the ambient air to avoid convection. But it is also possible an exchange with the ambient air. By the insulation device 8 in particular a heat conduction from the ferrite 14 to the cylinder 17 is counteracted. In addition, the cylinder 17, as already mentioned above, equipped with a reflective surface to counteract heat transfer from the ferrite 14 to the cylinder 17 by heat radiation. Such an onion-dish-like arrangement with an outer magnetic shielding device 4 and an inner optical shield device 7 and an insulating device 8 located between them provides a particularly good shielding of the sensor units 13, 23 from radiation influences from outside the detection range 83. This has a very advantageous effect on the reproducibility or reliability of the temperature detection. The insulation device 8 has, in particular, a thickness of between approximately 0.5 mm and 5 mm and preferably a thickness of 0.8 mm to 2 mm and particularly preferably a thickness of approximately 1 mm.

Die Isolierungseinrichtung 8 kann aber auch wenigstens ein Medium mit einer entsprechend geringen Wärmeleitung, wie z. B. ein Schaumstoffmaterial und/oder ein Polystyrolkunststoff oder einen anderen geeigneten Isolierstoff umfassen.The isolation device 8 may also be at least one medium with a correspondingly low heat conduction, such. B. include a foam material and / or a polystyrene plastic or other suitable insulating material.

Die Sensoreinheiten 13, 23 sind hier an einer thermischen Ausgleichseinrichtung 9 thermisch leitend angeordnet und insbesondere thermisch leitend mit der thermischen Ausgleichseinrichtung 9 gekoppelt. Die thermische Ausgleichseinrichtung 9 weist dazu zwei Koppeleinrichtungen 29 auf, welche hier als Vertiefungen ausgebildet sind, in denen die Sensoreinheiten 13, 23 passgenau eingebettet sind. Dadurch wird gewährleistet, dass sich die Sensoreinheiten 13, 23 auf einem gemeinsamen und relativ konstanten Temperaturniveau befinden. Zudem sorgt die thermische Ausgleichseinrichtung 9 für eine homogene Eigentemperatur der Sensoreinheit 13, 23, wenn sich diese im Betrieb der Kocheinrichtung 1 erwärmt. Eine ungleiche Eigentemperatur kann insbesondere bei als Thermosäulen ausgebildeten Sensoreinheiten 13, 23 zu Artefakten bei der Erfassung führen. Zur Vermeidung einer Erwärmung der thermischen Ausgleichseinrichtung 9 durch den Zylinder 17, ist eine Beabstandung zwischen Zylinder 17 und thermischer Ausgleichseinrichtung 9 vorgesehen. Die Kupferplatte 19 kann auch als Boden 27 des Zylinders 17 vorgesehen sein.The sensor units 13, 23 are arranged here in a thermally conductive manner on a thermal compensation device 9 and in particular are coupled in a thermally conductive manner to the thermal compensation device 9. The thermal compensation device 9 has for this purpose two coupling devices 29, which are formed here as depressions in which the sensor units 13, 23 are embedded accurately. This ensures that the sensor units 13, 23 are at a common and relatively constant temperature level. In addition, the thermal compensation device 9 ensures a homogeneous temperature of the sensor unit 13, 23, when it heats up during operation of the cooking device 1. An unequal own temperature can lead to artefacts during the detection, in particular in the case of sensor units 13, 23 designed as thermopiles. To avoid heating the thermal compensation device 9 by the cylinder 17, a spacing between cylinder 17 and thermal compensation device 9 is provided. The copper plate 19 may also be provided as the bottom 27 of the cylinder 17.

Um eine geeignete thermische Stabilisierung zu ermöglichen, ist die thermische Ausgleichseinrichtung 9 hier als eine massive Kupferplatte 19 ausgebildet. Möglich ist aber auch wenigstens zum Teil ein anderer Werkstoff mit einer entsprechend hohen Wärmekapazität und/oder einer hohen Wärmeleitfähigkeit.In order to enable a suitable thermal stabilization, the thermal compensation device 9 is designed here as a solid copper plate 19. It is possible also at least partly another material with a correspondingly high heat capacity and / or a high thermal conductivity.

Die Sensoreinrichtung 3 weist hier eine Strahlungsquelle 63 auf, welche zur Bestimmung der Reflexionseigenschaften des Messsystems bzw. des Emissionsgrades eines Gargutbehälters 200 einsetzbar ist. Die Strahlungsquelle 63 ist hier als eine Lampe 111 ausgebildet, welche ein Signal im Wellenlängenbereich des Infrarotlichts sowie des sichtbaren Lichts aussendet. Die Strahlungsquelle 63 kann auch als Diode oder dergleichen ausgebildet sein. Die Lampe 111 wird hier neben der Reflexionsbestimmung auch zur Signalisierung des Betriebszustandes der Kocheinrichtung 1 eingesetzt.The sensor device 3 here has a radiation source 63, which can be used to determine the reflection properties of the measuring system or the emissivity of a food container 200. The radiation source 63 is embodied here as a lamp 111, which emits a signal in the wavelength range of the infrared light and the visible light. The radiation source 63 may also be formed as a diode or the like. The lamp 111 is used here in addition to the reflection determination for signaling the operating state of the cooking device 1.

Um die Strahlung der Lampe 111 auf den Erfassungsbereich 83 zu fokussieren, ist ein Bereich der thermischen Ausgleichseinrichtung 9 bzw. der Kupferplatte 19 als ein Reflektor 39 ausgebildet. Dazu weist die Kupferplatte 19 eine konkav gestaltete Senke auf, in welcher die Lampe 111 angeordnet ist. Die Kupferplatte 19 ist zudem mit einer goldhaltigen Beschichtung überzogen, um die Reflektivität zu erhöhen. Die goldhaltige Schicht hat den Vorteil, dass sie die thermische Ausgleichseinrichtung 9 auch vor Korrosion schützt.In order to focus the radiation of the lamp 111 onto the detection region 83, a region of the thermal compensation device 9 or the copper plate 19 is formed as a reflector 39. For this purpose, the copper plate 19 has a concave-shaped depression, in which the lamp 111 is arranged. The copper plate 19 is also coated with a gold-containing coating to increase the reflectivity. The gold-containing layer has the advantage that it also protects the thermal compensation device 9 from corrosion.

Die thermische Ausgleichseinrichtung 9 ist an einer als Kunststoffhalter ausgeführten Halteeinrichtung 10 angebracht. Die Halteeinrichtung 10 weist eine hier nicht dargestellte Verbindungseinrichtung 20 auf, mittels welcher die Halteeinrichtung 10 an einer Auflageeinrichtung 30 verrastbar ist. Die Auflageeinrichtung 30 ist hier als eine Leiterkarte 50 ausgebildet. Auf der Auflageeinrichtung 30 bzw. der Leiterkarte 50 können auch weitere Bauteile vorgesehen sein, wie z. B elektronische Bauelemente, Steuer- und Recheneinrichtungen und/oder Befestigungs- oder Montageelemente.The thermal compensation device 9 is attached to a holding device 10 designed as a plastic holder. The holding device 10 has a connecting device 20, not shown here, by means of which the holding device 10 can be latched to a support means 30. The support device 30 is formed here as a printed circuit board 50. On the support means 30 and the circuit board 50 also other components may be provided, such. B electronic components, control and computing devices and / or mounting or mounting elements.

Zwischen der Glaskeramikplatte 15 und der Induktionseinrichtung 12 ist eine Dichtungseinrichtung 6 vorgesehen, welche hier als eine Mikanitschicht 16 ausgebildet ist. Die Mikanitschicht 16 dient zur thermischen Isolierung, damit die Induktionseinrichtung 12 nicht durch die Wärme des Kochbereichs 31 erhitzt wird. Zudem ist hier noch eine Mikanitschicht 16 zur thermischen Isolierung zwischen dem Ferritkörper 14 und der Glaskeramikplatte 15 vorgesehen. Das hat den Vorteil, dass die Wärmeübertragung von der im Betrieb heißen Glaskeramikplatte 15 zum Ferritkörper 14 stark einschränkt ist. Dadurch geht vom Ferritkörper 14 kaum Wärme aus, welche auf die Isolierungseinrichtung 8 oder die optische Schirmeinrichtung übertragen werden könnte. Die Mikanitschicht 16 wirkt somit einem unerwünschten Wärmeübergang auf die Sensoreinrichtung 3 entgegen, was die Zuverlässigkeit der Messungen erhöht. Zudem dichtet die Mikantischicht 16 die Sensoreinrichtung 3 staubdicht gegen die restlichen Bereiche der Kocheinrichtung 1 ab. Die Mikanitschicht 16 hat insbesondere eine Dicke zwischen etwa 0,2 mm und 4 mm, vorzugsweise von 0,2 mm bis 1,5 mm und besonders bevorzugt eine Dicke von 0,3 mm bis 0,8 mm.Between the glass ceramic plate 15 and the induction device 12, a sealing device 6 is provided, which is designed here as a micanite layer 16. The micanite layer 16 is used for thermal insulation, so that the induction device 12 is not heated by the heat of the cooking area 31. In addition, a micanite layer 16 for thermal insulation between the ferrite body 14 and the glass-ceramic plate 15 is provided here. This has the advantage that the heat transfer from the hot in the glass ceramic plate 15 to the ferrite 14 is severely limited. As a result, hardly any heat emanates from the ferrite body 14, which could be transmitted to the insulation device 8 or the optical screen device. The micanite layer 16 thus counteracts an undesirable heat transfer to the sensor device 3, which increases the reliability of the measurements. In addition, the microlayer 16 seals the sensor device 3 dust-tight against the remaining regions of the cooking device 1. The micanite layer 16 has in particular a thickness between about 0.2 mm and 4 mm, preferably from 0.2 mm to 1.5 mm and particularly preferably a thickness of 0.3 mm to 0.8 mm.

Die Kocheinrichtung 1 weist an der Unterseite eine Abdeckeinrichtung 41 auf, welche hier als eine Aluminiumplatte ausgebildet ist und die Induktionseirichtung 12 abdeckt. Die Abdeckeirichtung 41 ist mit einem Gehäuse 60 der Sensoreinrichtung 3 über eine Verschraubung 122 verbunden. Innerhalb des Gehäuses 60 ist die Sensoreinrichtung 3 relativ zur der Glaskeramikplatte 15 elastisch angeordnet. Dazu ist eine Dämpfungseinrichtung 102 vorgesehen, welche hier eine Federeinrichtung 112 aufweist.The cooking device 1 has on the underside a cover 41, which is designed here as an aluminum plate and covers the Induktionseirichtung 12. The covering device 41 is connected to a housing 60 of the sensor device 3 via a screw connection 122. Within the housing 60, the sensor device 3 is arranged elastically relative to the glass ceramic plate 15. For this purpose, a damping device 102 is provided which has a spring device 112 here.

Die Federeinrichtung 112 ist an einem unteren Ende mit der Innenseite des Gehäuses 60 und an einem oberen Ende mit der Leiterkarte 50 verbunden. Dabei drückt die Federeinrichtung 112 die Leiterkarte 50 mit dem Ferritkörper 14 und die auf diesem angebrachte Mikanitschicht 16 nach oben gegen die Glaskeramikplatte 15. Eine solche elastische Anordnung ist besonders vorteilhaft, da die Sensoreinrichtung 3 aus messtechnischen Gründen möglichst nah an der Glaskeramikplatte 15 angeordnet sein soll. Diese direkt benachbarte Anordnung der Sensoreinrichtung 3 an der Glaskeramikplatte 15 könnte bei Stößen oder Schlägen auf die Glaskeramikplatte 15 zu Beschädigungen an dieser führen. Durch die elastische Aufnahme der Sensoreinrichtung 3 relativ zu der Trägereinrichtung 5 werden Stöße oder Schläge auf die Glaskeramikplatte 15 gedämpft und solche Schäden somit zuverlässig vermieden.The spring device 112 is connected at a lower end to the inside of the housing 60 and at an upper end to the printed circuit board 50. The spring device 112 presses the printed circuit board 50 with the ferrite body 14 and the micanite layer 16 mounted thereon upwards against the glass ceramic plate 15. Such an elastic arrangement is particularly advantageous since the sensor device 3 should be arranged as close as possible to the glass ceramic plate 15 for metrological reasons , This directly adjacent arrangement of the sensor device 3 on the glass ceramic plate 15 could cause damage to the glass ceramic plate 15 in the event of impacts or impacts. Due to the elastic reception of the sensor device 3 relative to the carrier device 5, shocks or impacts are damped on the glass ceramic plate 15 and thus reliably prevent such damage.

Eine beispielhafte Messung, bei welcher die Temperatur des Bodens eines auf der Glaskeramikplatte 15 stehenden Topfes mit der Sensoreinrichtung 3 bestimmt werden soll, ist nachfolgend kurz erläutert:

  • Bei der Messung erfasst die erste Sensoreinheit 13 vom Topfboden ausgehende Wärmestrahlung als Mischstrahlung zusammen mit der Wärmestrahlung, welche von der Glaskeramikplatte 15 ausgesendet wird. Um daraus eine Strahlungsleistung des Topfbodens ermitteln zu können, wird der Anteil der von der Glaskeramikplatte 15 ausgehenden Strahlungsleistung aus der Mischstrahlungsleistung herausgerechnet. Um diesen Anteil zu bestimmen, ist die andere Sensoreinheit 23 dazu vorgesehen, nur die Wärmestrahlung der Glaskeramikplatte 15 zu erfassen. Dazu weist die andere Sensoreinheit 23 eine Filtereinrichtung 53 auf, welche im Wesentlichen nur Strahlung mit einer Wellenlänge größer 5 µm zur Sensoreinheit 23 durchlässt. Grund dafür ist, dass Strahlung mit einer Wellenlänge größer 5 µm nicht bzw. kaum von der Glaskeramikplatte 15 durchgelassen wird. Die andere Sensoreinheit 23 erfasst also im Wesentlichen die von der Glaskeramikplatte 15 ausgesendete Wärmestrahlung. Mit der Kenntnis des Anteils der Wärmestrahlung, welche von der Glaskeramikplatte 15 ausgesendet wird, kann in an sich bekannterweise der Anteil der Wärmestrahlung, welche vom Topfboden ausgeht, bestimmt werden.
An exemplary measurement in which the temperature of the bottom of a standing on the glass ceramic plate 15 pot is to be determined with the sensor device 3 is briefly explained below:
  • During the measurement, the first sensor unit 13 detects heat radiation emanating from the bottom of the pot as mixed radiation together with the heat radiation which is emitted by the glass-ceramic plate 15. In order to be able to determine therefrom a radiation power of the pot bottom, the portion of the radiation output emanating from the glass ceramic plate 15 is calculated out of the mixed radiation power. In order to determine this proportion, the other sensor unit 23 is provided to detect only the heat radiation of the glass-ceramic plate 15. For this purpose, the other sensor unit 23 has a filter device 53, which transmits essentially only radiation having a wavelength greater than 5 μm to the sensor unit 23. The reason for this is that radiation with a wavelength greater than 5 microns is not or hardly transmitted by the glass ceramic plate 15. The other sensor unit 23 thus essentially detects the heat radiation emitted by the glass ceramic plate 15. With the knowledge of the portion of the heat radiation, which of the Glass ceramic plate 15 is emitted, can be determined in per se known, the proportion of heat radiation, which emanates from the bottom of the pot.

Für ein gutes Messergebnis ist es wünschenswert, dass ein möglichst großer Teil der vom Topfboden ausgehenden Wärmestrahlung auf die erste Sensoreinheit 13 gelangt und von dieser erfasst wird. Für Strahlung im Wellenlängenbereich von etwa 4 µm weist die Glaskeramikplatte 15 hier eine Transmission von ungefähr 50% auf. Somit kann in diesem Wellenlängenbereich ein großer Teil der vom Topfboden ausgehenden Wärmestrahlung durch die Glaskeramikplatte 15 gelangen. Eine Erfassung in diesem Wellenlängenbereich ist daher besonders günstig. Entsprechend ist die erste Sensoreinheit 13 mit einer Filtereinrichtung 43 ausgestattet, die für Strahlung in diesem Wellenlängenbereich sehr durchlässig ist, während die Filtereinrichtung 43 Strahlung aus anderen Wellenlängenbereichen im Wesentlichen reflektiert. Die Filtereinrichtungen 43, 53 sind hier jeweils als ein Interferenzfilter 433 ausgebildet und insbesondere als ein Bandpassfilter bzw. als ein Langpassfilter ausgeführt. In anderen Ausführungsformen kann eine Erfassung der Strahlung im Wellenlängenbereich zwischen 3µm und 5µm und insbesondere im Bereich von 3,1µm bis 4,2µm vorgesehen sein, wobei die jeweilige Sensoreinheit und Filtereinrichtung dann jeweils entsprechend ausgebildet bzw. angepasst ist.For a good measurement result, it is desirable for as much of the heat radiation emanating from the bottom of the pot to reach the first sensor unit 13 and to be detected by it. For radiation in the wavelength range of about 4 microns, the glass ceramic plate 15 here has a transmission of about 50%. Thus, in this wavelength range, a large part of the heat radiation emanating from the bottom of the pot can pass through the glass-ceramic plate 15. Detection in this wavelength range is therefore particularly favorable. Accordingly, the first sensor unit 13 is equipped with a filter device 43 which is very permeable to radiation in this wavelength range, while the filter device 43 substantially reflects radiation from other wavelength ranges. The filter devices 43, 53 are here each formed as an interference filter 433 and in particular designed as a bandpass filter or as a long-pass filter. In other embodiments, a detection of the radiation in the wavelength range between 3 .mu.m and 5 .mu.m and in particular in the range of 3.1 .mu.m to 4.2 .mu.m be provided, wherein the respective sensor unit and filter device is then respectively formed or adapted accordingly.

Die Ermittlung einer Temperatur aus einer bestimmten Strahlungsleistung ist ein an sich bekanntes Verfahren. Entscheidend dabei ist, dass der Emissionsgrad des Körpers bekannt ist, von welchem die Temperatur bestimmt werden soll. Im vorliegenden Fall muss für eine zuverlässige Temperaturbestimmung also der Emissionsgrad des Topfbodens bekannt sein oder ermittelt werden. Die Sensoreinrichtung 3 hat hier den Vorteil, dass sie zur Bestimmung des Emissionsgrades eines Gargutbehälters 200 ausgebildet ist. Das ist besonders vorteilhaft, da somit ein beliebiges Kochgeschirr verwendet werden kann und nicht etwa nur ein bestimmter Gargutbehälter, dessen Emissionsgrad vorher bekannt sein muss.The determination of a temperature from a specific radiant power is a known method. The decisive factor is that the emissivity of the body is known, from which the temperature is to be determined. In the present case, therefore, the emissivity of the pot bottom must be known or determined for a reliable temperature determination. The sensor device 3 here has the advantage that it is designed to determine the emissivity of a Gargutbehälters 200. This is particularly advantageous, since thus any cookware can be used and not just a specific food container whose emissivity must be known in advance.

Um den Emissionsgrad des Topfbodens zu bestimmten, sendet die Lampe 111 ein Signal, insbesondere ein Lichtsignal, aus, welches einen Anteil an Wärmestrahlung im Wellenlängenbereich des Infrarotlichts aufweist. Die Strahlungsleistung bzw. die Wärmestrahlung der Lampe 111 gelangt durch die Glaskeramikplatte 15 auf den Topfboden und wird dort teilweise reflektiert und teilweise absorbiert. Die vom Topfboden reflektierte Strahlung gelangt durch die Glaskeramikplatte 15 zurück zu der Sensoreinrichtung 3, wo sie von der ersten Sensoreinheit 13 erfasst wird. Gleichzeitig mit der vom Topfboden reflektierten und von der Glaskeramikplatte 15 transmittierten Signalstrahlung gelangt auch die eigene Wärmestrahlung des Topfbodens sowie die Wärmestrahlung der Glaskeramikplatte 15 auf die erste Sensoreinheit 13. Daher wird anschließend die Lampe 111 ausgeschaltet und nur die Wärmestrahlung des Topfbodens und der Glaskeramikplatte 15 erfasst. Der Anteil der reflektierten Signalstrahlung, aus dem der Emissionsgrad des Topfbodens ermittelbar ist, ergibt sich dann prinzipiell als Differenz aus der zuvor erfassten Gesamtstrahlung bei eingeschalteter Lampe 111 abzüglich der Wärmestrahlung des Topfbodens und der Glaskeramikplatte bei ausgeschalteter Lampe 111.To determine the emissivity of the pot bottom, the lamp 111 emits a signal, in particular a light signal, which has a proportion of heat radiation in the wavelength range of the infrared light. The radiant power or thermal radiation of the lamp 111 passes through the glass ceramic plate 15 on the bottom of the pot and is partially reflected there and partially absorbed. The radiation reflected from the bottom of the pot passes through the glass-ceramic plate 15 back to the sensor device 3, where it is detected by the first sensor unit 13. At the same time as the signal radiation reflected from the bottom of the pot and transmitted by the glass-ceramic plate 15, its own heat radiation from the bottom of the pot and heat radiation from the glass-ceramic plate 15 also reach the first sensor unit 13. Therefore, the lamp 111 is then switched off and only the Thermal radiation of the pot bottom and the glass ceramic plate 15 detected. The proportion of the reflected signal radiation, from which the emissivity of the pot bottom can be determined, then arises in principle as a difference from the previously detected total radiation with the lamp 111 switched on minus the heat radiation of the pot bottom and the glass ceramic plate with the lamp 111 switched off.

Gemäß einer Ausführungsform ist wenigstens ein Referenzwert hinsichtlich reflektierter Strahlung und zugehörigem Emissionsgrad in einer mit der Sensoreinrichtung zusammenwirkenden und in den Figuren nicht dargestellten Speichereinheit hinterlegt, wobei die Speichereinheit beispielsweise an der Leiterplatte 50 angeordnet sein kann. Der jeweilige tatsächliche Emissionsgrad des Topfbodens ist dann basierend auf einem Vergleich der reflektierten Signalstrahlung mit dem wenigstens einen Referenzwert ermittelbar.According to one embodiment, at least one reference value with regard to reflected radiation and associated emissivity is deposited in a memory unit which cooperates with the sensor device and is not shown in the figures, wherein the memory unit can be arranged, for example, on the printed circuit board 50. The respective actual emissivity of the pot bottom can then be determined based on a comparison of the reflected signal radiation with the at least one reference value.

Gemäß einer weiteren Ausführungsform wird der Anteil der vom Topfboden absorbierten Signalstrahlung bestimmt. Dieser ergibt sich nach an sich bekannten Verfahren aus der von der Lampe 111 ausgesendeten Strahlungsleistung abzüglich der vom Topfboden reflektierten Signalstrahlung. Die Strahlungsleistung der Lampe 111 ist dabei entweder fest eingestellt und somit bekannt oder wird beispielsweise durch eine Messung mit der anderen Sensoreinheit 23 bestimmt. Die andere Sensoreinheit 23 erfasst dabei einen Wellenlängenbereich der Signalstrahlung, welche nahezu vollständig von der Glaskeramikplatte 15 reflektiert wird. Somit kann die ausgesendete Strahlungsleistung in sehr gut geeigneter Näherung bestimmt werden, wobei unter anderem eine Wellenlängenabhängigkeit der Strahlungsleitung bzw. das Spektrum der Lampe 111 berücksichtigt werden muss. Mit Kenntnis des Anteils der vom Topfboden absorbierten Signalstrahlung kann der Absorptionsgrad des Topfbodens in bekannter Weise bestimmt werden. Da das Absorptionsvermögen eines Körpers prinzipiell dem Emissionsvermögen eines Körpers entspricht, kann aus dem Absorptionsgrad des Topfbodens der gesuchte Emissionsgrad hergeleitet werden. Mit der Kenntnis des Emissionsgrades und des Anteils der Wärmestrahlung, welche vom Topfboden ausgeht, kann sehr zuverlässig die Temperatur des Topfbodens bestimmt werden.According to a further embodiment, the proportion of the signal radiation absorbed by the bottom of the pot is determined. This results according to methods known per se from the radiation power emitted by the lamp 111 less the signal radiation reflected from the bottom of the pot. The radiation power of the lamp 111 is either fixed and thus known or is determined for example by a measurement with the other sensor unit 23. The other sensor unit 23 detects a wavelength range of the signal radiation, which is almost completely reflected by the glass ceramic plate 15. Thus, the emitted radiation power can be determined in a very suitable approximation, whereby inter alia a wavelength dependence of the radiation line or the spectrum of the lamp 111 must be taken into account. With knowledge of the proportion of the absorbed signal from the bottom of the pot signal radiation, the degree of absorption of the pot bottom can be determined in a known manner. Since the absorption capacity of a body corresponds in principle to the emissivity of a body, the desired emissivity can be derived from the degree of absorption of the pot bottom. With the knowledge of the emissivity and the amount of thermal radiation, which emanates from the bottom of the pot, the temperature of the pot bottom can be determined very reliably.

Der Emissionsgrad wird bevorzugt in möglichst kurzen Intervallen fortlaufend neu bestimmt. Das hat den Vorteil, dass eine spätere Veränderung des Emissionsgrades nicht zu einem verfälschten Messergebnis führt. Eine Veränderung des Emissionsgrades kann beispielsweise dann auftreten, wenn der Kochgeschirrboden unterschiedliche Emissionsgrade aufweist und auf der Kochstelle 21 verschoben wird. Unterschiedliche Emissionsgrade sind sehr häufig an Kochgeschirrböden zu beobachten, da z. B. bereits leichte Verschmutzungen, Korrosionen oder auch unterschiedliche Beschichtungen bzw. Lackierungen einen großen Einfluss auf den Emissionsgrad haben können.The emissivity is preferably continuously redefined in the shortest possible intervals. This has the advantage that a subsequent change in the emissivity does not lead to a falsified measurement result. A change in the emissivity may occur, for example, when the cookware bottom has different emissivities and is displaced on the cooking surface 21. Different emissivities are very common in cookware trays observed because z. B. already light soiling, corrosion or even different coatings or coatings can have a major impact on the emissivity.

Die Lampe 111 wird hier neben der Emissionsgradbestimmung bzw. der Bestimmung des Reflexionsverhaltens des Messsystems auch zur Signalisierung des Betriebszustandes der Kocheinrichtung 1 eingesetzt. Dabei umfasst das Signal der Lampe 111 auch sichtbares Licht, welches durch die Glaskeramikplatte 15 wahrnehmbar ist. Beispielsweise zeigt die Lampe 111 einem Benutzer an, dass eine Automatikfunktion in Betrieb ist. Eine solche Automatikfunktion kann z. B. ein Kochbetrieb sein, bei dem die Heizeinrichtung 2 in Abhängigkeit der ermittelten Topftemperatur automatisch gesteuert wird. Das ist besonders vorteilhaft, da das Aufleuchten der Lampe 111 den Benutzer nicht verwirrt. Der Benutzer weiß erfahrungsgemäß, dass das Aufleuchten eine Betriebsanzeige darstellt und zum normalen Erscheinungsbild der Kocheinrichtung 1 gehört. Er kann sich also sicher sein, dass ein Aufblitzen der Lampe 111 nicht etwa eine Funktionsstörung ist und die Kocheinrichtung 1 möglicherweise nicht mehr richtig funktioniert. Die Lampe 111 kann auch in einer bestimmten Dauer sowie in bestimmten Abständen aufleuchten. Möglich ist es z. B. auch, dass über unterschiedliche Blinkfrequenzen unterschiedliche Betriebszustände ausgegeben werden können. Es sind auch unterschiedliche Signale über unterschiedliche an/aus-Folgen möglich. Vorteilhafterweise ist für jede Kochstelle 21 bzw. jeden (möglichen) Kochbereich 31 eine Sensoreinrichtung 3 mit einer Strahlungsquelle 63 vorgesehen, welche dazu geeignet ist, wenigstens einen Betriebszustand anzuzeigen.The lamp 111 is also used here for signaling the operating state of the cooking device 1 in addition to the determination of the emissivity or the determination of the reflection behavior of the measuring system. In this case, the signal of the lamp 111 also includes visible light, which is perceptible by the glass-ceramic plate 15. For example, the lamp 111 indicates to a user that an automatic function is in operation. Such an automatic function can, for. B. be a cooking operation, in which the heater 2 is controlled automatically in dependence of the determined pot temperature. This is particularly advantageous because the lighting up of the lamp 111 does not confuse the user. The user knows from experience that the lighting is an operation indicator and belongs to the normal appearance of the cooking device 1. He can therefore be sure that a flash of the lamp 111 is not a malfunction and the cooking device 1 may not work properly. The lamp 111 may also light up in a certain duration and at certain intervals. It is possible z. B. also that different operating states can be output via different flashing frequencies. Different signals are also possible via different on / off sequences. Advantageously, a sensor device 3 with a radiation source 63, which is suitable for displaying at least one operating state, is provided for each cooking point 21 or each (possible) cooking region 31.

Für die notwendigen Berechnungen zur Bestimmung der Temperatur sowie für die Auswertung der erfassten Größen kann wenigstens eine Recheneinheit vorgesehen sein. Die Recheneinheit kann dabei wenigstens teilweise auf der Leiterkarte 50 vorgesehen sein. Es kann aber auch beispielsweise die Steuereinrichtung 106 entsprechend ausgebildet sein oder es ist wenigstens eine separate Recheneinheit vorgesehen.At least one arithmetic unit may be provided for the necessary calculations for determining the temperature and for the evaluation of the detected variables. The arithmetic unit can be at least partially provided on the circuit board 50. However, it is also possible, for example, for the control device 106 to be designed accordingly, or at least one separate arithmetic unit is provided.

Die Figur 4 zeigt eine Weiterbildung, bei welcher unterhalb der Glaskeramikplatte 15 ein Sicherheitssensor 73 befestigt ist. Der Sicherheitssensor 73 ist hier als ein temperaturempfindlicher Widerstand ausgebildet, wie beispielsweise ein Heißleiter, insbesondere ein NTC-Sensor, und thermisch leitend mit der Glaskeramikplatte 15 verbunden. Der Sicherheitssensor 73 ist hier dazu vorgesehen, um eine Temperatur des Kochbereichs 31 und insbesondere der Glaskeramikplatte 15 erfassen zu können. Übersteigt die Temperatur einen bestimmten Wert, besteht die Gefahr der Überhitzung und die Heizeinrichtungen 2 werden ausgeschaltet. Dazu ist der Sicherheitssensor 73 mit einer hier nicht dargestellten Sicherheitseinrichtung wirkverbunden, welche in Abhängigkeit der erfassten Temperatur einen Sicherheitszustand auslösen kann. Ein solcher Sicherheitszustand hat z. B. die Abschaltung der Heizeinrichtungen 2 bzw. der Kocheinrichtung 1 zur Folge.The FIG. 4 shows a development in which below the glass ceramic plate 15, a security sensor 73 is attached. The safety sensor 73 is designed here as a temperature-sensitive resistor, such as a thermistor, in particular an NTC sensor, and thermally conductively connected to the glass ceramic plate 15. The safety sensor 73 is provided here to be able to detect a temperature of the cooking area 31 and in particular of the glass ceramic plate 15. If the temperature exceeds a certain value, there is a risk of overheating and the heaters 2 are switched off. For this purpose, the safety sensor 73 is operatively connected to a safety device, not shown here, which can trigger a safety state depending on the detected temperature. Such a security condition has z. B. the shutdown of the heaters 2 and the cooking device 1 result.

Zusätzlich ist der Sicherheitssensor 73 hier als eine weitere Sensoreinheit 33 der Sensoreinrichtung 3 zugeordnet. Dabei werden die von dem Sicherheitssensor 73 erfassten Werte auch für die Bestimmung der Temperatur durch die Sensoreinrichtung 3 berücksichtigt. Insbesondere bei der Bestimmung der Temperatur der Glaskeramikplatte 15 finden die Werte des Sicherheitssensors 73 Verwendung. So kann z. B. die Temperatur, welche mittels der anderen Sensoreinheit 23 über die erfasste Wärmestrahlung bestimmt wurde, mit der vom Sicherheitssensor 73 ermittelten Temperatur verglichen werden. Dieser Abgleich kann einerseits zur Kontrolle der Funktion der Sensoreinrichtung 3 dienen, andererseits aber auch für eine Abstimmung bzw. Einstellung der Sensoreinrichtung 3 eingesetzt werden.In addition, the safety sensor 73 is assigned here as a further sensor unit 33 of the sensor device 3. In this case, the detected by the security sensor 73 Values are also taken into account for the determination of the temperature by the sensor device 3. In particular, when determining the temperature of the glass-ceramic plate 15, the values of the safety sensor 73 are used. So z. B. the temperature, which was determined by means of the other sensor unit 23 on the detected thermal radiation, are compared with the temperature detected by the safety sensor 73. This adjustment can on the one hand serve to control the function of the sensor device 3, but on the other hand can also be used for a tuning or adjustment of the sensor device 3.

In der Figur 5 ist ebenfalls eine Sensoreinrichtung 3 gezeigt, bei welcher ein Sicherheitssensor 73 als eine weitere Sensoreinheit 33 der Sensoreinrichtung 3 zugeordnet ist. Im Unterschied zu der in der Figur 4 beschriebenen Ausgestaltung ist hier aber keine andere Sensoreinheit 23 vorgesehen. Die Aufgabe der anderen Sensoreinheit 23 wird hier durch den Sicherheitssensor 73 übernommen. Der Sicherheitssensor 73 dient zur Ermittlung der Temperatur der Glaskeramikplatte 15. Beispielsweise kann mit Kenntnis dieser Temperatur aus der Wärmestrahlung, welche die erste Sensoreinheit 13 erfasst, der Anteil eines Topfbodens bestimmt werden. Eine solche Ausgestaltung hat den Vorteil, dass die andere Sensoreinheit 23 sowie eine dazugehörende Filtereinrichtung 53 eingespart werden können. Die andere Sensoreinheit 23 kann als zweite Sensoreinheit bezeichnet werden. Die weitere Sensoreinheit 33 kann als dritte Sensoreinheit bezeichnet werden. In der Ausgestaltung nach Fig. 5 sind nur die erste Sensoreinheit und die dritte Sensoreinheit vorgesehen.In the FIG. 5 a sensor device 3 is likewise shown, in which a safety sensor 73 is assigned as a further sensor unit 33 to the sensor device 3. Unlike the one in the FIG. 4 described embodiment, but no other sensor unit 23 is provided here. The task of the other sensor unit 23 is taken over here by the safety sensor 73. The safety sensor 73 is used to determine the temperature of the glass ceramic plate 15. For example, with knowledge of this temperature from the thermal radiation, which detects the first sensor unit 13, the proportion of a pot bottom can be determined. Such a configuration has the advantage that the other sensor unit 23 and an associated filter device 53 can be saved. The other sensor unit 23 may be referred to as a second sensor unit. The further sensor unit 33 may be referred to as a third sensor unit. In the embodiment according to Fig. 5 only the first sensor unit and the third sensor unit are provided.

Eine weitere Ausführung einer Kocheinrichtung 1 ist in der Figur 6 gezeigt. Hier ist eine gemeinsame Dichtungseinrichtung 6 für die Induktionseinrichtung 12 und den Ferritkörper 14 der Sensoreinrichtung 3 vorgesehen. Die Dichtungseinrichtung 6 ist als eine Mikanitschicht 16 ausgebildet, welche im Erfassungsbereich 83 der Sensoreinrichtung 3 eine Ausnehmung aufweist.Another embodiment of a cooking device 1 is in the FIG. 6 shown. Here, a common sealing device 6 for the induction device 12 and the ferrite body 14 of the sensor device 3 is provided. The sealing device 6 is designed as a micanite layer 16 which has a recess in the detection area 83 of the sensor device 3.

Die Figur 7 zeigt eine schematisierte, magnetische Abschirmeinrichtung 4, welche als ein hohler, zylindrischer Ferritkörper 14 ausgebildet ist. Eine solche Ausgestaltung ist besonders vorteilhaft, da der Ferritkörper 14 die zu schützenden Bereiche und Teile ringförmig umschließt. Vorzugsweise weist die Wandung des Ferritkörpers 14 eine Stärke von etwa 1 mm bis 10 mm und insbesondere von 2 mm bis 5 mm auf und besonders bevorzugt von 2,5 mm bis 4 mm und insbesondere von 3 mm oder mehr auf.The FIG. 7 shows a schematic, magnetic shielding 4, which is formed as a hollow, cylindrical ferrite body 14. Such a configuration is particularly advantageous since the ferrite body 14 surrounds the areas and parts to be protected annularly. Preferably, the wall of the ferrite body 14 has a thickness of about 1 mm to 10 mm and in particular from 2 mm to 5 mm, and particularly preferably from 2.5 mm to 4 mm and in particular of 3 mm or more.

In der Figur 8 ist eine optische Schirmeinrichtung 7 schematisch dargestellt, welche hier als ein Zylinder 17 ausgebildet ist. Der Zylinder weist hier drei Rasteinrichtungen 80 auf, die zur Verbindung mit einer Halteeinrichtung 10 geeignet sind.In the FIG. 8 is an optical shield device 7 shown schematically, which is designed here as a cylinder 17. The cylinder has here three locking devices 80, which are suitable for connection to a holding device 10.

Eine thermische Ausgleichseinrichtung 9 ist in der Figur 9 dargestellt. Die thermische Ausgleichseinrichtung 9 ist als eine Kupferplatte 19 ausgeführt. Vorzugsweise weist die Kupferplatte eine Dicke von 0,5 mm bis 4 mm oder sogar 10 mm oder mehr auf und besonders bevorzugt von 0,8 mm bis 2 mm und insbesondere von 1 mm oder mehr. Die Kupferplatte 19 weist hier zwei Koppeleinrichtungen 29 auf. Die Koppeleinrichtung 29 ist dazu geeignet und vorgesehen, eine Sensoreinheit 13, 23 thermisch leitend aufzunehmen. Weiterhin weist die Kupferplatte 19 eine Reflektoreinrichtung 39 auf, welche die Strahlung einer Strahlungsquelle 63 reflektieren und insbesondere bündeln kann.A thermal compensation device 9 is in the FIG. 9 shown. The thermal compensation device 9 is designed as a copper plate 19. Preferably, the copper plate has a thickness of 0.5 mm to 4 mm or even 10 mm or more, and more preferably from 0.8 mm to 2 mm, and more preferably 1 mm or more. The copper plate 19 here has two coupling devices 29. The coupling device 29 is suitable and provided to receive a sensor unit 13, 23 thermally conductive. Furthermore, the copper plate 19 has a reflector device 39, which can reflect the radiation of a radiation source 63 and, in particular, can focus.

Figur 10 zeigt eine Halteeinrichtung 10, die als Kunststoffhalter ausgeführt ist. Die Halteeinrichtung 10 weist vorzugsweise eine Dicke zwischen 0,3 mm und 3 mm oder sogar 6 mm auf und besonders bevorzugt eine Dicke von 1 mm oder mehr. Die Halteeinrichtung 10 umfasst beispielsweise drei Verbindungseinrichtungen, von denen hier nur zwei Verbindungseinrichtungen 20 in der Figur sichtbar sind, mittels welcher die Halteeinrichtung 10 z. B. mit einer Auflageeinrichtung 30 verbindbar ist. Weiterhin weist die Halteeinrichtung 10 drei Aufnahmeeinrichtungen 40 auf, die hier als Stege ausgebildet sind. Die Aufnahmeeinrichtungen 40 sind dazu geeignet, die optische Schirmeinrichtung 7 aufzunehmen und in einem definierten Abstand zu der magnetischen Abschirmeinrichtung 4 anzuordnen. Zur Durchführung von Kontakten sind Aufnahmeöffnungen 70 vorgesehen. Die Halteeinrichtung 10 kann auch weitere, hier nicht gezeigte Aufnahmeeinrichtungen 40 aufweisen, welche z. B. als Vertiefung, Erhebung, Steg und/oder Ringnut oder dergleichen ausgebildet sein können. Solche Aufnahmeeinrichtungen 40 sind insbesondere zur definierten Anordnung einer magnetischen Abschirmeinrichtung 4, einer optischen Schirmeinrichtung 7, einer thermischen Ausgleichseinrichtung 9, einer Isolierungseinrichtung 8 und/oder einer Auflageeinrichtung 30 vorgesehen. FIG. 10 shows a holding device 10, which is designed as a plastic holder. The holding device 10 preferably has a thickness between 0.3 mm and 3 mm or even 6 mm, and particularly preferably a thickness of 1 mm or more. The holding device 10 includes, for example, three connecting devices, of which only two connecting devices 20 are visible in the figure, by means of which the holding device 10 z. B. is connectable to a support device 30. Furthermore, the holding device 10 on three receiving devices 40, which are formed here as webs. The recording devices 40 are suitable for receiving the optical screen device 7 and arranging it at a defined distance from the magnetic shielding device 4. To carry out contacts receiving openings 70 are provided. The holding device 10 may also have further, not shown receptacles 40 which z. B. as a recess, survey, web and / or annular groove or the like may be formed. Such receiving devices 40 are provided in particular for the defined arrangement of a magnetic shielding device 4, an optical shield device 7, a thermal compensation device 9, an insulation device 8 and / or a support device 30.

In Figur 11 ist eine Sensoreinheit 13 zur berührungslosen Erfassung von Wärmestrahlung aufgeführt. Die Sensoreinheit 13 ist als eine Thermosäule bzw. Thermopile ausgebildet. Die Sensoreinheit 13 weist Kontakte auf, um sie beispielsweise mit einer Leiterkarte 50 bzw. Platine zu verbinden. In einem oberen Bereich der Sensoreinheit 13 befindet sich der Bereich, in welchem die Wärmestrahlung erfasst wird. Auf diesem Bereich ist hier eine Filtereinrichtung 43 angeordnet.In FIG. 11 a sensor unit 13 for non-contact detection of heat radiation is listed. The sensor unit 13 is designed as a thermopile or thermopile. The sensor unit 13 has contacts in order to connect them, for example, to a printed circuit board 50 or board. In an upper area of the sensor unit 13 is the area in which the heat radiation is detected. In this area, a filter device 43 is arranged here.

Figur 12a zeigt eine als Thermosäule ausgebildete Sensoreinheit 13 mit einer Filtereinrichtung 43 in einer geschnittenen, schematischen Seitenansicht. Die Filtereinrichtung 43 ist hier auf dem Bereich angeordnet, in welchen die Wärmestrahlung auf die Sensoreinheit 13 trifft und erfasst wird. Die Filtereinrichtung 43 ist hier mit einem adhäsiven Verbindungsmittel 430 thermisch leitend auf der Sensoreinheit 13 befestigt. Das Verbindungsmittel 430 ist hier ein Klebstoff mit einer Wärmeleitfähigkeit von mindestens 1 W m-1 K-1 (W/(mK)) und vorzugsweise von 0,5 W m-1 K-1 (W/(mK)). Möglich und bevorzugt ist auch eine Wärmeleitfähigkeit von mehr als 4 W m-1 K-1(W/(mK)). Dadurch kann Wärme von der Filtereinrichtung 43 zu der Sensoreinheit 43 abgeleitet werden. Durch die Ableitung der Wärme wird verhindert, dass die Sensoreinheit 13 die Eigenwärme der Filtereinrichtung 43 erfasst, was zu einem verfälschten Messergebnis führen würde. Beispielsweise kann die Wärme von der Filtereinrichtung 43 über die Sensoreinheit 13 auch zu der thermischen Ausgleichseinrichtung 9 bzw. der Kupferplatte 19 weitergeleitet werden. Eine solche indirekte Ableitung der Wärme von der Filtereinrichtung 43 über die Sensoreinheit 13 zu der Kupferplatte 19 ist auch besonders günstig, da die Kupferplatte 19 eine hohe Wärmekapazität aufweist. FIG. 12a shows a formed as a thermopile sensor unit 13 with a filter device 43 in a sectioned, schematic side view. The filter device 43 is arranged here on the region in which the thermal radiation impinges on the sensor unit 13 and is detected. The filter device 43 is here attached to the sensor unit 13 with an adhesive connection means 430 in a thermally conductive manner. The connecting means 430 here is an adhesive with a thermal conductivity of at least 1 W m -1 K -1 (W / (mK)) and preferably 0.5 W m -1 K -1 (W / (mK)). Also possible and preferred is a thermal conductivity of more than 4 W m -1 K -1 (W / (mK)). As a result, heat can be dissipated from the filter device 43 to the sensor unit 43. The dissipation of the heat prevents the sensor unit 13 from detecting the self-heat of the filter device 43, which would lead to a falsified measurement result. For example, the heat from the filter device 43 via the sensor unit 13 can also be forwarded to the thermal compensation device 9 or the copper plate 19. Such indirect dissipation of the heat from the filter device 43 via the sensor unit 13 to the copper plate 19 is also particularly favorable since the copper plate 19 has a high heat capacity.

Der Klebstoff kann beispielsweise ein thermisch härtender, einkomponentiger, lösungsmittelfreier silbergefüllter Epoxid-Leitkleber sein. Durch den Anteil an Silber bzw. silberhaltiger Verbindungen wird eine sehr günstige Wärmeleitfähigkeit erreicht. Möglich ist auch ein Anteil anderer Metalle bzw. Metallverbindungen mit einer entsprechenden Wärmeleitfähigkeit. Ein solcher Klebstoff gewährleistet eine thermisch leitende Verbindung, welche auch bei den bei einer Kocheinrichtung 1 zu erwartenden Temperaturen dauerhaft und stabil ist.The adhesive may be, for example, a thermosetting, one-component, solvent-free silver-filled epoxy conductive adhesive. Due to the proportion of silver or silver-containing compounds a very favorable thermal conductivity is achieved. Also possible is a proportion of other metals or metal compounds with a corresponding thermal conductivity. Such an adhesive ensures a thermally conductive connection, which is durable and stable even at the temperatures to be expected in a cooking device 1.

Die Filtereinrichtung 43 ist als ein Interferenzfilter 433 ausgebildet und weist hier vier Filterschichten 432 mit einem unterschiedlichen Brechungsindex sowie mit dielektrischen Eigenschaften auf. Dabei sind Filterschichten 432 mit höheren und niedrigeren Brechungsindizes abwechselnd übereinander gestapelt und verbunden. Die Filterschichten 432 sind insbesondere sehr dünn, vorzugsweise wenige Nanometer bis 25 nm. Als Trägerschicht für die Filterschichten 432 ist hier eine Filterbasis 431 aus einem Silizium-haltigen Material mit einer Dicke von mehr als 0,2 mm von vorgesehen. Die Filtereinrichtung 43 ist dazu ausgebildet und geeignet, einen Wellenlängenbereich im Infrarotspektrum zu transmittieren und Strahlung außerhalb dieses Bereiches im Wesentlichen zu reflektieren.The filter device 43 is designed as an interference filter 433 and here has four filter layers 432 with a different refractive index and with dielectric properties. In this case, filter layers 432 with higher and lower refractive indices are alternately stacked and connected. The filter layers 432 are, in particular, very thin, preferably a few nanometers to 25 nm. The carrier layer for the filter layers 432 here is a filter base 431 made of a silicon-containing material with a thickness of more than 0.2 mm. The filter device 43 is designed and suitable for transmitting a wavelength range in the infrared spectrum and for substantially reflecting radiation outside this range.

Figur 12b zeigt eine weitere Ausführung einer Sensoreinheit 13 mit einer Filtereinrichtung 43, wobei die Filtereinrichtung 43 hier nur teilweise auf der Sensoreinrichtung 13 verklebt ist. Der Bereich, in welchem die Wärmestrahlung auf die Sensoreinheit 13 trifft und erfasst wird, ist hier von einem erhöhten Randbereich umgeben. Dabei wurde das Verbindungsmittel 430 nur in einem Randbereich aufgetragen. Das hat den Vorteil, dass die zu erfassende Wärmestrahlung nicht durch das Verbindungsmittel 430 treten muss, bevor sie auf die Sensoreinheit 13 trifft. FIG. 12b shows a further embodiment of a sensor unit 13 with a filter device 43, wherein the filter device 43 is glued here only partially on the sensor device 13. The region in which the heat radiation strikes and is detected on the sensor unit 13 is surrounded here by a raised edge region. In this case, the connecting means 430 was applied only in an edge region. This has the advantage that the heat radiation to be detected does not have to pass through the connection means 430 before it strikes the sensor unit 13.

In der Figur 13 ist eine Sensoreinrichtung 3 in einer Draufsicht gezeigt. Zur besseren Übersichtlichkeit und Unterscheidungskraft sind einige Teile bzw. Bereiche schraffiert dargestellt. Gut zu erkennen ist, dass die Sensoreinrichtung 3 einen konzentrischen Aufbau nach dem Zwiebelschalenprinzip aufweist. Im Inneren befindet sich eine thermische Ausgleichseinrichtung 9 bzw. eine Kupferplatte 19, an welcher zwei Sensoreinheiten 13, 23 und eine als Lampe 111 ausgebildete Strahlungsquelle 63 angeordnet sind. Damit keine unerwünschte Wärmestrahlung von der Seite auf die Sensoreinheiten 13, 23 einfällt, sind die Sensoreinheiten 13, 23 von einer optischen Schirmeinrichtung 7 bzw. einem Zylinder 17 umgeben. Der Zylinder 17 ist dabei beabstandet von der Kupferplatte 19 angeordnet, sodass möglichst kein Wärmeübergang zwischen Zylinder 17 und Kupferplatte 19 stattfinden kann. Der Zylinder 17 ist von einer magnetischen Abschirmeinrichtung 4 bzw. einem Ferritkörper 14 umgeben angeordnet. Der Ferritkörper 14 stellt die äußerste Schicht der Sensoreinrichtung 3 dar und schirmt diese gegen elektromagnetische Wechselwirkungen ab.In the FIG. 13 a sensor device 3 is shown in a plan view. For clarity and distinctiveness, some parts or areas are shaded. It can be clearly seen that the sensor device 3 has a concentric structure according to the onion shell principle. Inside is a thermal Balancing device 9 or a copper plate 19, on which two sensor units 13, 23 and designed as a lamp 111 radiation source 63 are arranged. So that no unwanted heat radiation from the side of the sensor units 13, 23 is incident, the sensor units 13, 23 are surrounded by an optical screen device 7 and a cylinder 17. The cylinder 17 is spaced from the copper plate 19, so that as possible no heat transfer between the cylinder 17 and copper plate 19 can take place. The cylinder 17 is surrounded by a magnetic shielding device 4 and a ferrite body 14, respectively. The ferrite body 14 represents the outermost layer of the sensor device 3 and shields it against electromagnetic interactions.

Da die Sensoreinrichtung 3 bevorzugt möglichst nah unterhalb einer Trägereinrichtung 5 vorgesehen ist, liegt auf dem Ferritkörper 14 eine Dichtungseinrichtung 6 bzw. eine Mikanitschicht 16, welche einen Wärmeübergang von der Trägereinrichtung 5 auf den Ferritkörper 14 erheblich verringert. Zwischen dem Ferritkörper 14 und dem Zylinder 17 ist eine Isolierungseinrichtung 8 ausgebildet. Die Isolierungseinrichtung 8 ist hier eine Luftschicht 18. Die Luftschicht 18 wirkt einem Wärmeübergang vom Ferritkörper 14 auf den Zylinder 17 entgegen. Die Sensoreinheiten 13, 23 im Innenbereich der Sensoreinrichtung 3 sind somit sehr effektiv gegen Störeinflüsse, wie z. B. ein magnetisches Feld einer Induktionseinrichtung 12, Wärmestrahlung von außerhalb des Erfassungsbereiches 83 sowie Erwärmung durch Wärmeleitung, geschützt. Eine derartig ausgestaltete, schalenartige Anordnung der aufgeführten Bauteile erhöht die Zuverlässigkeit der mit der Sensoreinrichtung 3 durchgeführten Messungen erheblich.Since the sensor device 3 is preferably provided as close as possible below a carrier device 5, a sealing device 6 or a micanite layer 16 lies on the ferrite body 14, which considerably reduces a heat transfer from the carrier device 5 to the ferrite body 14. Between the ferrite body 14 and the cylinder 17, an insulation device 8 is formed. The insulation device 8 is here an air layer 18. The air layer 18 counteracts a heat transfer from the ferrite body 14 to the cylinder 17. The sensor units 13, 23 in the interior of the sensor device 3 are thus very effective against interference, such. B. a magnetic field of an induction device 12, heat radiation from outside the detection range 83 and heating by heat conduction, protected. Such a configured, shell-like arrangement of the listed components significantly increases the reliability of the measurements performed with the sensor device 3.

Die Figur 14 zeigt eine Sensoreinrichtung 3 in einer Explosionsdarstellung. Die Einzelteile sind hier räumlich voneinander getrennt dargestellt, wodurch die Anordnung der Einzelteile innerhalb der Sensoreinrichtung 3 gut erkennbar wird. Auch der konzentrische bzw. zwiebelschalenartige Aufbau ist hier gut zu erkennen. Neben einer verbesserten Messgenauigkeit ermöglicht ein derartiger Aufbau auch eine besonders fertigungsfreundliche und kostengünstige Montage der Sensoreinrichtung 3.The FIG. 14 shows a sensor device 3 in an exploded view. The items are here shown spatially separated from each other, whereby the arrangement of the items within the sensor device 3 is clearly visible. The concentric or onion-like structure is also clearly visible here. In addition to an improved measurement accuracy, such a structure also allows a particularly production-friendly and cost-effective installation of the sensor device 3.

Bei der Montage der Sensoreinrichtung 3 kann die Reihenfolge der Einzelteile bzw. Komponenten unterschiedlich ausgestaltet sein. Dabei ist es bevorzugt, dass einige Komponenten bereits vorgefertigt sind. Beispielsweise kann eine Sensoreinheit 13, 23 bereits mit einer Filtereinrichtung 43, 53 thermisch leitend verklebt sein. Auch die Leiterkarte 50 kann vor der Montage bereits teilweise mit elektronischen Bauelementen bestückt sein. Bevorzugt ist z. B. die Strahlungsquelle 63 bereits mit der Leiterkarte 50 kontaktiert.When mounting the sensor device 3, the order of the individual parts or components can be designed differently. It is preferred that some components are already prefabricated. For example, a sensor unit 13, 23 may already be adhesively bonded to a filter device 43, 53 in a thermally conductive manner. Also, the circuit board 50 may already be partially equipped with electronic components prior to assembly. Preferably z. B. the radiation source 63 already contacted with the circuit board 50.

Zum Beispiel wird als erstes die als Kunststoffhalter ausgeführte Halteeinrichtung 10 auf der als Leiterkarte 50 ausgebildeten Auflageeinrichtung 30 montiert. Dazu weist die Halteeinrichtung 10 wenigstens eine hier nicht dargestellte Verbindungseinrichtung 20 auf, welche mit der Leiterkarte 50 verbunden und z. B. verrastet werden kann. Eine Halteeinrichtung 10 mit drei Verbindungseinrichtungen 20 ist in der Figur 10 gezeigt. Danach wird die hier als Kupferplatte 19 vorgesehene thermische Ausgleichseinrichtung 9 in die Halteeinrichtung 10 eingelegt. Dann werden die als Thermosäulen bzw. Thermopiles ausgebildeten Sensoreinheiten 13, 23 durch Aufnahmeöffnungen 70 in der Kupferplatte 19, der Halteeinrichtung 10 und der Leiterkarte 50 durchgeführt. Ein Bereich der Sensoreinheit 13, 23, im Wesentlichen der untere Bereich der Sensoreinheit 13, 23 und insbesondere der untere Gehäuseteil der Sensoreinheit 13, 23, ist dabei thermisch leitend mit der Kupferplatte 19 verbunden und liegt auf der Kupferplatte 19 auf. Anschließend erfolgt die Verlötung der entsprechenden Kontakte mit der Leiterkarte 50.For example, as the first executed as a plastic holder holding device 10 on the as Printed circuit board 50 trained support device 30. For this purpose, the holding device 10 at least one connecting device 20, not shown here, which is connected to the circuit board 50 and z. B. can be locked. A holding device 10 with three connecting devices 20 is in the FIG. 10 shown. Thereafter, the provided here as a copper plate 19 thermal compensation device 9 is inserted into the holding device 10. The sensor units 13, 23 designed as thermopiles or thermopiles are then passed through receiving openings 70 in the copper plate 19, the holding device 10 and the printed circuit board 50. A region of the sensor unit 13, 23, essentially the lower region of the sensor unit 13, 23 and in particular the lower housing part of the sensor unit 13, 23, is thermally conductively connected to the copper plate 19 and rests on the copper plate 19. Subsequently, the soldering of the corresponding contacts with the printed circuit board 50.

Die Montage der Halteeinrichtung 10, der Kupferplatte 19 und der Sensoreinheiten 13, 23 kann auch in einer beliebigen anderen Reihenfolge durchgeführt werden. So wird z. B. erst die Kupferplatte 19 in die Halteeinrichtung 10 eingelegt, anschließend die Sensoreinheiten 13, 23 eingeführt und nachfolgend die Halteeinrichtung 10 mit der Leiterkarte 50 verrastet. Auch die Kontaktierung der Sensoreinheiten 13, 23 mit der Leiterkarte 50 kann zu einem beliebigen Zeitpunkt der Montage erfolgen.The mounting of the holding device 10, the copper plate 19 and the sensor units 13, 23 can also be performed in any other order. So z. B. first inserted the copper plate 19 in the holding device 10, then the sensor units 13, 23 inserted and subsequently the holding device 10 is locked to the circuit board 50. The contacting of the sensor units 13, 23 with the printed circuit board 50 can be done at any time during assembly.

Die Kontaktierung der als Lampe 111 ausgeführten Strahlungsquelle 63 mit der Leiterkarte 50 kann ebenfalls zu einem beliebigen Montagezeitpunkt erfolgen. Bevorzugt ist es, die Lampe 111 zuerst mit der Leiterkarte 50 zu kontaktieren und dann mit der oben beschriebenen Montagemöglichkeit zu beginnen.The contacting of the radiation source 63 designed as a lamp 111 with the printed circuit board 50 can likewise take place at any desired time of assembly. It is preferred to contact the lamp 111 first with the printed circuit board 50 and then to start with the mounting option described above.

Dann folgt die Montage der als Zylinder 17 ausgebildeten optischen Schirmeinrichtung 7. Der Zylinder 17 weist dazu hier drei Rasteinrichtungen 80 auf, welche mit den drei Aufnahmeeinrichtungen 40 der Halteeinrichtung 10 verrastet werden. Danach wird die als Ferritkörper 14 ausgebildete magnetische Abschirmeinrichtung 4 an der Halteeinrichtung 10 montiert. Dazu weist die Halteeinrichtung 10 bevorzugt eine weitere, hier nicht gezeigte Aufnahmeeinrichtung 40 auf, welche als Vertiefung, Erhebung, Steg und/oder Ringnut oder dergleichen ausgebildet sein kann. Dadurch ist insbesondere eine Aufnahme des Ferritkörpers 14 in einem definierten Abstand zu der optischen Schirmeinrichtung 7, der thermischen Ausgleichseinrichtung 9 und/oder einer Isolierungseinrichtung 8 möglich. Nachfolgend wird die als Mikanitschicht 16 ausgebildete Dichtungseinrichtung 6 an der magnetischen Abschirmeinrichtung 4 befestigt. Andere geeignete Montagereihenfolgen für den Zylinder 17, den Ferritkörper 14 und die Dichtungseinrichtung 6 können vorgesehen sein.This is followed by the assembly of the optical screen device 7 designed as a cylinder 17. For this purpose, the cylinder 17 has three latching devices 80, which are latched to the three receiving devices 40 of the holding device 10. After that, the ferrite body 14 formed magnetic shield 4 is mounted on the holding device 10. For this purpose, the holding device 10 preferably has a further, not shown here receiving device 40, which may be formed as a recess, survey, web and / or annular groove or the like. As a result, it is possible in particular to accommodate the ferrite body 14 at a defined distance from the optical screen device 7, the thermal compensation device 9 and / or an insulation device 8. Subsequently, the sealing device 6 designed as micanite layer 16 is fastened to the magnetic shielding device 4. Other suitable mounting sequences for the cylinder 17, the ferrite body 14 and the sealing device 6 may be provided.

Es können an verschiedenen Teilen der Sensoreinrichtung 3 weitere Rastverbindungen oder Steckverbindungen oder andere übliche Verbindungsvorrichtungen vorgesehen sein, welche ein einfaches Montieren ermöglichen und zugleich einen zuverlässigen Zusammenhalt sowie eine definierte Anordnung der Teile gewährleisten.It can be provided on different parts of the sensor device 3 more locking connections or connectors or other conventional connection devices, which allow easy mounting and at the same time ensure reliable cohesion and a defined arrangement of the parts.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Kocheinrichtungcooking facility
22
Heizeinrichtungheater
33
Sensoreinrichtungsensor device
44
magnetische Abschirmeinrichtungmagnetic shielding device
55
Trägereinrichtungsupport means
66
Dichtungseinrichtungseal means
77
optische Schirmeinrichtungoptical screen device
88th
Isolierungseinrichtungisolation facility
99
thermische Ausgleichseinrichtungthermal compensation device
1010
Halteeinrichtungholder
1111
Kochfeldhob
1212
Induktionseinrichtunginductor
1313
Sensoreinheitsensor unit
1414
Ferritkörperferrite
1515
GlaskeramikplatteCeramic plate
1616
MikanitschichtMika Nitsch layer
1717
Zylindercylinder
1818
Luftschichtlayer of air
1919
Kupferplattecopperplate
2020
Verbindungseinrichtungconnecting device
2121
Kochstellecooking
2323
Sensoreinheitsensor unit
2727
Bodenground
2929
Koppeleinrichtungcoupling device
3030
Auflageeinrichtungsupport device
3131
Kochbereichcooking area
3333
Sensoreinheitsensor unit
3939
Reflektoreinrichtungreflector device
4040
Aufnahmeeinrichtungrecording device
4141
Abdeckeinrichtungcover
4343
Filtereinrichtungfilter device
5050
LeiterkartePCB
5353
Filtereinrichtungfilter device
6060
Gehäusecasing
6363
Strahlungsquelleradiation source
7070
Aufnahmeöffnungenreceiving openings
7373
Sicherheitssensorsecurity sensor
8080
Rasteinrichtunglocking device
8383
Erfassungsbereichdetection range
100100
GargerätCooking appliance
102102
Dämpfungseinrichtungattenuator
103103
Garraumoven
104104
Garraumtüroven door
105105
Bedieneinrichtungoperating device
106106
Steuereinrichtungcontrol device
111111
Lampelamp
112112
Federeinrichtungspring means
122122
Verschraubungscrew
200200
Gargutbehälterfood to be cooked
430430
Verbindungsmittelconnecting means
431431
Filterbasisfilter base
432432
Filterschichtfilter layer
433433
Interferenzfilterinterference filters

Claims (15)

Kocheinrichtung (1), umfassend wenigstens ein Kochfeld (11) mit wenigstens einer Kochstelle (21) und wenigstens eine zur Beheizung wenigstens eines Kochbereiches (31) vorgesehene Heizeinrichtung (2) und wenigstens eine Sensoreinrichtung (3) zur Erfassung wenigstens einer einen Zustand des Kochbereichs (31) charakterisierenden physikalischen Größe,
dadurch gekennzeichnet, dass
die Sensoreinrichtung (3) wenigstens eine magnetische Abschirmeinrichtung (4) aufweist.
Cooking device (1) comprising at least one hob (11) with at least one cooking point (21) and at least one for heating at least one cooking area (31) provided heater (2) and at least one sensor device (3) for detecting at least one a state of the cooking area (31) characterizing physical quantity,
characterized in that
the sensor device (3) has at least one magnetic shielding device (4).
Kocheinrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Heizeinrichtung (2) wenigstens eine Induktionseinrichtung (12) umfasst, und dass die magnetische Abschirmeinrichtung (4) zur Abschirmung von elektromagnetischen Wechselwirkungen und insbesondere zur Abschirmung vor dem elektromagnetischen Feld der Induktionseinrichtung (12) ausgebildet und geeignet ist.Cooking device (1) according to claim 1, characterized in that the heating device (2) comprises at least one induction device (12), and that the magnetic shielding device (4) for shielding electromagnetic interactions and in particular for shielding from the electromagnetic field of the induction device (12 ) is designed and suitable. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetische Abschirmeinrichtung (4) wenigstens teilweise aus wenigstens einem wenigstens teilweise magnetischen Material und einem wenigstens teilweise elektrisch nicht-leitenden Material besteht.Cooking device (1) according to one of the preceding claims, characterized in that the magnetic shielding device (4) consists at least partially of at least one at least partially magnetic material and an at least partially electrically non-conductive material. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetische Abschirmeinrichtung (4) wenigstens teilweise aus einem ferrimagnetischen Material und/oder aus einem Ferritmaterial besteht.Cooking device (1) according to one of the preceding claims, characterized in that the magnetic shielding device (4) consists at least partially of a ferrimagnetic material and / or of a ferrite material. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kochfeld (11) wenigstens eine Trägereinrichtung (5) aufweist, welche zum Positionieren wenigstens eines Gargutbehälters geeignet und ausgebildet ist und dass die Sensoreinrichtung (3) in Einbaulage des Kochfeldes (11) wenigstens teilweise unterhalb der Trägereinrichtung (5) und benachbart zu wenigstens einem Teil der Heizeinrichtung (2) angeordnet ist.Cooking device (1) according to one of the preceding claims, characterized in that the hob (11) has at least one carrier device (5) which is suitable and designed for positioning at least one Gargutbehälters and that the sensor device (3) in installation position of the hob (11 ) is disposed at least partially below the support means (5) and adjacent to at least a part of the heating means (2). Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine Dichtungseinrichtung (6) vorgesehen ist, wobei insbesondere wenigstens ein Teil der Dichtungseinrichtung (6) wenigstens teilweise zwischen der Trägereinrichtung (5) und einem Teil der Sensoreinrichtung (3) und/oder der magnetischen Abschirmeinrichtung (4) angeordnet ist.Cooking device (1) according to one of the preceding claims, characterized in that at least one sealing device (6) is provided, wherein in particular at least part of the sealing device (6) at least partially between the carrier device (5) and a part of the sensor device (3) and / or the magnetic shielding device (4) is arranged. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoreinrichtung (3) wenigstens eine optische Schirmeinrichtung (7) aufweist, wobei die optische Schirmeinrichtung (7) wenigstens teilweise von der magnetischen Abschirmeinrichtung (4) umgeben angeordnet ist.Cooking device (1) according to one of the preceding claims, characterized in that the sensor device (3) has at least one optical screen device (7), wherein the optical screen device (7) is at least partially surrounded by the magnetic shielding device (4). Kocheinrichtung (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass wenigstens eine Isolierungseinrichtung (8) vorgesehen ist, wobei die Isolierungseinrichtung (8) wenigstens teilweise zwischen der optischen Schirmeinrichtung (7) und der magnetischen Abschirmeinrichtung (4) angeordnet ist.Cooking device (1) according to the preceding claim, characterized in that at least one insulation device (8) is provided, wherein the insulation device (8) is at least partially disposed between the optical shield device (7) and the magnetic shielding device (4). Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoreinrichtung (3) wenigstens eine Sensoreinheit (13) umfasst und dass wenigstens eine Sensoreinheit (13) zur berührungslosen Erfassung wenigstens eines charakteristischen Parameters für Temperaturen geeignet ist.Cooking device (1) according to one of the preceding claims, characterized in that the sensor device (3) comprises at least one sensor unit (13) and that at least one sensor unit (13) is suitable for non-contact detection of at least one characteristic parameter for temperatures. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoreinrichtung (3) wenigstens zwei Sensoreinheiten (13, 23) umfasst.Cooking device (1) according to one of the preceding claims, characterized in that the sensor device (3) comprises at least two sensor units (13, 23). Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoreinrichtung (3) wenigstens eine Filtereinrichtung (43, 53) aufweist, wobei die Filtereinrichtung (43, 53) dazu ausgebildet und geeignet ist, elektromagnetische Strahlung in Abhängigkeit der Wellenlänge und/oder der Polarisation und/oder des Einfallswinkels zu reflektieren und/oder zu transmittieren.Cooking device (1) according to any one of the preceding claims, characterized in that the sensor device (3) at least one filter device (43, 53), wherein the filter device (43, 53) is adapted and adapted to electromagnetic radiation as a function of the wavelength and / or the polarization and / or the angle of incidence to reflect and / or to transmit. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoreinrichtung (3) wenigstens eine Strahlungsquelle (63) aufweist, welche ein Signal insbesondere im Wellenlängenbereich des Infrarotlichts und/oder sichtbaren Lichts aussendet.Cooking device (1) according to one of the preceding claims, characterized in that the sensor device (3) has at least one radiation source (63) which emits a signal, in particular in the wavelength range of the infrared light and / or visible light. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoreinrichtung (3) wenigstens eine thermische Ausgleichseinrichtung (9) umfasst, wobei die thermische Ausgleichseinrichtung (9) wenigstens eine Koppeleinrichtung (29) aufweist, welche dazu geeignet und ausgebildet ist, die Sensoreinheit (13, 23) mit der thermischen Ausgleichseinrichtung (9) wenigstens teilweise thermisch leitend zu verbinden.Cooking device (1) according to one of the preceding claims, characterized in that the sensor device (3) comprises at least one thermal compensating device (9), wherein the thermal compensating device (9) has at least one coupling device (29) which is suitable and designed for this purpose the sensor unit (13, 23) with the thermal compensation device (9) to connect at least partially thermally conductive. Kocheinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoreinrichtung (3) wenigstens eine Halteeinrichtung (10) aufweist,
wobei durch die Halteeinrichtung (10) wenigstens zwei Einheiten in einer definierten Anordnung zueinander aufnehmbar sind und wobei die Einheiten aus einer Gruppe von Einheiten entnommen sind, umfassend die Sensoreinheit (13, 23) und die magnetische Abschirmeinrichtung (4) und die optische Schirmeinrichtung (7) und die Isolierungseinrichtung (8) und die Strahlungsquelle (63) und die thermische Ausgleichseinrichtung (9) und die Filtereinrichtung (43, 53).
Cooking device (1) according to one of the preceding claims, characterized in that the sensor device (3) has at least one holding device (10),
wherein at least two units are receivable in a defined arrangement relative to one another by the holding device (10) and wherein the units are taken from a group of units comprising the sensor unit (13, 23) and the magnetic shielding device (4) and the optical screen device (7 ) and the insulation device (8) and the radiation source (63) and the thermal compensation device (9) and the filter device (43, 53).
Verfahren zum Betreiben einer Kocheinrichtung (1), umfassend wenigstens ein Kochfeld (11) mit wenigstens einer Kochstelle (21) und wenigstens eine zur Beheizung wenigstens eines Kochbereiches (31) vorgesehenen Heizeinrichtung (2) und wenigstens eine Sensoreinrichtung (3) zur Erfassung wenigstens einer einen Zustand des Kochbereichs (31) charakterisierenden physikalischen Größe,
dadurch gekennzeichnet, dass
wenigstens eine magnetische Abschirmeinrichtung (4) elektromagnetische Wechselwirkungen wenigstens teilweise von der Sensoreinrichtung (3) abschirmt.
Method for operating a cooking device (1), comprising at least one hob (11) with at least one cooking point (21) and at least one heating device (2) for heating at least one cooking area (31) and at least one sensor device (3) for detecting at least one a physical quantity characterizing a state of the cooking area (31),
characterized in that
at least one magnetic shielding device (4) at least partially shields electromagnetic interactions from the sensor device (3).
EP14401009.7A 2013-03-04 2014-02-03 Cooking system, and method for operating the same Active EP2775784B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013102107.7A DE102013102107A1 (en) 2013-03-04 2013-03-04 Cooking device and method of operation

Publications (2)

Publication Number Publication Date
EP2775784A1 true EP2775784A1 (en) 2014-09-10
EP2775784B1 EP2775784B1 (en) 2017-12-20

Family

ID=50071556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14401009.7A Active EP2775784B1 (en) 2013-03-04 2014-02-03 Cooking system, and method for operating the same

Country Status (3)

Country Link
EP (1) EP2775784B1 (en)
DE (1) DE102013102107A1 (en)
ES (1) ES2657975T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122251A1 (en) 2022-09-02 2024-03-07 Miele & Cie. Kg Cooking vessel for holding food for an induction hob
DE102022122241A1 (en) 2022-09-02 2024-03-07 Miele & Cie. Kg Cooking vessel for holding food for an induction hob

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002058B3 (en) 2004-01-15 2005-09-08 Miele & Cie. Kg Method for controlling a cooking process in a hob and hob for performing the method
US20050242088A1 (en) * 2003-07-04 2005-11-03 Kiyoyoshi Takada Induction heating device
US20060081607A1 (en) * 2004-01-27 2006-04-20 Koji Niiyama Induction cooking heater
DE102007013839A1 (en) 2007-03-22 2008-09-25 BSH Bosch und Siemens Hausgeräte GmbH Cooking field sensor device for collection of parameter of cooking utensil by radiation, for cooking field, has sensor unit, which is assigned to spectral range of radiation, and optical unit that is provided to upstream sensor unit
WO2008148529A1 (en) 2007-06-05 2008-12-11 Miele & Cie. Kg Control method for a hob and hob for carrying out said method
US20090314771A1 (en) * 2006-12-18 2009-12-24 Kazuichi Okada Induction heating appliance for cooking
JP2010170697A (en) * 2009-01-20 2010-08-05 Panasonic Corp Induction cooker
EP2288231A1 (en) * 2008-05-27 2011-02-23 Panasonic Corporation Induction heating cooking apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064621A1 (en) * 2000-12-21 2002-06-27 Ego Elektro Geraetebau Gmbh Method and device for recording the temperature of a cooking vessel
JP4905449B2 (en) * 2006-02-21 2012-03-28 パナソニック株式会社 Induction heating cooker
DE102006026907A1 (en) * 2006-06-09 2008-01-03 BSH Bosch und Siemens Hausgeräte GmbH Induction hob and method for determining a temperature of a bottom of a preparation container
JP4965648B2 (en) * 2007-03-12 2012-07-04 パナソニック株式会社 Induction heating cooker
JP5065378B2 (en) * 2007-03-12 2012-10-31 パナソニック株式会社 Induction heating cooker
JP4872822B2 (en) * 2007-06-21 2012-02-08 パナソニック株式会社 Induction heating cooker
CN101690392B (en) * 2007-06-22 2012-11-21 松下电器产业株式会社 Induction cooker
ES2366514B1 (en) * 2009-05-15 2012-10-09 Bsh Electrodomesticos España S.A. DEVICE FOR PLACEMENT ON AN INDUCTION COOKING FIELD.
ES2423383B1 (en) * 2012-02-10 2014-09-12 Bsh Electrodomésticos España, S.A. Induction cooking device with infrared sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242088A1 (en) * 2003-07-04 2005-11-03 Kiyoyoshi Takada Induction heating device
DE102004002058B3 (en) 2004-01-15 2005-09-08 Miele & Cie. Kg Method for controlling a cooking process in a hob and hob for performing the method
US20060081607A1 (en) * 2004-01-27 2006-04-20 Koji Niiyama Induction cooking heater
US20090314771A1 (en) * 2006-12-18 2009-12-24 Kazuichi Okada Induction heating appliance for cooking
DE102007013839A1 (en) 2007-03-22 2008-09-25 BSH Bosch und Siemens Hausgeräte GmbH Cooking field sensor device for collection of parameter of cooking utensil by radiation, for cooking field, has sensor unit, which is assigned to spectral range of radiation, and optical unit that is provided to upstream sensor unit
WO2008148529A1 (en) 2007-06-05 2008-12-11 Miele & Cie. Kg Control method for a hob and hob for carrying out said method
EP2288231A1 (en) * 2008-05-27 2011-02-23 Panasonic Corporation Induction heating cooking apparatus
JP2010170697A (en) * 2009-01-20 2010-08-05 Panasonic Corp Induction cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122251A1 (en) 2022-09-02 2024-03-07 Miele & Cie. Kg Cooking vessel for holding food for an induction hob
DE102022122241A1 (en) 2022-09-02 2024-03-07 Miele & Cie. Kg Cooking vessel for holding food for an induction hob

Also Published As

Publication number Publication date
ES2657975T3 (en) 2018-03-07
DE102013102107A1 (en) 2014-09-18
EP2775784B1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
EP1865754B1 (en) Induction cooking hob and method for determining the temperature of the base of a cooking container
EP1217873B1 (en) Temperature of cooking vessels sensing method and device
WO2013118026A1 (en) Induction cooking appliance having an ir sensor
EP2775784B1 (en) Cooking system, and method for operating the same
WO2015018891A1 (en) Cooking device and method for operating the cooking device
EP2775787B1 (en) Cooking device
DE4413979C2 (en) Sensor-controlled cooking unit and cooking device
EP2775789B1 (en) Cooking system and method for mounting
EP2775792B1 (en) Cooking device
EP2775790B1 (en) Cooking device
EP2775786B1 (en) Cooking device
EP2775788B1 (en) Cooking device
EP2775791B1 (en) Cooking device
WO2015018890A1 (en) Cooking device and method for operating a cooking device
EP3031297B1 (en) Cooking equipement and method to control the said equipement
DE102013108646A1 (en) Cooking device and method for operating a cooking device
DE102004004022B4 (en) hob
DE102013102118A1 (en) Cooking device and method of operation
EP3031296B1 (en) Cooking equipement and method to control the said equipement
EP0961191A1 (en) Control for cooker temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150310

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170808

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 957471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006640

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2657975

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180307

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180320

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006640

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180921

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 957471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230223

Year of fee payment: 10

Ref country code: ES

Payment date: 20230321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230220

Year of fee payment: 10

Ref country code: GB

Payment date: 20230214

Year of fee payment: 10

Ref country code: DE

Payment date: 20230228

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529