EP2770247B1 - Kraftfahrzeugleuchte mit einem homogen hell leuchtenden Erscheinigungsbild - Google Patents

Kraftfahrzeugleuchte mit einem homogen hell leuchtenden Erscheinigungsbild Download PDF

Info

Publication number
EP2770247B1
EP2770247B1 EP14155174.7A EP14155174A EP2770247B1 EP 2770247 B1 EP2770247 B1 EP 2770247B1 EP 14155174 A EP14155174 A EP 14155174A EP 2770247 B1 EP2770247 B1 EP 2770247B1
Authority
EP
European Patent Office
Prior art keywords
light
reflector
light source
diffuse reflection
reflection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14155174.7A
Other languages
English (en)
French (fr)
Other versions
EP2770247A3 (de
EP2770247A2 (de
Inventor
Hubert Zwick
Hermann Kellermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2770247A2 publication Critical patent/EP2770247A2/de
Publication of EP2770247A3 publication Critical patent/EP2770247A3/de
Application granted granted Critical
Publication of EP2770247B1 publication Critical patent/EP2770247B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/40Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/337Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector having a structured surface, e.g. with facets or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • F21S43/145Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/241Light guides characterised by the shape of the light guide of complex shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof

Definitions

  • the present invention relates to a motor vehicle lamp according to the preamble of claim 1.
  • a motor vehicle lamp is from the JP 2011-150887 known.
  • a lighting device that generates a signal light light distribution.
  • a signal light distribution is used to indicate the presence of a motor vehicle and / or the intentions of his driver to other road users.
  • Headlight light distributions should illuminate objects in the travel path of the motor vehicle and thus make them perceptible to the driver. Creating a specific Light distribution is also called light function. Examples of signal light functions are eg flashing light, daytime running light, tail light, brake light and position light light function. Frequently, a lighting device fulfills a plurality of light functions with the aid of one or more light modules, which are arranged in such a lighting device.
  • the invention presented here fulfills signal light functions, in particular a daytime running light function or a flashing light function. It does not matter whether luminaires according to the invention, in addition to a light function fulfilled by the invention, also fulfill further lighting functions. Therefore, embodiments of lighting devices according to the invention can be, in particular, separate front lights for flashing or daytime running light lighting functions, or they can be front lights fulfilling a plurality of lighting functions, headlight headlamp modules or tail lights.
  • a per se known luminaire has at least one light source and a concave mirror, which has a focal length and is adapted to reflect light incident on it from first directions in second directions and thereby to produce a rule-compliant light distribution.
  • a rule-compliant signal light distribution is characterized, for example, by the fact that when used in a motor vehicle in a central direction of the light distribution, it generates a maximum brightness that is greater than a predefined minimum value and that it assumes the brightness to the right and left as well as after gradually dropping above and below, where given in a horizontal angle range of +/- 20 ° and a vertical angle range of +/- 10 ° given percentage values of maximum brightness as the minimum values.
  • the switched-on luminaire has a completely homogeneously bright appearance for a viewer looking into the luminaire, and that the luminaire has a smooth appearance when switched off.
  • a smooth appearance is understood here that, for example, as no facets of the reflector should be recognizable.
  • the lamp should be inexpensive to produce.
  • a homogeneously bright appearance is understood that the brightness of the luminous surface is perceived by the human visual sense as constant.
  • a homogeneously bright appearance of a luminaire in the switched-on state is achieved in known luminaires by dividing the reflector into a multiplicity of facets. Each facet generates an image of the light source for the viewer. From the large number of light source images results for the viewer from a certain distance the impression of a homogeneously bright surface.
  • the present invention differs by the characterizing features of claim 1.
  • drawbacks of using electroluminescent or OLED films avoid.
  • planar radiator from the outgoing and incident on the reflector light defines the first directions and the light-emitting surface is greater than half of the square of the focal length, a homogeneous bright glowing appearance can be achieved. This is achieved without a subdivision of the reflector in a variety of facets and without a structuring of the cover, which would disturb a smooth appearance in the off state.
  • the diffuse reflecting surface is a white and rough surface.
  • the reflector has a structure for illuminating the diffusely reflecting surface and has an opening, and that the at least one light source is arranged on a side of the reflector facing away from the second solid angle region and illuminates the diffusely reflecting surface through the opening.
  • the at least one light source has at least one semiconductor light source.
  • the luminaire has at least one further semiconductor light source whose light has a has different color than the light of the at least one semiconductor light source, wherein the at least one further light source is arranged so that it also illuminates the diffuse reflecting surface.
  • the diffusely reflecting surface can, according to alternative, be illuminated with light of different colors.
  • different light functions such as white daytime running lights and yellow flashing light can be generated with the same reflector of a bow lamp.
  • red tail light or brake light of a tail light and yellow flashing light can be generated with the same reflector of a tail light.
  • the light of the at least one further light source (a second light color) is preferably directed onto the reflector by the same light guide as the light of the at least one first light source (a first light color).
  • a further preferred refinement is characterized in that the light from the at least one further light source (a second light color) is directed onto the reflector by a separate light guide which is not identical to the light guide with which the light from the at least one first light source (FIG. a first light color) is directed to the reflector.
  • the light source has at least one light guide, the light of the at least one Receives semiconductor light source and directed to the diffuse reflecting surface.
  • the reflecting surface of the concave reflector outside a possibly existing structure which serves to illuminate the diffuse reflecting surface is concavely curved throughout.
  • a further preferred embodiment is characterized by a transparent cover plate whose light passage area is smooth both on the light inlet side of the pane facing the reflector and on the light exit side facing away from the reflector.
  • the concave reflector is in the form of a section of a paraboloid of revolution.
  • a preferred embodiment is characterized in that the lamp is an assembled, a built-in or a combination of lights or has an added additional light.
  • the respective supplement of the luminaire according to the invention has here specularly reflecting areas of refractive elements and is adapted to irradiate the area of legally prescribed light distribution throughout or to illuminate, for example, the brightest, central area of the legally prescribed light distribution ,
  • FIG. 1 shows beam paths of a reflection of a non-punctiform light source 10 at a point 11 of a concave reflector 12, which here has the shape of a rotational paraboloid.
  • Light that emanates from a point-like light source arranged at the focal point of a reflective rotational paraboloid and falls onto the reflector is, as is known, reflected parallel to the axis of rotation of the paraboloid.
  • the FIG. 1 illustrates the conditions that arise in real light sources, which are inevitably not punctiform, but have a finite size.
  • LEDs light emitting diodes
  • LEDs light emitting diodes
  • LEDs have square or rectangular, flat light exit surfaces with an edge length between 0.3 mm and 2 mm.
  • Particularly common chips are used with approximately square light emitting surface and an edge length of about 1 mm.
  • An incandescent filament of an incandescent lamp has, for example, a size of about 6 mm by 1 mm.
  • FIG. 1 shows in particular a section of a reflective rotational paraboloid whose focal point 14th is located in the light exit surface 16 of a correspondingly arranged light source and results by rotation of a parabolic section around a rotation axis 18 around.
  • the piercing point of a surface normal 20 of this section marks an arbitrarily selected point on the reflective cutout.
  • FIG. 1 shows the FIG. 1 in how the rays of light emanating from the four corners of the light exit surface and shown in dashed lines and the focal point beam shown in solid lines are reflected in the arbitrarily selected point.
  • a perpendicular to the axis of the paraboloid shield in the FIG. 1 not shown, a generally distorted and tilted about the point of impact of the reflected focus steel image 22 of the light exit surface.
  • the size of the region in which this applies depends in particular on the size of the images of the light source.
  • FIG. 2 shows a section through the reflector 12 after FIG. 1 ,
  • the reflector has the focal length f, which results as the distance of the focal point 14 from the apex of the paraboloid.
  • a semiconductor light source in particular an LED, is arranged such that the focal point lies in the middle of its light exit surface.
  • the light exit surface has a width d.
  • An outgoing from the focal point and at an arbitrarily selected point 11 of the reflector 12 reflected combustion beam 24 extends parallel to the axis of rotation after the reflection. Before the reflection, the burning beam with the axis of rotation 18 encloses the angle ⁇ opening towards the reflector surface.
  • FIG. 2 still marginal rays, emanating from corners of the light exit surface and reflected in the arbitrarily picked point. These marginal rays include, before and after the reflection, the same aperture angle ⁇ , which depends on ⁇ .
  • the aspect ratio of the focal length f to the width d of the light exit surface is approximately equal to 3: 1. If one plots the opening angle ⁇ as a function of the angle ⁇ for a fixed ratio of focal length f to the width d of the light exit surface, the result is given in FIG. 3 illustrated dependency. FIG. 3 Thus, the dependence of an opening angle ⁇ of a reflected light beam on the angular position 4 of a reflecting point 11 on the reflector 12.
  • the ⁇ values change in the reverse direction.
  • the f / d ratio is doubled, approximately the resulting values of the angle ⁇ are approximately halved.
  • the opening angle ⁇ as in the FIGS. 2 and 3 are shown in a realization of the lamp as a vertical opening angle of a light distribution, which results on a perpendicular to the axis of rotation of the parabolic reflector 12 measuring screen in front of the lamp, or before the arrangement of light source and reflector results.
  • a maximum angular width of ⁇ 12.4 °, which is not sufficient to cover the required for a rule-compliant light distribution in the vertical direction angle width of 20 ° (+/- 10 °).
  • one can achieve the desired angular width by reducing the ratio of focal length f to the width d of the light exit surface of the light source. This can of course be achieved by reducing the focal length f and / or by increasing the light exit area.
  • FIG. 4 illustrates this by an oblique view of a half-shell concave mirror 30 having a reflective half-shell 32 and a bottom portion 34.
  • This half-shell reflector is set up to reflect and radiate incident radiation from its bottom area onto the curved, reflecting inner surface of the half-shell 32.
  • a radiating area should be at least as large as half the square of the focal length of the reflector in order to approximate this desired effect.
  • the effect is better, the larger the radiating surface.
  • the radiating surface extends in a direction perpendicular to the main emission direction of the reflector over a length which is at least as large as the focal length of the reflector. It is also preferred that the radiating surface extends in a direction parallel to the main emission direction of the reflector over a length which is at least half as large as the focal length of the reflector. It is particularly preferred if the radiating surface occupies the entire bottom region 34, so that the entire bottom region acts as a radiator.
  • the radiating floor area in the emission direction of the reflector still extends beyond the projection of the upper edge of the reflector into the plane of the floor area. This is in the FIG. 4 indicated by the dashed line 36.
  • FIG. 5 shows a non-inventive embodiment of a lamp according to the invention in a sectional view.
  • the luminaire 38 has a non-punctiform light source 10 and a concave reflector 12, which is arranged by its shape and its arrangement with respect to the light source 10 to light that incident on it from first directions 40 in the second directions 42 reflect.
  • the arrangement of the light source 10 and the concave mirror reflector 12 is located in a housing 44 of the lamp 38.
  • a light exit opening of the lamp 38 is covered by a transparent cover 46 of the lamp.
  • the lamp 38 has a flat radiator 48. Of the planar light emitting and incident on the reflector 12 light defines the first directions 40.
  • the surface of the flat radiator emanating from the light incident on the reflector 12 is at least half of the square of the focal length of the reflector.
  • FIG. 5 shows not inventive design, in which the radiator is an electroluminescent or OLED (OLED) film (light emitting diode). It is essential in both cases that both alternatives have large-area light exit surfaces that correspond to the respective film size and, for example, can cover the entire floor area 34.
  • An electroluminescent film has, for example, a light-generating layer of zinc sulfide which is doped, for example, with Au, Ag, Cu, Ga, or Mn and which lies between a transparent and a reflective electrode. When a voltage is applied to the electrodes, the light-generating layer emits light passing through the transparent electrode either directly or after a reflection reversing the light direction at the reflective electrode opposite the transparent electrode in the first directions is emitted.
  • the radiator is identical to the light source.
  • these lamps have disadvantages such as high prices, low brightness and poor handleability.
  • FIG. 6 shows an embodiment in which the radiator 48 has a diffusely reflecting surface 50, and the luminaire has at least one light source 10, wherein the light source, the diffuse reflecting surface and the concave mirror are arranged relative to each other so that the main emission of at least one light source the diffuse reflecting surface is directed and that the concave reflector is illuminated diffusely on the surface 50 of reflected light.
  • the diffusely reflecting surface is preferably a white and rough surface. Due to the configuration as a white surface, the diffusely reflecting surface has a high degree of reflection. As a desired consequence of the high reflectance, a correspondingly high proportion of the luminous flux emitted by the light source is diffusely reflected to the reflector.
  • the light source 10 has in the in the FIG. 6 illustrated embodiment, a light guide 54 and a light emitting diode 56 or a group of LEDs.
  • the reflector has an opening in its mirrored reflection surface.
  • the light guide 54 projects through this opening into the reflection volume of the concave mirror reflector.
  • the reflection volume is that between the radiator 48 and the reflective, the radiator 48 facing reflection surface of the reflector 12 lying volume.
  • the light emitting diode 56 is on the reflection volume side facing away from the reflector 12 is arranged close to a light entrance surface of the light guide 54 so that the largest possible part of the light emanating from it is coupled into the light guide 54.
  • the distance between the light exit surface of the light emitting diode and the light entry surface of the light guide 54 is for example one tenth of a millimeter to one millimeter.
  • the coupled-in light is transported by the light guide 54 into the reflection volume and emerges in the reflection volume from a light exit surface of the light conductor 54 such that the largest possible part of the exiting light illuminates the diffusely reflecting surface 50 of the radiator 48.
  • the optical waveguide is preferably arranged so that as little light as possible exits the array of reflector and radiator without first having hit the diffusely reflecting surface 50. It can be accepted that part of the light emerging from the optical fiber first strikes the reflector before it is incident on the diffusely reflecting surface 50, as shown in FIG FIG. 6 for the very left edge ray is the case.
  • each point of the radiator should ideally radiate in the entire half-space or at least in a large part of the half-space, so that the reflector is illuminated as evenly as possible and in turn appears as bright as possible homogeneous bright, is both in the aforementioned films as well complies with the realization of a flat radiator by illuminating a diffuse reflective rough white surface.
  • the diffusely reflecting rough and white surface 50 of the radiator 48 reflects the light in an undirected manner and therefore acts like the aforementioned foils.
  • the proportion of non-directional reflected light incident on the e.g. parabolic reflector falls, is converted by this as desired in a rule-compliant light distribution.
  • FIG. 7 shows a perspective view of the subject of the FIG. 6 ,
  • the FIG. 6 can as a cut through the subject of FIG. 7 are considered, the sectional plane containing the central light source and the axis of rotation of the reflector, which is parallel to the main emission of the reflector.
  • FIG. 7 shows in particular an embodiment with n light sources 54.1, 54.2, ..., 54.n, where n is equal to 3 in the concrete case. It is preferred that n is a number between 1 and 10, in particular a number between 1 and 5.
  • Each of the n light sources from the FIG. 7 preferably has the structure of the light source 10 from FIG. 6 and is also arranged as it is in connection with FIG. 6 has been described.
  • the light sources are preferably arranged so that the diffusely reflecting surface 50 is strongly illuminated in the vicinity of the focal point of the reflector, since the light reflected from this point is reflected in the direction of the parabolic axis. In a proper use of the lamp in a motor vehicle, this direction usually in the center of a rule compliant light distribution.
  • the brightness distribution on the surface 50 of the radiator 48 can be determined by the number, the position and the brightness of the Light-emitting diodes, as well as by the arrangement and geometric design of the light guide can be very selectively influenced.
  • the light guides can be straight or curved, for example, in the light transport direction. You can have a constant or increasing in the light transport direction cross-section. The latter causes a parallelization of the light and thus a reduction of the opening angle at which the light exits the light exit surface of the light guide.
  • the cross section may be round or rectangular in shape, for example.
  • the luminaire has at least one further semiconductor light source whose light has a different color than the light of the at least one semiconductor light source, wherein the at least one further semiconductor light source is arranged such that it also has the diffusely reflecting surface illuminated.
  • the diffusely reflecting surface can, according to alternative, be illuminated with light of different colors.
  • different light functions such as white daytime running lights and yellow flashing light can be generated with the same reflector of a bow lamp.
  • red tail light or brake light of a tail light and yellow flashing light can be generated with the same reflector of a tail light.
  • the light is the at least one other Semiconductor light source (a second light color) directed by the same light guide to the reflector as the light of the at least one first semiconductor light source (a first light color).
  • the first semiconductor light source (s) and the second semiconductor light source (s) may be arranged side by side in front of a common light entry surface of one and the same light guide. For clarity, one can see the light source 56 in the FIG. 6 for this embodiment as an arrangement of several juxtaposed light sources imagine.
  • a further preferred refinement is characterized in that the light from the at least one further light source (a second light color) is directed onto the reflector by a separate light guide which is not identical to the light guide with which the light from the at least one first light source (FIG. a first light color) is directed to the reflector.
  • a second light color the light from the at least one further light source
  • FOG. a first light color the light from the at least one first light source
  • the luminaire When used as intended in a motor vehicle, the luminaire will always be arranged such that the main emission direction of the luminaire points to the center of a light distribution complying with the regulations. Whether the spotlight 48 for a viewer who is staying in the main emission direction and looking into the lamp, then up, down, right or left, is secondary. Assuming that the orientation of the luminaire according to FIG. 5 corresponds to their installation situation in the vehicle, then the radiator 48 is arranged for the viewer at the bottom of the lamp.
  • FIG. 8 shows an embodiment in which the arrangement of the FIG. 5 is turned upside down.
  • This has the advantage that the spotlight for the observer, whose eye level is usually above the installation height of the lamp, is hidden from many viewing directions. This is advantageous because, if possible, the observer should only perceive the appearance of the homogeneously bright reflector, without this being influenced by the visibility of additional luminous surfaces.
  • the reflector 12 of the embodiment according to FIG. 8 consists of two reflector parts 12a and 12b, which have a different focal length. From the different focal length results in a different curvature of the specular reflector surfaces, which in turn leads to a gap 58 between the two reflector parts 12a and 12b.
  • the gap runs horizontally when the luminaire is installed, for example.
  • the light source 10 is disposed in the gap 58 so as to illuminate the surface 50 of the radiator 48.
  • the light source 10 here also has a light guide 54 and a light-emitting diode 56.
  • the light guide 54 here has the already mentioned property that widens its cross section in the light transport direction.
  • the light-emitting diode 56 is arranged on a circuit board 60. The arrangement of the light source in the gap is associated with the passage of the light in the reflection space Disturbing the appearance of the reflector 12 and the homogeneity of its brightness distribution minimized.
  • the light guide 54 is realized in one piece material, which is made possible, for example, by production as an injection molded part.
  • a preferably planar board carries three light-emitting diodes, which are arranged so that light of each light-emitting diode is coupled via an end face of a respective associated light guide branch in the respective light guide branch.
  • the three light guide branches have a cross section growing in the light transporting direction.
  • FIG. 10 shows a perspective view of a lamp 62, as it is applicable to the vehicle bug as a flashing or daytime running lights or at the rear of the vehicle for all lighting functions either as a single light or as a light module in a further light modules having lighting device.
  • the light color is generated by using light emitting diodes that emit light with corresponding light colors such as white, yellow or red.
  • An optionally required yellow or red appearance can alternatively be generated by using a correspondingly colored transparent cover.
  • the respective supplement of the luminaire according to the invention should have specular reflective areas of refractive elements and be adapted to irradiate the area of legally prescribed light distribution throughout or to illuminate, for example, the brightest, central area of the statutory light distribution.
  • Under assembled lights are understood to mean facilities with their own luminous surfaces and their own light sources, but a common housing.
  • Under nested lights are understood to mean devices with their own or a single light source, which emits light under different conditions (for example, different optical, mechanical or electrical characteristics), with common or partially common luminous surfaces and a common housing.
  • the respective supplement of the luminaire according to the invention should have specular reflective areas of refractive elements and be adapted to irradiate the area of legally prescribed light distribution throughout or to illuminate, for example, the brightest, central area of the statutory light distribution.
  • Under assembled lights are understood to mean facilities with their own luminous surfaces and their own light sources, but a common housing.
  • Under nested lights are understood to mean devices with their own or a single light source, which emits light under different conditions (for example, different optical, mechanical or electrical characteristics), with common or partially common luminous surfaces and a common housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Kraftfahrzeugleuchte nach dem Oberbegriff des Anspruchs 1. Eine solche Kraftfahrzeugleuchte ist aus der JP 2011-150887 bekannt.
  • Unter einer Kraftfahrzeugleuchte wird hier eine Beleuchtungseinrichtung verstanden, die eine Signallicht-Lichtverteilung erzeugt. Eine Signallicht-Lichtverteilung dient dazu, anderen Verkehrsteilnehmern die Anwesenheit eines Kraftfahrzeugs und/oder die Absichten seines Fahrers anzuzeigen.
  • Scheinwerfer-Lichtverteilungen sollen dagegen Objekte im Fahrweg des Kraftfahrzeuges beleuchten und damit für den Fahrer wahrnehmbar machen. Das Erzeugen einer bestimmten Lichtverteilung wird auch als Lichtfunktion bezeichnet. Beispiele von Signal-Lichtfunktionen sind z.B. Blinklicht-, Tagfahrlicht-, Schlusslicht-, Bremslicht- und Positionslicht-Lichtfunktion. Häufig erfüllt eine Beleuchtungseinrichtung mehrere Lichtfunktionen mit Hilfe von einem oder mehreren Lichtmodulen, die in einer solchen Beleuchtungseinrichtung angeordnet sind.
  • Die hier vorgestellte Erfindung erfüllt Signallichtfunktionen, insbesondere eine Tagfahrlicht-Lichtfunktion oder eine Blinklicht-Lichtfunktion. Dabei spielt es keine Rolle, ob erfindungsgemäße Leuchten neben einer durch die Erfindung erfüllten Lichtfunktion noch weitere Lichtfunktionen erfüllen. Ausgestaltungen erfindungsgemäßer Beleuchtungseinrichtungen können daher insbesondere separate Bugleuchten für Blinklicht- oder Tagfahrlicht-Lichtfunktionen sein, oder es kann sich um mehrere Lichtfunktionen erfüllende Frontscheinwerfer, Leuchtenmodule von Frontscheinwerfern oder auch Heckleuchten handeln.
  • Eine per se bekannte Leuchte, weist wenigstens eine Lichtquelle und einen Hohlspiegelreflektor auf, der eine Brennweite besitzt und dazu eingerichtet ist, Licht, das aus ersten Richtungen auf ihn einfällt, in zweite Richtungen zu reflektieren und dabei eine regelkonforme Lichtverteilung zu erzeugen.
  • Eine regelkonforme Signallichtverteilung zeichnet sich zum Beispiel dadurch aus, dass sie bei einer bestimmungsgemäßen Verwendung in einem Kraftfahrzeug in einer zentralen Richtung der Lichtverteilung eine maximale Helligkeit erzeugt, die größer als ein vorgegebener Minimalwert ist und dass sie die Helligkeit davon ausgehend nach rechts und links sowie nach oben und unten allmählich abfallen lässt, wobei in einem horizontalen Winkelbereich von +/- 20° und einem vertikalen Winkelbereich von +/- 10° vorgegebene Prozentwerte der maximalen Helligkeit als Mindestwerte einzuhalten sind.
  • Aus gestalterischen Gesichtspunkten wird gewünscht, dass die eingeschaltete Leuchte für einen in die Leuchte blickenden Betrachter ein völlig homogen hell leuchtendes Erscheinungsbild besitzt und dass die Leuchte im ausgeschalteten Zustand ein glattes Erscheinungsbild besitzt. Unter einem glatten Erscheinungsbild wird hier verstanden, dass zum Beispiel möglichst keine Facetten des Reflektors erkennbar sein sollen. Außerdem soll die Leuchte kostengünstig herstellbar sein. Unter einem homogen hell leuchtenden Erscheinungsbild wird dabei verstanden, dass die Helligkeit der leuchtenden Fläche vom menschlichen Sehsinn als konstant wahrgenommen wird.
  • Ein im eingeschalteten Zustand homogen helles Erscheinungsbild einer Leuchte wird bei bekannten Leuchten durch eine Aufteilung des Reflektors in eine Vielzahl von Facetten erreicht. Jede Facette erzeugt für den Betrachter ein Bild der Lichtquelle. Aus der Vielzahl der Lichtquellenbilder ergibt sich für den Betrachter aus einer bestimmten Entfernung der Eindruck einer homogen hell leuchtenden Fläche.
  • Diese Facetten sind auch im ausgeschalteten Zustand sichtbar und verhindern damit, dass die Leuchte im ausgeschalteten Zustand das gewünschte glatte Erscheinungsbild besitzt. Dies gilt analog für gegebenenfalls vorhandene streuende Strukturen in einer transparenten Abdeckscheibe der Leuchte. Bei der eingangs genannten JP SP-2011-150887 wird ein planarer Strahler in Form einer OLED-Folie (organic EL) verwendet.
  • Von diesem Stand der Technik unterscheidet sich die vorliegende Erfindung durch die kennzeichnenden Merkmale des Anspruchs 1. Mit dieser Erfindung lassen sich Nachteile einer Verwendung von Elektrolumineszenzfolien oder OLED-Folien (hoher Preis, geringe Helligkeit, schklechte Handhabbarkeit) vermeiden.
  • Mit dem flächigen Strahler, von dem ausgehendes und auf den Reflektor einfallendes Licht die ersten Richtungen definiert und dessen Licht abstrahlende Fläche größer als die Hälfte des Quadrats der Brennweite ist, lässt sich ein homogen hell leuchtendes Erscheinungsbild erzielen. Dabei wird dies ohne eine Unterteilung des Reflektors in eine Vielzahl von Facetten und ohne eine Strukturierung der Abdeckscheibe erzielt, die ein glattes Erscheinungsbild im ausgeschalteten Zustand stören würde.
  • Ferner ist bevorzugt, dass die diffus reflektierende Fläche eine weiße und rauhe Fläche ist.
  • Bevorzugt ist auch, dass der Reflektor eine zur Beleuchtung der diffus reflektierenden Fläche dienende, eine Öffnung aufweisende Struktur besitzt und dass die wenigstens eine Lichtquelle auf einer dem zweiten Raumwinkelbereich abgewandten Seite des Reflektors angeordnet ist und die diffus reflektierende Fläche durch die Öffnung hindurch beleuchtet.
  • Bevorzugt ist auch, dass die wenigstens eine Lichtquelle wenigstens eine Halbleiterlichtquelle aufweist.
  • Bevorzugt ist auch, dass die Leuchte zusätzlich zu der wenigstens einen Halbleiterlichtquelle wenigstens eine weitere Halbleiterlichtquelle aufweist, deren Licht eine andere Farbe besitzt als das Licht der wenigstens einen Halbleiterlichtquelle, wobei die wenigstens eine weitere Lichtquelle so angeordnet ist, dass sie ebenfalls die diffus reflektierende Fläche beleuchtet.
  • Als verschiedene Lichtfarben kommen insbesondere weiß für ein Tagfahrlicht (vorn), gelb für ein Blinklicht (vorn oder hinten) und rot für eine Heckleuchte in Frage. Die diffus reflektierende Fläche kann bei dieser Ausgestaltung entsprechend alternativ mit Licht verschiedener Farben beleuchtet werden. Durch die anschließende Umlenkung des diffus reflektierten Lichtes durch den Reflektor können unterschiedliche Lichtfunktionen wie weißes Tagfahrlicht und gelbes Blinklicht mit demselben Reflektor einer Bugleuchte erzeugt werden. Als weiteres Beispiel kann auch rotes Schlusslicht oder Bremslicht einer Heckleuchte und gelbes Blinklicht mit demselben Reflektor einer Heckleuchte erzeugt werden.
  • Bevorzugt wird das Licht der wenigstens einen weiteren Lichtquelle (einer zweiten Lichtfarbe) durch denselben Lichtleiter auf den Reflektor gerichtet wie das Licht der wenigstens einen ersten Lichtquelle (einer ersten Lichtfarbe).
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass das Licht der wenigstens einen weiteren Lichtquelle (einer zweiten Lichtfarbe) durch einen eigenen Lichtleiter auf den Reflektor gerichtet wird, der nicht mit dem Lichtleiter identisch ist, mit dem das Licht der wenigstens einen ersten Lichtquelle (einer ersten Lichtfarbe) auf den Reflektor gerichtet wird.
  • Ferner ist bevorzugt, dass die Lichtquelle wenigstens einen Lichtleiter aufweist, der Licht der wenigstens einen Halbleiterlichtquelle aufnimmt und auf die diffus reflektierende Fläche richtet.
  • Bevorzugt ist auch, dass die spiegelnde Fläche des Hohlspiegelreflektors außerhalb einer gegebenenfalls vorhandenen Struktur, die zur Beleuchtung der diffus reflektierenden Fläche dient, durchgehend konkav gekrümmt ist.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich durch eine transparente Abdeckscheibe aus, deren Lichtdurchtrittsbereich sowohl auf der dem Reflektor zugewandten Lichteintrittsseite der Scheibe als auch auf der dem Reflektor abgewandten Lichtaustrittsseite glatt ist.
  • Bevorzugt ist auch, dass der Hohlspiegelreflektor die Form eines Ausschnitts aus einem Rotationsparaboloid ist.
  • Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Leuchte eine zusammengebaute, eine ineinandergebaute oder eine Kombination von Leuchten ist oder eine hinzugefügte weitere Leuchte aufweist.
  • Dabei ist bevorzugt, dass die jeweilige Ergänzung der erfindungsgemäßen Leuchte hier spiegelnd reflektierende Bereiche von refraktiv wirkenden Elementen aufweist und dazu eingerichtet ist, den Bereich der gesetzlich vorgeschriebenen Lichtverteilung im ganzen zu bestrahlen oder zum Beispiel den hellsten, zentralen Bereich der gesetzlich vorgeschriebenen Lichtverteilung verstärkt zu beleuchten.
  • Weitere Vorteile ergeben sich aus Unteransprüchen, der Beschreibung und den beigefügten Figuren.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen, jeweils in schematischer Form:
  • Fig. 1
    Strahlengänge einer Reflexion von Licht einer nicht punktförmigen Lichtquelle an einem Reflektor;
    Fig. 2
    einen Schnitt durch den Reflektor nach Figur 1;
    Fig. 3
    eine Abhängigkeit eines Öffnungswinkels eines reflektierten Lichtbündels von der Position des reflektierenden Punktes;
    Fig. 4
    eine perspektivische Ansicht eines Halbschalen-Hohlspiegelreflektors;
    Fig. 5
    ein nicht erfindungsgemäßes Ausführungsbeispiel einer Leuchte;
    Fig. 6
    ein Ausführungsbeispiel einer erfindungsgemäßen Leuchte
    Fig. 7
    eine perspektivische Darstellung des Gegenstands der Figur 6;
    Fig. 8
    ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Leuchte;
    Fig. 9
    eine bevorzugte Ausgestaltung einer Lichtquelle; und
    Fig. 10
    eine perspektivische Ansicht eines Ausführungsbeispiels einer erfindungsgemäßen Leuchte.
  • Gleiche Bezugszeichen bezeichnen dabei in den verschiedenen Figuren jeweils gleiche oder zumindest ihrer Funktion nach vergleichbare Elemente.
  • Figur 1 zeigt Strahlengänge einer Reflexion einer nicht punktförmigen Lichtquelle 10 an einem Punkt 11 eines Hohlspiegel-Reflektors 12, der hier die Form eines Rotations-Paraboloids besitzt. Licht, dass von einer punktförmigen und im Brennpunkt eines reflektierenden Rotations-Paraboloids angeordneten Lichtquelle ausgeht und auf den Reflektor fällt, wird dort bekanntlich parallel zu der Rotationsachse des Paraboloids reflektiert. Die Figur 1 veranschaulicht die Verhältnisse, die sich bei realen Lichtquellen ergeben, die zwangsläufig nicht punktförmig sind, sondern eine endliche Größe aufweisen. So weisen zum Beispiel für die Erfüllung von Lichtfunktionen in Kraftfahrzeugen übliche Halbleiterlichtquellen in Form von Leuchtdioden (LEDs) quadratische oder rechteckige, flache Lichtaustrittsflächen mit einer Kantenlänge zwischen 0,3 mm und 2 mm auf. Besonders häufig werden Chips mit etwa quadratischer Lichtaustrittsfläche und einer Kantenlänge von ca. 1 mm verwendet. Eine Glühwendel einer Glühlampe weist zum Beispiel eine Größe von ca. 6mm mal 1mm auf.
  • Figur 1 zeigt insbesondere einen Ausschnitt aus einem reflektierenden Rotations-Paraboloid, dessen Brennpunkt 14 in der Lichtaustrittsfläche 16 einer entsprechend angeordneten Lichtquelle liegt und der sich durch Rotation eines Parabelabschnitts um eine Drehachse 18 herum ergibt. Der Durchstoßpunkt einer Flächennormale 20 dieses Ausschnitts markiert einen an sich beliebig herausgegriffenen Punkt auf dem reflektierenden Ausschnitt. Für diesen Punkt zeigt die Figur 1, wie die von den vier Ecken der Lichtaustrittsfläche ausgehenden und gestrichelt dargestellten Lichtstrahlen und der durchgezogen dargestellte Brennpunktstrahl in dem beliebig herausgegriffenen Punkt reflektiert werden. Als Ergebnis der Reflexion ergibt sich auf einem zur Achse des Paraboloids senkrechten Schirm, der in der Figur 1 nicht dargestellt ist, ein in der Regel verzerrtes und um den Auftreffpunkt des reflektierten Brennpunktstahls verkippt liegendes Bild 22 der Lichtaustrittsfläche.
  • Ein fiktiver Betrachter, der sich in dem Lichtkegel befindet, der von Lichtstrahlen aufgespannt wird, die vom beliebig herausgegriffenen Reflektorpunkt 11 zu den Ecken des Bildes laufen, sieht dann genau diesen Reflektorpunkt leuchten. Im Umkehrschluss bedeutet dies auch, dass der Betrachter genau dann alle Reflektorpunkte und damit den ganzen Reflektor 12 homogen leuchten sieht, wenn sich das Auge des Betrachters gleichzeitig in allen solchen Kegeln befindet, die von allen Reflektorpunkten ausgehen. Die Größe des Bereichs, in dem dies zutrifft, hängt insbesondere von der Größe der Bilder der Lichtquelle ab.
  • Figur 2 zeigt einen Schnitt durch den Reflektor 12 nach Figur 1. Der Reflektor besitzt die Brennweite f, die sich als Abstand des Brennpunktes 14 vom Scheitel des Paraboloiden ergibt. Eine Halbleiterlichtquelle, insbesondere eine LED, ist so angeordnet, dass der Brennpunkt in der Mitte ihrer Lichtaustrittsfläche liegt. Die Lichtaustrittsfläche besitzt eine Breite d. Ein vom Brennpunkt ausgehender und an einem beliebig herausgegriffenen Punkt 11 des Reflektors 12 reflektierter Brennstrahl 24 verläuft nach der Reflexion parallel zur Rotationsachse. Vor der Reflexion schließt der Brennstrahl mit der Rotationsachse 18 den sich zur Reflektorfläche hin öffnenden Winkel ϕ ein. Ferner zeigt Figur 2 noch Randstrahlen, die von Ecken der Lichtaustrittsfläche ausgehen und in dem beliebig herausgegriffenen Punkt reflektiert werden. Diese Randstrahlen schließen vor und nach der Reflexion den gleichen Öffnungswinkel α ein, der von ϕ abhängig ist.
  • In der Figur 2 ist das Längenverhältnis der Brennweite f zur Breite d der Lichtaustrittsfläche etwa gleich 3:1. Wenn man den Öffnungswinkel α als Funktion des Winkels ϕ für ein festes Verhältnis von Brennweite f zur Breite d der Lichtaustrittsfläche zeichnet, ergibt sich die in Figur 3 dargestellte Abhängigkeit. Figur 3 zeigt also die Abhängigkeit eines Öffnungswinkels α eines reflektierten Lichtbündels von der Winkelposition 4 eines reflektierenden Punktes 11 auf dem Reflektor 12.
  • Diese Abhängigkeit ergibt sich als Folge einer Überlagerung von zwei Einflüssen: Einerseits wächst der Winkel α als Funktion einer Annäherung von ϕ an den Winkel ϕ = 90° an. Andererseits wächst α mit geringer werdendem Abstand des Reflektorpunktes von der Lichtaustrittsfläche 16 an.
  • Wenn man zusätzlich das Verhältnis der Brennweite f zur Breite d der Lichtquelle verändert, verändern sich die α-Werte in umgekehrter Richtung. Bei einer Verdopplung des f/d-Verhältnisses halbieren sich ungefähr die resultierenden Werte des Winkels α.
  • Die Öffnungswinkel α, wie sie in den Figuren 2 und 3 dargestellt sind, zeigen sich bei einer Realisierung der Leuchte als vertikale Öffnungswinkel einer Lichtverteilung, die sich auf einem zur Rotationsachse des paraboloiden Reflektors 12 senkrecht ausgerichteten Messschirm vor der Leuchte, beziehungsweise vor der Anordnung aus Lichtquelle und Reflektor, ergibt. Im dargestellten Beispiel ergibt sich eine maximale Winkelbreite von α = 12,4°, was nicht ausreicht, um die für eine regelkonforme Lichtverteilung in vertikaler Richtung erforderliche Winkelbreite von 20° (+/-10°) abzudecken. Man kann die gewünschte Winkelbreite aber durch eine Verringerung des Verhältnisses von Brennweite f zur Breite d der Lichtaustrittsfläche der Lichtquelle erreichen. Dies kann natürlich durch eine Verkleinerung der Brennweite f und/oder durch Vergrößern der Lichtaustrittsfläche erreicht werden.
  • Führt man eine analoge Betrachtung für alle Punkte durch, ergibt sich, dass die Anforderungen an die vertikale und die horizontale Winkelverteilung umso besser erfüllbar sind, je größer die Lichtaustrittfläche der Lichtquelle ist.
  • Figur 4 veranschaulicht dies durch eine Schrägansicht eines Halbschalen-Hohlspiegelreflektors 30, der eine reflektierende Halbschale 32 und einen Bodenbereich 34 aufweist. Dieser Halbschalenreflektor ist dazu eingerichtet, von seinem Bodenbereich her auf die gewölbte reflektierende Innenfläche der Halbschale 32 einfallende Strahlung zu reflektieren und abzustrahlen. Wie weiter oben erwähnt wurde, ist es erwünscht, dass die Lichtaustrittsfläche des Reflektors 30 bei eingeschalteter Lichtquelle und damit bei beleuchtetem Reflektor möglichst gleichmäßig (homogen) hell leuchtend erscheint.
  • Es hat sich gezeigt, dass eine strahlende Fläche mindestens so groß sein sollte wie die Hälfte des Quadrats der Brennweite des Reflektors, um diese gewünschte Wirkung näherungsweise zu erzielen. Dabei wird die Wirkung umso besser, je größer die strahlende Fläche ist. Es ist besonders bevorzugt, dass sich die strahlende Fläche in einer zur Hauptabstrahlrichtung des Reflektors senkrechten Richtung über eine Länge erstreckt, die mindestens so groß ist wie die Brennweite des Reflektors. Bevorzugt ist auch, dass sich die strahlende Fläche in einer zur Hauptabstrahlrichtung des Reflektors parallelen Richtung über eine Länge erstreckt, die mindestens halb so groß ist wie die Brennweite des Reflektors. Besonders bevorzugt ist, wenn die strahlende Fläche den ganzen Bodenbereich 34 einnimmt, so dass der ganze Bodenbereich als Strahler wirkt.
  • Dabei ist insbesondere bevorzugt, dass der strahlende Bodenbereich in Abstrahlrichtung des Reflektors noch über die Projektion des oberen Reflektorrandes in die Ebene des Bodenbereichs hinausreicht. Dies wird in der Figur 4 durch die gestrichelte Linie 36 verdeutlicht.
  • Figur 5 zeigt ein nicht erfindungsgemäßes Ausführungsbeispiel einer erfindungsgemäßen Leuchte in einer Schnittdarstellung. Die Leuchte 38 weist eine nicht punktförmige Lichtquelle 10 und einen Hohlspiegel-Reflektor 12 auf, der durch seine Form und seine Anordnung in Bezug auf die Lichtquelle 10 dazu eingerichtet ist, Licht, dass aus ersten Richtungen 40 auf ihn einfällt, in zweite Richtungen 42 zu reflektieren. Die Anordnung aus Lichtquelle 10 und dem Hohlspiegelreflektor 12 befindet sich in einem Gehäuse 44 der Leuchte 38. Eine Lichtaustrittsöffnung der Leuchte 38 wird durch eine transparente Abdeckscheibe 46 der Leuchte abgedeckt. Die Leuchte 38 weist einen flächigen Strahler 48 auf. Von dem flächigen Strahler ausgehendes und auf den Reflektor 12 einfallendes Licht definiert die ersten Richtungen 40. Die Fläche des flächigen Strahlers, von der Licht ausgeht, das auf den Reflektor 12 einfällt, beträgt mindestens die Hälfte des Quadrats der Brennweite des Reflektors.
  • Mit der Lichtaustrittsfläche einzelner Leuchtdioden, wie sie in Kraftfahrzeugen verwendet werden, lassen sich derartig große Lichtaustrittsflächen nicht realisieren. So wären für eine noch eher kleine Lichtaustrittsfläche von 1 cm2 bereits 100 Leuchtdioden mit einer Lichtaustrittsfläche von jeweils 1 mm2 erforderlich, was schon aus Kostengründen nicht realistisch ist. Eine Realisierung solcher großflächiger Strahler ist jedoch mit einer Elektrolumineszenzfolie als Strahler oder mit einer flächigen organischen Leuchtdiode (OLED) möglich. Die Lichtquelle und der Strahler sind bei diesen Ausgestaltungen dann jeweils identisch.
  • Figur 5 zeigt nicht erfindungsgemäße Ausgestaltung, bei der der Strahler eine Elektrolumineszenzfolie oder eine OLED-Folie (OLED = organic light emitting diode) ist. Wesentlich ist in beiden Fällen, dass beide Alternativen großflächige Lichtaustrittsflächen besitzen, die der jeweiligen Foliengröße entsprechen und z.B. den ganzen Bodenbereich 34 abdecken können. Eine Elektrolumineszenzfolie besitzt z.B. eine lichterzeugende Schicht aus Zinksulfid, das beispielsweise mit Au, Ag, Cu, Ga, oder Mn dotiert ist und die zwischen einer transparenten und einer reflektierenden Elektrode liegt. Beim Anlegen einer Spannung an die Elektroden emittiert die lichterzeugende Schicht Licht, das durch die transparente Elektrode hindurch entweder direkt oder nach einer die Lichtrichtung umkehrenden Reflexion an der der transparenten Elektrode gegenüberliegenden reflektierenden Elektrode in die ersten Richtungen abgestrahlt wird. Bei dieser Ausgestaltung ist der Strahler mit der Lichtquelle identisch. Allerdings weisen diese Strahler Nachteile wie hohe Preise, eine geringe Helligkeit und eine schlechte Handhabbarkeit auf.
  • Figur 6 zeigt ein Ausführungsbeispiel, bei dem der Strahler 48 eine diffus reflektierende Fläche 50 aufweist, und die Leuchte wenigstens eine Lichtquelle 10 aufweist, wobei die Lichtquelle, die diffus reflektierende Fläche und der Hohlspiegelreflektor relativ zueinander so angeordnet sind, dass die Hauptabstrahlrichtung der wenigstens einen Lichtquelle auf die diffus reflektierende Fläche gerichtet ist und dass der Hohlspiegelreflektor von diffus an der Fläche 50 reflektiertem Licht beleuchtet wird.
  • Die diffus reflektierende Fläche ist bevorzugt eine weiße und raue Fläche. Durch die Ausgestaltung als weiße Fläche besitzt die diffus reflektierende Fläche einen hohen Reflexionsgrad. Als erwünschte Folge des hohen Reflexionsgrades wird ein entsprechend hoher Anteil des von der Lichtquelle ausgehenden Lichtstroms diffus zum Reflektor reflektiert.
  • Die Lichtquelle 10 weist bei dem in der Figur 6 dargestellten Ausführungsbeispiel einen Lichtleiter 54 und eine Leuchtdiode 56 oder eine Gruppe von Leuchtdioden auf. Der Reflektor weist in seiner verspiegelten Reflexionsfläche eine Öffnung auf. Der Lichtleiter 54 ragt durch diese Öffnung hindurch in das Reflexionsvolumen des Hohlspiegelreflektor hinein. Das Reflexionsvolumen ist das zwischen dem Strahler 48 und der reflektierenden, dem Strahler 48 zugewandten Reflexionsfläche des Reflektors 12 liegende Volumen.
  • Die Leuchtdiode 56 ist auf der dem Reflexionsvolumen abgewandten Seite des Reflektors 12 dicht vor einer Lichteintrittsfläche des Lichtleiters 54 so angeordnet, dass ein möglichst großer Teil des von ihr ausgehenden Lichtes in den Lichtleiter 54 eingekoppelt wird. Der Abstand zwischen der Lichtaustrittsfläche der Leuchtdiode und der Lichteintrittsfläche des Lichtleiters 54 beträgt z.B. ein Zehntel Millimeter bis ein Millimeter. Das eingekoppelte Licht wird von dem Lichtleiter 54 in das Reflexionsvolumen transportiert und tritt in dem Reflexionsvolumen aus einer Lichtaustrittsfläche des Lichtleiters 54 so aus, dass ein möglichst großer Teil des austretenden Lichtes die diffus reflektierende Fläche 50 des Strahlers 48 beleuchtet. Um dies zu erreichen, ist der Lichtleiter bevorzugt so angeordnet, dass möglichst wenig Licht aus der Anordnung von Reflektor und Strahler austritt, ohne vorher die diffus reflektierende Fläche 50 getroffen zu haben. Dafür kann in Kauf genommen werden, dass ein Teil des aus dem Lichtleiter austretenden Lichtes zunächst den Reflektor trifft, bevor es auf die diffus reflektierende Fläche 50 einfällt, wie es in Figur 6 für den ganz linken Randstrahl der Fall ist.
  • Mit der Erfindung lassen sich die Nachteile einer Verwendung von Elektrolumineszenzfolien oder OLED-Folien (hoher Preis, geringe Helligkeit, schlechte Handhabbarkeit) vermeiden. Die bisher unerwähnte Forderung, dass jeder Punkt des Strahlers idealerweise in den ganzen Halbraum oder zumindest in einen großen Teil des Halbraums strahlen sollte, damit der Reflektor möglichst gleichmäßig beleuchtet wird und seinerseits möglichst homogen hell leuchtend erscheint, ist sowohl bei den genannten Folien als auch bei der Verwirklichung eines flächigen Strahlers durch Anstrahlen einer diffus reflektierenden rauen weißen Fläche erfüllt.
  • Die diffus reflektierende raue und weiße Fläche 50 des Strahlers 48 reflektiert das Licht ungerichtet und wirkt damit wie die genannten Folien. Der Anteil des ungerichtet reflektierten Lichtes, der auf den z.B. parabolischen Reflektor fällt, wird von diesem wie gewünscht in eine regelkonforme Lichtverteilung überführt.
  • Figur 7 zeigt eine perspektivische Darstellung des Gegenstands der Figur 6. Die Figur 6 kann als Schnitt durch den Gegenstand der Figur 7 betrachtet werden, wobei die Schnittebene die mittlere Lichtquelle und die Rotationsachse des Reflektors enthält, die zur Hauptabstrahlrichtung des Reflektors parallel ist. Figur 7 zeigt insbesondere eine Ausgestaltung mit n Lichtquellen 54.1, 54.2,...,54.n, wobei n im konkret dargestellten Fall gleich 3 ist. Es ist bevorzugt, dass n eine Zahl zwischen 1 und 10, insbesondere eine Zahl zwischen 1 und 5 ist. Jede der n Lichtquellen aus der Figur 7 besitzt bevorzugt den Aufbau der Lichtquelle 10 aus Figur 6 und ist auch so angeordnet, wie es in Verbindung mit Figur 6 beschrieben worden ist. Die einzelnen Lichtquellen aus der Figur 7 sind dabei bevorzugt nicht in gleichmäßig verteilter Weise über die Wölbung des Halbschalen-Hohlspiegelreflektors 30 angeordnet, sondern sie sind eher zentral angeordnet. Dabei sind die Lichtquellen bevorzugt so angeordnet, dass die diffus reflektierende Fläche 50 in der Nähe des Brennpunktes des Reflektors stark beleuchtet wird, da das von diesem Punkt reflektierte Licht in Richtung der Parabelachse reflektiert wird. Bei einer bestimmungsgemäßen Verwendung der Leuchte in einem Kraftfahrzeug weist diese Richtung in der Regel in das Zentrum einer regelkonformen Lichtverteilung.
  • Die Helligkeitsverteilung auf der Fläche 50 des Strahlers 48 kann durch die Anzahl, die Lage und die Helligkeit der Leuchtdioden, sowie durch die Anordnung und geometrische Ausgestaltung der Lichtleiter sehr gezielt beeinflusst werden. Die Lichtleiter können z.B. in Lichttransportrichtung gerade oder gekrümmt verlaufen. Sie können einen konstanten oder einen in Lichttransportrichtung zunehmenden Querschnitt besitzen. Letzteres bewirkt eine Parallelisierung des Lichtes und damit eine Verringerung des Öffnungswinkels, mit dem das Licht aus der Lichtaustrittsfläche des Lichtleiters austritt. Außerdem kann der Querschnitt von seiner Form her z.B. rund oder rechteckig sein.
  • Bevorzugt ist auch, dass die Leuchte zusätzlich zu der wenigstens einen Halbleiterlichtquelle wenigstens eine weitere Halbleiterlichtquelle aufweist, deren Licht eine andere Farbe besitzt als das Licht der wenigstens einen Halbleiterlichtquelle, wobei die wenigstens eine weitere Halbleiterlichtquelle so angeordnet ist, dass sie ebenfalls die diffus reflektierende Fläche beleuchtet.
  • Als verschiedene Lichtfarben kommen insbesondere weiß für ein Tagfahrlicht (vorn), gelb für ein Blinklicht (vorn oder hinten) und rot für eine Heckleuchte in Frage. Die diffus reflektierende Fläche kann bei dieser Ausgestaltung entsprechend alternativ mit Licht verschiedener Farben beleuchtet werden. Durch die anschließende Umlenkung des diffus reflektierten Lichtes durch den Reflektor können unterschiedliche Lichtfunktionen wie weißes Tagfahrlicht und gelbes Blinklicht mit demselben Reflektor einer Bugleuchte erzeugt werden. Als weiteres Beispiel kann auch rotes Schlusslicht oder Bremslicht einer Heckleuchte und gelbes Blinklicht mit demselben Reflektor einer Heckleuchte erzeugt werden.
  • Bevorzugt wird das Licht der wenigstens einen weiteren Halbleiterlichtquelle (einer zweiten Lichtfarbe) durch denselben Lichtleiter auf den Reflektor gerichtet wie das Licht der wenigstens einen ersten Halbleiterlichtquelle (einer ersten Lichtfarbe). Die erste(n) Halbleiterlichtquelle(n) und die zweite(n) Halbleiterlichtquelle(n) können dabei nebeneinander vor einer gemeinsamen Lichteintrittsfläche ein und desselben Lichtleiters angeordnet sein. Zur Verdeutlichung kann man sich die Lichtquelle 56 in der Figur 6 für diese Ausgestaltung als Anordnung aus mehreren nebeneinander liegenden Lichtquellen vorstellen.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass das Licht der wenigstens einen weiteren Lichtquelle (einer zweiten Lichtfarbe) durch einen eigenen Lichtleiter auf den Reflektor gerichtet wird, der nicht mit dem Lichtleiter identisch ist, mit dem das Licht der wenigstens einen ersten Lichtquelle (einer ersten Lichtfarbe) auf den Reflektor gerichtet wird. Zur Verdeutlichung kann man sich vorstellen, dass wenigstens einer der n Lichtleiter in der Figur 7 mit Licht einer anderen Lichtfarbe gespeist wird als die übrigen dort dargestellten Lichtleiter.
  • Bei einer bestimmungsgemäßen Verwendung der Leuchte in einem Kraftfahrzeug wird die Leuchte immer so angeordnet sein, dass die Hauptabstrahlrichtung der Leuchte in das Zentrum einer regelkonformen Lichtverteilung weist. Ob der Strahler 48 für einen Betrachter, der sich in der Hauptabstrahlrichtung aufhält und in die Leuchte blickt, dann oben, unten, rechts oder links angeordnet ist, ist dabei zweitrangig. Wenn man annimmt, dass die Orientierung der Leuchte gemäß Figur 5 ihrer Einbausituation im Fahrzeug entspricht, dann ist der Strahler 48 für den Betrachter unten in der Leuchte angeordnet.
  • Figur 8 zeigt dagegen eine Ausgestaltung, bei der die Anordnung aus der Figur 5 auf den Kopf gestellt ist. Im Einzelnen zeigt die Figur 8 einen Querschnitt durch ein Ausführungsbeispiel einer Anordnung aus Strahler 48, Reflektor 12 und Lichtquelle 10, der von seiner Lage her der Lage des Querschnitts gemäß Figur 5 entspricht. Das hat zunächst den Vorteil, dass der Strahler für den Betrachter, dessen Augenhöhe in der Regel über der Einbauhöhe der Leuchte liegt, aus vielen Betrachtungsrichtungen verborgen ist. Dies ist vorteilhaft, weil der Betrachter nach Möglichkeit nur das Erscheinungsbild des homogen hell leuchtenden Reflektors wahrnehmen soll, ohne dass dies durch eine Sichtbarkeit zusätzlicher leuchtender Flächen beeinflusst ist.
  • Ein weiterer Unterschied zum Gegenstand der Figur 5 besteht darin, dass der Reflektor 12 des Ausführungsbeispiels gemäß Figur 8 aus zwei Reflektorteilen 12a und 12b besteht, die eine unterschiedliche Brennweite aufweisen. Aus der unterschiedlichen Brennweite resultiert eine unterschiedliche Krümmung der spiegelnden Reflektorflächen, was wiederum zu einem Spalt 58 zwischen den beiden Reflektorteilen 12a und 12b führt. Der Spalt verläuft bei eingebauter Leuchte z.B. horizontal.
  • Es ist bevorzugt, dass die Lichtquelle 10 so in dem Spalt 58 angeordnet ist, dass sie die Fläche 50 des Strahlers 48 beleuchtet. Die Lichtquelle 10 weist auch hier einen Lichtleiter 54 und eine Leuchtdiode 56 auf. Der Lichtleiter 54 besitzt hier die bereits genannte Eigenschaft, dass sich sein Querschnitt in Lichttransportrichtung erweitert. Die Leuchtdiode 56 ist auf einer Platine 60 angeordnet. Durch die Anordnung der Lichtquelle in dem Spalt wird die mit der Durchführung des Lichts in den Reflexionsraum verbundene Störung des Erscheinungsbildes des Reflektors 12 und der Homogenität seiner Helligkeitsverteilung minimiert.
  • Figur 9 zeigt eine bevorzugte Ausgestaltung einer Lichtquelle 10 mit einem Lichtleiter 54, der hier n = 3 Zweige besitzt. Der Lichtleiter 54 ist einstückigstoffschlüssig verwirklicht, was z.B. durch eine Herstellung als Spritzgussteil ermöglicht wird. Eine bevorzugt ebene Platine trägt drei Leuchtdioden, die so angeordnet sind, dass Licht jeder Leuchtdiode über eine Stirnfläche eines jeweils zugeordneten Lichtleiterzweiges in den jeweiligen Lichtleiterzweig eingekoppelt wird. In der Figur 9 liegen die Leuchtdioden zwischen der Platine und den Lichtleiterzweigen und werden durch die Lichtleiterzweige verdeckt. Die drei Lichtleiterzweige weisen einen in Lichttransportrichtung wachsenden Querschnitt auf. Vorteilhaft bei dieser Ausgestaltung ist insbesondere, dass sie die Verwendung einer ebenen Leiterplatte erlaubt. Ebene und starre Leiterplatten sind wesentlich preiswerter erhältlich und im Fertigungsprozess einfacher zu handhaben als flexible Leiterplatten.
  • Figur 10 zeigt eine perspektivische Ansicht einer Leuchte 62, wie sie am Fahrzeugbug als Blinkleuchte oder Tagfahrleuchte oder am Fahrzeugheck für alle Lichtfunktionen entweder als Einzelleuchte oder als Lichtmodul in einer weitere Lichtmodule aufweisenden Beleuchtungseinrichtung verwendbar ist. Die Lichtfarbe wird durch Verwendung von Leuchtdioden erzeugt, die Licht mit entsprechenden Lichtfarben wie weiß, gelb oder rot emittieren. Ein gegebenenfalls erforderliches gelbes oder rotes Erscheinungsbild kann alternativ auch durch Verwendung einer entsprechend gefärbten transparenten Abdeckscheibe erzeugt werden.
  • Zulässig ist auch ein Zusammenbau, ein Ineinanderbau oder Aneinanderbau und eine Kombination von Leuchten oder ein einfaches Hinzufügen einer weiteren Leuchte zu einer erfindungsgemäßen Leuchte, wodurch im Ergebnis wieder eine erfindungsgemäße Leuchte entsteht. Dabei soll die jeweilige Ergänzung der erfindungsgemäßen Leuchte hier spiegelnd reflektierende Bereiche von refraktiv wirkenden Elementen aufweisen und dazu eingerichtet sein, den Bereich der gesetzlich vorgeschriebenen Lichtverteilung im ganzen zu bestrahlen oder zum Beispiel den hellsten, zentralen Bereich der gesetzlich vorgeschriebenen Lichtverteilung verstärkt zu beleuchten.
  • Unter zusammengebauten Leuchten werden dabei Einrichtungen mit eigenen leuchtenden Flächen und eigenen Lichtquellen, aber einem gemeinsamen Gehäuse verstanden.
  • Unter ineinander gebauten Leuchten werden dabei Einrichtungen mit eigenen oder einer einzigen Lichtquelle verstanden, die unter unterschiedlichen Bedingungen (zum Beispiel unterschiedliche optische, mechanische oder elektrische Merkmale) Licht abgibt, mit gemeinsamem oder teilweise gemeinsamen leuchtenden Flächen und einem gemeinsamen Gehäuse.
  • Unter kombinierten Leuchten werden dabei Einrichtungen mit eigenen leuchtenden Flächen, jedoch gemeinsamer Lichtquelle oder Lichtquellen und einem gemeinsamen Gehäuse verstanden. Zulässig ist auch ein Zusammenbau, ein Ineinanderbau oder Aneinanderbau und eine Kombination von Leuchten oder ein einfaches Hinzufügen einer weiteren Leuchte zu einer erfindungsgemäßen Leuchte, wodurch im Ergebnis wieder eine erfindungsgemäße Leuchte entsteht. Dabei soll die jeweilige Ergänzung der erfindungsgemäßen Leuchte hier spiegelnd reflektierende Bereiche von refraktiv wirkenden Elementen aufweisen und dazu eingerichtet sein, den Bereich der gesetzlich vorgeschriebenen Lichtverteilung im ganzen zu bestrahlen oder zum Beispiel den hellsten, zentralen Bereich der gesetzlich vorgeschriebenen Lichtverteilung verstärkt zu beleuchten.
  • Unter zusammengebauten Leuchten werden dabei Einrichtungen mit eigenen leuchtenden Flächen und eigenen Lichtquellen, aber einem gemeinsamen Gehäuse verstanden.
  • Unter ineinander gebauten Leuchten werden dabei Einrichtungen mit eigenen oder einer einzigen Lichtquelle verstanden, die unter unterschiedlichen Bedingungen (zum Beispiel unterschiedliche optische, mechanische oder elektrische Merkmale) Licht abgibt, mit gemeinsamem oder teilweise gemeinsamen leuchtenden Flächen und einem gemeinsamen Gehäuse.
  • Unter kombinierten Leuchten werden dabei Einrichtungen mit eigenen leuchtenden Flächen, jedoch gemeinsamer Lichtquelle oder Lichtquellen und einem gemeinsamen Gehäuse verstanden.

Claims (13)

  1. Kraftfahrzeugleuchte (38) mit wenigstens einer Lichtquelle (10) und einem Hohlspiegelreflektor (30), der eine Brennweite besitzt und dazu eingerichtet ist, Licht, das aus ersten Richtungen (40) auf ihn einfällt, in zweite Richtungen (42) zu reflektieren und dabei eine regelkonforme Lichtverteilung zu erzeugen, wobei die Leuchte einen flächigen Strahler (48) aufweist, von dem ausgehendes und auf den Reflektor einfallendes Licht die ersten Richtungen definiert und dessen Licht abstrahlende Fläche größer als die Hälfte des Quadrats der Brennweite ist, dadurch gekennzeichnet, dass der Strahler eine diffus reflektierende Fläche (50) aufweist, und dass die Leuchte wenigstens eine Lichtquelle aufweist, wobei die Lichtquelle, die diffus reflektierende Fläche und der Hohlspiegelreflektor relativ zueinander so angeordnet sind, dass die Hauptabstrahlrichtung der wenigstens einen Lichtquelle auf die diffus reflektierende Fläche gerichtet ist und dass der Hohlspiegelreflektor von diffus an der Fläche reflektiertem Licht beleuchtet wird.
  2. Leuchte (38) nach Anspruch 1, dadurch gekennzeichnet, dass sich die strahlende Fläche in einer zur Hauptabstrahlrichtung des Reflektors senkrechten Richtung über eine Länge erstreckt, die mindestens so groß ist wie die Brennweite des Reflektors.
  3. Leuchte (38) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich die strahlende Fläche in einer zur Hauptabstrahlrichtung des Reflektors parallelen Richtung über eine Länge erstreckt, die mindestens halb so groß ist wie die Brennweite des Reflektors.
  4. Leuchte (38) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die diffus reflektierende Fläche eine weiße und raue Fläche ist.
  5. Leuchte (38) nach Anspruch 4, dadurch gekennzeichnet, dass der Reflektor eine zur Beleuchtung der diffus reflektierenden Fläche dienende, eine Öffnung aufweisende Struktur besitzt und dass die wenigstens eine Lichtquelle auf einer den zweiten Richtungen abgewandten Seite des Reflektors angeordnet ist und die diffus reflektierende Fläche durch die Öffnung hindurch beleuchtet.
  6. Leuchte (38) nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass die wenigstens eine Lichtquelle wenigstens eine Halbleiterlichtquelle aufweist.
  7. Leuchte (38) nach dem unmittelbar vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Lichtquelle wenigstens einen Lichtleiter aufweist, der Licht der wenigstens einen Halbleiterlichtquelle aufnimmt und auf die diffus reflektierende Fläche richtet.
  8. Leuchte (38) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die spiegelnde Fläche des Hohlspiegelreflektors außerhalb einer gegebenenfalls vorhandenen zur Beleuchtung der diffus reflektierenden Fläche dienenden Struktur durchgehend konkav gekrümmt ist.
  9. Leuchte (38) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine transparente Abdeckscheibe (46), deren Lichtdurchtrittsbereich sowohl auf der dem Reflektor zugewandten Lichteintrittsseite der Scheibe als auch auf der dem Reflektor abgewandten Lichtaustrittsseite glatt ist.
  10. Leuchte (38) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlspiegelreflektor die Form eines Ausschnitts aus einem Rotationsparaboloid ist.
  11. Leuchte (38) nach Anspruch 6 dadurch gekennzeichnet, dass die Leuchte zusätzlich zu der wenigstens einen Halbleiterlichtquelle wenigstens eine weitere Halbleiterlichtquelle aufweist, deren Licht eine andere Farbe besitzt als das Licht der wenigstens einen Halbleiterlichtquelle, wobei die wenigstens eine weitere Lichtquelle so angeordnet ist, dass sie ebenfalls die diffus reflektierende Fläche beleuchtet.
  12. Leuchte (38) nach Anspruch 11, dadurch gekennzeichnet, dass das Licht der wenigstens einen weiteren Lichtquelle durch denselben Lichtleiter auf den Reflektor gerichtet wird wie das Licht der wenigstens einen ersten Lichtquelle, oder dass das Licht der wenigstens einen weiteren Lichtquelle durch einen eigenen Lichtleiter auf den Reflektor gerichtet wird, der nicht mit dem Lichtleiter identisch ist, mit dem das Licht der wenigstens einen ersten Lichtquelle auf den Reflektor gerichtet wird.
  13. Leuchte (38) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leuchte eine zusammengebaute, eine ineinandergebaute oder eine Kombination von Leuchten ist oder eine hinzugefügte weitere Leuchte aufweist.
EP14155174.7A 2013-02-23 2014-02-14 Kraftfahrzeugleuchte mit einem homogen hell leuchtenden Erscheinigungsbild Active EP2770247B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202013001767U DE202013001767U1 (de) 2013-02-23 2013-02-23 Kraftfahrzeugleuchte mit einem homogen hell leuchtendenErscheinigungsbild

Publications (3)

Publication Number Publication Date
EP2770247A2 EP2770247A2 (de) 2014-08-27
EP2770247A3 EP2770247A3 (de) 2015-08-05
EP2770247B1 true EP2770247B1 (de) 2017-06-21

Family

ID=48129349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14155174.7A Active EP2770247B1 (de) 2013-02-23 2014-02-14 Kraftfahrzeugleuchte mit einem homogen hell leuchtenden Erscheinigungsbild

Country Status (2)

Country Link
EP (1) EP2770247B1 (de)
DE (1) DE202013001767U1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127717A1 (de) 2020-10-21 2022-04-21 Marelli Automotive Lighting Reutlingen (Germany) GmbH Beschichtetes Bauteil mit einer Basisstruktur aus einem transparenten Material
DE102020127218A1 (de) 2020-10-15 2022-04-21 Marelli Automotive Lighting Reutlingen (Germany) GmbH Reflektorbauteil für eine Kraftfahrzeugbeleuchtungseinrichtung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022608B1 (fr) * 2014-06-19 2018-07-20 Psa Automobiles Sa. Dispositif d'eclairage et/ou de signalisation generant une lumiere homogene sur un ecran
JP6445818B2 (ja) 2014-09-19 2018-12-26 株式会社小糸製作所 車両用灯具
DE102014220105A1 (de) 2014-10-02 2016-04-07 Automotive Lighting Reutlingen Gmbh Lichtleiter und Kfz-Beleuchtungseinrichtung
DE102015219346A1 (de) 2015-10-07 2017-04-13 Automotive Lighting Reutlingen Gmbh Lichtmodul für eine Kraftfahrzeugbeleuchtungseinrichtung
DE102016120903A1 (de) 2016-11-02 2018-05-03 Automotive Lighting Reutlingen Gmbh Beleuchtungseinrichtung eines Kraftfahrzeugs
DE102017117560A1 (de) * 2017-08-02 2019-02-07 Automotive Lighting Reutlingen Gmbh Lichtmodul und Verfahren zum Betreiben des Lichtmoduls
DE202018102803U1 (de) 2018-05-18 2019-08-22 Automotive Lighting Reutlingen Gmbh Lichtmodul für eine Kraftfahrzeugbeleuchtungsvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196196A (ja) * 2005-01-11 2006-07-27 Pentax Corp 車両用ヘッドライト
AT8252U1 (de) * 2005-03-21 2006-04-15 Zizala Lichtsysteme Gmbh Infrarot-projektionsmodul
AT504668B1 (de) * 2007-01-11 2008-07-15 Zizala Lichtsysteme Gmbh Totalreflexionsoptik-system für einen scheinwerfer oder eine lichteinheit eines kraftfahrzeuges
FR2934353B1 (fr) * 2008-07-25 2011-03-11 Valeo Vision Sas Systeme optique avec fonction d'eclairage a large surface d'emission pour vehicule automobile
JP5195296B2 (ja) * 2008-10-30 2013-05-08 市光工業株式会社 車両用前照灯
JP5233686B2 (ja) * 2009-01-13 2013-07-10 市光工業株式会社 車両用灯具
JP5543228B2 (ja) * 2010-01-21 2014-07-09 株式会社小糸製作所 面発光体を備えた車両用灯具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127218A1 (de) 2020-10-15 2022-04-21 Marelli Automotive Lighting Reutlingen (Germany) GmbH Reflektorbauteil für eine Kraftfahrzeugbeleuchtungseinrichtung
DE102020127218B4 (de) 2020-10-15 2023-04-27 Marelli Automotive Lighting Reutlingen (Germany) GmbH Reflektorbauteil für eine Kraftfahrzeugbeleuchtungseinrichtung
DE102020127717A1 (de) 2020-10-21 2022-04-21 Marelli Automotive Lighting Reutlingen (Germany) GmbH Beschichtetes Bauteil mit einer Basisstruktur aus einem transparenten Material
DE102020127717B4 (de) 2020-10-21 2023-03-16 Marelli Automotive Lighting Reutlingen (Germany) GmbH Beschichtetes Bauteil mit einer Basisstruktur aus einem transparenten Material

Also Published As

Publication number Publication date
EP2770247A3 (de) 2015-08-05
EP2770247A2 (de) 2014-08-27
DE202013001767U1 (de) 2013-03-14

Similar Documents

Publication Publication Date Title
EP2770247B1 (de) Kraftfahrzeugleuchte mit einem homogen hell leuchtenden Erscheinigungsbild
DE10243590B4 (de) LED-Fahrzeugleuchte mit gleichmässiger Helligkeit
DE10237262B4 (de) Fahrzeugleuchte mit einer LED-Lichtquelle und gleichmäßiger Helligkeit
EP2688769B1 (de) Fahrzeugleuchte zur beleuchtung des innenraums des fahrzeugs
AT517394B1 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug mit lumineszierenden Elementen
EP2984397B1 (de) Leuchteinheit für einen fahrzeugscheinwerfer
EP2276969B1 (de) Fahrzeugleuchte
EP2527722A2 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
EP3129703A1 (de) Leuchtvorrichtung mit lichtquelle und beabstandetem leuchtstoffkörper
DE102013202957B4 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug mit einem zwei Lichtfunktionen unterstützenden Reflektor
DE102014211874A1 (de) Beleuchtungseinrichtung eines Kraftfahrzeugs
DE202017001946U1 (de) Scheinwerfer mit einem optischen System mit statischem Matrix-Abbiegelicht
DE102014213824B4 (de) Fahrzeugleuchte
DE102009053571B4 (de) Leuchte für Kraftfahrzeuge mit einem Spiegelsystem und einem Lichtleiter
DE102013215976B4 (de) Scheinwerferanordnung für ein Fahrzeug mit zwei Lichtquellen mit unterschiedlichen Spektren, deren Licht zur Erzeugung von Mischlicht von einer schwenkbaren Ablenkvorrichtung zu einer Leuchtstoffschicht gelenkt wird
WO2015043819A1 (de) Beleuchtungsvorrichtung für fahrzeuge
DE102012211936A1 (de) Vorrichtung zum bereitstellen elektromagnetischer strahlung
DE102017106441A1 (de) Kraftfahrzeugleuchte mit einem flächigen Lichtleiter
DE102011087309A1 (de) Leuchtvorrichtung
DE102012215124B4 (de) Beleuchtungseinrichtung mit mehreren Lichtquellen und Lichtleitkörpern sowie einem Reflektor
DE102015202595A1 (de) Beleuchtungseinrichtung eines Fahrzeugs
DE102015219346A1 (de) Lichtmodul für eine Kraftfahrzeugbeleuchtungseinrichtung
DE102019112343A1 (de) Kraftfahrzeugleuchte
DE102013206850A1 (de) Zur Erzeugung einer Signal-Lichtverteilung eingerichtetes Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung
DE102016120903A1 (de) Beleuchtungseinrichtung eines Kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20150630BHEP

R17P Request for examination filed (corrected)

Effective date: 20160128

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170118

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLERMANN, HERMANN

Inventor name: ZWICK, HUBERT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 903288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004290

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014004290

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0043000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004290

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

26N No opposition filed

Effective date: 20180322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180214

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 903288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230119

Year of fee payment: 10