EP2768935B1 - Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation - Google Patents

Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation Download PDF

Info

Publication number
EP2768935B1
EP2768935B1 EP12762614.1A EP12762614A EP2768935B1 EP 2768935 B1 EP2768935 B1 EP 2768935B1 EP 12762614 A EP12762614 A EP 12762614A EP 2768935 B1 EP2768935 B1 EP 2768935B1
Authority
EP
European Patent Office
Prior art keywords
formulation
alkali metal
weight
range
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP12762614.1A
Other languages
German (de)
English (en)
Other versions
EP2768935A1 (fr
Inventor
Stephan Hueffer
Alejandra Garcia Marcos
Markus Hartmann
Heike Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46924452&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2768935(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to PL12762614T priority Critical patent/PL2768935T3/pl
Priority to EP12762614.1A priority patent/EP2768935B1/fr
Publication of EP2768935A1 publication Critical patent/EP2768935A1/fr
Application granted granted Critical
Publication of EP2768935B1 publication Critical patent/EP2768935B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds

Definitions

  • the present invention relates to a process for the preparation of formulations according to the invention and their use as or for the production of dishwashing agents, in particular dishwasher detergents for automatic dishwashing.
  • Dishwashing detergents have many requirements to fulfill. So they have to clean the dishes thoroughly, they should have no harmful or potentially harmful substances in the wastewater, they should allow the draining and drying of the water from the dishes, and they should not cause problems when operating the dishwasher. Finally, they should not lead to aesthetically undesirable consequences on the good to be cleaned. Especially in this context is the glass corrosion.
  • Glass corrosion is caused not only by mechanical effects, for example by rubbing glasses or mechanical contact of the glasses with parts of the dishwasher, but is mainly promoted by chemical influences.
  • certain ions can be released from the glass by repeated mechanical cleaning, adversely altering the optical and thus the aesthetic properties.
  • Glass corrosion has several effects. On the one hand, one can observe the formation of microscopically fine cracks, which are noticeable in the form of lines. On the other hand, in many cases one can observe a general cloudiness, for example a roughening, which makes the glass in question look unaesthetic. Overall, such effects are also subdivided into iridescent discoloration, scoring and surface and annular opacities.
  • Dishwashing agents which contain polyethyleneimine. Such dishwashing agents may contain phosphate or be phosphate-free. It is attributed to them a good inhibition of glass corrosion. Of zinc and bismuth-containing dishwashing detergents is not recommended. The glass corrosion, in particular the line corrosion and the turbidity, but is not sufficiently delayed or prevented in many cases.
  • formulations defined above were found, also called formulations according to the invention.
  • Compound (A) may be in the form of a free acid or preferably in partially or completely neutralized form, ie as a salt.
  • counterions for example inorganic cations, such as ammonium, alkali or alkaline earth metal are suitable, preferably Mg 2+, preferably Na +, K +, or organic cations, preferably substituted with one or more organic radicals ammonium, in particular triethanol ammonium, N, N-diethanolammonium , N-mono-C 1 -C 4 -alkyldiethanolammonium, for example N-methyl-diethanolammonium or Nn-butyldiethanolammonium, and N, N-di-C 1 -C 4 -alkylethanolammonium.
  • inorganic cations such as ammonium, alkali or alkaline earth metal are suitable, preferably Mg 2+, preferably Na +, K +, or organic cations, preferably substituted with one or more organic radicals ammoni
  • compound (A) is selected from derivatives of aminocarboxylates and polyaminocarboxylates, for example methyl or ethyl esters.
  • aminocarboxylates (A) are understood as meaning nitrilotriacetic acid and those organic compounds which have a tertiary amino group which has one or two CH 2 -COOH groups which, as mentioned above, can be partially or completely neutralized or can.
  • polyaminocarboxylates (A) are understood as meaning those organic compounds which have at least two tertiary amino groups which independently of one another have one or two CH 2 -COOH groups which, as mentioned above, can be partially or completely neutralized or can.
  • aminocarboxylates (A) are selected from those organic compounds having a secondary amino group having one or two CH (COOH) CH 2 -COOH group (s) partially as mentioned above or can be completely neutralized.
  • polyaminocarboxylates (A) are selected from those organic compounds having at least two secondary amino groups each containing a CH (COOH) CH 2 -COOH group which, as mentioned above, partially or completely neutralizes could be.
  • Preferred polyaminocarboxylates (A) are selected from 1,2-diaminoethanetetraacetic acid, tetraacetylmethylenediamine, tetraacetylhexylenediamine, iminodisuccinate (IDS), diethylenetriamine pentaacetate (DTPA), hydroxyethylenediaminetriacetate (HEDTA), and their respective salts, more preferably alkali metal salts, especially the sodium salts.
  • Preferred aminocarboxylates (A) and polyaminocarboxylates (A) are nitrilotriacetic acid and those organic compounds having an amino acid-based structure whose amino group (s) have one or two CH 2 -COOH groups and are tertiary amino groups. It is possible to select amino acids from L-amino acids, R-amino acids and mixtures of enantiomers of amino acids, for example the racemates.
  • compound (A) is selected from methylglycine diacetate (MGDA), nitrilotriacetic acid and glutamic acid diacetate and their derivatives and preferably their salts, in particular their sodium salts. Very particular preference is given to methylglycine diacetate and to the trisodium salt of MGDA.
  • Formulation according to the invention furthermore contains (B) at least one homopolymer of ethyleneimine, together referred to in short as polyethyleneimine (B).
  • polyethyleneimine (B) has an average molecular weight M n of from 500 g / mol to 125,000 g / mol, preferably from 750 g / mol to 100,000 g / mol.
  • polyethyleneimine (B) has an average molecular weight M w in the range from 500 to 1,000,000 g / mol, preferably in the range from 600 to 75,000 g / mol, particularly preferably in the range from 800 to 25,000 g / mol, determinable for example by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • polyethyleneimines (B) are selected from highly branched polyethyleneimines.
  • Highly branched polyethylenimines (B) are characterized by their high degree of branching (DB).
  • highly branched polyethyleneimines (B) are polyethyleneimines (B) with DB in the range from 0.1 to 0.95, preferably 0.25 to 0.90, particularly preferably in the range from 0.30 to 0.80%. and most preferably at least 0.5.
  • polyethylene dendrimers (B) which are dendrimeric polyethylenimines (B) are those which have a structurally and molecularly uniform structure.
  • polyethylenimine (B) is highly branched polyethyleneimines (homopolymers) having an average molecular weight M w in the range from 600 to 75,000 g / mol, preferably in the range from 800 to 25,000 g / mol.
  • Formulations according to the invention also contain sodium citrate (C).
  • sodium citrate includes the mono- and preferably the disodium salt with.
  • Sodium citrate can be used as anhydrous salt or as a hydrate, for example as a dihydrate.
  • Preferred bleaching agents (D) are selected from sodium perborate, anhydrous or for example as monohydrate or as tetrahydrate or so-called dihydrate, sodium percarbonate, anhydrous or, for example, as monohydrate, and sodium persulfate, where the term "persulfate” respectively the salt of peracid H 2 SO 5 and the peroxodisulfate includes.
  • the alkali metal salts may each also be alkali metal hydrogencarbonate, alkali metal hydrogen perborate and alkali metal hydrogen persulphate. However, preference is given in each case to the dialkali metal salts.
  • formulation according to the invention is solid at room temperature, for example a powder or a tablet.
  • formulation of the invention is liquid at room temperature.
  • the formulation according to the invention is a granulate, a liquid preparation or a gel.
  • the formulation according to the invention contains from 0.1 to 10% by weight of water, based on the sum of all solids of the relevant formulation.
  • Formulation of the invention is free of phosphates and polyphosphates, wherein hydrogen phosphates are subsumed with, for example, free of trisodium phosphate, pentasodium tripolyphosphate and Hexasatriummetaphosphat.
  • the term "free from” in connection with phosphates and polyphosphates in the context of the present invention should be understood to mean that the total content of phosphate and polyphosphate ranges from 10 ppm to 0.2% by weight, determined by gravimetry.
  • the formulation according to the invention is free from those heavy metal compounds which do not function as bleach catalysts, in particular compounds of iron and bismuth.
  • “free from” is to be understood in connection with heavy metal compounds as meaning that the content of heavy metal compounds which do not act as bleach catalysts is in the range from 0 to 100 ppm, determined by the Leach method.
  • heavy metals are all metals having a specific density of at least 6 g / cm 3 .
  • the heavy metals are precious metals and zinc, bismuth, iron, copper, lead, tin, nickel, cadmium and chromium.
  • formulation of the invention contains no measurable levels of zinc and bismuth compounds, that is, for example, less than 1 ppm.
  • formulation according to the invention may comprise further ingredients (E), for example one or more surfactants, one or more enzymes, one or more builders, in particular phosphorus-free builders, one or more co-builders, one or more alkali carriers one or more bleach activators, one or more bleach stabilizers, one or more defoamers, one or more corrosion inhibitors, one or more builders, buffers, dyes, one or more perfumes, one or more organic solvents or more tabletting aids, one or more disintegrating agents, one or more thickeners, or one or more solubilizing agents.
  • surfactants for example one or more surfactants, one or more enzymes, one or more builders, in particular phosphorus-free builders, one or more co-builders, one or more alkali carriers one or more bleach activators, one or more bleach stabilizers, one or more defoamers, one or more corrosion inhibitors, one or more builders, buffers, dyes, one or more perfumes, one or more organic solvents or more tabletting aids, one or more
  • surfactants are, in particular, nonionic surfactants and mixtures of anionic or zwitterionic surfactants with nonionic surfactants.
  • Preferred nonionic surfactants are alkoxylated alcohols and alkoxylated fatty alcohols, di- and multiblock copolymers of ethylene oxide and propylene oxide and reaction products of sorbitan with ethylene oxide or propylene oxide, alkyl glycosides and so-called amine oxides.
  • Compounds of the general formula (I) may be block copolymers or random copolymers, preference being given to block copolymers.
  • these may be block copolymers or random copolymers, preference being given to block copolymers.
  • suitable nonionic surfactants are selected from di- and multiblock copolymers, composed of ethylene oxide and propylene oxide.
  • suitable nonionic surfactants are selected from ethoxylated or propoxylated sorbitan esters.
  • amine oxides or alkyl glycosides are also suitable.
  • anionic surfactants are C 8 -C 20 -alkyl sulfates, C 8 -C 20 -alkyl sulfonates and C 8 -C 20 -alkyl ether sulfates having one to six ethylene oxide units per molecule.
  • formulation of the invention may contain in the range of from 3 to 20% by weight of surfactant.
  • Formulations of the invention may contain one or more enzymes.
  • enzymes are lipases, hydrolases, amylases, proteases, cellulases, esterases, pectinases, lactases and peroxidases.
  • Formulations according to the invention may contain, for example, up to 5% by weight of enzyme, preferably from 0.1 to 3% by weight, in each case based on the total solids content of the formulation according to the invention.
  • Formulations according to the invention may contain, in addition to sodium citrate, one or more builders, in particular phosphate-free builders.
  • suitable builders are silicates, especially sodium disilicate and sodium metasilicate, zeolites, phyllosilicates, especially those of the formula ⁇ -Na 2 Si 2 O 5 , ⁇ -Na 2 Si 2 O 5 , and ⁇ -Na 2 Si 2 O 5 , furthermore fatty acid sulfonates , ⁇ -hydroxypropionic acid, alkali metal malates, fatty acid sulfonates, alkyl and alkenyl disuccinates, tartaric acid diacetate, tartaric acid monoacetate, oxidized starch, and polymeric builders, for example, polycarboxylates and polyaspartic acid.
  • builders of polycarboxylates are selected, for example, alkali metal salts of (meth) acrylic acid homo- or (meth) acrylic acid copolymers.
  • Suitable comonomers are monoethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, maleic anhydride, itaconic acid and citraconic acid.
  • a suitable polymer is in particular polyacrylic acid, which preferably has an average molecular weight M w in the range from 2000 to 40,000 g / mol, preferably 2,000 to 10,000 g / mol, in particular 3,000 to 8,000 g / mol.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid and / or fumaric acid.
  • monomers selected from the group consisting of monoethylenically unsaturated C 3 -C 10 mono- or C 4 -C 10 -dicarboxylic acids or their anhydrides, such as maleic acid, maleic anhydride, acrylic acid, methacrylic acid, fumaric acid, itaconic acid and citraconic with at least one hydrophilic or hydrophobically modified monomers are used as listed below.
  • Suitable hydrophobic monomers are, for example, isobutene, diisobutene, butene, pentene, hexene and styrene, olefins having 10 or more carbon atoms or mixtures thereof, for example 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-hexadecene and 1-octadecene.
  • Suitable hydrophilic monomers are monomers having sulfonate or phosphonate groups, as well as nonionic monomers having hydroxy function or alkylene oxide groups. Examples which may be mentioned are: allyl alcohol, isoprenol, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, methoxypolybutylene glycol (meth) acrylate, methoxypoly (propylene oxide-co-ethylene oxide) (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate , Ethoxypolybutylene glycol (meth) acrylate and ethoxypoly (propylene oxide-co-ethylene oxide) (meth) acrylate.
  • Polyalkylene glycols may contain 3 to 50, in particular 5 to 40 and especially 10 to 30 alkylene oxide units per molecule.
  • Particularly preferred sulfonic acid-containing monomers are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid, 3-methacrylamido-2 hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propene-1-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 2-sulfoethyl methacrylate, 3-sulfopropyl methacrylate , Sulfomethacrylamide, sulfomethylmethacrylamide and salt
  • Particularly preferred phosphonate group-containing monomers are the vinylphosphonic acid and its salts.
  • amphoteric polymers can also be used as builders.
  • Formulations according to the invention may contain, for example, in the range from 10 to 50% by weight, preferably up to 20% by weight, of builder.
  • formulations according to the invention may contain one or more co-builders.
  • co-builders are phosphonates, for example hydroxyalkane phosphonates and aminoalkane phosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediaminetetra-methylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of the neutral reacting sodium salts, e.g. as hexasodium salt of EDTMP or as hepta- and octa-sodium salt of DTPMP used.
  • Formulations of the invention may contain one or more alkali carriers.
  • Alkaline carriers for example, provide the pH of at least 9 when an alkaline pH is desired.
  • Suitable examples are alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal hydroxides and alkali metal metasilicates.
  • Preferred alkali metal is in each case potassium, particularly preferred is sodium.
  • Formulations according to the invention in addition to bleach (D), contain one or more chlorine-containing bleaches.
  • Suitable chlorine-containing bleaching agents are, for example, 1,3-dichloro-5,5-dimethylhydantoin, N-N-chlorosulfamide, chloramine T, chloramine B, sodium hypochlorite, calcium hypochlorite, magnesium hypochlorite, potassium hypochlorite, potassium dichloroisocyanurate and sodium dichloroisocyanurate.
  • formulations according to the invention may contain in the range of from 3 to 10% by weight of chlorine-containing bleach.
  • Formulations of the invention may contain one or more bleach catalysts.
  • Bleach catalysts can be selected from bleach-enhancing transition metal salts or transition metal complexes such as manganese, iron, cobalt, ruthenium or molybdenum-salene complexes or carbonyl complexes.
  • Manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands and cobalt, iron, copper and ruthenium-amine complexes can also be used as bleach catalysts.
  • Formulations according to the invention may contain one or more bleach activators, for example N-methylmorpholinium acetonitrile salts ("MMA salts”), trimethylammonium acetonitrile salts, N-acylimides such as N-nonanoylsuccinimide “1,5-diacetyl-2,2-dioxo-hexahydro-1 , 3,5-triazine (“DADHT”) or nitrile quats (trimethylammonium acetonitrile salts).
  • MMA salts N-methylmorpholinium acetonitrile salts
  • DADHT 3,5-triazine
  • nitrile quats trimethylammonium acetonitrile salts
  • Formulations of the invention may contain one or more corrosion inhibitors.
  • corrosion inhibitors such compounds that inhibit the corrosion of metal.
  • suitable corrosion inhibitors are triazoles, in particular benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles, furthermore phenol derivatives such as, for example, hydroquinone, catechol, hydroxyhydroquinone, gallic acid, phloroglucinol or pyrogallol.
  • formulations according to the invention contain a total of in the range of 0.1 to 1.5 wt .-% corrosion inhibitor.
  • Formulations of the invention may contain one or more builders, for example, sodium sulfate.
  • Formulations of the invention may contain one or more defoamers selected, for example, from silicone oils and paraffin oils.
  • formulations according to the invention contain in total in the range from 0.05 to 0.5% by weight defoamer.
  • Formulations according to the invention may contain phosphonic acid or one or more phosphonic acid derivatives, for example hydroxyethane-1,1-diphosphonic acid.
  • Another object of the present invention is the use of formulations according to the invention for the automatic cleaning of dishes and kitchen utensils.
  • kitchen utensils in the context of the present invention, for example, pots, pans, casseroles to call, and metal objects such as, for example, skimmers, roasters and garlic presses.
  • a surface of glass is to be understood as meaning that the object in question has at least one piece of glass which comes into contact with the ambient air and can be contaminated when the object is used.
  • the objects in question may be those which are essentially glassware such as drinking glasses or glass bowls. But it can also be, for example, cover that have individual components of a different material, such as pot lid with edging and metal handle.
  • Glass surface may be decorated, for example colored or printed, or not decorated.
  • glass includes any glass, for example lead glass and in particular soda lime glass, crystal glass and borosilicate glasses.
  • Machine cleaning is preferably dishwashing with a dishwasher (English: automatic dishwashing).
  • At least one formulation according to the invention for automated cleaning of drinking glasses, glass vases and glass jars is used for cooking.
  • water having a hardness in the range from 1 to 30 ° dH, preferably from 2 to 25 ° dH, is used for cleaning, German hardness being taken to mean in particular the calcium hardness.
  • machine-cleaning formulations according to the invention are used, even with repeated mechanical cleaning of objects which have at least one surface made of glass, there is very little tendency for glass corrosion, even if objects comprising at least one surface made of glass are used have, along with heavily soiled cutlery or dishes cleans. In addition, it is much less harmful to use the formulation of the present invention to clean glass together with metal objects, such as pots, pans or garlic presses.
  • formulations according to the invention have a very good bleaching action when used for rinsing dishes and kitchen utensils and glass surfaces.
  • a further subject of the present invention is a process for the preparation of formulations according to the invention as defined in claim 12.
  • one may mix with one or more other ingredients (E) for formulation according to the invention, for example with one or more surfactants, one or more enzymes, one or more builders, one or more builders a plurality of co-builders, in particular phosphorus-free builders, one or more alkali carriers, one or more bleaches, one or more bleach catalysts, one or more bleach activators, one or more bleach stabilizers, one or more defoamers, one or more corrosion inhibitors, one or more builders Buffer or dye.
  • the water is removed completely or partially, for example to a residual moisture in the range from zero to 5% by weight, from the formulation according to the invention by evaporation, in particular by spray drying, spray granulation or compaction.
  • the water is removed, in whole or in part, at a pressure in the range of 0.3 to 2 bar.
  • the water is removed, in whole or in part, at temperatures in the range of 60 to 220 ° C.
  • the cleaning formulations according to the invention can be provided in liquid or solid form, single- or multiphase, as tablets or in the form of other dosage units, packaged or unpackaged.
  • the water content of liquid formulations can vary from 35 to 90% water.
  • the dishwashing agent used was in each case 25 g of formulation according to the invention or comparison formulation according to Table 2, where Table 2 shows the active components (A.1), base mixture (including (C.1) and (D.1) and optionally (B) each formulation according to the invention was rinsed separately at a rinse temperature of 55 ° C.
  • the water hardness was in each case in the range from zero to 2 ° dH 100 wash cycles in each case, ie, the program was run 100 times, and the evaluation was carried out gravimetrically and visually after 100 wash cycles.
  • the weight of the glasses was determined before the beginning of the first rinse cycle and after drying after the last rinse cycle.
  • the weight loss is the difference between the two values.
  • test specimens were each a champagne glass and a shot glass from the company Libbey (NL), a, material: soda-lime glasses.
  • the stainless steel pot was filled with 5.5 liters of water and added 25 g of formulation or comparison formulation according to the invention, wherein Table 3 shows the active components (A.1), optionally (B), optionally (C) and base mixture of formulation according to the invention or comparison formulation each individually specified.
  • the resulting cleaner liquor was stirred by means of the magnetic stirrer at 550 revolutions per minute. It installed the contact thermometer and covered the stainless steel pot with the lid, so that during the experiment if appropriate (B), if appropriate (C) and base mixture of inventive formulation or comparison formulation are each individually specified.
  • the resulting cleaner liquor was stirred by means of the magnetic stirrer at 550 revolutions per minute. They installed the contact thermometer and covered the stainless steel pot with the lid, so that no water could evaporate during the experiment. It was heated to 75 ° C and put the grid bottom insert with the two specimens in the stainless steel pot, taking care that the specimens were completely immersed in the liquid.
  • test pieces were taken out and rinsed under running distilled water. Thereafter, the test pieces were rinsed in the domestic dishwasher with a formulation consisting of 1 g of surfactant (nC 18 H 37 (OCH 2 CH 2 ) 10 OH) and 20 g of citric acid again with the 55 ° C program to remove any deposits ,
  • the dry specimens were weighed. This was followed by the visual assessment of the test specimens. The surface of the test specimens was evaluated for line corrosion (glass scoring) and haze corrosion (areal haze).
  • Interim scores (e.g., L3-4) were also allowed on the match.
  • Base mixture [g] (A.1) [g] (B) [mg] Weight loss champagne glass [mg] Weight loss shot glass [mg] Visual rating champagne glass Visual rating shot glass V-1
  • Base 3 21.25 3.75 - 42,60 22.70 L1-2, T1-2 L2, T2 2
  • Base 3 21.25 3.75 30 (B.2) 11 7 L3-4, T4-5 L4, T4-5 3
  • Base 3 21.25 3.75 15 (B.2) 13 8th L3, T4-5 L3-4, T4-5 4
  • Base 2 19.37 5.63 30 (B.2) 14 8th L3, T4-5 L3-4, T4-5 5 Base 2: 19.37 5.63 15 (B.2) 17 10 L3, T4-5 L2-3, T4-5 6
  • Base 1 15.0 10.0 30 (B.2) 21 12 L2-3, T4-5 L2-3, T4 7
  • Base 1 15.0 10.0 15 (B.2) 23 14 L2-3, T4 L2-3, T4 8th
  • Base 3 21.25 3.75 30 (B.1) 9 6 L4, T5 L4, T

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Washing And Drying Of Tableware (AREA)
  • Medicinal Preparation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Claims (13)

  1. Formulation, qui est exempte de phosphates et de polyphosphates, contenant :
    (A) au moins un composé choisi parmi les aminocarboxylates et les polyaminocarboxylates et
    (B) au moins un homopolymère d'éthylène-imine,
    (C) du citrate de sodium et
    (D) au moins un composé choisi parmi un percarbonate de métal alcalin, un perborate de métal alcalin et un persulfate de métal alcalin.
  2. Formulation selon la revendication 1, caractérisée en ce que (B) est choisi parmi les homopolymères linéaires et ramifiés d'éthylène-imine.
  3. Formulation selon la revendication 1 ou 2, caractérisée en ce qu'elle présente une teneur en métaux lourds inférieure à 0,05 ppm, par rapport à la teneur en solides de la formulation en question.
  4. Formulation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le composé (A) est choisi parmi le diacétate de méthylglycine (MGDA), l'acide nitrilotriacétique et le diacétate de l'acide glutamique, ainsi que leurs sels et dérivés.
  5. Formulation selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle est solide à température ambiante.
  6. Formulation selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle contient dans la plage allant de 0,1 à 10 % en poids d'eau.
  7. Formulation selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle contient :
    au total dans la plage allant de 1 à 50 % en poids du composé (A),
    au total dans la plage allant de 0,05 à 2 % en poids de l'homopolymère d'éthylène-imine (B),
    dans la plage allant de 1 à 50 % en poids de citrate de sodium (C) et
    au total dans la plage allant de 0,5 à 15 % en poids du composé (D),
    à chaque fois par rapport à la teneur en solides de la formulation en question.
  8. Utilisation de formulations selon l'une quelconque des revendications 1 à 7 pour le lavage de la vaisselle et d'ustensiles de cuisine.
  9. Utilisation de formulations selon l'une quelconque des revendications 1 à 7 pour le lavage d'articles qui comprennent au moins une surface en verre, qui peut être décorée ou non décorée.
  10. Utilisation selon la revendication 8 ou 9, caractérisée en ce que le lavage est un lavage avec une machine à laver.
  11. Utilisation selon l'une quelconque des revendications 8 à 10, caractérisée en ce qu'au moins une formulation selon l'une quelconque des revendications 1 à 7 est utilisée pour le lavage de verres, de vases en verre et de récipients en verre pour la cuisine.
  12. Procédé de fabrication de formulations selon l'une quelconque des revendications 1 à 7, caractérisé en ce que
    (A) au moins un composé choisi parmi les aminocarboxylates et les polyaminocarboxylates et
    (B) au moins un homopolymère d'éthylène-imine,
    (C) du citrate de sodium et
    (D) au moins un composé choisi parmi un percarbonate de métal alcalin, un perborate de métal alcalin et un persulfate de métal alcalin,
    et éventuellement d'autres composants sont mélangés les uns avec les autres en une ou plusieurs étapes en présence d'eau, puis l'eau est éliminée.
  13. Procédé selon la revendication 12, caractérisé en ce que l'eau est éliminée par séchage par pulvérisation.
EP12762614.1A 2011-10-19 2012-09-27 Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation Revoked EP2768935B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL12762614T PL2768935T3 (pl) 2011-10-19 2012-09-27 Preparaty, ich zastosowanie jako środków do zmywania naczyń lub do wytwarzania środków do zmywania naczyń i ich wytwarzanie
EP12762614.1A EP2768935B1 (fr) 2011-10-19 2012-09-27 Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP11185825 2011-10-19
EP12156369 2012-02-21
PCT/EP2012/069040 WO2013056965A1 (fr) 2011-10-19 2012-09-27 Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation
EP12762614.1A EP2768935B1 (fr) 2011-10-19 2012-09-27 Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation

Publications (2)

Publication Number Publication Date
EP2768935A1 EP2768935A1 (fr) 2014-08-27
EP2768935B1 true EP2768935B1 (fr) 2017-11-15

Family

ID=46924452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12762614.1A Revoked EP2768935B1 (fr) 2011-10-19 2012-09-27 Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation

Country Status (12)

Country Link
EP (1) EP2768935B1 (fr)
JP (1) JP6055480B2 (fr)
KR (1) KR101952567B1 (fr)
CN (1) CN103890159A (fr)
BR (1) BR112014009199A8 (fr)
CA (1) CA2849358A1 (fr)
ES (1) ES2659552T3 (fr)
IN (1) IN2014CN03471A (fr)
MX (1) MX2014004577A (fr)
PL (1) PL2768935T3 (fr)
RU (1) RU2612960C2 (fr)
WO (1) WO2013056965A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3755777B1 (fr) 2018-02-23 2021-10-13 Unilever Global IP Limited Compositions solides comprenant de l'aminopolycarboxylate
WO2023117494A1 (fr) 2021-12-20 2023-06-29 Basf Se Polymères de polypropylène imine (ppi), leur préparation, leurs utilisations et compositions comprenant de tels ppi

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301576B2 (en) * 2013-02-28 2019-05-28 Basf Se Formulations, their use as or for producing dishwashing detergents and their production
PL2989192T3 (pl) * 2013-04-23 2019-01-31 Basf Se Preparaty, ich zastosowanie jako środków do zmywania naczyń lub do wytwarzania środków do zmywania naczyń i ich wytwarzanie
RU2675835C2 (ru) * 2013-09-13 2018-12-25 Басф Се Смеси энантиомеров и способ получения таких смесей
GB201409632D0 (en) * 2014-05-30 2014-07-16 Reckitt Benckiser Brands Ltd Improved detergent composition
GB201409631D0 (en) * 2014-05-30 2014-07-16 Reckitt Benckiser Brands Ltd Improved PEI composition
EP3034596B2 (fr) * 2014-12-17 2021-11-10 The Procter & Gamble Company Composition de détergent
EP3034597A1 (fr) 2014-12-17 2016-06-22 The Procter and Gamble Company Composition de détergent
EP3034588B1 (fr) 2014-12-17 2019-04-24 The Procter and Gamble Company Composition de détergent
WO2017167599A1 (fr) 2016-03-30 2017-10-05 Basf Se Concentrés, procédés de fabrication et utilisations
EP3228686B1 (fr) 2016-04-08 2021-10-27 The Procter & Gamble Company Lave-vaisselle automatique
EP3275988B1 (fr) 2016-07-26 2020-07-08 The Procter and Gamble Company Composition de détergent de lave-vaisselle automatique
KR102375253B1 (ko) 2020-06-05 2022-03-16 라이온코리아 주식회사 식기세척기용 액상 세제 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007816A1 (fr) 1997-08-04 1999-02-18 Unilever Plc Compositions detergentes renfermant des polyethyleneimines permettant d'accroitre la stabilite de l'action de blanchiment du peroxygene
US6083898A (en) 1996-10-18 2000-07-04 Basf Aktiengesellschaft Water-soluble or water-dispersible cross-linked nitrogenated compounds in washing and cleaning agents
EP1721962A1 (fr) 2005-05-11 2006-11-15 Unilever N.V. Compositions detergentes pour lave vaisselle et procédé pour nettoyer la vaiselle
WO2009061980A1 (fr) 2007-11-09 2009-05-14 The Procter & Gamble Company Compositions de nettoyage comprenant un système multipolymère comprenant au moins un polymère de nettoyage de graisse alcoxylé
WO2010020765A1 (fr) 2008-08-16 2010-02-25 Reckitt Benckiser N.V. Composition
US20100132741A1 (en) 2006-12-21 2010-06-03 Reckitt Benckiser N.V. Detergent Composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837663A (en) 1996-12-23 1998-11-17 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing tablets containing a peracid
US5981456A (en) * 1997-07-23 1999-11-09 Lever Brothers Company Automatic dishwashing compositions containing water soluble cationic or amphoteric polymers
US6964943B1 (en) * 1997-08-14 2005-11-15 Jean-Luc Philippe Bettiol Detergent compositions comprising a mannanase and a soil release polymer
DE19819187A1 (de) 1998-04-30 1999-11-11 Henkel Kgaa Festes maschinelles Geschirrspülmittel mit Phosphat und kristallinen schichtförmigen Silikaten
DE10104469A1 (de) * 2001-02-01 2002-08-08 Basf Ag Copolymere zur Verhinderung von Glaskorrosion
DE102005041347A1 (de) * 2005-08-31 2007-03-01 Basf Ag Reinigungsformulierungen für die maschinelle Geschirrreinigung enthaltend hydrophil modifizierte Polycarboxylate
GB0618402D0 (en) * 2006-09-19 2006-11-01 Reckitt Benckiser Nv Detergent composition and method
DE102007019458A1 (de) * 2007-04-25 2008-10-30 Basf Se Phosphatfreies Maschinengeschirrspülmittel mit ausgezeichneter Klarspülleistung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083898A (en) 1996-10-18 2000-07-04 Basf Aktiengesellschaft Water-soluble or water-dispersible cross-linked nitrogenated compounds in washing and cleaning agents
WO1999007816A1 (fr) 1997-08-04 1999-02-18 Unilever Plc Compositions detergentes renfermant des polyethyleneimines permettant d'accroitre la stabilite de l'action de blanchiment du peroxygene
EP1721962A1 (fr) 2005-05-11 2006-11-15 Unilever N.V. Compositions detergentes pour lave vaisselle et procédé pour nettoyer la vaiselle
US20100132741A1 (en) 2006-12-21 2010-06-03 Reckitt Benckiser N.V. Detergent Composition
WO2009061980A1 (fr) 2007-11-09 2009-05-14 The Procter & Gamble Company Compositions de nettoyage comprenant un système multipolymère comprenant au moins un polymère de nettoyage de graisse alcoxylé
WO2010020765A1 (fr) 2008-08-16 2010-02-25 Reckitt Benckiser N.V. Composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3755777B1 (fr) 2018-02-23 2021-10-13 Unilever Global IP Limited Compositions solides comprenant de l'aminopolycarboxylate
EP3755780B1 (fr) 2018-02-23 2022-01-12 Unilever Global IP Limited Procédé de préparation d'une composition solide comprenant de l'aminopolycarboxylate
EP3755779B1 (fr) 2018-02-23 2022-03-30 Unilever Global IP Limited Compositions solides comprenant de l'aminopolycarboxylate
WO2023117494A1 (fr) 2021-12-20 2023-06-29 Basf Se Polymères de polypropylène imine (ppi), leur préparation, leurs utilisations et compositions comprenant de tels ppi

Also Published As

Publication number Publication date
RU2014119761A (ru) 2015-11-27
EP2768935A1 (fr) 2014-08-27
CN103890159A (zh) 2014-06-25
KR20140088569A (ko) 2014-07-10
IN2014CN03471A (fr) 2015-10-09
PL2768935T3 (pl) 2018-04-30
RU2612960C2 (ru) 2017-03-14
CA2849358A1 (fr) 2013-04-25
JP2014534990A (ja) 2014-12-25
MX2014004577A (es) 2014-06-23
ES2659552T3 (es) 2018-03-16
WO2013056965A1 (fr) 2013-04-25
KR101952567B1 (ko) 2019-02-27
BR112014009199A8 (pt) 2017-06-20
JP6055480B2 (ja) 2016-12-27
BR112014009199A2 (pt) 2017-06-13

Similar Documents

Publication Publication Date Title
EP2768935B1 (fr) Formulations, leur utilisation comme détergents pour vaisselle ou pour la fabrication de détergents pour vaisselle, et leur préparation
EP2768937B1 (fr) Formules, leur utilisation comme ou pour fabriquer des produits lave-vaisselle ainsi que leur fabrication
EP2768936B1 (fr) Formules, leur utilisation comme ou pour fabriquer des produits lave-vaisselle ainsi que leur fabrication
EP2981600B1 (fr) Formules, leur utilisation comme détergent pour lave-vaisselle et leur fabrication
EP3157969B1 (fr) Formulations, leur utilisation comme détergents pour vaisselle ou pour produire des détergents pour vaisselle, et leur préparation
EP2841549B1 (fr) Formules, leur utilisation comme détergent pour lave-vaisselle ou destinées à sa fabrication, ainsi que leur fabrication
EP2841548B1 (fr) Formules, leur utilisation comme détergent pour lave-vaisselle ou destinées à sa fabrication, ainsi que leur fabrication
US8709990B2 (en) Formulations, their use as or for producing dishwashing detergents and their production
EP3157901B1 (fr) Mélanges d'énantiomères et procédé de fabrication de tels mélanges
EP3448975B1 (fr) Formules, leur fabrication et utilisation, ainsi que composants adaptes
WO2013160132A1 (fr) Formulations solides et production et utilisation desdites formulations
US20130284210A1 (en) Solid formulations, their preparation and use
EP2961822B1 (fr) Formules, leur utilisation comme détergent pour lave-vaisselle ou destinées à sa fabrication, ainsi que leur fabrication
EP2989192B1 (fr) Formules, leur utilisation comme détergent pour lave-vaisselle ou destinées à sa fabrication, ainsi que leur fabrication
WO2014037255A1 (fr) Particules, procédé de fabrication et utilisation
DE102023116717A1 (de) Esteramingemisch
EP3802767A1 (fr) Formulations, leur préparation et leur utilisation et constituants appropriés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 946292

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011668

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2659552

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180316

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012011668

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26 Opposition filed

Opponent name: RECKITT BENCKISER FINISH B.V.

Effective date: 20180814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20180815

Year of fee payment: 7

Ref country code: CH

Payment date: 20180926

Year of fee payment: 7

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 946292

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190927

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: RECKITT BENCKISER FINISH B.V.

Effective date: 20180814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220907

Year of fee payment: 11

Ref country code: GB

Payment date: 20220920

Year of fee payment: 11

Ref country code: DE

Payment date: 20220527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220906

Year of fee payment: 11

Ref country code: FR

Payment date: 20220926

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502012011668

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502012011668

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220926

Year of fee payment: 11

Ref country code: ES

Payment date: 20221003

Year of fee payment: 11

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

27W Patent revoked

Effective date: 20230117

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20230117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 946292

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230117