EP2757174A1 - Revêtement thermique réglé - Google Patents

Revêtement thermique réglé Download PDF

Info

Publication number
EP2757174A1
EP2757174A1 EP13152231.0A EP13152231A EP2757174A1 EP 2757174 A1 EP2757174 A1 EP 2757174A1 EP 13152231 A EP13152231 A EP 13152231A EP 2757174 A1 EP2757174 A1 EP 2757174A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
material flow
electrode
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13152231.0A
Other languages
German (de)
English (en)
Inventor
Mario Felkel
Sascha Martin Kyeck
Johannes Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13152231.0A priority Critical patent/EP2757174A1/fr
Priority to CN201480005540.7A priority patent/CN104937127B/zh
Priority to PCT/EP2014/050978 priority patent/WO2014114577A1/fr
Priority to EP14702468.1A priority patent/EP2931933A1/fr
Priority to US14/762,530 priority patent/US20150361542A1/en
Publication of EP2757174A1 publication Critical patent/EP2757174A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to a process of thermal coating.
  • Thermal spraying processes are used to produce metallic and ceramic layers in which a material melts completely or at least partially.
  • the material is injected into a nozzle of, for example, a plasma torch or externally. Due to very high plasma temperatures and the influence of the powder material, at least the nozzle wears out. This leads to wear-related fluctuations in the coating process, which are mainly caused by a voltage drop at the burner.
  • the object is achieved by a method according to claim 1.
  • Coatings are applied by thermal coating processes such as SPPS, HVOF, APS, LPPS, VPS, ...
  • a plasma or a flame is generated in a nozzle, wherein a material flows through the nozzle or at the end of the nozzle.
  • FIG. 1 shows an exemplary profile of the voltage U B between the nozzle 30 and an electrode 36 (FIG. Fig. 10 ) According to the state of the art.
  • the voltage U B between the nozzle 30 and the electrode drops with time t and then goes into saturation.
  • a continuous drop in the voltage U B over the time t or other gradients is possible.
  • the coating weight m c decreases with time ( FIG. 2 ) and / or the porosity p ( FIG. 3 ) is increasing.
  • the properties of the flame or of the plasma and / or of the molten material which emerge from the nozzle 30 during the thermal coating, in particular during the plasma coating or HVOF coating, are determined.
  • target values Z1, Z2, Z3, in particular of voltage U B between the nozzle 30 and the electrode 36, material flow rate v p , temperature T of the material flow 42 determined.
  • the regulation of the target values takes place via the adaptation of the controlled variables (R1, R2, R3), in this case of the current intensity I B of the nozzle 30, the flow rates of the primary and / or secondary gases in H 2 , in A r at the nozzle 30, through which the target parameters Z1, Z2, Z3 can be set specifically.
  • Primary gases are argon (Ar) and / or helium (He), secondary gas is for example hydrogen (H 2 ) flowing through the nozzle 30.
  • One, two or three controlled variables can be used, starting from an optimal nominal state for Z1, Z2, Z3, for the three controlled variables R1, R2, R3 used here.
  • gas flow rates ⁇ G of argon ⁇ Ar ( Fig. 8 ) and of hydrogen m H2 ( Fig. 9 ) are controlled at the nozzle 30 in order to achieve the desired results, in particular for the voltage U B.
  • the material flow rate ⁇ M of the material flow is preferably not changed during the control.
  • the layer structure, the layer thickness and the layer weight m c ( Fig. 6 ) of the blade and porosity p ( Fig. 7 ) is constant over time t.
  • FIG. 10 shows a nozzle 30, in which as a primary gas argon (Ar), helium (He) and / or as a secondary gas hydrogen (H 2 ) are introduced at a nozzle end 31 and at the other end 33 material (Mx, y) is added.
  • a primary gas argon (Ar) Ar
  • helium (He) helium
  • H 2 secondary gas hydrogen
  • FIG. 11 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal.
  • directionally solidified columnar grain structure
  • monocrystalline structure ie the whole Workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP13152231.0A 2013-01-22 2013-01-22 Revêtement thermique réglé Withdrawn EP2757174A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13152231.0A EP2757174A1 (fr) 2013-01-22 2013-01-22 Revêtement thermique réglé
CN201480005540.7A CN104937127B (zh) 2013-01-22 2014-01-20 热控覆层
PCT/EP2014/050978 WO2014114577A1 (fr) 2013-01-22 2014-01-20 Revêtement thermique régulé
EP14702468.1A EP2931933A1 (fr) 2013-01-22 2014-01-20 Revêtement thermique régulé
US14/762,530 US20150361542A1 (en) 2013-01-22 2014-01-20 Controlled thermal coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13152231.0A EP2757174A1 (fr) 2013-01-22 2013-01-22 Revêtement thermique réglé

Publications (1)

Publication Number Publication Date
EP2757174A1 true EP2757174A1 (fr) 2014-07-23

Family

ID=47681678

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13152231.0A Withdrawn EP2757174A1 (fr) 2013-01-22 2013-01-22 Revêtement thermique réglé
EP14702468.1A Withdrawn EP2931933A1 (fr) 2013-01-22 2014-01-20 Revêtement thermique régulé

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14702468.1A Withdrawn EP2931933A1 (fr) 2013-01-22 2014-01-20 Revêtement thermique régulé

Country Status (4)

Country Link
US (1) US20150361542A1 (fr)
EP (2) EP2757174A1 (fr)
CN (1) CN104937127B (fr)
WO (1) WO2014114577A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757173A1 (fr) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Revêtement thermique réglé

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (fr) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Procede d'application d'un revetement sur une piece

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034979A1 (en) * 2006-06-28 2010-02-11 Fundacion Inasmet Thermal spraying method and device
CN102031475A (zh) * 2010-12-27 2011-04-27 重庆工商大学 一种废油处理装备涂层力学性能的喷涂智能控制方法与装置
EP2757173A1 (fr) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Revêtement thermique réglé

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (fr) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Procede d'application d'un revetement sur une piece

Also Published As

Publication number Publication date
WO2014114577A1 (fr) 2014-07-31
CN104937127A (zh) 2015-09-23
CN104937127B (zh) 2017-05-31
US20150361542A1 (en) 2015-12-17
EP2931933A1 (fr) 2015-10-21

Similar Documents

Publication Publication Date Title
EP2444590B1 (fr) Procédé de revêtement de trous de refroidissement
WO2009124802A1 (fr) Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin
EP2591872A1 (fr) Procédé de refonte et de remplissage ultérieur et composant obtenu
EP3500395B1 (fr) Procédé en 3 étapes de fabrication d'orifices de refroidissement par air utlisant un laser dans le domaine des nanosecondes et des millisecondes et pièce obtenue
EP2450471A1 (fr) Procédé d'application de matériaux et de réparation d'un composant un composant
EP2274130A1 (fr) Composant avec cordon de soudure et procédé de fabrication d'un cordon de soudure
EP2878697A1 (fr) Procédé de fabrication d'une fibre, élément doté de fibre et dispositif
WO2009100794A1 (fr) Procédé et dispositif pour fondre des surfaces incurvées
EP2774710A1 (fr) Surfaces et réparation de fissures par différents matériaux de brasage
EP2591877A1 (fr) Procédé de refonte sous atmosphère de gaz réactif
WO2015071011A1 (fr) Adaptation des mouchetures de pulvérisation fonction de la géométrie pour procédé de revêtement
EP2604377A1 (fr) Procédé de traitement laser d'une pièce doté d'une couche en céramique
EP2757174A1 (fr) Revêtement thermique réglé
EP2583784A1 (fr) Préparation d'au moins un poste à souder avant le soudage et composant
EP2547179B1 (fr) Tuyère d'injection de plasma dotée d'une injection située à l'intérieur
EP2757175A1 (fr) Détermination de paramètres pour des procédés de revêtement
EP2757173A1 (fr) Revêtement thermique réglé
EP2591876A1 (fr) Procédé de soudage par rechargement d'une pièce métallique monocristalline ou à solidification dirigée
EP3177750A1 (fr) Surveillance et commande d'une opération de revêtement avec distribution de chaleur sur la pièce
EP2754528A1 (fr) Méthode de rechargement par soudage au travers de la refonte par laser d'un moule préfabriqué
DE102013224566A1 (de) Vorrichtung zur Maskierung auf Wolframlegierungsbasis und eine Wolframlegierung
EP2716779A1 (fr) Alliage métallique avec particules quasi-cristallines, poudre, composant, procédé et système de couche
EP2586561A1 (fr) Stratégie de déplacement pour l'obtention d'une structure monocristalline lors du soudage par rechargement
EP2614920A1 (fr) Procédé de soudage à l'aide d'un matériau de soudage différent, dispositif associé ainsi que composant
EP2859989A1 (fr) Procédé de réparation de parois minces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150124