EP2758724B1 - Installation de réfrigération - Google Patents

Installation de réfrigération Download PDF

Info

Publication number
EP2758724B1
EP2758724B1 EP12756777.4A EP12756777A EP2758724B1 EP 2758724 B1 EP2758724 B1 EP 2758724B1 EP 12756777 A EP12756777 A EP 12756777A EP 2758724 B1 EP2758724 B1 EP 2758724B1
Authority
EP
European Patent Office
Prior art keywords
compression
pressure
level
machines
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12756777.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2758724A1 (fr
Inventor
Jean-Marc Bernhardt
Cindy Deschildre
Eric Fauve
David Grillot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2758724A1 publication Critical patent/EP2758724A1/fr
Application granted granted Critical
Publication of EP2758724B1 publication Critical patent/EP2758724B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • F25J1/0272Multiple identical heat exchangers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/027Inter-connecting multiple hot equipments upstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants

Definitions

  • the present invention relates to a refrigeration plant.
  • the invention relates in particular to a low temperature refrigeration plant in which a low molecular weight gas (for example hydrogen or helium) is used as a refrigerant to reach very low refrigeration temperatures (for example 4.5 K for helium).
  • a low molecular weight gas for example hydrogen or helium
  • Obtaining refrigeration at temperatures of 30 K and lower generally requires the use of a refrigerant such as helium.
  • Helium is compressed at a hot end of a loop or circuit, then cooled and expanded in the cold part of the loop (cold box). Most of the refrigerant is heat exchanged and recycled to the compression stage. In some applications, a fraction of the working gas can be liquefied.
  • the compression of the liquefaction / refrigeration helium cycles generally uses one or more stages of compression machines (compressors) with lubricated screws followed by a deoiling system.
  • each refrigerator is connected to its own compressor station.
  • each compression level can be divided into several compressors in parallel.
  • Primary oil management and cooling systems can be common to multiple compressors or dedicated to each.
  • the low molecular weight gas After compression and de-oiling the low molecular weight gas is cooled and expanded in cryogenic expansion turbines of a cold box to reach the required temperature level. Frigories not used by the user of the refrigerator / liquefier are then passed to the high-pressure working fluid for cooling in the heat exchangers. The working gas at low and medium pressure of the circuit returns to the suction of the compressors.
  • Refrigeration cycles (which generate cold) are typically "closed” at each refrigerator.
  • An associated facility is known to US-B1-7278,280 . That is, the cycle rate of working fluid that enters the cold box is predominantly from the same cold box.
  • these cycle rates are "open” or combined at the level of the application to be cooled (the flow of working fluid supplied by the refrigerators is pooled for the application to be cooled and then returned to each refrigerator by a distribution system respective).
  • An object of the invention is to provide a refrigeration installation of an application by means of several refrigerators / liquefiers arranged in parallel which solves all or part of the above problems.
  • an object of the invention may be to provide a less expensive refrigeration installation and / or more compact and / or more efficient and / or more flexible use than known systems.
  • the refrigeration plant of the same application means comprises several refrigerators / liquefiers arranged in parallel, the refrigerators / liquefiers in parallel using a working gas of the same nature having a low molar mass, that is to say having an overall average molar mass of less than 10 g / mol such as pure helium gas, each refrigerator / liquefier comprising a compressor station of the working gas, a cold box for cooling the working gas leaving the station compression, the working gas cooled by each of the respective cold boxes of the refrigerators / liquefiers being heat-exchanged with the application for the purpose of transferring frigories to the latter, in which a single compressor station compresses the gas for each of the respective separate cold boxes of the refrigerators / liquefiers arranged in parallel, the a single compression station comprising only lubricated screw-type compression machines and de-oiling systems of the working fluid at the outlet of the compression machines, so that compression machines and de-oiling systems are pooled by the refrigerator /
  • Another object of the invention is to propose a refrigeration installation of the same application by means of a single refrigerator / liquefier or of several refrigerators / liquefiers arranged in parallel, the refrigerators / liquefiers using a working gas of same nature having a low molecular weight, that is to say having an overall average molar mass of less than 10 g / mol such as pure helium gas, each refrigerator / liquefier comprising a compressor station of the working gas, a box coolant for cooling the working gas at the outlet of the compressor station, the working gas cooled by each of the respective cold boxes of the refrigerators / liquefiers being placed in heat exchange with the application in order to give away frigories to the latter, in which a single compression station compresses the working gas for each of the cold boxes of the refrigerators / liquefiers, the compression station comprising only lubricated screw-type compression machines and de-oiling systems of the working fluid at the output of the compression machines, and in that the compression station comprises a pluralit
  • each refrigerator / liquefier comprising a compressor station of the working gas , a respective cold box for cooling the working gas at the outlet of the compression station, the working gas cooled by the respective cold boxes of the refrigerators / liquefiers being placed in heat exchange with the application for the purpose of giving him cold, in which a single compressor station compresses the working gas for each cold box separate from the refrigerators / liquefiers arranged in parallel, the single compressor station comprising only cooling machines; lubricated screw type compression and de-oiling systems of the working fluid output compression machines, so that compression machines and deo
  • the invention may also relate to any alternative device comprising any combination of the features above or below.
  • the refrigeration plant shown schematically in the figure 1 comprises several refrigerators / liquefiers (UR) arranged in parallel cooling the same physical entity (ie the same application 1).
  • UR refrigerators / liquefiers
  • the refrigerators / liquefiers (L / R) arranged in parallel use a working gas of the same nature having a low molar mass, that is to say having an overall average molar mass of less than 10 g / mol such as helium gas pure for example.
  • Each refrigerator / liquefier uses a station 2 for compressing the working gas and a cold box 3 for cooling the working gas at the outlet of the compression station 2.
  • the working gas cooled by each of the respective cold boxes 3 of the refrigerators / liquefiers (L, R) is heat exchanged, via a distribution circuit 11, with the application 1 in order to give away frigories to the latter.
  • a single compression station 2 compresses the working gas for each of the respective cold boxes 3 separate refrigerators / liquefiers L / R arranged in parallel.
  • the compression station 2 can be connected if necessary to a storage buffer 12 called "hot" working fluid.
  • the single compression station 2 comprises compression machines only lubricated screw type and deoiling systems of the working fluid output compression machines. In this way, compression machines (lubricated screw compressors) and deoiling systems are pooled by the refrigerators / liquefier arranged in parallel.
  • This configuration limits the number of machines and equipment needed to compress the working fluid.
  • the architecture also makes it possible, if necessary, to provide different fluid cycle pressures by function or by compression station.
  • the figure 2 illustrates a first possible embodiment of the invention.
  • the single common compression station 2 comprises a plurality of compression machines EC1, EC2, EC3 defining a plurality of pressure levels VLP, LP, MP, HP, HP1, HP2 for the working fluid.
  • VLP very low pressure
  • a first compression machine EC1 ensures a rise in pressure of the working fluid to a maximum so-called “low” LP pressure that is higher than the very low VLP pressure.
  • the fluid can be deoiled in a de-oiling member 4 and then cooled in a heat exchanger.
  • the output of the first compression machine EC1 is then connected to the input of a second compression machine EC2 which compresses the fluid from the LP base pressure to a high HP pressure.
  • the input of this second compression machine EC2 also receives fluid at this low pressure level LP coming from the cold boxes 3.
  • the fluid can be deoiled in an organ 4 of de-oiling and then cooled in a heat exchanger. Before returning to the cold boxes 3, the fluid can undergo a last more selective deoiling in a final de-oiling system 14.
  • a third compression machine EC3 is disposed in the compression station 2.
  • This third compression machine EC3 is fed at the inlet with fluid from the boxes 3 at a pressure level called "average" MP intermediate between the low LP and high HP levels.
  • This third compression machine EC3 also defines at its fluid outlet a pressure level "high” HP for the working fluid.
  • the fluid can be deoiled in a de-oiling member 4 and then cooled in a heat exchanger 5.
  • the high-pressure working fluid is injected upstream of the final de-oiling system 14 (a pipe is connected to the outlet of the second compression machine EC2.
  • This solution therefore combines several screw compression machines lubricated between LP low pressure and high pressure HP and also has a compression level between the intermediate pressure MP and the same HP high pressure.
  • This configuration has the advantage of reducing the size of the primary oil management systems 4 (de-oiling systems 4 before the final deoiling 14), in particular on the part of the cycle between the LP low pressure and the HP high pressure.
  • This architecture also simultaneously makes it possible to maintain flexibility on the variations of flow and pressure possible within this part of the circuit (in particular between the mean pressure MP and the high pressure HP).
  • this solution is less flexible as regards the possibility of varying the flow of working fluid in the low pressure LP because the combined compression machines are interdependent and the fluctuations are more difficult to control.
  • Each of the compression stages made by a compression machine can of course be replaced by two or more compressors arranged in parallel. Indeed, depending on the working fluid flow required, each level of compression can be divided into several compressors arranged in parallel. In this case, the primary oil management (deoiling) and cooling systems can be common to several compressors or be dedicated to each one.
  • the output of the first compression machine EC1 can also be connected to the input of the third compression machine EC3 at a level of pressure says "average" MP.
  • the rest of the architecture remains similar.
  • the variant of the figure 3 differs from that of the figure 1 only in that the installation comprises a fourth compression machine EC12 arranged in parallel with the second EC2 compression machine.
  • the fluid inlet of the fourth compression machine EC12 is connected both to the output of the first compression machine EC1 and to a fluid inlet at this low pressure. cold boxes 3.
  • the output of the fourth EC12 compression machine is connected to the input of the third compression machine EC3 (the input of the third compression machine EC3 also receives fluid at the average pressure MP cold boxes).
  • the second EC2 and fourth EC4 parallel compression machines can each have at their output, a dedicated de-oiling system 4 and a dedicated heat exchanger 5.
  • these deoiling systems 4 and heat exchanger 5 may be common and therefore shared.
  • each compression level can be divided into several machines (compressors) arranged in parallel.
  • this solution combines several compressors between LP low pressure and HP high pressure and further provides a level of compression between the intermediate pressure MP and the same HP high pressure.
  • the latest EC12 compression machines can be equipped with variable speed drives to react to fluid flow variations at low pressure. Fluid recirculation between LP low pressure and MP medium pressure is also possible to react to load variations.
  • the combined EC2 compressor (s) between LP low pressure and HP high pressure can operate at a constant rate and independently of load (application 1) and duty cycle fluctuations. Fluctuations in flow rates and pressures are absorbed by the compressor group EC1, EC3, EC12 between the very low input pressure VLP to the higher levels (LP-> MP-> HP).
  • the variant of the figure 4 differs from that of the figure 3 only in that the outputs of the third compression machine EC3 and the second compression machine EC2 are connected to at least one cold box 3 at distinct locations defining respective high and distinct pressure levels HP1, HP2 for the fluid.
  • the pipe comprising the fourth compression machine EC12 and its downstream members has been shown in dotted lines (to highlight its optional character).
  • each HP1, HP2 high pressure outlet of the third EC3 and second EC2 compression machines comprises, downstream of a respective heat exchanger 5, a final deoiling member 14 respective.
  • Two final deoiling systems 14 are indeed essential because of the pressure difference between the two lines.
  • This architecture also makes it possible to optimize the sizes and the efficiencies of the different types of compressors of the different stages of compression.
  • the circuit comprising a compression stage between the medium pressure MP and HP1 high pressure generally feeds the majority of the coolers of the cycle of cold boxes 3 which are the refrigeration source of the system. A variation of this cycle therefore allows a direct variation of the refrigeration power of the refrigerators / liquefiers L / R.
  • the high-pressure fluid circuit HP2 issuing from the second compression machine EC2 can be used preferentially for a supplying an application 1 and / or an expansion circuit of a Joule-Thompson type cooling at the cold end of the cycle.
  • the invention can be applied in particular to any refrigeration / liquefaction unit of high liquefaction or refrigeration capacity using helium or a rare gas.
  • the respective low pressure levels VLP, low LP, average MP and high HP compression stages as well as compression ratios and Corresponding flows of the working gas can be included in the intervals below.
  • compression station architectures of the illustrated examples can also advantageously be applied to an installation using a single liquefier / refrigerator (and not several in parallel).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
EP12756777.4A 2011-09-23 2012-08-14 Installation de réfrigération Active EP2758724B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1158478A FR2980564A1 (fr) 2011-09-23 2011-09-23 Procede et installation de refrigeration
FR1160744A FR2980565B1 (fr) 2011-09-23 2011-11-24 Procede et installation de refrigeration
PCT/FR2012/051896 WO2013041790A1 (fr) 2011-09-23 2012-08-14 Procédé et installation de réfrigération

Publications (2)

Publication Number Publication Date
EP2758724A1 EP2758724A1 (fr) 2014-07-30
EP2758724B1 true EP2758724B1 (fr) 2016-02-24

Family

ID=46829809

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12756777.4A Active EP2758724B1 (fr) 2011-09-23 2012-08-14 Installation de réfrigération
EP12756775.8A Active EP2758725B1 (fr) 2011-09-23 2012-08-14 Procede et installation de refrigeration

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12756775.8A Active EP2758725B1 (fr) 2011-09-23 2012-08-14 Procede et installation de refrigeration

Country Status (8)

Country Link
US (2) US10060653B2 (ja)
EP (2) EP2758724B1 (ja)
JP (2) JP6030138B2 (ja)
CN (2) CN103827600B (ja)
ES (2) ES2562649T3 (ja)
FR (2) FR2980564A1 (ja)
RU (2) RU2607573C2 (ja)
WO (2) WO2013041789A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344058B (zh) * 2013-06-26 2015-05-27 武汉新世界制冷工业有限公司 提高双机双级螺杆制冷机组运行效率的方法
FR3024219B1 (fr) * 2014-07-23 2016-07-15 Air Liquide Procede de regulation d'une installation de refrigeration cryogenique et installation correspondante
FR3072160B1 (fr) * 2017-10-09 2019-10-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de refrigeration
RU208025U1 (ru) * 2021-06-07 2021-11-30 ООО "Кьюми" Аппарат для шоковой заморозки пищевых продуктов

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1370321A (fr) * 1962-10-01 1964-08-21 Allied Chem Procédé de refroidissement par détente adiabatique d'un réfrigérant gazeux comprimé, à travers une série de détendeurs montés en parallèle, dans une zone de réfrigération à plusieurs étages
US3377811A (en) * 1965-12-28 1968-04-16 Air Prod & Chem Liquefaction process employing expanded feed as refrigerant
FR2384221A1 (fr) * 1977-03-16 1978-10-13 Air Liquide Ensemble d'echange thermique du genre echangeur a plaques
US4267701A (en) * 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant
FR2499226B1 (fr) * 1981-02-05 1985-09-27 Air Liquide Procede et installation de liquefaction d'un gaz
SU1636657A1 (ru) * 1988-08-08 1991-03-23 Предприятие П/Я А-3605 Способ захолаживани криогенной гелиевой системы
JPH03247965A (ja) * 1990-02-26 1991-11-06 Hitachi Ltd ヘリウム冷凍装置
RU2076285C1 (ru) * 1991-04-04 1997-03-27 Георгий Иванович Лазарев Обратный цикл при двух температурах кипения и холодильная машина лазарева
US5603227A (en) * 1995-11-13 1997-02-18 Carrier Corporation Back pressure control for improved system operative efficiency
GB0006265D0 (en) * 2000-03-15 2000-05-03 Statoil Natural gas liquefaction process
FR2818365B1 (fr) * 2000-12-18 2003-02-07 Technip Cie Procede de refrigeration d'un gaz liquefie, gaz obtenus par ce procede, et installation mettant en oeuvre celui-ci
US7478540B2 (en) * 2001-10-26 2009-01-20 Brooks Automation, Inc. Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems
JP2005539194A (ja) * 2002-09-18 2005-12-22 ヘリックス ポリコールド システムズ インコーポレイテッド 液インジェクション付のスクロール圧縮機を有する極低温冷凍システム
CN1839285A (zh) * 2003-08-20 2006-09-27 莱博尔德真空技术有限责任公司 真空设备
ES2594617T3 (es) * 2003-10-08 2016-12-21 Emerson Climate Technologies, Inc. Unidades de condensación distribuidas
ES2582941T3 (es) * 2004-11-15 2016-09-16 Mayekawa Mfg. Co., Ltd. Método y dispositivo de licuefacción y refrigeración criogénica
US7278280B1 (en) * 2005-03-10 2007-10-09 Jefferson Science Associates, Llc Helium process cycle
US20070204649A1 (en) * 2006-03-06 2007-09-06 Sander Kaart Refrigerant circuit
AU2007275118B2 (en) * 2006-07-21 2010-08-12 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
US9400134B2 (en) * 2006-08-02 2016-07-26 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
JP4211847B2 (ja) * 2007-01-17 2009-01-21 ダイキン工業株式会社 冷凍装置
FR2919716B1 (fr) * 2007-07-31 2014-12-19 Air Liquide Procede de refroidissement a basse temperature et son utilisation
JP2009121786A (ja) * 2007-11-19 2009-06-04 Ihi Corp 極低温冷凍装置とその制御方法
FR2924205B1 (fr) * 2007-11-23 2013-08-16 Air Liquide Dispositif et procede de refrigeration cryogenique
JP5263522B2 (ja) * 2008-12-11 2013-08-14 株式会社富士通ゼネラル 冷凍装置
FR2954973B1 (fr) * 2010-01-07 2014-05-23 Air Liquide Procede et dispositif de liquefaction et/ou de refrigeration

Also Published As

Publication number Publication date
CN103827598A (zh) 2014-05-28
US20140238074A1 (en) 2014-08-28
RU2014115977A (ru) 2015-10-27
US9766002B2 (en) 2017-09-19
JP2014526673A (ja) 2014-10-06
US20140238070A1 (en) 2014-08-28
FR2980565B1 (fr) 2018-04-06
WO2013041789A1 (fr) 2013-03-28
ES2562649T3 (es) 2016-03-07
EP2758725A1 (fr) 2014-07-30
EP2758724A1 (fr) 2014-07-30
JP2014530341A (ja) 2014-11-17
EP2758725B1 (fr) 2015-12-30
CN103827600B (zh) 2016-02-03
FR2980565A1 (fr) 2013-03-29
RU2598471C2 (ru) 2016-09-27
CN103827600A (zh) 2014-05-28
JP6030138B2 (ja) 2016-11-24
RU2014116170A (ru) 2015-10-27
RU2607573C2 (ru) 2017-01-10
JP6030137B2 (ja) 2016-11-24
ES2567430T3 (es) 2016-04-22
WO2013041790A1 (fr) 2013-03-28
CN103827598B (zh) 2016-06-01
US10060653B2 (en) 2018-08-28
FR2980564A1 (fr) 2013-03-29

Similar Documents

Publication Publication Date Title
EP2941602B1 (fr) Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant
Nandi et al. Performance and optimization of hydrogen liquefaction cycles
EP2758724B1 (fr) Installation de réfrigération
FR2886719A1 (fr) Procede de refrigeration d'une charge thermique
FR2919716A1 (fr) Procede de refroidissement a basse temperature et son utilisation
US20200041201A1 (en) Refrigeration and/or liquefaction device, and associated method
EP2444759B1 (fr) Procédé et dispositif de refroidissement/liquéfaction à basse température
WO2011114012A2 (fr) Procédé de liquefaction d'un gaz naturel avec des melanges refrigerants contenant au moins un hydrocarbure insature
WO2022073799A1 (fr) Installation et procédé de réfrigération et/ou de liquefaction d'un fluide
CN201417042Y (zh) 简化的混合制冷剂液化流程的设备
FR3035195B1 (fr) Installation et procede de production d'helium liquide
FR3129201A1 (fr) Système de pompage cryogénique et intégration innovante pour la cryogénie Sub Kelvin inférieure à 1,5K
EP4343246A1 (fr) Installation et procédé de production d'un fluide cryogénique
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide
FR3057941A1 (fr) Dispositif et procede de refrigeration et/ou de liquefaction d'un fluide cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012014945

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0001100000

Ipc: F25B0005020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 1/02 20060101ALI20150622BHEP

Ipc: F25B 43/02 20060101ALI20150622BHEP

Ipc: F25J 1/00 20060101ALI20150622BHEP

Ipc: F25B 5/02 20060101AFI20150622BHEP

Ipc: F25B 1/10 20060101ALI20150622BHEP

Ipc: F25B 9/00 20060101ALI20150622BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 776936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012014945

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2567430

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160422

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 776936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012014945

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 12

Ref country code: GB

Payment date: 20230822

Year of fee payment: 12

Ref country code: CH

Payment date: 20230902

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230821

Year of fee payment: 12

Ref country code: FR

Payment date: 20230824

Year of fee payment: 12

Ref country code: DE

Payment date: 20230821

Year of fee payment: 12

Ref country code: BE

Payment date: 20230821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 12