EP2768990A1 - Cellule de trempe - Google Patents

Cellule de trempe

Info

Publication number
EP2768990A1
EP2768990A1 EP12790595.8A EP12790595A EP2768990A1 EP 2768990 A1 EP2768990 A1 EP 2768990A1 EP 12790595 A EP12790595 A EP 12790595A EP 2768990 A1 EP2768990 A1 EP 2768990A1
Authority
EP
European Patent Office
Prior art keywords
wheel
quenching
gas
volute
scrolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12790595.8A
Other languages
German (de)
English (en)
Other versions
EP2768990B1 (fr
Inventor
Gérard TISSOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECM Technologies SAS
Original Assignee
ECM Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECM Technologies SAS filed Critical ECM Technologies SAS
Publication of EP2768990A1 publication Critical patent/EP2768990A1/fr
Application granted granted Critical
Publication of EP2768990B1 publication Critical patent/EP2768990B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0072Cooling of charges therein the cooling medium being a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0072Cooling of charges therein the cooling medium being a gas
    • F27D2009/0075Cooling of charges therein the cooling medium being a gas in direct contact with the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0089Quenching

Definitions

  • the present invention relates to a cell quenching parts, for example steel parts.
  • Quenching is a sudden cooling of a part, also called a load, which has been heated beyond a temperature of modification of the structure of the part to obtain a specific phase which is normally stable only at high temperature.
  • quenching makes it possible to maintain at room temperature the specific phase which has advantageous physical properties.
  • quenching can make it possible to transform the specific phase into a metastable phase which has advantageous physical properties.
  • the specific hot phase is in this case austenite, obtained by heating the steel parts between 750 ° C and 1000 ° C and the metastable phase is martensite.
  • the quenching operation must be relatively fast and uniform so that all of the austenite is converted to martensite without formation of other perlite or bainite type steel phases which have hardness properties less than martensite.
  • a quench liquid the part 53ala ⁇ ably is heated, for example, placed in a quench tank filled with a quench liquid, for example oil, stirred during cooling.
  • the quenching can also be carried out by passing a quenching gas around the part to be cooled.
  • the gas quenching is generally carried out by arranging the parts to be quenched in a quenching cell comprising a hermetically sealed enclosure and by circulating a quenching gas in the enclosure. Gas quenching processes have many advantages over liquid quenching processes, including the fact that treated parts come out dry and clean.
  • the gas quenching of previously heat-treated steel parts is generally carried out with a gas under pressure, so that generally between 4 and 20 bars.
  • the quenching gas is, for example, nitrogen, argon, helium, carbon dioxide or a mixture of these gases.
  • a quenching cell generally comprises at least one motor, generally an electric or hydraulic motor, rotating a stirring element, for example a propeller, adapted to circulate the quenching gas in the quenching cell.
  • a stirring element for example a propeller
  • One possibility to reverse the flow direction of the quenching gas is to use a stirring element whose direction of rotation dictates the flow direction of the quenching gas.
  • the inversion of the flow direction of the quenching gas is then obtained by reversing the direction of rotation of the stirring element.
  • this bus it is possible to use, in order to rotate the stirring element, an electric or hydraulic motor whose direction of rotation can be reversed.
  • Another possibility is to provide a transmission system between the motor and the stirring element for reversing the direction of rotation of the stirring element.
  • the reversal of the flow direction of the quenching gas at the parts to be cooled can then be greater than ten seconds.
  • US 2003/0175130 discloses a quenching cell in which the stirring member comprises centrifugal wheels which always rotate in the same direction.
  • the cell further comprises a system for inverting the direction of circulation of the quenching gas at the level of the parts to be cooled using movable flaps.
  • a disadvantage of such a quenching cell is that, to allow the inversion of the flow direction of the quenching gas at the parts to be cooled, the quenching gas is expelled radially over the entire periphery of the wheels directly into the quenching gas. 'pregnant. Whatever the direction of flow of the quenching gas, part of the quench gas expelled by the wheels is blocked by the flaps and loses a large part of its kinetic energy before being recovered in the overall flow of the quenching gas.
  • the energy efficiency of the quenching cell corresponding for example to the ratio between the energy provided for driving the wheels for a given period of time and the heat energy subtracted from the charge by the quenching gas during the same period, may therefore be low.
  • An object of an embodiment of the present invention is to obtain a quenching cell which has improved energy efficiency while allowing rapid reversal of the flow direction of the quenching gas at the parts to be cooled.
  • Another object of an embodiment of the present invention is to obtain a quenching cell having a small footprint.
  • an embodiment of the present invention provides a gas quenching cell of a load.
  • the cell comprises a centrifugal or helical centrifugal wheel comprising a gas suction opening and gas discharge openings.
  • the wheel is rotated by a motor to cause a flow of gas between the load and a heat exchanger.
  • the quenching cell comprises first and second movable half-scrolls. In a first position, the first half-volute guides the gas discharged by a first portion of the discharge openings and the second half-volute closes a first portion of the suction opening. In a second position, one of the first or second half-volute guides the gas discharged by a second portion, different from the first part, of the discharge openings and the other of the first or second half-volute closes a second portion of the suction opening.
  • the quenching cell comprises an actuator displacing the first and second half-scrolls in translation relative to the wheel.
  • the quenching cell comprises an actuator displacing the first and second half-scrolls in rotation relative to the axis of the wheel.
  • the quenching cell further comprises an enclosure containing the wheel, the load and the heat exchanger; a panel located between the wheel and the load; and a plate connecting the enclosure to the panel and surrounding the wheel, the first and second half-scrolls being disposed on either side of the plate.
  • the quenching cell comprises a cylindrical wall in contact with the panel and, in the first position, the second half-volute extends between the wheel and the cylindrical wall and, in the second position , the first half-volute extends between the wheel and the cylindrical wall.
  • 1 'actuator comprises a worm and a nut fixed to the first half-volute and cooperating with the worm.
  • the quenching cell comprises an additional centrifugal or helico-centrifugal wheel, the wheel and the additional wheel being disposed on either side of the load, the cell further comprising third and fourth additional mobile half-scrolls.
  • the third half-volute guides the gas discharged by a first portion of the discharge openings of the additional wheel and the fourth half-volute closes a first portion of the suction opening of the additional wheel.
  • one of the third or fourth half-scroll guides the gas discharged by a second portion of the discharge openings of the additional wheel, different from the first portion of the discharge openings of the additional wheel, and the another of the third or fourth half-volute closes a second portion of the suction opening of the additional wheel.
  • the wheel is a helico-centrifugal wheel.
  • Another embodiment of the present invention provides a method of gas quenching a charge in a quenching cell as described above.
  • the method comprises the following steps:
  • Figures 1 and 2 are schematic side views of an embodiment of a quenching cell with two stages of operation
  • Figure 3 is a perspective view of an exemplary embodiment of a helical-centrifugal wheel
  • Figure 4 is a schematic section of some elements of the quenching cell of Figure 1;
  • FIGS 5 and 6 are more detailed perspective views of some elements of the quenching cell of Figure 1.
  • Figures 1 and 2 show schematic side views of an embodiment of a quenching cell according to the invention at two stages of operation of a quenching process.
  • the cell 5 comprises an enclosure 10 having, for example, the general shape of a cylinder with a horizontal axis D.
  • the internal diameter of the enclosure 10 may be of the order of 1 meter.
  • the enclosure 10 may have a generally parallelepipedal shape.
  • the enclosure 10 rests on a support 12.
  • the cell 5 is closed at one end while the other end comprises a door system, not shown in FIGS. 1 and 2, giving access to the cell 5 for introducing or extract a charge 14 to cool. It can be a sliding door in a horizontal direction or a guillotine door.
  • the door makes it possible to close the quenching cell 5 in a substantially watertight manner.
  • cell 5 may include a door at each end.
  • the load 14 shown diagrammatically in FIGS. 1 and 2 by a rectangle, comprises a single piece or several pieces, for example a large number of pieces arranged on a suitable support. It may be steel parts, for example gear wheels.
  • the load 14 is maintained substantially in the center of the cell 5 on rails 16.
  • a quenching gas can be introduced into the enclosure
  • the quenching gas is for example nitrogen, argon, helium, carbon dioxide or a mixture of these gases .
  • the quenching gas is circulated in the chamber 10 by wheels 22A, 22B of axis and ⁇ ⁇ .
  • the wheels 22A, 22B are, for For example, disposed on each side of the load 14.
  • Each wheel 22A, 22B may be a centrifugal or helical-centrifugal wheel.
  • a centrifugal wheel is a wheel that draws a gas substantially axially and that delivers the gas substantially radially.
  • An axial wheel is a wheel that draws a gas substantially axially and displaces the gas substantially axially.
  • a helical-centrifugal wheel is a wheel whose operation is intermediate between the operation of an axial wheel and the operation of a centrifugal wheel, that is to say that the helical-centrifugal wheel sucks a gas substantially axially and delivers the gas on its periphery in directions inclined with respect to the axis of the wheel at an angle strictly greater than zero and strictly less than 90 °.
  • the axes and ⁇ ⁇ are horizontal, coincident and located in the median horizontal plane of the enclosure 10.
  • a vacuum pump not shown, can be connected to the enclosure 10 and allow the vacuum partial enclosure 10.
  • Each wheel 22A, 22B is rotated by a motor 24A, 24B.
  • the motors 24A, 24B may be electric motors or hydraulic motors. They may be motors 24A, 24B that can only operate in one direction of rotation.
  • the axis of the motor shaft 26A of the motor 24A coincides with the axis of the wheel 22A.
  • the motor shaft 26A is fixed at one end to the wheel 22A.
  • the motor shaft 26B coincides with the axis A- Q of the wheel 22B.
  • the motor shaft 26B is attached at one end to the wheel 22B.
  • the motors 24A, 24B are disposed outside the enclosure 10 and on either side of the enclosure 10 in sealed housings, only the motor shafts 26A, 26B being partly arranged in the enclosure
  • the cell 5 comprises, on either side of the load 14, vertical panels 28A, 28B which extend substantially over the entire length of the enclosure 10 along the axis D.
  • Each panel 28A, 28B is based on feet 30A, 30B attached to the enclosure 10.
  • the rails 16 may be attached to the panels 28A, 28B.
  • the quenching gas can not pass through the panels 28A, 28B, but can flow beneath the panels 28A, 28B between the legs 30A, 30B, and above the panels 28A, 28B, the top of the panels 28A, 28B not being in contact with the enclosure 10.
  • a first heat exchanger 32 is maintained between the panels 28A, 28B above the load 14.
  • a second heat exchanger 34 is held between the panels 28A, 28B below the load 14.
  • the exchangers 32, 34 are shown schematically by means of rectangles in FIGS. 1 and 2.
  • the quenching gas is cooled by passing through the heat exchangers 32, 34.
  • each heat exchanger 32, 34 comprises parallel tubes in which a liquid of cooling.
  • the quenching cell 5 comprises a flat and horizontal partition plate 36A, 36B for each wheel 22A, 22B.
  • the median plane of the separator plates 36A, 36B contains the axes and A- Q .
  • Each plate 36A, 36B connects the enclosure 10 to the associated vertical panel 28A, 28B, substantially the entire length of the enclosure 10 along the axis D.
  • Each plate 36A, 36B comprises an opening, only the opening 39A being visible in FIGS. 4 and 6, allowing in particular the passage of the wheel 22A, 22B and the drive shaft 26A, 26B.
  • Each plate 36A, 36B separates the internal volume of the cell 5, located between the enclosure 10 and the panel 28A, 28B, between an upper zone 37A, 37B situated above the plate 36A, 36B and a lower zone 38A, 38B below the plate 36A, 36B.
  • the cell 5 comprises, for each wheel 22A, 22B, an upper half-scroll 40A, 40B, located above the partition plate 36A, 36B, and a lower half-scroll 42A, 42B, located below the separating plate 36A, 36B.
  • Each upper half-scroll 40A, 40B includes a side wall 43A, 43B, an inner planar wall 44A, 44B and an outer planar wall 45A, 45B.
  • the flat walls 44A, 44B, 45A, 45B are perpendicular to the axes and A Q and comprise an inner edge corresponding to a portion of a circle whose diameter is slightly greater than the maximum outer diameter of the wheel 22A, 22B.
  • Each lower half-scroll 42A, 42B includes a side wall 46A, 46B, an inner planar wall 47A, 47B and an outer planar wall 48A, 48B.
  • planar walls 47A, 47B, 48A, 48B are perpendicular to the axes and A- Q and comprise an inner edge corresponding to a portion of a circle whose diameter is slightly greater than the maximum outer diameter of the wheel 22A, 22B.
  • the inner plane wall 44A, 44B, 47A, 47B is the closest planar wall of the panels 28A, 28B and the outer planar wall 45A, 45B, 48A, 48B is the wall furthest from the panels 28A, 28B.
  • the cell 5 comprises, for each wheel 22A, 22B, a cylindrical wall 50A, 50B of axis and A- Q respectively.
  • the internal diameter of the cylindrical wall 50A, 50B is substantially equal to the maximum outer diameter of the wheel 22A, 22B.
  • the cylindrical wall 50A, 50B is in contact with the panel 28A, 28B.
  • Each half-volute 40A, 40B, 42A, 42B can be displaced by translation along the axis (respectively A- Q ) between a first position, called the guiding position, in which the half-volute is close to the enclosure 10 and a second position, called the occultation position, in which the half-volute is close to the panel 28A, 28B.
  • the displacement system of the half-scrolls 40A, 40B, 42A, 42B is not shown in FIGS. 1 and 2.
  • Figure 3 shows a perspective view of the wheel 22A. It is a closed helical-centrifugal wheel.
  • the wheel 22B may be identical to the wheel 22A.
  • the wheel 22A includes blades 51A held between a base flange 52A and a cover ring 54A. Each pale 51A includes a leading edge 56A, a trailing edge 58A and side edges 60A, 62A.
  • the base flange 52A includes a central support portion 64A and a flat portion 66A extending around the support portion. 64A.
  • the plane portion 66A has, seen along the axis ⁇ ⁇ , the shape of a ring gear and comprises a circular outer edge 68A.
  • the support portion 64A is traversed by an opening 70A for the passage of the drive shaft 26A, not shown in Figure 3.
  • the lateral edge 62A of each blade 51A is fixed to the flat portion 66A and extends from the outer edge 68A from the flat portion 66A to the support portion 64A.
  • the cover ring 54A is a symmetrical piece of revolution about the axis and comprises an inner wall 71A, a side wall 72A and a front wall 73A.
  • the side wall 72A is a cylindrical wall of axis ⁇ ⁇ having the same diameter as the outer circular edge 68A of the base flange 52A.
  • the front wall 73A is a flat wall having, seen along the axis Ap ⁇ , the shape of a crown of axis ⁇ ⁇ whose outer edge is in contact with the side wall 72A and comprising a circular inner edge 74A whose diameter is smaller than the diameter of the side wall 72A.
  • the inner wall 71A connects the inner circular edge 74A to the side wall 72A.
  • the side wall 72A comprises a circular edge 75A in contact with the blades 51A.
  • the inner wall 71A connects the circular inner edge 74A to the circular edge 75A.
  • each blade 51A is fixed to the inner wall 71A and extends from the circular edge 75A to the inner circular edge 74A.
  • the circular inner edge 74A defines the suction opening 76A of the wheel 22A.
  • the rear edges 58A of the blades 51A and the circular edges 68A, 75A delimit the discharge openings 78A of the wheel 22A.
  • the wheel 22A is rotated about the axis ⁇ ⁇ according to the arrow 79.
  • the quenching gas is sucked by the suction opening 76A of the wheel 22A and is expelled by the discharge openings 78A on the entire periphery of the wheel 22A radially and rearwardly.
  • the outer planar wall 45A, 45B, 48A, 48B of the half-volute 40A, 40B, 42A, 42B is substantially in the extension of the base flange 52A, 52B of the associated wheel 22A, 22B.
  • the inner plane wall 44A, 44B, 47A, 47B of the half-volute 40A, 40B, 42A, 42B extends plumb with the cylindrical wall 50A, 50B.
  • the side wall 43A, 43B, 46A, 46B of the half-volute 40A, 40B, 42A, 42B covers the discharge openings 78A, 78B of the wheel 22A, 22B associated on one half of the periphery the wheel 22A, 22B.
  • the outer plane wall 45A, 45B, 48A, 48B of the half-volute 40A, 40B, 42A, 42B is in line with the cylindrical side wall 72A, 72B and the inner plane wall 44A, 44B, 47A, 47B is in line with the cylindrical wall 50A, 50B.
  • the side wall 43A, 43B, 46A, 46B of the half-volute 40A, 40B, 42A, 42B extends between the cylindrical wall 72A, 72B and the cylindrical wall 50A, 50B.
  • the half-volute 40A, 40B, 42A, 42B, the cylindrical wall 72A, 72B, the separation plate 36A, 36B, and the cylindrical wall 50A, 50B then form a screen which prevents or greatly reduces the passage of the quenching gas.
  • the half-scrolls 40A, 40B, 42A, 42B are moved so that, when the upper half-scrolls 40A, 40B are in the guiding position, as shown in FIG. 1, the lower half-scrolls 42A, 42B are in the blackout position and when the upper half-scrolls 40A, 40B are in the blackout position, as shown in Fig. 2, the lower half-scrolls 42A, 42B are in the guide position.
  • each lower half-scroll 42A, 42B in the occultation position, prevents or greatly reduces the suction of quenching gas by the associated wheel 22A, 22B from the lower zone 38A, 38B.
  • most of the quenching gas sucked by the wheel 22A, 22B comes from the upper zone 37A, 37B.
  • each half upper volute 40A, 40B in the guiding position, guides the flow expelled by the helical-centrifugal wheel 22A, 22B associated to the lower zone 38A, 38B.
  • each upper half-volute 40A, 40B in the occultation position, prevents or greatly reduces the suction of quenching gas by the wheel 22A, 22B from the upper zone 37A, 37B.
  • most of the quenching gas sucked by the wheel 22A, 22B comes from the lower zone 38A, 38B.
  • each lower half-scroll 42A, 42B in the guiding position, guides the flow expelled by the helical-centrifugal wheel 22A, 22B to the upper zone 37A, 37B.
  • the wheels 22A, 22B circulate the quenching gas at the load 14 with a flow of a few cubic meters per second.
  • a quenching process may include one or more reversals of the quenching gas flow direction at the charge 14.
  • FIG. 4 is a partial and schematic section of FIG. 1 along the plane IV-IV and represents the wheel 22A, the half-volute 40A (in solid lines), the half-volute 42A (in broken lines) and the separation 36A.
  • the half-scrolls 40B and 42B may have a structure similar to the half-scrolls 40A, 42A.
  • the half-volute 40A comprises bearing portions 82A, 84A which extend the side wall 43A and rest on the upper face of the partition wall 36A.
  • the half-volute 40A in the guiding position, directs the gas expelled on the upper half of the wheel 22A towards the zone lower 38A.
  • the half-volute 42A shown in broken lines in the guiding position, comprises bearing portions 86A, 88A which extend the side wall 46A and rest on the lower face of the partition wall 36A.
  • the half-volute 42A in the guiding position, directs the gas expelled on the lower half of the wheel 22A to the upper zone 37A.
  • FIGS. 5 and 6 are perspective views of certain elements of the quenching cell 5 of FIG. 1.
  • the vertical panel 28A, the wheel 22A, the half-volute 40A in the guiding position are shown, the partition plate 36A and the motor 24A.
  • the actuation system requires the half-volute 40A is shown in Figures 5 and 6.
  • the feet 30A and the heat exchangers 32, 34 are shown.
  • the actuation systems of the other half-scrolls may have a structure similar to the actuating system of the half-volute 40A.
  • the actuating system of the half-volute 40A comprises an actuator 90A which comprises two guide rods 94A, 96A whose axes are parallel to the axis ⁇ ⁇ .
  • the guide rods 94A, 96A are disposed on either side of the half-volute 40A and are fixed at their ends to the partition plate 36A by supports 98A.
  • a carriage 100A, fixed to the half-volute 40A can slide on the rod 94A.
  • a carriage 102A, attached to the half-volute 40A can slide on the rod 96A.
  • the actuator 90A comprises an electric motor 104A driving in rotation, by a return system 106A, a worm 108A.
  • the axis of the worm 108A is parallel to the axis ⁇ ⁇ .
  • the carriage 100A comprises a portion 110A forming a nut mounted on the worm 108A.
  • a rotation of the worm 108A leads to a translational movement of the portion 110A forming a nut along the axis of the worm 108A, that is to say parallel to the axis ⁇ ⁇ .
  • the half-volute 40A is moved from the guiding position to the occultation position or the occultation position to the guiding position.
  • the motors 22A, 22B may be associated with speed variation devices so as to change the flow rate of the quenching gas at the load 14 during a quenching operation.
  • frequency inverters can be used when the drive motors 24A, 24B are electric motors.
  • the engines 24A, 24B are hydraulic motors, a system for varying the flow rate of the oil supplying these engines may be provided.
  • the half-volutes 40A, 40B, 42A, 42B are not mobile in translation parallel to the axes and A- Q but are rotatable about the axes and Ag. configuration shown in Figure 1, each half-volute 40A, 40B, 42A, 42B can be rotated a half turn around the axis and ⁇ ⁇ associated. From the configuration shown in FIG. 1, the half-volute 40A, after a half turn, covers the lower half of the periphery of the wheel 22A and the half-volute 42A, after a half turn, extends between the cylindrical walls 72A and 50A in the upper zone 37A.
  • the half-volute 40B after a half turn, covers the lower half of the periphery of the wheel 22B and the half-volute 42B, after a half turn, extends between the cylindrical walls 72B and 50B in the upper zone 37B.
  • the quenching cell 5 has several advantages: Whatever the positions of the half-scrolls, all the quenching gas is discharged by the wheel in the right direction relative to the desired flow direction of the quenching gas at the level of the load .
  • the gas expelled on the upper half of the wheel is guided by each half-volute upper to the lower zone of the cell and the gas expelled on the lower half of the wheel is directly expelled into the lower zone of the cell.
  • the proposed flow reversal system allows an improvement of about 20% in the efficiency of the quenching cell, according to the inventors' tests, compared to a flow reversal system with a quenching system.
  • freewheel without volute
  • the outflow is either oriented in the right direction for half of the wheel which is free (without volute), or channeled in the right direction for half of the wheel with volute.
  • the change in the direction of flow of the quenching gas at the level of the load is obtained by moving the half-scrolls without reversing the direction of rotation of the wheels.
  • the reversal of the flow direction of the quenching gas caused by the wheels can be carried out rapidly, for example in less than five seconds.
  • the quenching cell may be different from the cell described above.
  • the axes of the centrifugal or helico-centrifugal wheels may be arranged vertically so that the quenching gas flows at the load in a horizontal direction.
  • the motor axes can be inclined relative to the axes of the wheels, the motor shafts then being connected to the wheels by return systems, for example comprising gear wheels.
  • the quenching cell may comprise only one wheel for the circulation of the quenching gas at the level of the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne une cellule de trempe (5) sous gaz d'une charge (14). La cellule comprend une roue centrifuge ou hélico-centrifuge (22A, 22B) comprenant une ouverture d'aspiration de gaz et des ouvertures de refoulement de gaz. La roue est entraînée en rotation par un moteur (24A, 24B) pour provoquer un écoulement du gaz entre la charge et un échangeur thermique (32, 34). La cellule de trempe comprend des première et seconde demi-volutes (40A, 40B, 42A, 42B) mobiles. Dans une première position, la première demi-volute guide le gaz refoulé par une première partie des ouvertures (78A) de refoulement et la seconde demi-volute obture une première portion de l'ouverture (76A) d'aspiration. Dans une seconde position, la seconde demi-volute guide le gaz refoulé par une seconde partie, différente de la première partie, des ouvertures de refoulement et la première demi-volute obture une seconde portion de l'ouverture d'aspiration.

Description

CELLULE DE TREMPE
Domaine de 1 ' invention
La présente invention concerne une cellule de trempe de pièces, par exemple de pièces en acier.
Exposé de 1 ' art antérieur
La trempe correspond à un refroidissement brutal d'une pièce, également appelée charge, qui a été chauffée au-delà d'une température de modification de la structure de la pièce pour obtenir une phase spécifique qui n'est normalement stable qu'à haute température. Pour certains matériaux, notamment certains métaux, la trempe permet de maintenir à température ambiante la phase spécifique qui a des propriétés physiques avantageuses. Pour d'autres matériaux, notamment certains aciers, la trempe peut permettre de transformer la phase spécifique en une phase métastable qui a des propriétés physiques avantageuses. La phase spécifique à chaud est dans ce cas l'austénite, obtenue en chauffant les pièces en acier entre 750°C et 1000°C et la phase métastable est la martensite. L'opération de trempe doit être relativement rapide et uniforme pour que la totalité de l'austénite se transforme en martensite sans formation d'autres phases d'acier de type perlite ou bainite qui ont des propriétés de dureté inférieures à la martensite . Dans le cas d'une trempe par liquide, la pièce préala¬ blement chauffée est, par exemple, placée dans un bac de trempe rempli d'un liquide de trempe, par exemple de l'huile, agité durant le refroidissement.
La trempe peut également être réalisée par le passage d'un gaz de trempe autour de la pièce à refroidir. La trempe sous gaz est généralement réalisée en disposant des pièces à tremper dans une cellule de trempe comprenant une enceinte fermée hermétiquement et en faisant circuler un gaz de trempe dans l'enceinte. Les procédés de trempe sous gaz présentent de nombreux intérêts par rapport à des procédés de trempe par liquide, notamment le fait que les pièces traitées sortent sèches et propres.
La trempe sous gaz de pièces en acier ayant subi au préalable un traitement thermique (chauffage avant trempe, recuit, revenu...) ou thermochimique (cémentation, carbonitrura- tion...) est généralement réalisée avec un gaz sous pression, de façon générale entre 4 et 20 bars. Le gaz de trempe est, par exemple, de l'azote, de l'argon, de l'hélium, du dioxyde de carbone ou un mélange de ces gaz .
Une cellule de trempe comprend généralement au moins un moteur, généralement un moteur électrique ou hydraulique, entraînant en rotation un élément de brassage, par exemple une hélice, adapté à mettre en circulation le gaz de trempe dans la cellule de trempe. Pour obtenir un refroidissement rapide des pièces introduites dans la cellule de trempe, on fait habituellement circuler le gaz de trempe au niveau des pièces à refroidir à une vitesse élevée pendant la totalité de l'opéra¬ tion de trempe.
Pour certains types de pièces, par exemple lorsque les pièces sont massives, il peut être difficile d'obtenir un refroidissement uniforme des pièces si le gaz de trempe circule dans la cellule de trempe dans le même sens pendant toute l'opération de trempe et atteint donc les pièces à traiter toujours de la même façon. Dans ce cas, il est souhaitable de pouvoir inverser rapidement le sens de circulation du gaz de trempe au niveau des pièces à refroidir pour améliorer l'uniformité du refroidissement.
Une possibilité pour inverser le sens de circulation du gaz de trempe est d'utiliser un élément de brassage dont le sens de rotation impose le sens de circulation du gaz de trempe. L'inversion du sens de circulation du gaz de trempe est alors obtenue en inversant le sens de rotation de l'élément de brassage. Dans ce bus, on peut utiliser, pour entraîner en rotation l'élément de brassage, un moteur électrique ou hydraulique dont le sens de rotation peut être inversé. Une autre possibilité est de prévoir un système de transmission entre le moteur et l'élément de brassage permettant d'inverser le sens de rotation de l'élément de brassage. Toutefois, il peut être difficile d'inverser le sens de rotation d'un moteur électrique ou hydraulique ou de faire fonctionner une transmission en un délai court. L'inversion du sens de circulation du gaz de trempe au niveau des pièces à refroidir peut alors être supérieure à dix secondes .
Le document US 2003/0175130 décrit une cellule de trempe dans laquelle l'élément de brassage comprend des roues centrifuges qui tournent toujours dans le même sens. La cellule comprend, en outre, un système d'inversion du sens de circulation du gaz de trempe au niveau des pièces à refroidir mettant en oeuvre des volets mobiles.
Un inconvénient d'une telle cellule de trempe est que, pour permettre 1 ' inversion du sens de circulation du gaz de trempe au niveau des pièces à refroidir, le gaz de trempe est expulsé radialement sur la totalité de la périphérie des roues directement dans l'enceinte. Quel que soit le sens de circulation du gaz de trempe, une partie du gaz de trempe expulsé par les roues est bloqué par les volets et perd une part importante de son énergie cinétique avant d'être récupéré dans le flux global du gaz de trempe. Le rendement énergétique de la cellule de trempe, correspondant par exemple au rapport entre l'énergie apportée pour l'entraînement des roues pendant une durée donnée et l'énergie thermique soustraite à la charge par le gaz de trempe pendant cette même durée, peut donc être faible .
Résumé
Un objet d'un mode de réalisation de la présente invention est d'obtenir une cellule de trempe qui a un rendement énergétique amélioré tout en permettant l'inversion rapide du sens de circulation du gaz de trempe au niveau des pièces à refroidir.
Un autre objet d'un mode de réalisation de la présente invention est d'obtenir une cellule de trempe ayant un encombrement réduit.
Ainsi, un mode de réalisation de la présente invention prévoit une cellule de trempe sous gaz d'une charge. La cellule comprend une roue centrifuge ou hélico-centrifuge comprenant une ouverture d'aspiration de gaz et des ouvertures de refoulement de gaz. La roue est entraînée en rotation par un moteur pour provoquer un écoulement du gaz entre la charge et un échangeur thermique. La cellule de trempe comprend des première et seconde demi-volutes mobiles. Dans une première position, la première demi-volute guide le gaz refoulé par une première partie des ouvertures de refoulement et la seconde demi-volute obture une première portion de l'ouverture d'aspiration. Dans une seconde position, l'une de la première ou la seconde demi-volute guide le gaz refoulé par une seconde partie, différente de la première partie, des ouvertures de refoulement et l'autre de la première ou seconde demi-volute obture une seconde portion de l'ouverture d' aspiration.
Selon un mode de réalisation de la présente invention, la cellule de trempe comprend un actionneur déplaçant les première et seconde demi-volutes en translation par rapport à la roue .
Selon un mode de réalisation de la présente invention, la cellule de trempe comprend un actionneur déplaçant les première et seconde demi-volutes en rotation par rapport à 1 ' axe de la roue.
Selon un mode de réalisation de la présente invention, la cellule de trempe comprend, en outre une enceinte contenant la roue, la charge et l'échangeur thermique ; un panneau situé entre la roue et la charge ; et une plaque reliant l'enceinte au panneau et entourant la roue, les première et seconde demi- volutes étant disposées de part et d'autre de la plaque.
Selon un mode de réalisation de la présente invention, la cellule de trempe comprend une paroi cylindrique au contact du panneau et, dans la première position, la seconde demi-volute s'étend entre la roue et la paroi cylindrique et, dans la seconde position, la première demi-volute s'étend entre la roue et la paroi cylindrique.
Selon un mode de réalisation de la présente invention,
1 ' actionneur comprend une vis sans fin et un écrou fixé à la première demi-volute et coopérant avec la vis sans fin.
Selon un mode de réalisation de la présente invention, la cellule de trempe comprend une roue centrifuge ou hélico- centrifuge supplémentaire, la roue et la roue supplémentaire étant disposées de part et d'autre de la charge, la cellule comprenant, en outre, des troisième et quatrième demi-volutes supplémentaires mobiles. Dans la première position, la troisième demi-volute guide le gaz refoulé par une première partie des ouvertures de refoulement de la roue supplémentaire et la quatrième demi-volute obture une première portion de l'ouverture d'aspiration de la roue supplémentaire. Dans la seconde position, l'une de la troisième ou quatrième demi-volute guide le gaz refoulé par une seconde partie des ouvertures de refoulement de la roue supplémentaire, différente de la première partie des ouvertures de refoulement de la roue supplémentaire, et l'autre de la troisième ou quatrième demi-volute obture une seconde portion de l'ouverture d'aspiration de la roue supplémentaire . Selon un mode de réalisation de la présente invention, la roue est une roue hélico-centrifuge .
Un autre mode de réalisation de la présente invention prévoit un procédé de trempe sous gaz d'une charge dans une cellule de trempe telle que décrite précédemment. Le procédé comprend les étapes suivantes :
déplacer les première et seconde demi-volutes dans la première position, le gaz s 'écoulant au niveau de la charge dans un premier sens de circulation ; et
déplacer les première et seconde demi-volutes dans la seconde position, le gaz s 'écoulant au niveau de la charge dans un second sens de circulation opposé au premier sens de circulation .
Brève description des dessins
Ces objets, caractéristiques et avantages, ainsi que d'autres seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
les figures 1 et 2 sont des vues latérales schématiques d'un mode de réalisation d'une cellule de trempe à deux étapes de fonctionnement ;
la figure 3 est une vue en perspective d'un exemple de réalisation d'une roue hélico-centrifuge ;
la figure 4 est une section schématique de certains éléments de la cellule de trempe de la figure 1 ; et
les figures 5 et 6 sont des vues en perspective plus détaillées de certains éléments de la cellule de trempe de la figure 1.
Description détaillée
De mêmes éléments ont été désignés par de mêmes références dans les différentes figures. En outre, seules les étapes et les éléments nécessaires à la compréhension du mode de réalisation de la cellule de trempe et du procédé de trempe ont été représentés et décrits. En outre, les adjectifs "inférieur", "supérieur", "au-dessous" et "au-dessus" et les noms "bas" et "haut" sont utilisés par rapport à une direction de référence qui, dans le mode de réalisation de cellule de trempe décrit par la suite est la direction verticale. Toutefois, la direction de référence pourrait être inclinée par rapport à la verticale et pourrait, par exemple, être horizontale.
Les figures 1 et 2 représentent des vues latérales schématiques d'un mode de réalisation d'une cellule de trempe selon l'invention à deux étapes de fonctionnement d'un procédé de trempe.
La cellule 5 comporte une enceinte 10 ayant, par exemple, la forme générale d'un cylindre à axe D horizontal. A titre d'exemple, le diamètre interne de l'enceinte 10 peut être de l'ordre de 1 mètre. A titre de variante, l'enceinte 10 peut avoir une forme générale parallélépipédique . L'enceinte 10 repose sur un support 12. La cellule 5 est fermée à une extrémité tandis que 1 ' autre extrémité comprend un système de porte, non représenté sur les figures 1 et 2, donnant accès à la cellule 5 pour y introduire ou en extraire une charge 14 à refroidir. Il peut s'agir d'une porte coulissant selon une direction horizontale ou d'une porte guillotine. La porte permet de fermer la cellule de trempe 5 de manière sensiblement étanche. A titre de variante, la cellule 5 peut comprendre une porte à chaque extrémité.
La charge 14, représentée schématiquement sur les figures 1 et 2 par un rectangle, comprend une seule pièce ou plusieurs pièces, par exemple un grand nombre de pièces disposées sur un support approprié. Il peut s'agir de pièces en acier, par exemple de roues dentées. La charge 14 est maintenue sensiblement au centre de la cellule 5 sur des rails 16.
Un gaz de trempe peut être introduit dans l'enceinte
10 ou extrait de l'enceinte 10 par l'intermédiaire de vannes 18, 20. Le gaz de trempe est par exemple de l'azote, de l'argon, de l'hélium, du dioxyde de carbone ou un mélange de ces gaz. Le gaz de trempe est mis en circulation dans l'enceinte 10 par des roues 22A, 22B d'axe et Δβ. Les roues 22A, 22B sont, par exemple, disposées de chaque côté de la charge 14. Chaque roue 22A, 22B peut être une roue centrifuge ou helico-centrifuge. Une roue centrifuge est roue qui aspire un gaz de façon sensiblement axiale et qui refoule le gaz de façon sensiblement radiale. Une roue axiale est une roue qui aspire un gaz de façon sensiblement axiale et refoule le gaz de façon sensiblement axiale. Une roue hélico-centrifuge est une roue dont le fonctionnement est intermédiaire entre le fonctionnement d'une roue axiale et le fonctionnement d'une roue centrifuge, c'est-à-dire que la roue hélico-centrifuge aspire un gaz de façon sensiblement axiale et refoule le gaz sur sa périphérie selon des directions inclinées par rapport à 1 ' axe de la roue selon un angle strictement supérieur à zéro et strictement inférieur à 90°.
A titre d'exemple, les axes et Δβ sont horizontaux, confondus et situés dans le plan horizontal médian de l'enceinte 10. Une pompe à vide, non représentée, peut être reliée à l'enceinte 10 et permettre la mise sous vide partiel de l'enceinte 10.
Chaque roue 22A, 22B est entraînée en rotation par un moteur 24A, 24B. Les moteurs 24A, 24B peuvent être des moteurs électriques ou des moteurs hydrauliques. Il peut s'agir de moteurs 24A, 24B ne pouvant fonctionner que dans un seul sens de rotation. L'axe de l'arbre moteur 26A du moteur 24A est confondu avec l'axe de la roue 22A. L'arbre moteur 26A est fixé à une extrémité à la roue 22A. L'axe de l'arbre moteur 26B du moteur
24B est confondu avec l'axe A-Q de la roue 22B. L'arbre moteur 26B est fixé à une extrémité à la roue 22B. Les moteurs 24A, 24B sont disposés à l'extérieur de l'enceinte 10 et de part et d'autre de l'enceinte 10 dans des carters étanches, seuls les arbres moteur 26A, 26B étant en partie disposés dans l'enceinte
10.
La cellule 5 comprend, de part et d'autre de la charge 14, des panneaux verticaux 28A, 28B qui s'étendent sensiblement sur toute la longueur de l'enceinte 10 selon l'axe D. Chaque panneau 28A, 28B repose sur des pieds 30A, 30B fixés à l'enceinte 10. Les rails 16 peuvent être fixés aux panneaux 28A, 28B. Le gaz de trempe ne peut pas traverser les panneaux 28A, 28B, mais peut circuler au-dessous des panneaux 28A, 28B entre les pieds 30A, 30B, et au-dessus des panneaux 28A, 28B, le sommet des panneaux 28A, 28B n'étant pas au contact de l'enceinte 10.
Un premier échangeur thermique 32 est maintenu entre les panneaux 28A, 28B au-dessus de la charge 14. Un second échangeur thermique 34 est maintenu entre les panneaux 28A, 28B au-dessous de la charge 14. Les échangeurs 32, 34 sont représentés schématiquement par des rectangles sur les figures 1 et 2. En fonctionnement, le gaz de trempe est refroidi en traversant les échangeurs thermiques 32, 34. A titre d'exemple, chaque échangeur thermique 32, 34 comprend des tubes parallèles dans lesquels circule un liquide de refroidissement.
La cellule de trempe 5 comprend une plaque de séparation 36A, 36B, plane et horizontale, pour chaque roue 22A, 22B. Le plan médian des plaques de séparation 36A, 36B contient les axes et A-Q. Chaque plaque 36A, 36B relie l'enceinte 10 au panneau vertical 28A, 28B associé, sensiblement sur toute la longueur de l'enceinte 10 selon l'axe D. Chaque plaque 36A, 36B comprend une ouverture, seule l'ouverture 39A étant visible sur les figures 4 et 6, permettant notamment le passage de la roue 22A, 22B et de l'arbre moteur 26A, 26B. Chaque plaque 36A, 36B sépare le volume interne de la cellule 5, situé entre l'enceinte 10 et le panneau 28A, 28B, entre une zone supérieure 37A, 37B située au-dessus de la plaque 36A, 36B et une zone inférieure 38A, 38B située au-dessous de la plaque 36A, 36B.
La cellule 5 comprend, pour chaque roue 22A, 22B, une demi-volute supérieure 40A, 40B, située au-dessus de la plaque de séparation 36A, 36B, et une demi-volute inférieure 42A, 42B, située au-dessous de la plaque de séparation 36A, 36B.
Chaque demi-volute supérieure 40A, 40B comprend une paroi latérale 43A, 43B, une paroi plane intérieure 44A, 44B et une paroi plane extérieure 45A, 45B. Les parois planes 44A, 44B, 45A, 45B sont perpendiculaires aux axes et AQ et comprennent un bord intérieur correspondant à une portion de cercle dont le diamètre est légèrement supérieur au diamètre externe maximal de la roue 22A, 22B. Chaque demi-volute inférieure 42A, 42B comprend une paroi latérale 46A, 46B, une paroi plane intérieure 47A, 47B et une paroi plane extérieure 48A, 48B. Les parois planes 47A, 47B, 48A, 48B sont perpendiculaires aux axes et A-Q et comprennent un bord intérieur correspondant à une portion de cercle dont le diamètre est légèrement supérieur au diamètre externe maximal de la roue 22A, 22B. La paroi plane intérieure 44A, 44B, 47A, 47B est la paroi plane la plus proche des panneaux 28A, 28B et la paroi plane extérieure 45A, 45B, 48A, 48B est la paroi la plus éloignée des panneaux 28A, 28B.
La cellule 5 comprend, pour chaque roue 22A, 22B, une paroi cylindrique 50A, 50B d'axe et A-Q respectivement. Le diamètre interne de la paroi cylindrique 50A, 50B est sensiblement égal au diamètre externe maximal de la roue 22A, 22B. La paroi cylindrique 50A, 50B est au contact du panneau 28A, 28B.
Chaque demi-volute 40A, 40B, 42A, 42B peut être déplacée par translation selon l'axe (respectivement A-Q) entre une première position, appelée position de guidage, dans laquelle la demi-volute est proche de l'enceinte 10 et une seconde position, appelée position d'occultation, dans laquelle la demi-volute est proche du panneau 28A, 28B. Le système de déplacement des demi-volutes 40A, 40B, 42A, 42B n'est pas représenté sur les figures 1 et 2.
La figure 3 représente une vue en perspective de la roue 22A. Il s'agit d'une roue hélico-centrifuge fermée. La roue 22B peut être identique à la roue 22A. La roue 22A comprend des pâles 51A maintenues entre un flasque de base 52A et un anneau de recouvrement 54A. Chaque pâle 51A comprend un bord avant 56A, un bord arrière 58A et des bords latéraux 60A, 62A. Le flasque de base 52A comprend une portion de support 64A centrale et une portion plane 66A s 'étendant autour de la portion de support 64A. La portion plane 66A a, vue selon l'axe Δ ^, la forme d'une couronne d'axe et comprend un bord extérieur circulaire 68A. La portion de support 64A est traversée par une ouverture 70A pour le passage de l'arbre moteur 26A, non représentée en figure 3. Le bord latéral 62A de chaque pâle 51A est fixé à la portion plane 66A et s'étend depuis le bord extérieur 68A de la portion plane 66A jusqu'à la portion de support 64A.
L'anneau de recouvrement 54A est une pièce à symétrie de révolution autour de l'axe et comprend une paroi interne 71A, une paroi latérale 72A et une paroi avant 73A. La paroi latérale 72A est une paroi cylindrique d'axe Δ ^ ayant le même diamètre que le bord extérieur circulaire 68A du flasque de base 52A. La paroi avant 73A est une paroi plane ayant, vue selon l'axe Ap^, la forme d'une couronne d'axe Δ ^ dont le bord extérieur est au contact de la paroi latérale 72A et comprenant un bord intérieur circulaire 74A dont le diamètre est inférieur au diamètre de la paroi latérale 72A. La paroi interne 71A relie le bord intérieur circulaire 74A à la paroi latérale 72A. La paroi latérale 72A comprend un bord circulaire 75A au contact des pâles 51A. La paroi interne 71A relie le bord intérieur circulaire 74A au bord circulaire 75A.
Le bord latéral 60A de chaque pâle 51A est fixé à la paroi interne 71A et s'étend du bord circulaire 75A jusqu'au bord intérieur circulaire 74A. Le bord intérieur circulaire 74A délimite l'ouverture d'aspiration 76A de la roue 22A. Les bords arrière 58A des pâles 51A et les bords circulaires 68A, 75A délimitent les ouvertures de refoulement 78A de la roue 22A.
En fonctionnement, la roue 22A est mise en rotation autour de l'axe Δ ^ selon la flèche 79. Le gaz de trempe est aspiré par l'ouverture d'aspiration 76A de la roue 22A et est expulsé par les ouvertures de refoulement 78A sur toute la périphérie de la roue 22A de façon radiale et vers l'arrière.
Pour chaque demi-volute 40A, 40B, 42A, 42B, dans la position de guidage, la paroi plane extérieure 45A, 45B, 48A, 48B de la demi-volute 40A, 40B, 42A, 42B est sensiblement dans le prolongement du flasque de base 52A, 52B de la roue 22A, 22B associée. En outre, la paroi plane intérieure 44A, 44B, 47A, 47B de la demi-volute 40A, 40B, 42A, 42B s'étend à l'aplomb de la paroi cylindrique 50A, 50B. La paroi latérale 43A, 43B, 46A, 46B de la demi-volute 40A, 40B, 42A, 42B recouvre les ouvertures de refoulement 78A, 78B de la roue 22A, 22B associée sur une moitié de la périphérie la roue 22A, 22B.
Pour chaque demi-volute 40A, 40B, 42A, 42B, dans la position d'occultation, la paroi plane extérieure 45A, 45B, 48A, 48B de la demi-volute 40A, 40B, 42A, 42B est à l'aplomb de la paroi latérale cylindrique 72A, 72B et la paroi plane intérieure 44A, 44B, 47A, 47B est à l'aplomb de la paroi cylindrique 50A, 50B. La paroi latérale 43A, 43B, 46A, 46B de la demi-volute 40A, 40B, 42A, 42B s'étend entre la paroi cylindrique 72A, 72B et la paroi cylindrique 50A, 50B. La demi-volute 40A, 40B, 42A, 42B, la paroi cylindrique 72A, 72B, la plaque de séparation 36A, 36B, et la paroi cylindrique 50A, 50B forment alors un écran qui empêche ou réduit fortement le passage du gaz de trempe.
Les demi-volutes 40A, 40B, 42A, 42B sont déplacées de façon que, lorsque les demi-volutes supérieures 40A, 40B sont dans la position de guidage, comme cela est représenté en figure 1, les demi-volutes inférieures 42A, 42B sont dans la position d'occultation et que, lorsque les demi-volutes supérieures 40A, 40B sont dans la position d'occultation, comme cela est représenté en figure 2, les demi-volutes inférieures 42A, 42B sont dans la position de guidage.
Dans la configuration représentée en figure 1, lorsque les roues 22A, 22B sont mises en rotation, le gaz de trempe s'écoule sensiblement selon les flèches 80 et, en particulier, du bas vers le haut au niveau de la charge 14. En effet, chaque demi-volute inférieure 42A, 42B, en position d'occultation, empêche ou réduit fortement l'aspiration de gaz de trempe par la roue 22A, 22B associée depuis la zone inférieure 38A, 38B. De ce fait, l'essentiel du gaz de trempe aspiré par la roue 22A, 22B provient de la zone supérieure 37A, 37B. En outre, chaque demi- volute supérieure 40A, 40B, en position de guidage, guide le flux expulsé par la roue hélico-centrifuge 22A, 22B associée vers la zone inférieure 38A, 38B.
Dans la configuration représentée en figure 2, lorsque les roues 22A, 22B sont mises en rotation, le gaz de trempe s'écoule sensiblement selon les flèches 81 et, en particulier, du haut vers le bas au niveau de la charge 14. En effet, chaque demi-volute supérieure 40A, 40B, en position d'occultation, empêche ou réduit fortement l'aspiration de gaz de trempe par la roue 22A, 22B depuis la zone supérieure 37A, 37B. De ce fait, l'essentiel du gaz de trempe aspiré par la roue 22A, 22B provient de la zone inférieure 38A, 38B. En outre, chaque demi- volute inférieure 42A, 42B, en position de guidage, guide le flux expulsé par la roue hélico-centrifuge 22A, 22B vers la zone supérieure 37A, 37B.
A titre d'exemple, en fonctionnement, les roues 22A, 22B font circuler le gaz de trempe au niveau de la charge 14 avec un débit de quelques mètres cubes par seconde.
Le sens de circulation du gaz de trempe au niveau de la charge 14 peut donc être inversé en passant de la configuration représentée à la figure 1 à la configuration représentée à la figure 2 et inversement, les roues 22A, 22B tournant touj ours dans le même sens . Un procédé de trempe peut comprendre une ou plusieurs inversions du sens de circulation du gaz de trempe au niveau de la charge 14.
La figure 4 est une section partielle et schématique de la figure 1 selon le plan IV-IV et représente la roue 22A, la demi-volute 40A (en traits pleins) , la demi-volute 42A (en traits pointillés) et la plaque de séparation 36A. Les demi- volutes 40B et 42B peuvent avoir une structure analogue aux demi-volutes 40A, 42A. La demi-volute 40A comprend des portions d'appui 82A, 84A qui prolongent la paroi latérale 43A et reposent sur la face supérieure de la paroi de séparation 36A. La demi-volute 40A, en position de guidage, dirige le gaz expulsé sur la moitié supérieure de la roue 22A vers la zone inférieure 38A. La demi-volute 42A, représentée en traits pointillés en position de guidage, comprend des portions d'appui 86A, 88A qui prolongent la paroi latérale 46A et reposent sur la face inférieure de la paroi de séparation 36A. La demi-volute 42A, en position de guidage, dirige le gaz expulsé sur la moitié inférieure de la roue 22A vers la zone supérieure 37A.
Les figures 5 et 6 sont des vues en perspective de certains éléments de la cellule 5 de trempe de la figure 1. Sur ces figures, seuls sont représentés le panneau vertical 28A, la roue 22A, la demi-volute 40A en position de guidage, la plaque de séparation 36A et le moteur 24A. En outre, le système d' actionnement demande la demi-volute 40A est représenté sur les figures 5 et 6. En outre, en figure 5, les pieds 30A et les échangeurs thermiques 32, 34 sont représentés.
Seul le système d' actionnement de la demi-volute 40A est décrit en détail. Les systèmes d' actionnement des autres demi-volutes peuvent avoir une structure analogue au système d' actionnement de la demi-volute 40A. Le système d' actionnement de la demi-volute 40A comprend un actionneur 90A qui comporte deux tiges de guidage 94A, 96A dont les axes sont parallèles à l'axe Δ^. Les tiges de guidage 94A, 96A sont disposées de part et d'autre de la demi-volute 40A et sont fixées à leur extrémités à la plaque de séparation 36A par des supports 98A. Un chariot 100A, fixé à la demi-volute 40A, peut coulisser sur la tige 94A. Un chariot 102A, fixé à la demi-volute 40A, peut coulisser sur la tige 96A. L' actionneur 90A comprend un moteur électrique 104A entraînant en rotation, par un système de renvoi 106A, une vis sans fin 108A. L'axe de la vis sans fin 108A est parallèle à l'axe Δ^. Le chariot 100A comprend une portion 110A formant un écrou monté sur la vis sans fin 108A.
En fonctionnement, une rotation de la vis sans fin 108A conduit à un mouvement de translation de la portion 110A formant écrou selon l'axe de la vis sans fin 108A, c'est-à-dire parallèlement à l'axe Δ^. Il en résulte une translation de la demi-volute 40A le long de l'axe Δ^. Selon le sens de rotation de la vis sans fin 108A, la demi-volute 40A est déplacée de la position de guidage vers la position d'occultation ou de la position d'occultation vers la position de guidage.
Les moteurs 22A, 22B peuvent être associés à des dispositifs de variation de vitesse de façon à modifier la vitesse de circulation du gaz de trempe au niveau de la charge 14 au cours d'une opération de trempe. Pour ce faire des variateurs de fréquence peuvent être utilisés lorsque les moteurs d'entraînement 24A, 24B sont des moteurs électriques. Dans le cas où les moteurs 24A, 24B sont des moteurs hydrauliques, un système de variation du débit de l'huile alimentant ces moteurs peut être prévu.
Selon un autre mode de réalisation de la présente invention, les demi-volutes 40A, 40B, 42A, 42B ne sont pas mobiles en translation parallèlement aux axes et A-Q mais sont mobiles en rotation autour des axes et Ag. A partir de la configuration représentée en figure 1, chaque demi-volute 40A, 40B, 42A, 42B peut être pivotée d'un demi-tour autour de l'axe et Δβ associé. A partir de la configuration représentée en figure 1, la demi-volute 40A, après un demi-tour, recouvre la moitié inférieure de la périphérie de la roue 22A et la demi- volute 42A, après un demi-tour, s'étend entre les parois cylindriques 72A et 50A dans la zone supérieure 37A. A partir de la configuration représentée en figure 1, la demi-volute 40B, après un demi-tour, recouvre la moitié inférieure de la périphérie de la roue 22B et la demi-volute 42B, après un demi- tour, s'étend entre les parois cylindriques 72B et 50B dans la zone supérieure 37B.
La cellule de trempe 5 présente plusieurs avantages : Quelles que soient les positions des demi-volutes, la totalité du gaz de trempe est refoulé par la roue dans la bonne direction par rapport au sens de circulation souhaité du gaz de trempe au niveau de la charge. Par exemple, dans la configuration représentée en figure 1, le gaz expulsé sur la moitié supérieure de la roue est guidé par chaque demi-volute supérieure vers la zone inférieure de la cellule et le gaz expulsé sur la moitié inférieure de la roue est directement expulsé dans la zone inférieure de la cellule. De ce fait, le système d'inversion de flux proposé permet une amélioration d'environ 20 % du rendement de la cellule de trempe, d'après les essais réalisés par les inventeurs, par rapport à un système d'inversion de flux avec une roue libre (sans volute). Cela provient du fait que, dans le présent exemple de réalisation de l'invention, le flux sortant est soit orienté dans le bon sens pour la moitié de la roue qui est libre (sans volute), soit canalisé dans le bon sens pour la moitié de la roue avec volute.
La modification du sens de circulation du gaz de trempe au niveau de la charge est obtenue en déplaçant les demi- volutes sans inversion du sens de rotation des roues. De ce fait, l'inversion du sens de circulation du gaz de trempe entraîné par les roues peut être réalisée rapidement, par exemple en moins de cinq secondes.
En outre, l'inversion du sens de circulation du gaz de trempe au niveau de la charge est obtenue par un système ayant un encombrement réduit .
Bien entendu, la présente invention est susceptible de diverses améliorations et modifications qui apparaîtront à l'homme de l'art. En particulier, la cellule de trempe peut être différente de la cellule précédemment décrite. En particulier, les axes des roues centrifuges ou hélico-centrifuges peuvent être disposés verticalement de façon que le gaz de trempe s'écoule au niveau de la charge selon une direction horizontale. En outre, les axes moteurs peuvent être inclinés par rapport aux axes des roues, les arbres moteurs étant alors reliés aux roues par des systèmes de renvoi, par exemple comprenant des roues dentées. De plus, la cellule de trempe peut ne comprendre qu'une seule roue pour la mise en circulation du gaz de trempe au niveau de la charge.

Claims

REVENDICATIONS
1. Cellule de trempe (5) sous gaz d'une charge (14), la cellule comprenant une roue centrifuge ou hélico-centrifuge (22A, 22B) comprenant une ouverture (76A) d'aspiration de gaz et des ouvertures (78A) de refoulement de gaz, la roue étant entraînée en rotation par un moteur (24A, 24B) pour provoquer un écoulement du gaz entre la charge et un échangeur thermique (32, 34) , la cellule de trempe comprenant des première et seconde demi-volutes (40A, 40B, 42A, 42B) mobiles et dans laquelle :
dans une première position, la première demi-volute guide le gaz refoulé par une première partie des ouvertures (78A) de refoulement et la seconde demi-volute obture une première portion de l'ouverture (76A) d'aspiration ; et
dans une seconde position, l'une de la première ou seconde demi-volute guide le gaz refoulé par une seconde partie, différente de la première partie, des ouvertures de refoulement, et l'autre de la première ou seconde demi-volute obture une seconde portion de l'ouverture d'aspiration.
2. Cellule de trempe selon la revendication 1, comprenant un actionneur (90A) déplaçant les première et seconde demi-volutes (40A, 40B, 42A, 42B) en translation par rapport à la roue (22A, 22B) .
3. Cellule de trempe selon la revendication 1, comprenant un actionneur déplaçant les première et seconde demi- volutes en rotation par rapport à l'axe (Δ^, Δβ) de la roue (22A, 22B) .
4. Cellule de trempe selon l'une quelconque des revendications 1 à 3, comprenant, en outre :
une enceinte (10) contenant la roue (22A, 22B) , la charge (14) et 1 'échangeur thermique (32, 34) ;
un panneau (28A, 28B) situé entre la roue (22A, 22B) et la charge ; et
une plaque (36A, 36B) reliant l'enceinte au panneau et entourant la roue (22A, 22B) , les première et seconde demi- volutes (40A, 40B, 42A, 42B) étant disposées de part et d'autre de la plaque.
5. Cellule de trempe selon la revendication 4, comprenant une paroi cylindrique (50A, 50B) au contact du panneau (28A, 28B) et dans laquelle, dans la première position, la seconde demi-volute s'étend entre la roue (22A, 22B) et la paroi cylindrique et dans laquelle, dans la seconde position, la première demi-volute s'étend entre la roue (22A, 22B) et la paroi cylindrique.
6. Cellule de trempe selon la revendication 2, dans laquelle l'actionneur (90A) comprend une vis sans fin (108A) et un écrou (110A) fixé à la première demi-volute (40A) et coopérant avec la vis sans fin.
7. Cellule de trempe selon l'une quelconque des revendications 2 à 6, comprenant une roue centrifuge ou hélico- centrifuge supplémentaire (22A, 22B) , la roue et la roue supplémentaire étant disposées de part et d'autre de la charge (14) , la cellule (5) comprenant, en outre, des troisième et quatrième demi-volutes supplémentaires mobiles (40A, 40B, 42A, 42B) , dans laquelle :
dans la première position, la troisième demi-volute guide le gaz refoulé par une première partie des ouvertures (78A) de refoulement de la roue supplémentaire et la quatrième demi-volute obture une première portion de l'ouverture (76A) d'aspiration de la roue supplémentaire ; et
dans la seconde position, l'une de la troisième ou quatrième demi-volute guide le gaz refoulé par une seconde partie des ouvertures de refoulement de la roue supplémentaire, différente de la première partie des ouvertures de refoulement de la roue supplémentaire, et l'autre de la troisième ou quatrième demi-volute obture une seconde portion de 1 ' ouverture d'aspiration de la roue supplémentaire.
8. Cellule de trempe selon l'une quelconque des revendications 1 à 7, dans laquelle la roue (22A, 22B) est une roue hélico-centrifuge .
9. Procédé de trempe sous gaz d'une charge dans une cellule de trempe (5) selon la revendication 1, le procédé comprenant les étapes suivantes :
déplacer les première et seconde demi-volutes (40A, 40B, 42A, 42B) dans la première position, le gaz s 'écoulant au niveau de la charge dans un premier sens de circulation ; et
déplacer les première et seconde demi-volutes dans la seconde position, le gaz s 'écoulant au niveau de la charge dans un second sens de circulation opposé au premier sens de circulation.
EP12790595.8A 2011-10-21 2012-10-18 Cellule de trempe Active EP2768990B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159543A FR2981665B1 (fr) 2011-10-21 2011-10-21 Cellule de trempe
PCT/FR2012/052373 WO2013057431A1 (fr) 2011-10-21 2012-10-18 Cellule de trempe

Publications (2)

Publication Number Publication Date
EP2768990A1 true EP2768990A1 (fr) 2014-08-27
EP2768990B1 EP2768990B1 (fr) 2016-03-02

Family

ID=47221456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12790595.8A Active EP2768990B1 (fr) 2011-10-21 2012-10-18 Cellule de trempe

Country Status (9)

Country Link
US (1) US9365909B2 (fr)
EP (1) EP2768990B1 (fr)
JP (1) JP6147261B2 (fr)
KR (1) KR102060674B1 (fr)
CN (1) CN104011229B (fr)
BR (1) BR112014009546B1 (fr)
FR (1) FR2981665B1 (fr)
MX (1) MX356336B (fr)
WO (1) WO2013057431A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981665B1 (fr) * 2011-10-21 2013-11-01 Ecm Technologies Cellule de trempe
FR3001229B1 (fr) * 2013-01-23 2015-10-30 Ecm Technologies Cellule de trempe sous gaz
DE102015011504A1 (de) * 2015-09-09 2017-03-09 Ipsen International Gmbh Vorrichtung zur Behandlung von metallischen Werkstücken mit Kühlgas
CN106048162A (zh) * 2016-07-28 2016-10-26 上海先越冶金技术股份有限公司 一种冷室高压气淬的结构
KR101909794B1 (ko) * 2016-12-29 2018-10-18 정원기 담금질 장치
KR102078915B1 (ko) * 2018-03-26 2020-02-19 정원기 담금질 장치
FR3102547B1 (fr) * 2019-10-24 2022-06-17 Ecm Tech Cellule de trempe sous gaz
EP4119169A1 (fr) 2021-07-16 2023-01-18 Lietuvos Sveikatos Mokslu Universitetas Construction pour la régénération du cartilage articulaire et son procédé de préparation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232680Y2 (fr) * 1986-05-20 1990-09-04
FR2614683B1 (fr) * 1987-04-28 1989-06-16 Bmi Fours Ind Four de traitement thermique sous vide a refroidissement par courant de gaz
US4906182A (en) * 1988-08-25 1990-03-06 Abar Ipsen Industries, Inc. Gas cooling system for processing furnace
JPH05230528A (ja) * 1992-02-24 1993-09-07 Daido Steel Co Ltd 真空炉におけるガス循環冷却促進法
FR2701096B1 (fr) * 1993-02-04 1995-03-24 Bmi Fours Ind Four de traitement thermique sous vide à vitesse élevée du courant de gaz de refroidissement.
DE10210952B4 (de) * 2002-03-13 2007-02-15 Ald Vacuum Technologies Ag Vorrichtung zur Behandlung von metallischen Werkstücken mit Kühlgas
JP4466038B2 (ja) * 2003-01-31 2010-05-26 株式会社Ihi 熱処理装置
JP5201127B2 (ja) * 2003-01-31 2013-06-05 株式会社Ihi 熱処理装置
FR2864106B1 (fr) * 2003-12-23 2006-08-11 Etudes Const Mecaniques Dispositif de trempe
CN101074682A (zh) * 2007-06-27 2007-11-21 吴江市天地人真空炉业有限公司 真空气淬炉的气冷风机改进
JP2009287085A (ja) * 2008-05-29 2009-12-10 Ihi Corp 熱処理装置および熱処理方法
DE102008036490B4 (de) * 2008-08-06 2012-12-13 Ald Vacuum Technologies Gmbh Verfahren zur Hochdruckgasabschreckung und Vorrichtung dafür
EP2218998B1 (fr) * 2009-02-03 2012-12-19 Ipsen, Inc. Mécanisme d'étanchéité pour four de traitement à la chaleur sous vide
FR2981665B1 (fr) * 2011-10-21 2013-11-01 Ecm Technologies Cellule de trempe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013057431A1 *

Also Published As

Publication number Publication date
KR102060674B1 (ko) 2019-12-30
WO2013057431A1 (fr) 2013-04-25
KR20140098085A (ko) 2014-08-07
MX356336B (es) 2018-05-23
EP2768990B1 (fr) 2016-03-02
CN104011229A (zh) 2014-08-27
FR2981665B1 (fr) 2013-11-01
FR2981665A1 (fr) 2013-04-26
CN104011229B (zh) 2015-08-19
JP2014534343A (ja) 2014-12-18
US20140284851A1 (en) 2014-09-25
BR112014009546B1 (pt) 2018-06-26
BR112014009546A2 (pt) 2017-04-18
US9365909B2 (en) 2016-06-14
MX2014004502A (es) 2015-01-12
JP6147261B2 (ja) 2017-06-14

Similar Documents

Publication Publication Date Title
EP2768990B1 (fr) Cellule de trempe
FR2537999A1 (fr) Four de traitement thermique continu sous vide de pieces, a equipement de refroidissement des pieces par un gaz sous pression
EP2530059B1 (fr) Dispositif de traitement thermique, en particulier de matériaux divisés, au moins par rayonnement micro-ondes
CA2632429A1 (fr) Dispositif de generation de froid et de chaleur par effet magneto-calorique
EP0236639B1 (fr) Installation flexible automatisée de traitement thermochimique rapide
CA2898870C (fr) Cellule de trempe sous gaz
EP1844169B1 (fr) Cellule de trempe au gaz pour pieces en acier
EP0309354A1 (fr) Installation automatique de traitement thermochimique rapide
FR2701096A1 (fr) Four de traitement thermique sous vide à vitesse élevée du courant de gaz de refroidissement.
EP3104897B1 (fr) Système de traitement thermique d'articles
FR2779218A1 (fr) Cellule de trempe sous gaz
FR2531104A1 (fr) Creuset de vaporisation pour installations de depot de materiaux vaporises sous vide
CH621365A5 (en) Process for refining magnesium, copper, zinc, tin and lead
EP4048965A1 (fr) Cellule de trempe sous gaz
EP1404882B1 (fr) Procede de trempe des aciers a l'air pression
FR2651307A1 (fr) Four de traitement thermique equipe de moyens de refroidissement perfectionnes.
FR2660593A1 (fr) Four de rotomoulage.
WO2021023628A1 (fr) Réservoir mobile pour bain de liquide d'échange thermique et installation comprenant un tel réservoir
BE693722A (fr)
BE492509A (fr)
BE626736A (fr)
CH410029A (fr) Procédé pour tremper des pièces d'horlogerie et appareil pour la mise en oeuvre de ce procédé
BE341903A (fr)
FR2800999A1 (fr) Dispositif de denoyautage par voie mecanique de pieces creuses realisees a partir d'un procede de fonderie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150826

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012015273

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160302

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012015273

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

26N No opposition filed

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161018

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161018

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 778106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

P02 Opt-out of the competence of the unified patent court (upc) changed

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231009

Year of fee payment: 12

Ref country code: FR

Payment date: 20231030

Year of fee payment: 12

Ref country code: DE

Payment date: 20231011

Year of fee payment: 12

Ref country code: AT

Payment date: 20230921

Year of fee payment: 12