EP2758724B1 - Installation de réfrigération - Google Patents
Installation de réfrigération Download PDFInfo
- Publication number
- EP2758724B1 EP2758724B1 EP12756777.4A EP12756777A EP2758724B1 EP 2758724 B1 EP2758724 B1 EP 2758724B1 EP 12756777 A EP12756777 A EP 12756777A EP 2758724 B1 EP2758724 B1 EP 2758724B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compression
- pressure
- level
- machines
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009434 installation Methods 0.000 title claims description 25
- 238000005057 refrigeration Methods 0.000 title description 21
- 230000006835 compression Effects 0.000 claims description 177
- 238000007906 compression Methods 0.000 claims description 177
- 239000012530 fluid Substances 0.000 claims description 60
- 239000007789 gas Substances 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 12
- 239000001307 helium Substances 0.000 claims description 11
- 229910052734 helium Inorganic materials 0.000 claims description 11
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 11
- 235000021183 entrée Nutrition 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000006873 mp medium Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 235000012830 plain croissants Nutrition 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0062—Light or noble gases, mixtures thereof
- F25J1/0065—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0269—Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
- F25J1/0271—Inter-connecting multiple cold equipments within or downstream of the cold box
- F25J1/0272—Multiple identical heat exchangers in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0276—Laboratory or other miniature devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0294—Multiple compressor casings/strings in parallel, e.g. split arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0269—Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
- F25J1/027—Inter-connecting multiple hot equipments upstream of the cold box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0269—Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
- F25J1/0271—Inter-connecting multiple cold equipments within or downstream of the cold box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/24—Multiple compressors or compressor stages in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/912—Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
Definitions
- the present invention relates to a refrigeration plant.
- the invention relates in particular to a low temperature refrigeration plant in which a low molecular weight gas (for example hydrogen or helium) is used as a refrigerant to reach very low refrigeration temperatures (for example 4.5 K for helium).
- a low molecular weight gas for example hydrogen or helium
- Obtaining refrigeration at temperatures of 30 K and lower generally requires the use of a refrigerant such as helium.
- Helium is compressed at a hot end of a loop or circuit, then cooled and expanded in the cold part of the loop (cold box). Most of the refrigerant is heat exchanged and recycled to the compression stage. In some applications, a fraction of the working gas can be liquefied.
- the compression of the liquefaction / refrigeration helium cycles generally uses one or more stages of compression machines (compressors) with lubricated screws followed by a deoiling system.
- each refrigerator is connected to its own compressor station.
- each compression level can be divided into several compressors in parallel.
- Primary oil management and cooling systems can be common to multiple compressors or dedicated to each.
- the low molecular weight gas After compression and de-oiling the low molecular weight gas is cooled and expanded in cryogenic expansion turbines of a cold box to reach the required temperature level. Frigories not used by the user of the refrigerator / liquefier are then passed to the high-pressure working fluid for cooling in the heat exchangers. The working gas at low and medium pressure of the circuit returns to the suction of the compressors.
- Refrigeration cycles (which generate cold) are typically "closed” at each refrigerator.
- An associated facility is known to US-B1-7278,280 . That is, the cycle rate of working fluid that enters the cold box is predominantly from the same cold box.
- these cycle rates are "open” or combined at the level of the application to be cooled (the flow of working fluid supplied by the refrigerators is pooled for the application to be cooled and then returned to each refrigerator by a distribution system respective).
- An object of the invention is to provide a refrigeration installation of an application by means of several refrigerators / liquefiers arranged in parallel which solves all or part of the above problems.
- an object of the invention may be to provide a less expensive refrigeration installation and / or more compact and / or more efficient and / or more flexible use than known systems.
- the refrigeration plant of the same application means comprises several refrigerators / liquefiers arranged in parallel, the refrigerators / liquefiers in parallel using a working gas of the same nature having a low molar mass, that is to say having an overall average molar mass of less than 10 g / mol such as pure helium gas, each refrigerator / liquefier comprising a compressor station of the working gas, a cold box for cooling the working gas leaving the station compression, the working gas cooled by each of the respective cold boxes of the refrigerators / liquefiers being heat-exchanged with the application for the purpose of transferring frigories to the latter, in which a single compressor station compresses the gas for each of the respective separate cold boxes of the refrigerators / liquefiers arranged in parallel, the a single compression station comprising only lubricated screw-type compression machines and de-oiling systems of the working fluid at the outlet of the compression machines, so that compression machines and de-oiling systems are pooled by the refrigerator /
- Another object of the invention is to propose a refrigeration installation of the same application by means of a single refrigerator / liquefier or of several refrigerators / liquefiers arranged in parallel, the refrigerators / liquefiers using a working gas of same nature having a low molecular weight, that is to say having an overall average molar mass of less than 10 g / mol such as pure helium gas, each refrigerator / liquefier comprising a compressor station of the working gas, a box coolant for cooling the working gas at the outlet of the compressor station, the working gas cooled by each of the respective cold boxes of the refrigerators / liquefiers being placed in heat exchange with the application in order to give away frigories to the latter, in which a single compression station compresses the working gas for each of the cold boxes of the refrigerators / liquefiers, the compression station comprising only lubricated screw-type compression machines and de-oiling systems of the working fluid at the output of the compression machines, and in that the compression station comprises a pluralit
- each refrigerator / liquefier comprising a compressor station of the working gas , a respective cold box for cooling the working gas at the outlet of the compression station, the working gas cooled by the respective cold boxes of the refrigerators / liquefiers being placed in heat exchange with the application for the purpose of giving him cold, in which a single compressor station compresses the working gas for each cold box separate from the refrigerators / liquefiers arranged in parallel, the single compressor station comprising only cooling machines; lubricated screw type compression and de-oiling systems of the working fluid output compression machines, so that compression machines and deo
- the invention may also relate to any alternative device comprising any combination of the features above or below.
- the refrigeration plant shown schematically in the figure 1 comprises several refrigerators / liquefiers (UR) arranged in parallel cooling the same physical entity (ie the same application 1).
- UR refrigerators / liquefiers
- the refrigerators / liquefiers (L / R) arranged in parallel use a working gas of the same nature having a low molar mass, that is to say having an overall average molar mass of less than 10 g / mol such as helium gas pure for example.
- Each refrigerator / liquefier uses a station 2 for compressing the working gas and a cold box 3 for cooling the working gas at the outlet of the compression station 2.
- the working gas cooled by each of the respective cold boxes 3 of the refrigerators / liquefiers (L, R) is heat exchanged, via a distribution circuit 11, with the application 1 in order to give away frigories to the latter.
- a single compression station 2 compresses the working gas for each of the respective cold boxes 3 separate refrigerators / liquefiers L / R arranged in parallel.
- the compression station 2 can be connected if necessary to a storage buffer 12 called "hot" working fluid.
- the single compression station 2 comprises compression machines only lubricated screw type and deoiling systems of the working fluid output compression machines. In this way, compression machines (lubricated screw compressors) and deoiling systems are pooled by the refrigerators / liquefier arranged in parallel.
- This configuration limits the number of machines and equipment needed to compress the working fluid.
- the architecture also makes it possible, if necessary, to provide different fluid cycle pressures by function or by compression station.
- the figure 2 illustrates a first possible embodiment of the invention.
- the single common compression station 2 comprises a plurality of compression machines EC1, EC2, EC3 defining a plurality of pressure levels VLP, LP, MP, HP, HP1, HP2 for the working fluid.
- VLP very low pressure
- a first compression machine EC1 ensures a rise in pressure of the working fluid to a maximum so-called “low” LP pressure that is higher than the very low VLP pressure.
- the fluid can be deoiled in a de-oiling member 4 and then cooled in a heat exchanger.
- the output of the first compression machine EC1 is then connected to the input of a second compression machine EC2 which compresses the fluid from the LP base pressure to a high HP pressure.
- the input of this second compression machine EC2 also receives fluid at this low pressure level LP coming from the cold boxes 3.
- the fluid can be deoiled in an organ 4 of de-oiling and then cooled in a heat exchanger. Before returning to the cold boxes 3, the fluid can undergo a last more selective deoiling in a final de-oiling system 14.
- a third compression machine EC3 is disposed in the compression station 2.
- This third compression machine EC3 is fed at the inlet with fluid from the boxes 3 at a pressure level called "average" MP intermediate between the low LP and high HP levels.
- This third compression machine EC3 also defines at its fluid outlet a pressure level "high” HP for the working fluid.
- the fluid can be deoiled in a de-oiling member 4 and then cooled in a heat exchanger 5.
- the high-pressure working fluid is injected upstream of the final de-oiling system 14 (a pipe is connected to the outlet of the second compression machine EC2.
- This solution therefore combines several screw compression machines lubricated between LP low pressure and high pressure HP and also has a compression level between the intermediate pressure MP and the same HP high pressure.
- This configuration has the advantage of reducing the size of the primary oil management systems 4 (de-oiling systems 4 before the final deoiling 14), in particular on the part of the cycle between the LP low pressure and the HP high pressure.
- This architecture also simultaneously makes it possible to maintain flexibility on the variations of flow and pressure possible within this part of the circuit (in particular between the mean pressure MP and the high pressure HP).
- this solution is less flexible as regards the possibility of varying the flow of working fluid in the low pressure LP because the combined compression machines are interdependent and the fluctuations are more difficult to control.
- Each of the compression stages made by a compression machine can of course be replaced by two or more compressors arranged in parallel. Indeed, depending on the working fluid flow required, each level of compression can be divided into several compressors arranged in parallel. In this case, the primary oil management (deoiling) and cooling systems can be common to several compressors or be dedicated to each one.
- the output of the first compression machine EC1 can also be connected to the input of the third compression machine EC3 at a level of pressure says "average" MP.
- the rest of the architecture remains similar.
- the variant of the figure 3 differs from that of the figure 1 only in that the installation comprises a fourth compression machine EC12 arranged in parallel with the second EC2 compression machine.
- the fluid inlet of the fourth compression machine EC12 is connected both to the output of the first compression machine EC1 and to a fluid inlet at this low pressure. cold boxes 3.
- the output of the fourth EC12 compression machine is connected to the input of the third compression machine EC3 (the input of the third compression machine EC3 also receives fluid at the average pressure MP cold boxes).
- the second EC2 and fourth EC4 parallel compression machines can each have at their output, a dedicated de-oiling system 4 and a dedicated heat exchanger 5.
- these deoiling systems 4 and heat exchanger 5 may be common and therefore shared.
- each compression level can be divided into several machines (compressors) arranged in parallel.
- this solution combines several compressors between LP low pressure and HP high pressure and further provides a level of compression between the intermediate pressure MP and the same HP high pressure.
- the latest EC12 compression machines can be equipped with variable speed drives to react to fluid flow variations at low pressure. Fluid recirculation between LP low pressure and MP medium pressure is also possible to react to load variations.
- the combined EC2 compressor (s) between LP low pressure and HP high pressure can operate at a constant rate and independently of load (application 1) and duty cycle fluctuations. Fluctuations in flow rates and pressures are absorbed by the compressor group EC1, EC3, EC12 between the very low input pressure VLP to the higher levels (LP-> MP-> HP).
- the variant of the figure 4 differs from that of the figure 3 only in that the outputs of the third compression machine EC3 and the second compression machine EC2 are connected to at least one cold box 3 at distinct locations defining respective high and distinct pressure levels HP1, HP2 for the fluid.
- the pipe comprising the fourth compression machine EC12 and its downstream members has been shown in dotted lines (to highlight its optional character).
- each HP1, HP2 high pressure outlet of the third EC3 and second EC2 compression machines comprises, downstream of a respective heat exchanger 5, a final deoiling member 14 respective.
- Two final deoiling systems 14 are indeed essential because of the pressure difference between the two lines.
- This architecture also makes it possible to optimize the sizes and the efficiencies of the different types of compressors of the different stages of compression.
- the circuit comprising a compression stage between the medium pressure MP and HP1 high pressure generally feeds the majority of the coolers of the cycle of cold boxes 3 which are the refrigeration source of the system. A variation of this cycle therefore allows a direct variation of the refrigeration power of the refrigerators / liquefiers L / R.
- the high-pressure fluid circuit HP2 issuing from the second compression machine EC2 can be used preferentially for a supplying an application 1 and / or an expansion circuit of a Joule-Thompson type cooling at the cold end of the cycle.
- the invention can be applied in particular to any refrigeration / liquefaction unit of high liquefaction or refrigeration capacity using helium or a rare gas.
- the respective low pressure levels VLP, low LP, average MP and high HP compression stages as well as compression ratios and Corresponding flows of the working gas can be included in the intervals below.
- compression station architectures of the illustrated examples can also advantageously be applied to an installation using a single liquefier / refrigerator (and not several in parallel).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Health & Medical Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
- La présente invention concerne une installation de réfrigération.
- L'invention concerne notamment une installation de réfrigération à basse température dans lequel un gaz de faible masse molaire (par exemple l'hydrogène ou l'hélium) est utilisé comme fluide réfrigérant pour atteindre des températures de réfrigération très basses (par exemple 4,5 K pour l'hélium). L'obtention d'une réfrigération à des températures de 30 K et plus basses nécessite généralement l'utilisation d'un réfrigérant tel que l'hélium. L'hélium est comprimé à une extrémité chaude d'une boucle ou circuit, puis refroidi et détendu dans la partie froide de la boucle (boîte froide). La majeure partie du réfrigérant est réchauffée par échange et recyclée dans l'étage de compression. Dans certaines applications, une fraction du gaz de travail peut être liquéfiée.
- La compression des cycles de liquéfaction/réfrigération hélium utilise généralement un ou plusieurs étages de machines de compression (compresseurs) à vis lubrifiées suivi d'un system de déshuilage.
- S'il est nécessaire d'avoir plusieurs réfrigérateurs, chaque réfrigérateur est connecté à sa propre station de compression. En fonction des débits demandés, chaque niveau de compression peut être divisé en plusieurs compresseurs en parallèles. Les systèmes de gestion d'huile primaires et de refroidissement peuvent être communs à plusieurs compresseurs ou être dédié à chacun.
- Après sa compression et son déshuilage le gaz de faible masse molaire est refroidi et détendu dans des turbines de détente cryogéniques d'une boîte froide pour atteindre le niveau de température requis. Les frigories non utilisées par l'utilisateur du réfrigérateur/liquéfacteur sont ensuite transmises au fluide de travail à haute pression pour le refroidir dans les échangeurs de chaleur. Le gaz de travail à basse et moyenne pression du circuit retourne à l'aspiration des compresseurs.
- Pour des systèmes de réfrigération de grande taille, par exemple supérieur à 20kW équivalent à 4.5K il est nécessaire d'utiliser plusieurs réfrigérateurs distincts en parallèle connecté à la même application à refroidir. Les charges thermiques fluctuantes de l'application à refroidir induisent des fluctuations de débit sur les compresseurs de la station de compression. Les coûts de la station de compression (matériel, intégration et installation) sont relativement importants par rapport au coût global de l'installation.
- Les cycles de réfrigération (qui génèrent le froid) sont classiquement « fermés » au niveau de chaque réfrigérateur. Une installation associée est connue de
US-B1-7278 280 . C'est-à-dire que le débit de cycle de fluide de travail qui entre dans la boite froide ressort en majorité de cette même boite froide. En revanche, ces débits de cycle sont « ouvert » ou combinés au niveau de l'application à refroidir (le débit de fluide de travail fourni par les réfrigérateurs est mutualisé pour l'application à refroidir puis retourne à chaque réfrigérateur par un système de distribution respectif). - Un but de l'invention est de proposer une installation de réfrigération d'une application au moyen de plusieurs réfrigérateurs/liquéfacteurs disposés en parallèle qui résout tout ou partie des problèmes ci-dessus. En particulier, un but de l'invention peut être de proposer une installation de réfrigération moins coûteux et/ou plus compacts et/ou plus efficaces et/ou plus souple d'utilisation que les systèmes connus.
- A cette fin, l'installation de réfrigération d'une même application au moyen comprend plusieurs réfrigérateurs/liquéfacteurs disposés en parallèle, les réfrigérateurs/liquéfacteurs en parallèle utilisant un gaz de travail de même nature ayant une faible masse molaire, c'est-à-dire ayant une masse molaire globale moyenne inférieure à 10g/mol tel que l'hélium gazeux pur, chaque réfrigérateur/liquéfacteur comprenant une station de compression du gaz de travail, une boîte froide destinée à refroidir le gaz de travail en sortie de la station de compression, le gaz de travail refroidi par chacune des boîtes froides respectives des réfrigérateurs/liquéfacteurs étant mis en échange thermique avec l'application en vue de céder des frigories à cette dernière, dans laquelle, une unique station de compression assure la compression du gaz de travail pour chacune des boîtes froides distinctes respectives des réfrigérateurs/liquéfacteurs disposés en parallèle, l'unique station de compression comprenant uniquement des machines de compression du type à vis lubrifiées et des systèmes de déshuilage du fluide de travail en sortie des machines de compression, de sorte que les machines de compression et les systèmes de déshuilage sont mutualisés par les réfrigérateur/liquéfacteur disposés en parallèle.
- Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :
- l'unique station de compression comprend une pluralité de machines de compression définissant plusieurs niveaux de pression pour le fluide de travail,
- le passage d'un niveau de pression au niveau de pression suivant supérieur est réalisé via une ou plusieurs machines de compression en série ou via plusieurs machines de compression disposées en parallèle,
- le passage d'au moins un niveau de pression au niveau de pression supérieur suivant est réalisé via deux machines de compression disposées en parallèle, un système de déshuilage étant disposé à la sortie des deux machines de compression, le système de déshuilage comprenant soit un organe de déshuilage unique commun aux deux machines de compression disposées en parallèle, soit deux organe de déshuilage affectés respectivement aux deux machines de compression disposées en parallèle,
- l'installation comporte au moins un système de déshuilage final disposé en sortie du dernier un niveau de compression, c'est-à-dire avant une liaison fluidique alimentant en fluide la boîte froide,
- l'installation comprend au moins un échangeur de refroidissement du fluide de travail en aval d'une machine de compression,
- l'installation comprend trois machines de compression définissant trois niveaux de pression croissant au-dessus du niveau de pression du fluide en entrée de la station de compression, une première et une seconde machines de compression étant disposées en série et définissant à leur sortie de fluide respective des niveaux de pression respectivement dit « bas » et « haut », une troisième machine de compression étant alimentée en entrée par du fluide issu des boîtes froides à un niveau de pression dit « moyen » intermédiaire entre les niveaux bas et haut, la troisième machine de compression définissant à sa sortie de fluide également un niveau de pression « haut »,
- l'installation comprend une quatrième machine de compression disposée en parallèle avec la seconde machine de compression, la sortie de quatrième machine de compression étant reliée à l'entrée de la troisième machine de compression,
- les sorties de la troisième machine de compression et de la seconde machine de compression sont reliée à une conduite commune définissant un même niveau haut de pression,
- la sortie de la troisième machine de compression et la sortie de la seconde machine de compression sont reliées à au moins une boîte froide à des emplacements distincts définissant des niveaux hauts de pression respectifs et distincts pour le fluide,
- Un autre but de l'invention est de proposer une installation de réfrigération d'une même application au moyen d'un seul réfrigérateur/liquéfacteur ou de plusieurs réfrigérateurs/liquéfacteurs disposés en parallèle, le ou les réfrigérateurs/liquéfacteurs utilisant un gaz de travail de même nature ayant une faible masse molaire, c'est-à-dire ayant une masse molaire globale moyenne inférieure à 10g/mol tel que l'hélium gazeux pur, chaque réfrigérateur/liquéfacteur comprenant une station de compression du gaz de travail, une boîte froide destinée à refroidir le gaz de travail en sortie de la station de compression, le gaz de travail refroidi par chacune des boîtes froides respectives des réfrigérateurs/liquéfacteurs étant mis en échange thermique avec l'application en vue de céder des frigories à cette dernière, dans laquelle, une unique station de compression assure la compression du gaz de travail pour chacune des boîtes froides du ou des réfrigérateurs/liquéfacteurs, la station de compression comprenant uniquement des machines de compression du type à vis lubrifiées et des systèmes de déshuilage du fluide de travail en sortie des machines de compression, et en ce que la station de compression comprend une pluralité de machines de compression définissant plusieurs niveaux de pression pour le fluide de travail, le passage d'un niveau de pression au niveau de pression suivant supérieur est réalisé via une ou plusieurs machines de compression en série ou via plusieurs machines de compression disposées en parallèle, la station de compression comprenant au moins deux machines de compression définissant au moins deux niveaux de pression croissant au-dessus du niveau de pression du fluide en entrée de la station de compression, deux machines de compression principales étant disposées en série et définissant à leur sortie de fluide respective des niveaux de pression respectivement dit « bas » et « haut », une autre machine de compression secondaire étant alimentée en entrée par du fluide issu des boîtes froides à un niveau de pression dit « moyen » intermédiaire entre les niveaux bas et haut, cette machine de compression secondaire définissant à sa sortie de fluide également un niveau de pression « haut ».
- Selon d'autres particularités possibles
- les sorties de la machine de compression secondaire et de la machine de compression principale sont reliée à une conduite commune définissant un même niveau haut de pression,
- les sorties de la machine de compression secondaire et de la machine de compression principale sont reliées à au moins une boîte froide à des
- Il est montré également un procédé de réfrigération ne faisant pas partie de l'invention concernant une même application au moyen d'une installation de réfrigération et/ou liquéfaction comprenant plusieurs réfrigérateurs/liquéfacteurs disposés en parallèle, les réfrigérateurs/liquéfacteurs en parallèle utilisant un gaz de travail de même nature ayant une faible masse molaire, c'est-à-dire ayant une masse molaire globale moyenne inférieure à 10g/mol tel que l'hélium gazeux pur, chaque réfrigérateur/liquéfacteur comprenant une station de compression du gaz de travail, une boîte froide respective destinée à refroidir le gaz de travail en sortie de la station de compression, le gaz de travail refroidi par les boîtes froides respectives des réfrigérateurs/liquéfacteurs étant mis en échange thermique avec l'application en vue de lui céder des frigories, dans laquelle, une unique station de compression assure la compression du gaz de travail pour chacune boîtes froides distinctes des réfrigérateurs/liquéfacteurs disposés en parallèle, l'unique station de compression comprenant uniquement des machines de compression du type à vis lubrifiées et des systèmes de déshuilage du fluide de travail en sortie des machines de compression, de sorte que les machines de compression et les systèmes de déshuilage sont mutualisés par les réfrigérateur/liquéfacteur disposés en parallèle.
- Selon s'autres particularités possibles :
- lorsque la charge thermique de l'application à refroidir varie, les variations puissance de l'installation sont réalisées par en variant le régime d'une partie seulement des machines de compression de la station de compression commune,
- l'application refroidie par les réfrigérateurs/liquéfacteurs en parallèle est disposée dans une même enceinte et comprend des éléments supraconducteurs à refroidir.
- L'invention peut concerner également tout dispositif alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous.
- D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
- la
figure 1 représente de façon simplifiée la structure et le fonctionnement d'une l'installation selon l'invention, - la
figure 2 représente une vue schématique et partielle illustrant la structure et le fonctionnement d'un premier exemple de réalisation selon l'invention, - la
figure 3 représente une vue schématique et partielle illustrant la structure et le fonctionnement d'un second exemple de réalisation selon l'invention, - la
figure 4 représente une vue schématique et partielle illustrant la structure et le fonctionnement d'un troisième exemple de réalisation selon l'invention. - L'installation de réfrigération représentée schématiquement à la
figure 1 comprend plusieurs réfrigérateurs/liquéfacteurs (UR) disposés en parallèle qui refroidissement la même entité physique (c'est-à-dire la même application 1). - Les réfrigérateurs/liquéfacteurs (L/R) disposés en parallèle utilisent un gaz de travail de même nature ayant une faible masse molaire, c'est-à-dire ayant une masse molaire globale moyenne inférieure à 10g/mol tel que l'hélium gazeux pur par exemple.
- Chaque réfrigérateur/liquéfacteur (L/R) utilise une station 2 de compression du gaz de travail et une boîte froide 3 destinée à refroidir le gaz de travail en sortie de la station 2 de compression. Le gaz de travail refroidi par chacune des boîtes 3 froides respectives des réfrigérateurs/liquéfacteurs (L, R) est mis en échange thermique, via un circuit 11 de distribution, avec l'application 1 en vue de céder des frigories à cette dernière.
- Selon une particularité avantageuse, une unique station de compression 2 assure la compression du gaz de travail pour chacune des boîtes froides 3 respectives distinctes des réfrigérateurs/liquéfacteurs L/R disposés en parallèle.
- La station 2 de compression 2 peut être reliée le cas échéant à un stockage 12 tampon dit « chaud » de fluide de travail. Selon une autre particularité avantageuse, l'unique station 2 de compression comprend des machines de compression uniquement du type à vis lubrifiées et des systèmes de déshuilage du fluide de travail en sortie des machines de compression. De cette façon, les machines de compression (compresseurs à vis lubrifiées) et les systèmes de déshuilage sont mutualisés par les réfrigérateur/liquéfacteur disposés en parallèle.
- Cette configuration permet de limiter le nombre de machines et équipements nécessaires à la compression du fluide de travail.
- Ceci permet également de concentrer les variations de charge sur un nombre limité de compresseurs avec des moyens de régulation adaptés (par exemple des variateurs de fréquence, des vannes de réglage, ...).
- De plus, ceci permet également le cas échéant de regrouper des stations de compressions par type de compresseur ou par fonction (cycle de réfrigération et/ou alimentation client) plutôt que par cycles de réfrigérations.
- L'architecture permet également le cas échéant de prévoir différentes pressions de cycle du fluide par fonction ou par station de compression.
- La
figure 2 illustre un premier exemple de réalisation possible selon l'invention. Comme visible à lafigure 2 , l'unique station 2 de compression commune comprend une pluralité de machines de compression EC1, EC2, EC3 définissant plusieurs niveaux VLP, LP, MP, HP, HP1, HP2 de pression pour le fluide de travail. - En entrée, de la station de compression 2, le fluide issu d'une ou de plusieurs boîtes froides 3 arrive à une pression dite « très basse » (VLP). Cette pression de niveau très bas dépend de l'application 1 et ce niveau de pression très bas peut ne pas être présent pour certaines applications (c'est-à-dire que le premier niveau de pression dans la station de compression est dit « bas » c'est-à-dire compris dans l'intervalle ci-après mentionné). Une première machine de compression EC1 assure un montée en pression du fluide de travail jusqu'à une pression dite « basse » LP qui est supérieure à la pression très basse VLP. En sortie de cette première machine de compression EC1, le fluide peut être déshuilé dans un organe 4 de déshuilage puis refroidi dans un échangeur 5 de chaleur. La sortie de la première machine de compression EC1 est reliée ensuite à l'entrée d'une seconde machine de compression EC2 qui compresse le fluide de la pression base LP à une pression haute HP. L'entrée de cette seconde machine de compression EC2 reçoit également du fluide à ce niveau de pression basse LP issu des boîtes froides 3. Comme précédemment, en sortie de cette seconde machine de compression EC2, le fluide peut être déshuilé dans un organe 4 de déshuilage puis refroidi dans un échangeur 5 de chaleur. Avant de retourner dans les boîtes froides 3, le fluide peut subir un dernier déshuilage plus sélectif dans un système de déshuilage final 14. Une troisième machine de compression EC3 est disposée dans la station 2 de compression. Cette troisième machine de compression EC3 est alimentée en entrée par du fluide des boîtes 3 à un niveau de pression dit « moyen » MP intermédiaire entre les niveaux bas LP et haut HP. Cette troisième machine de compression EC3 définit également à sa sortie de fluide un niveau de pression « haut » HP pour le fluide de travail. En sortie de cette seconde machine de compression EC2, le fluide peut être déshuilé dans un organe 4 de déshuilage puis refroidi dans un échangeur 5 de chaleur. Le fluide de travail à haute pression est injecté en amont du système de déshuilage final 14 (une conduite vient se raccorder à la sortie de la seconde machine de compression EC2.
- Cette solution combine donc plusieurs machines de compression à vis lubrifiées entre la basse pression LP et la haute pression HP et possède en plus un niveau de compression entre la pression intermédiaire MP et la même haute pression HP.
- Cette configuration présente l'avantage de réduire la taille des systèmes 4 primaires de gestion d'huile (systèmes de déshuilage 4 avant le déshuilage final 14) en particulier sur la partie du cycle entre la pression basse LP et la pression haute HP. Cette architecture permet également simultanément de conserver une flexibilité sur les variations de débit et de pression possibles au sein de cette partie du circuit (en particulier entre la pression moyenne MP et la haute pression HP).
- En revanche cette solution est moins souple en ce qui concerne la possibilité de faire varier le débit de fluide de travail dans la basse pression LP car les machines de compression combinées sont interdépendantes et les fluctuations sont plus difficilement contrôlables.
- Chacun des étages de compression réalisés par une machine de compression peut bien entendu être remplacé par deux compresseurs (ou plus) disposés en parallèle. En effet, en fonction des débits de fluide de travail nécessaires, chaque niveau de compression peut être divisé en plusieurs compresseurs disposés en parallèles. Dans ce cas, les systèmes de gestion d'huile primaire (déshuilage) et de refroidissement peuvent être communs à plusieurs compresseurs ou être dédié à chacun.
- En fonction du niveau de pression très bas VLP et du taux de compression de la première machine de compression EC1, la sortie de la première machine de compression EC1 peut également être relié à l'entrée de la troisième machine de compression EC3 à un niveau de pression dit « moyen » MP. Le reste de l'architecture restant similaire.
- La variante de la
figure 3 se distingue de celle de lafigure 1 uniquement en ce que l'installation comprend une quatrième machine de compression EC12 disposée en parallèle avec la seconde EC2 machine de compression. De la même façon que pour la seconde machine de compression EC2, l'entrée de fluide de la quatrième machine de compression EC12 est reliée à la fois à la sortie de la première machine de compression EC1 et à une arrivée de fluide à cette basse pression des boîtes froides 3. La sortie de la quatrième machine de compression EC12 est quant à elle reliée à l'entrée de la troisième machine de compression EC3 (l'entrée de la troisième machine de compression EC3 reçoit également du fluide à la pression moyenne MP des boîtes froides). - Comme précédemment, les second EC2 et quatrième EC4 machines de compression en parallèle peuvent avoir chacune à leur sortie, un système de déshuilage 4 dédié et un échangeur de chaleur 5 dédié. En variante ces systèmes de déshuilage 4 et échangeur de chaleur 5 peuvent être communs et donc partagés.
- Comme précédemment, en fonction des débits de fluide de travail requis, chaque niveau de compression peut être divisé en plusieurs machines (compresseurs) disposées en parallèles.
- Comme précédemment également, cette solution combine plusieurs compresseurs entre la basse pression LP et la haute pression HP et prévoit en plus un niveau de compression entre la pression intermédiaire MP et la même haute pression HP.
- Dans le cas de la
figure 3 cependant, une partie du débit de fluide de travail à basse pression LP passe dans des machines de compression EC12 qui compriment le fluide uniquement vers la pression intermédiaire MP. - Ces dernières machines de compression EC12 peuvent être équipées de variateurs de vitesse afin de réagir à des variations de débit de fluide à basse pression. La recirculation de fluide entre les basses pressions LP et pression moyenne MP est également possible pour réagir aux variations de charge.
- Le ou les compresseurs EC2 combinés entre la basse pression LP et la haute pression HP peuvent fonctionner avec un débit constant et de manière indépendante aux fluctuations de la charge (application 1) et du cycle de travail. Les fluctuations de débits et de pressions sont absorbées par le groupe de compresseurs EC1, EC3, EC12 entre la pression très basse d'entrée VLP jusqu'aux niveaux supérieurs (LP->MP->HP).
- La variante de la
figure 4 se distingue de celle de lafigure 3 uniquement en ce que les sorties de la troisième machine de compression EC3 et de la seconde EC2 machine de compression sont reliée à au moins une boîte froide 3 à des emplacements distincts définissant des niveaux hauts de pression respectifs et distincts HP1, HP2 pour le fluide. De plus, à lafigure 4 , la conduite comprenant la quatrième machine de compression EC12 et ses organes aval (déshuileur 4 et échangeur de chaleur 5) a été représentée en pointillés (pour bien mettre en évidence son caractère facultatif). - Dans cette configuration de la
figure 4 , chaque sortie haute pression HP1, HP2 des troisième EC3 et seconds EC2 machines de compression comprend, en aval d'un échangeur 5 de chaleur respectif, un organe de déshuilage final 14 respectif. Deux systèmes de déshuilage finaux 14 sont en effet indispensables du fait de la différence de pression entre les deux lignes. - Comme précédemment, une partie du débit de fluide à basse pression LP est comprimée directement à une pression haute HP2. Dans cette configuration de la
figure 4 , cette pression haute HP2 est indépendante de la pression haute HP1 obtenue en sortie des compresseurs qui compriment entre la pression moyenne MP et la pression haute HP1. - Cette architecture permet également d'optimiser les tailles et les efficacités des différents types de compresseurs des différents étages de compression.
- Les variations de débit et de pression du fluide sur les circuits aboutissant respectivement aux deux niveaux de pression haute HP1 et HP2 peuvent donc également être gérées de manière plus indépendante.
- Le circuit comprenant un étage de compression entre la pression moyenne MP et à pression haute HP1 alimente en général la majorité des turbines de détentes du cycle des boîtes froides 3 qui sont la source de réfrigération du système. Une variation de ce cycle permet donc une variation directe de la puissance de réfrigération des réfrigérateurs/liquéfacteurs L/R.
- En revanche, le circuit de fluide à haute pression HP2 issu de la seconde machine de compression EC2 peut être utilisé préférentiellement pour une alimentation d'une application 1 et/ou d'un circuit de détente d'un refroidissement de type Joule-Thompson au bout froid du cycle.
- L'invention peut s'appliquer notamment à toute unité de réfrigération/liquéfaction de grande capacité de liquéfaction ou de réfrigération utilisant de l'hélium ou un gaz rare.
- A titre d'exemple non limitatif (circuit avec trois étages de compression mais définissant quatre niveaux de pression), les niveaux de pression respectifs très bas VLP, bas LP, moyen MP et haut HP des étages de compression ainsi que les taux de compression et débits correspondants du gaz travail peuvent être compris dans les intervalles ci-dessous.
Etage de compression pression aspiration de la machine de compression correspondante débits eu sein de la machine de compression taux de compression de l'étape de compression (en bar) (en q/s) (sans unité) VLP 0.05 -> 1.0 10 -> 500 2 -> 15 LP 1.0 -> 2.5 500 -> 2000 2 -> 5 HP 3 -> 6 800 -> 4500 2 -> 5 - Les architectures des stations de compression des exemples illustrés peuvent s'appliquer avantageusement également à une installation utilisant un seul liquéfacteur/réfrigérateur (et non pas plusieurs en parallèle).
Claims (5)
- Installation de réfrigération d'une même application (1) au moyen d'un seul réfrigérateur/liquéfacteur (UR) ou de plusieurs réfrigérateurs/liquéfacteurs (UR) disposés en parallèle, le ou les réfrigérateurs/liquéfacteurs (UR) utilisant un gaz de travail de même nature ayant une faible masse molaire, c'est-à-dire ayant une masse molaire globale moyenne inférieure à 10g/mol tel que l'hélium gazeux pur, chaque réfrigérateur/liquéfacteur (UR) comprenant une station (2) de compression du gaz de travail, une boîte froide (3) destinée à refroidir le gaz de travail en sortie de la station (2) de compression, le gaz de travail refroidi par chacune des boîtes (3) froides respectives des réfrigérateurs/liquéfacteurs (L, R) étant mis en échange thermique avec l'application (1) en vue de céder des frigories à cette dernière, dans laquelle, l'ensemble des stations de compression du ou des réfrigérateurs/liquéfacteurs forment une unique station de compression (2) assurant la compression du gaz de travail pour chacune des boîtes froides (3) du ou des réfrigérateurs/liquéfacteurs (L, R), la station (2) de compression comprenant uniquement des machines de compression du type à vis lubrifiées (EC1, EC2, EC3) et des systèmes (4, 14) de déshuilage du fluide de travail en sortie des machines de compression (EC1, EC2, EC3), et en ce que la station (2) de compression comprend une pluralité de machines de compression (EC1, EC2, EC3) définissant plusieurs niveaux (VLP, LP, MP, HP, HP1, HP2) de pression pour le fluide de travail, le passage d'un niveau de pression (VLP, LP, MP, HP, HP1, HP2) au niveau de pression suivant supérieur est réalisé via une ou plusieurs machines de compression (EC1, EC2, EC3) en série ou via plusieurs machines de compression (EC1, EC2, EC3) disposées en parallèle, la station de compression comprenant au moins deux machines de compression (EC2, EC3) définissant au moins deux niveaux de pression (MP, HP) croissants au-dessus du niveau de pression (VLP/LP) du fluide en entrée de la station (2) de compression, deux machines (EC1, EC2) de compression principales, respectivement première (EC1) et seconde (EC2) machines de compression principales, étant disposées en série et définissant à leur sortie de fluide respective des niveaux de pression respectivement dit « bas » (LP) et « haut » (HP), les machines de compression principales (EC1, EC2) étant déposées en série l'une à la suite de l'autre, c'est-à-dire sans autre machine de compression secondaire en série entre-elles, charactérisé par une autre machine de compression (EC3) secondaire étant alimentée en entrée par du fluide issu des boîtes froides (3) à un niveau de pression dit « moyen » (MP) intermédiaire entre les niveaux bas (LP) et haut (HP), cette machine de compression secondaire (EC3) définissant à sa sortie de fluide également un niveau de pression « haut » (HP), le niveau de pression moyen (MP) étant supérieur au niveau de pression en entrée des machines de compression principales (EC1, EC2).
- Installation selon la revendication 1, caractérisé en ce que les sorties de la machine de compression (EC3) secondaire et de la seconde machine de compression principale (EC2) sont reliée à une conduite commune définissant un même niveau haut de pression (HP).
- Installation selon la revendication 1, caractérisée en ce que les sorties de la machine de compression (EC3) secondaire et de la seconde machine de compression principale (EC2) sont reliées à au moins une boîte froide (3) à des emplacements distincts définissant des niveaux hauts de pression respectifs et distincts (HP1, HP2) pour le fluide.
- Installation selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le niveau de pression haut (HP) en sortie de la machine de compression secondaire (EC3) est supérieur au niveau de pression d'entrée des machines de compression principales (EC1, EC2).
- Installation selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le niveau de pression de fluide en sortie de la première machine de compression principale (EC1) est au niveau bas (LP) et correspond au niveau de pression de fluide en entrée de la seconde machine de compression (EC2) principale, le niveau de pression moyen (MP) étant intermédiaire entre le niveau de pression bas (LP) et le niveau de pression haut (HP).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1158478A FR2980564A1 (fr) | 2011-09-23 | 2011-09-23 | Procede et installation de refrigeration |
FR1160744A FR2980565B1 (fr) | 2011-09-23 | 2011-11-24 | Procede et installation de refrigeration |
PCT/FR2012/051896 WO2013041790A1 (fr) | 2011-09-23 | 2012-08-14 | Procédé et installation de réfrigération |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2758724A1 EP2758724A1 (fr) | 2014-07-30 |
EP2758724B1 true EP2758724B1 (fr) | 2016-02-24 |
Family
ID=46829809
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12756777.4A Active EP2758724B1 (fr) | 2011-09-23 | 2012-08-14 | Installation de réfrigération |
EP12756775.8A Active EP2758725B1 (fr) | 2011-09-23 | 2012-08-14 | Procede et installation de refrigeration |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12756775.8A Active EP2758725B1 (fr) | 2011-09-23 | 2012-08-14 | Procede et installation de refrigeration |
Country Status (8)
Country | Link |
---|---|
US (2) | US9766002B2 (fr) |
EP (2) | EP2758724B1 (fr) |
JP (2) | JP6030137B2 (fr) |
CN (2) | CN103827600B (fr) |
ES (2) | ES2567430T3 (fr) |
FR (2) | FR2980564A1 (fr) |
RU (2) | RU2598471C2 (fr) |
WO (2) | WO2013041790A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103344058B (zh) * | 2013-06-26 | 2015-05-27 | 武汉新世界制冷工业有限公司 | 提高双机双级螺杆制冷机组运行效率的方法 |
FR3024219B1 (fr) * | 2014-07-23 | 2016-07-15 | Air Liquide | Procede de regulation d'une installation de refrigeration cryogenique et installation correspondante |
FR3072160B1 (fr) * | 2017-10-09 | 2019-10-04 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Dispositif et procede de refrigeration |
RU208025U1 (ru) * | 2021-06-07 | 2021-11-30 | ООО "Кьюми" | Аппарат для шоковой заморозки пищевых продуктов |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1370321A (fr) * | 1962-10-01 | 1964-08-21 | Allied Chem | Procédé de refroidissement par détente adiabatique d'un réfrigérant gazeux comprimé, à travers une série de détendeurs montés en parallèle, dans une zone de réfrigération à plusieurs étages |
US3377811A (en) * | 1965-12-28 | 1968-04-16 | Air Prod & Chem | Liquefaction process employing expanded feed as refrigerant |
FR2384221A1 (fr) * | 1977-03-16 | 1978-10-13 | Air Liquide | Ensemble d'echange thermique du genre echangeur a plaques |
US4267701A (en) * | 1979-11-09 | 1981-05-19 | Helix Technology Corporation | Helium liquefaction plant |
FR2499226B1 (fr) * | 1981-02-05 | 1985-09-27 | Air Liquide | Procede et installation de liquefaction d'un gaz |
SU1636657A1 (ru) * | 1988-08-08 | 1991-03-23 | Предприятие П/Я А-3605 | Способ захолаживани криогенной гелиевой системы |
JPH03247965A (ja) * | 1990-02-26 | 1991-11-06 | Hitachi Ltd | ヘリウム冷凍装置 |
RU2076285C1 (ru) * | 1991-04-04 | 1997-03-27 | Георгий Иванович Лазарев | Обратный цикл при двух температурах кипения и холодильная машина лазарева |
US5603227A (en) * | 1995-11-13 | 1997-02-18 | Carrier Corporation | Back pressure control for improved system operative efficiency |
GB0006265D0 (en) * | 2000-03-15 | 2000-05-03 | Statoil | Natural gas liquefaction process |
FR2818365B1 (fr) * | 2000-12-18 | 2003-02-07 | Technip Cie | Procede de refrigeration d'un gaz liquefie, gaz obtenus par ce procede, et installation mettant en oeuvre celui-ci |
US7478540B2 (en) * | 2001-10-26 | 2009-01-20 | Brooks Automation, Inc. | Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems |
JP2005539194A (ja) * | 2002-09-18 | 2005-12-22 | ヘリックス ポリコールド システムズ インコーポレイテッド | 液インジェクション付のスクロール圧縮機を有する極低温冷凍システム |
WO2005019745A1 (fr) * | 2003-08-20 | 2005-03-03 | Leybold Vacuum Gmbh | Dispositif a vide |
WO2005036072A1 (fr) * | 2003-10-08 | 2005-04-21 | Copeland Corporation | Unites de condensation reparties |
JP4521833B2 (ja) * | 2004-11-15 | 2010-08-11 | 株式会社前川製作所 | 低温液化冷凍方法及び装置 |
US7278280B1 (en) * | 2005-03-10 | 2007-10-09 | Jefferson Science Associates, Llc | Helium process cycle |
US20070204649A1 (en) * | 2006-03-06 | 2007-09-06 | Sander Kaart | Refrigerant circuit |
WO2008009721A2 (fr) * | 2006-07-21 | 2008-01-24 | Shell Internationale Research Maatschappij B.V. | Procédé et appareil pour liquéfier un courant d'hydrocarbure |
US9400134B2 (en) * | 2006-08-02 | 2016-07-26 | Shell Oil Company | Method and apparatus for liquefying a hydrocarbon stream |
JP4211847B2 (ja) * | 2007-01-17 | 2009-01-21 | ダイキン工業株式会社 | 冷凍装置 |
FR2919716B1 (fr) * | 2007-07-31 | 2014-12-19 | Air Liquide | Procede de refroidissement a basse temperature et son utilisation |
JP2009121786A (ja) * | 2007-11-19 | 2009-06-04 | Ihi Corp | 極低温冷凍装置とその制御方法 |
FR2924205B1 (fr) * | 2007-11-23 | 2013-08-16 | Air Liquide | Dispositif et procede de refrigeration cryogenique |
JP5263522B2 (ja) * | 2008-12-11 | 2013-08-14 | 株式会社富士通ゼネラル | 冷凍装置 |
FR2954973B1 (fr) * | 2010-01-07 | 2014-05-23 | Air Liquide | Procede et dispositif de liquefaction et/ou de refrigeration |
-
2011
- 2011-09-23 FR FR1158478A patent/FR2980564A1/fr not_active Withdrawn
- 2011-11-24 FR FR1160744A patent/FR2980565B1/fr active Active
-
2012
- 2012-08-14 EP EP12756777.4A patent/EP2758724B1/fr active Active
- 2012-08-14 RU RU2014116170/06A patent/RU2598471C2/ru active
- 2012-08-14 ES ES12756777.4T patent/ES2567430T3/es active Active
- 2012-08-14 JP JP2014531290A patent/JP6030137B2/ja active Active
- 2012-08-14 RU RU2014115977A patent/RU2607573C2/ru active
- 2012-08-14 JP JP2014531291A patent/JP6030138B2/ja active Active
- 2012-08-14 WO PCT/FR2012/051896 patent/WO2013041790A1/fr active Application Filing
- 2012-08-14 WO PCT/FR2012/051893 patent/WO2013041789A1/fr active Application Filing
- 2012-08-14 US US14/346,610 patent/US9766002B2/en active Active
- 2012-08-14 CN CN201280046101.1A patent/CN103827600B/zh active Active
- 2012-08-14 ES ES12756775.8T patent/ES2562649T3/es active Active
- 2012-08-14 US US14/346,601 patent/US10060653B2/en active Active
- 2012-08-14 CN CN201280046082.2A patent/CN103827598B/zh active Active
- 2012-08-14 EP EP12756775.8A patent/EP2758725B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
ES2562649T3 (es) | 2016-03-07 |
US20140238074A1 (en) | 2014-08-28 |
RU2598471C2 (ru) | 2016-09-27 |
CN103827598B (zh) | 2016-06-01 |
ES2567430T3 (es) | 2016-04-22 |
EP2758725B1 (fr) | 2015-12-30 |
JP2014530341A (ja) | 2014-11-17 |
RU2014115977A (ru) | 2015-10-27 |
RU2014116170A (ru) | 2015-10-27 |
CN103827598A (zh) | 2014-05-28 |
EP2758724A1 (fr) | 2014-07-30 |
US9766002B2 (en) | 2017-09-19 |
EP2758725A1 (fr) | 2014-07-30 |
RU2607573C2 (ru) | 2017-01-10 |
JP2014526673A (ja) | 2014-10-06 |
CN103827600A (zh) | 2014-05-28 |
WO2013041790A1 (fr) | 2013-03-28 |
FR2980565B1 (fr) | 2018-04-06 |
FR2980564A1 (fr) | 2013-03-29 |
FR2980565A1 (fr) | 2013-03-29 |
JP6030137B2 (ja) | 2016-11-24 |
US20140238070A1 (en) | 2014-08-28 |
US10060653B2 (en) | 2018-08-28 |
CN103827600B (zh) | 2016-02-03 |
WO2013041789A1 (fr) | 2013-03-28 |
JP6030138B2 (ja) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2941602B1 (fr) | Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant | |
EP2758724B1 (fr) | Installation de réfrigération | |
CN104520660A (zh) | 用于天然气液化的系统和方法 | |
FR2886719A1 (fr) | Procede de refrigeration d'une charge thermique | |
FR2919716A1 (fr) | Procede de refroidissement a basse temperature et son utilisation | |
US20200041201A1 (en) | Refrigeration and/or liquefaction device, and associated method | |
Wang et al. | Thermodynamic performance evaluation of the CO2 parallel compression supermarket refrigeration system with a subcooler | |
EP2444759B1 (fr) | Procédé et dispositif de refroidissement/liquéfaction à basse température | |
WO2022073799A1 (fr) | Installation et procédé de réfrigération et/ou de liquefaction d'un fluide | |
CN201417042Y (zh) | 简化的混合制冷剂液化流程的设备 | |
FR3035195B1 (fr) | Installation et procede de production d'helium liquide | |
EP4343246A1 (fr) | Installation et procédé de production d'un fluide cryogénique | |
WO2024008434A1 (fr) | Dispositif et procédé de liquéfaction d'un fluide | |
FR3057941A1 (fr) | Dispositif et procede de refrigeration et/ou de liquefaction d'un fluide cryogenique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140423 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602012014945 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F25B0001100000 Ipc: F25B0005020000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25J 1/02 20060101ALI20150622BHEP Ipc: F25B 43/02 20060101ALI20150622BHEP Ipc: F25J 1/00 20060101ALI20150622BHEP Ipc: F25B 5/02 20060101AFI20150622BHEP Ipc: F25B 1/10 20060101ALI20150622BHEP Ipc: F25B 9/00 20060101ALI20150622BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150824 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 776936 Country of ref document: AT Kind code of ref document: T Effective date: 20160315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012014945 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2567430 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160422 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 776936 Country of ref document: AT Kind code of ref document: T Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160524 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160624 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012014945 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160524 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160814 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230822 Year of fee payment: 12 Ref country code: CH Payment date: 20230902 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230821 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231027 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240821 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240826 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240821 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240829 Year of fee payment: 13 |