EP2757174A1 - Regulated thermal coating - Google Patents

Regulated thermal coating Download PDF

Info

Publication number
EP2757174A1
EP2757174A1 EP13152231.0A EP13152231A EP2757174A1 EP 2757174 A1 EP2757174 A1 EP 2757174A1 EP 13152231 A EP13152231 A EP 13152231A EP 2757174 A1 EP2757174 A1 EP 2757174A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
material flow
electrode
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13152231.0A
Other languages
German (de)
French (fr)
Inventor
Mario Felkel
Sascha Martin Kyeck
Johannes Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13152231.0A priority Critical patent/EP2757174A1/en
Priority to US14/762,530 priority patent/US20150361542A1/en
Priority to PCT/EP2014/050978 priority patent/WO2014114577A1/en
Priority to EP14702468.1A priority patent/EP2931933A1/en
Priority to CN201480005540.7A priority patent/CN104937127B/en
Publication of EP2757174A1 publication Critical patent/EP2757174A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to a process of thermal coating.
  • Thermal spraying processes are used to produce metallic and ceramic layers in which a material melts completely or at least partially.
  • the material is injected into a nozzle of, for example, a plasma torch or externally. Due to very high plasma temperatures and the influence of the powder material, at least the nozzle wears out. This leads to wear-related fluctuations in the coating process, which are mainly caused by a voltage drop at the burner.
  • the object is achieved by a method according to claim 1.
  • Coatings are applied by thermal coating processes such as SPPS, HVOF, APS, LPPS, VPS, ...
  • a plasma or a flame is generated in a nozzle, wherein a material flows through the nozzle or at the end of the nozzle.
  • FIG. 1 shows an exemplary profile of the voltage U B between the nozzle 30 and an electrode 36 (FIG. Fig. 10 ) According to the state of the art.
  • the voltage U B between the nozzle 30 and the electrode drops with time t and then goes into saturation.
  • a continuous drop in the voltage U B over the time t or other gradients is possible.
  • the coating weight m c decreases with time ( FIG. 2 ) and / or the porosity p ( FIG. 3 ) is increasing.
  • the properties of the flame or of the plasma and / or of the molten material which emerge from the nozzle 30 during the thermal coating, in particular during the plasma coating or HVOF coating, are determined.
  • target values Z1, Z2, Z3, in particular of voltage U B between the nozzle 30 and the electrode 36, material flow rate v p , temperature T of the material flow 42 determined.
  • the regulation of the target values takes place via the adaptation of the controlled variables (R1, R2, R3), in this case of the current intensity I B of the nozzle 30, the flow rates of the primary and / or secondary gases in H 2 , in A r at the nozzle 30, through which the target parameters Z1, Z2, Z3 can be set specifically.
  • Primary gases are argon (Ar) and / or helium (He), secondary gas is for example hydrogen (H 2 ) flowing through the nozzle 30.
  • One, two or three controlled variables can be used, starting from an optimal nominal state for Z1, Z2, Z3, for the three controlled variables R1, R2, R3 used here.
  • gas flow rates ⁇ G of argon ⁇ Ar ( Fig. 8 ) and of hydrogen m H2 ( Fig. 9 ) are controlled at the nozzle 30 in order to achieve the desired results, in particular for the voltage U B.
  • the material flow rate ⁇ M of the material flow is preferably not changed during the control.
  • the layer structure, the layer thickness and the layer weight m c ( Fig. 6 ) of the blade and porosity p ( Fig. 7 ) is constant over time t.
  • FIG. 10 shows a nozzle 30, in which as a primary gas argon (Ar), helium (He) and / or as a secondary gas hydrogen (H 2 ) are introduced at a nozzle end 31 and at the other end 33 material (Mx, y) is added.
  • a primary gas argon (Ar) Ar
  • helium (He) helium
  • H 2 secondary gas hydrogen
  • FIG. 11 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal.
  • directionally solidified columnar grain structure
  • monocrystalline structure ie the whole Workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The method involves heating, fusing and melting the materials (Mx,y) of the material stream (42) by using a plasma or a flame. One of the target variables material current rate of the material stream and/or temperature of the material stream and/or voltage between an electrode (36) and the nozzle (30) are determined and controlled. The gas flow rate of the gases such as argon, helium and hydrogen of the nozzle are increased or decreased.

Description

Die Erfindung betrifft einen Prozess der thermischen Beschichtung.The invention relates to a process of thermal coating.

Thermische Spritzprozesse werden zur Herstellung von metallischen und keramischen Schichten eingesetzt, bei denen ein Material ganz oder zumindest teilweise aufschmilzt.Thermal spraying processes are used to produce metallic and ceramic layers in which a material melts completely or at least partially.

Das Material wird in eine Düse beispielsweise eines Plasmabrenners oder extern injiziert. Durch sehr hohe Plasmatemperaturen und den Pulvermaterialeinfluss verschleißt zumindest die Düse. Dies führt zu verschleißbedingten Schwankungen im Beschichtungsprozess, welche hauptsächlich durch einen Spannungsabfall am Brenner verursacht werden.The material is injected into a nozzle of, for example, a plasma torch or externally. Due to very high plasma temperatures and the influence of the powder material, at least the nozzle wears out. This leads to wear-related fluctuations in the coating process, which are mainly caused by a voltage drop at the burner.

Bisher wurden diese Schwankungen durch Nachjustieren des Pulvermassenstroms ausgeglichen, um das gewünschte Schichtgewicht der Schaufel im Toleranzband zu halten.So far, these fluctuations were compensated by readjusting the powder mass flow to keep the desired coating weight of the blade in the tolerance band.

Dies ist jedoch nicht optimal, da lediglich der spannungsabfallinduzierte Leistungsabfall am Brenner durch eine Erhöhung des Pulvermassenstroms kompensiert wird.However, this is not optimal, since only the voltage drop-induced power loss at the burner is compensated by an increase in the powder mass flow.

Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen.It is therefore an object of the invention to solve the above-mentioned problem.

Die Aufgabe wird gelöst durch ein Verfahren gemäß Anspruch 1.The object is achieved by a method according to claim 1.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden können, um weitere Vorteile zu erzielen.In the dependent claims further advantageous measures are listed, which can be combined with each other in order to achieve further advantages.

Es zeigen:

Figuren 1 - 3
Parameterverläufe aus dem Stand der Technik,
Figuren 4 - 9
erfindungsgemäße Parameterverläufe,
Figur 10
eine Düse,
Figur 11
eine Turbinenschaufel.
Show it:
Figures 1 - 3
Parameter curves from the prior art,
FIGS. 4 to 9
parameter profiles according to the invention,
FIG. 10
a nozzle,
FIG. 11
a turbine blade.

Die Beschreibung und die Figuren stellen nur Ausführungsbeispiele der Erfindung dar.The description and the figures represent only embodiments of the invention.

Beschichtungen werden durch thermische Beschichtungsprozesse wie SPPS, HVOF, APS, LPPS, VPS,... aufgebracht. Dabei wird in einer Düse ein Plasma oder eine Flamme erzeugt, wobei durch die Düse oder am Ende der Düse ein Material einströmt.Coatings are applied by thermal coating processes such as SPPS, HVOF, APS, LPPS, VPS, ... In this case, a plasma or a flame is generated in a nozzle, wherein a material flows through the nozzle or at the end of the nozzle.

Durch den Verschleiß an der Düse oder an der Beschichtungsvorrichtung verändern sich die Materialstromeigenschaften und damit auch der Aufschmelzgrad des Materials, insbesondere vom Pulver.Due to the wear on the nozzle or on the coating device, the material flow properties and thus also the degree of melting of the material, in particular of the powder, change.

Figur 1 zeigt einen beispielhaften Verlauf der Spannung UB zwischen der Düse 30 und einer Elektrode 36 (Fig. 10) nach dem Stand der Technik. FIG. 1 shows an exemplary profile of the voltage U B between the nozzle 30 and an electrode 36 (FIG. Fig. 10 ) According to the state of the art.

Die Spannung UB zwischen der Düse 30 und der Elektrode fällt mit der Zeit t ab und geht dann in eine Sättigung über. Bei anderen Düsentypen ist auch ein kontinuierlicher Abfall der Spannung UB über die Zeit t oder andere Verläufe möglich.The voltage U B between the nozzle 30 and the electrode drops with time t and then goes into saturation. For other types of nozzles, a continuous drop in the voltage U B over the time t or other gradients is possible.

Dementsprechend ist der Verlauf der durchschnittlichen Temperaturen T und der durchschnittlichen Materialstromgeschwindigkeit vp (nicht dargestellt) über die Zeit.Accordingly, the course of the average temperatures T and the average material flow velocity v p (not shown) over time.

Als Auswirkung davon nimmt das Schichtgewicht mc mit der Zeit ab (Figur 2) und/oder die Porosität p (Figur 3) nimmt zu.As a consequence, the coating weight m c decreases with time ( FIG. 2 ) and / or the porosity p ( FIG. 3 ) is increasing.

Es werden daher erfindungsgemäß die Eigenschaften der Flamme oder des Plasmas und/oder des aufgeschmolzenen Materials, die bei der thermischen Beschichtung aus der Düse 30, insbesondere bei der Plasma-Beschichtung oder HVOF-Beschichtung austreten, ermittelt.Therefore, according to the invention, the properties of the flame or of the plasma and / or of the molten material which emerge from the nozzle 30 during the thermal coating, in particular during the plasma coating or HVOF coating, are determined.

Dabei werden Zielwerte Z1, Z2, Z3 wie insbesondere von Spannung UB zwischen der Düse 30 und der Elektrode 36, Materialstromgeschwindigkeit vp, Temperatur T des Materialstroms 42 ermittelt.In this case, target values Z1, Z2, Z3, in particular of voltage U B between the nozzle 30 and the electrode 36, material flow rate v p , temperature T of the material flow 42 determined.

Dies erfolgt durch Messgeräte, die über Pyrometrie oder CCD-Kameras quantitative Daten ermitteln.This is done by measuring devices, which determine quantitative data via pyrometry or CCD cameras.

Werden bei der Messung also Abweichungen festgestellt, so ist auf einen Verschleiß zu schließen und Parameter R1, R2, R3 zur Veränderung der Zielgrößen Z1, Z2, Z3 werden entsprechend eingestellt, so dass wieder die gewünschten Zielwerte von Z1, Z2, Z3 erreicht werden.If deviations are detected during the measurement, then wear is to be concluded and parameters R1, R2, R3 for changing the target variables Z1, Z2, Z3 are set accordingly, so that the desired target values of Z1, Z2, Z3 are again achieved.

Die Regelung der Zielwerte (Z1, Z2, Z3) erfolgt über die Anpassung der Regelgrößen (R1, R2, R3), hier von Stromstärke IB der Düse 30, der Flussraten der Primär- und/oder Sekundärgase in H2, in Ar an der Düse 30, durch welche sich die Zielparameter Z1, Z2, Z3 gezielt einstellen lassen.The regulation of the target values (Z1, Z2, Z3) takes place via the adaptation of the controlled variables (R1, R2, R3), in this case of the current intensity I B of the nozzle 30, the flow rates of the primary and / or secondary gases in H 2 , in A r at the nozzle 30, through which the target parameters Z1, Z2, Z3 can be set specifically.

Primärgase sind Argon (Ar) und/oder Helium (He), Sekundärgas ist z.B. Wasserstoff (H2), die durch die Düse 30 strömen.Primary gases are argon (Ar) and / or helium (He), secondary gas is for example hydrogen (H 2 ) flowing through the nozzle 30.

Es können ein, zwei oder drei Regelgrößen verwendet werden ausgehend von einem optimalen Sollzustand für Z1, Z2, Z3, für die hier verwendeten drei Regelgrößen R1, R2, R3.One, two or three controlled variables can be used, starting from an optimal nominal state for Z1, Z2, Z3, for the three controlled variables R1, R2, R3 used here.

Ebenso können die Gas-Flussraten G von Argon Ar (Fig. 8) sowie die von Wasserstoff m H2 (Fig. 9) an der Düse 30 geregelt werden, um die gewünschten Ergebnisse zu erzielen, insbesondere für die Spannung UB.Similarly, the gas flow rates G of argon Ar ( Fig. 8 ) and of hydrogen m H2 ( Fig. 9 ) are controlled at the nozzle 30 in order to achieve the desired results, in particular for the voltage U B.

Die Materialflussrate M des Materialstroms wird bei der Regelung dabei vorzugsweise nicht verändert.The material flow rate ṁ M of the material flow is preferably not changed during the control.

Durch diese Regelung bleiben die Schichtstruktur, die Schichtdicke und das Schichtgewicht mc (Fig. 6) der Schaufel sowie Porosität p (Fig. 7) über die Zeit t konstant.By this regulation, the layer structure, the layer thickness and the layer weight m c ( Fig. 6 ) of the blade and porosity p ( Fig. 7 ) is constant over time t.

Durch die Regelung der Stromstärke IB (Fig. 4) wird die die Leistung P relativ konstant gehalten (Fig. 5). Dies ist dann auch erkennbar an den konstanten Werten der Partikeltemperaturen und der Partikelgeschwindigkeiten Vp (nicht dargestellt).By regulating the current intensity I B ( Fig. 4 ) the power P is kept relatively constant ( Fig. 5 ). This is then also evident from the constant values of the particle temperatures and the particle velocities V p (not shown).

Figur 10 zeigt eine Düse 30, bei der als Primärgas Argon (Ar), Helium (He) und/oder als Sekundärgas Wasserstoff (H2) an einem Düsenende 31 eingeleitet werden und am anderen Ende 33 Material (Mx,y) hinzugeführt wird. FIG. 10 shows a nozzle 30, in which as a primary gas argon (Ar), helium (He) and / or as a secondary gas hydrogen (H 2 ) are introduced at a nozzle end 31 and at the other end 33 material (Mx, y) is added.

Durch das Anlegen der Spannung UB zwischen der Elektrode 36 und der Düse 30 wird durch einen hochenergetischen Lichtbogen ein Plasma erzeugt, das die Plasmaflamme bildet.By applying the voltage U B between the electrode 36 and the nozzle 30, a plasma is generated by a high-energy arc, which forms the plasma flame.

Die Figur 11 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.The FIG. 11 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.

Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.

Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.The blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.

Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).As a guide blade 130, the blade 130 may have at its blade tip 415 another platform (not shown).

Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).

Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.The blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.

Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.The blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.

Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.In conventional blades 120, 130, for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.

Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt.Such superalloys are for example from EP 1 204 776 B1 . EP 1 306 454 . EP 1 319 729 A1 . WO 99/67435 or WO 00/44949 known.

Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.The blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.

Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.

Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.The production of such monocrystalline workpieces takes place e.g. by directed solidification from the melt. These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.

Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.Here, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal. In these processes, it is necessary to avoid the transition to globulitic (polycrystalline) solidification, since non-directional growth necessarily produces transverse and longitudinal grain boundaries which negate the good properties of the directionally solidified or monocrystalline component.

Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures). Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt.The term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.

Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .Likewise, the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)). Such alloys are known from the EP 0 486 489 B1 . EP 0 786 017 B1 . EP 0 412 397 B1 or EP 1 306 454 A1 ,

Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.The density is preferably 95% of the theoretical density.

Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).A protective aluminum oxide layer (TGO = thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).

Vorzugsweise weist die Schichtzusammensetzung Co-30Ni-28Cr-8Al-0,6Y-0,7Si oder Co-28Ni-24Cr-10Al-0,6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al-0,6Y-3Re oder Ni-12Co-21Cr-11Al-0,4Y-2Re oder Ni-25Co-17Cr-10Al-0,4Y-1,5Re.Preferably, the layer composition comprises Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y. In addition to these cobalt-based protective coatings, nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.

Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.On the MCrAlX may still be present a thermal barrier coating, which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.

Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht.The thermal barrier coating covers the entire MCrAlX layer.

Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.

Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.Other coating methods are conceivable, e.g. atmospheric plasma spraying (APS), LPPS, VPS or CVD. The thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance. The thermal barrier coating is therefore preferably more porous than the MCrAlX layer.

Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.

Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.The blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Claims (10)

Verfahren zur thermischen Beschichtung mittels eines Materialstroms (42) mittels einer Düse (30), insbesondere mittels eines Pulverstroms,
bei dem ein Material (Mxy) des Materialstroms (42) erwärmt, angeschmolzen und/oder aufgeschmolzen wird,
insbesondere mittels eines Plasmas oder einer Flamme,
bei dem zumindest eine der Zielgrößen (Z1, Z2, Z3, ...) Materialstromgeschwindigkeit (vp) des Materialstroms (42) und/oder
Temperatur (T) des Materialstroms (42)
und/oder
Spannung (UB) zwischen einer Elektrode (36) und der Düse (30)
gemessen oder bestimmt und geregelt werden.
Method for thermal coating by means of a material flow (42) by means of a nozzle (30), in particular by means of a powder flow,
in which a material (M xy ) of the material flow (42) is heated, melted and / or melted,
in particular by means of a plasma or a flame,
in which at least one of the target variables (Z 1 , Z 2 , Z 3 ,...) material flow speed (v p ) of the material flow (42) and / or
Temperature (T) of the material flow (42)
and or
Voltage (U B ) between an electrode (36) and the nozzle (30)
measured or determined and regulated.
Verfahren nach Anspruch 1,
bei dem als Zielgrößen (Z1, Z2)
die Materialstromgeschwindigkeit (vp) und
die Spannung (UB) zwischen der Düse (30) und
der Elektrode (36)
geregelt werden.
Method according to claim 1,
in which as target variables (Z 1 , Z 2 )
the material flow rate (v p ) and
the voltage (U B ) between the nozzle (30) and
the electrode (36)
be managed.
Verfahren nach Anspruch 1,
bei dem als Zielgrößen (Z1, Z2)
die Temperatur (T) des Materialstroms (42) und
die Materialstromgeschwindigkeit (vp)
geregelt werden.
Method according to claim 1,
in which as target variables (Z 1 , Z 2 )
the temperature (T) of the material flow (42) and
the material flow rate (v p )
be managed.
Verfahren nach Anspruch 1,
bei dem als Zielgrößen (Z1, Z2)
die Temperatur (T) und
die Spannung (UB) zwischen der Düse (30) und
der Elektrode (36)
geregelt werden.
Method according to claim 1,
in which as target variables (Z 1 , Z 2 )
the temperature (T) and
the voltage (U B ) between the nozzle (30) and
the electrode (36)
be managed.
Verfahren nach Anspruch 1,
bei dem als Zielgrößen (Z1, Z2, Z3)
die Temperatur (T) des Materialstroms (42),
die Materialstromgeschwindigkeit (vp) und
die Spannung (UB) zwischen der Düse (30) und
der Elektrode (36)
geregelt werden.
Method according to claim 1,
in which as target variables (Z 1 , Z 2 , Z 3 )
the temperature (T) of the material flow (42),
the material flow rate (v p ) and
the voltage (U B ) between the nozzle (30) and
the electrode (36)
be managed.
Verfahren nach einem oder mehreren der Ansprüche 1, 2, 3, 4 oder 5,
bei dem die Stromstärke (IB) zwischen der Düse (30) und der Elektrode (36),
und/oder
die Gasflussraten (mH2, mAr) der Düse (30),
als Regelgrößen (R1, R2, R3) verändert werden,
um die Zielgrößen (Z1, Z2, Z3) in einem bestimmten Toleranzbereich oder konstant zu halten.
Method according to one or more of claims 1, 2, 3, 4 or 5,
in which the current intensity (I B ) between the nozzle (30) and the electrode (36),
and or
the gas flow rates (m H2 , m Ar ) of the nozzle (30),
be changed as controlled variables (R1, R2, R3),
to keep the target quantities (Z1, Z2, Z3) within a certain tolerance range or constant.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 6,
bei dem als eine Regelgröße (R1, R2, R3) die Stromstärke (IB) erhöht oder gesenkt wird.
Method according to one or more of claims 1 to 6,
in which, as a controlled variable (R1, R2, R3), the current intensity (I B ) is increased or decreased.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 7,
bei dem als zumindest eine Regelgröße (R1, R2, R3) die Gasflussrate (mAr, mH2) der Primärgase (Argon, Helium) und/oder der Sekundärgase (Wasserstoff, ...) der Düse (30) erhöht oder gesenkt werden.
Method according to one or more of claims 1 to 7,
in which the gas flow rate (m Ar , m H2 ) of the primary gases (argon, helium) and / or the secondary gases (hydrogen,...) of the nozzle (30) are increased or decreased as at least one controlled variable (R1, R2, R3) ,
Verfahren nach einem oder mehreren der Ansprüche 1 bis 8,
bei dem ein HVOF-Verfahren verwendet wird.
Method according to one or more of claims 1 to 8,
using an HVOF method.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 9,
bei dem ein Plasmaspritzverfahren verwendet wird.
Method according to one or more of claims 1 to 9,
in which a plasma spraying process is used.
EP13152231.0A 2013-01-22 2013-01-22 Regulated thermal coating Withdrawn EP2757174A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13152231.0A EP2757174A1 (en) 2013-01-22 2013-01-22 Regulated thermal coating
US14/762,530 US20150361542A1 (en) 2013-01-22 2014-01-20 Controlled thermal coating
PCT/EP2014/050978 WO2014114577A1 (en) 2013-01-22 2014-01-20 Controlled thermal coating
EP14702468.1A EP2931933A1 (en) 2013-01-22 2014-01-20 Controlled thermal coating
CN201480005540.7A CN104937127B (en) 2013-01-22 2014-01-20 Thermal control coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13152231.0A EP2757174A1 (en) 2013-01-22 2013-01-22 Regulated thermal coating

Publications (1)

Publication Number Publication Date
EP2757174A1 true EP2757174A1 (en) 2014-07-23

Family

ID=47681678

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13152231.0A Withdrawn EP2757174A1 (en) 2013-01-22 2013-01-22 Regulated thermal coating
EP14702468.1A Withdrawn EP2931933A1 (en) 2013-01-22 2014-01-20 Controlled thermal coating

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14702468.1A Withdrawn EP2931933A1 (en) 2013-01-22 2014-01-20 Controlled thermal coating

Country Status (4)

Country Link
US (1) US20150361542A1 (en)
EP (2) EP2757174A1 (en)
CN (1) CN104937127B (en)
WO (1) WO2014114577A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757173A1 (en) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Regulated thermal coating

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (en) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines
EP0412397B1 (en) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rhenium-containing protective coating with high corrosion and oxidation resistance
EP0892090A1 (en) 1997-02-24 1999-01-20 Sulzer Innotec Ag Method for manufacturing single crystal structures
EP0786017B1 (en) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1306454A1 (en) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures
EP1319729A1 (en) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
EP1204776B1 (en) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft High-temperature part and method for producing the same
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (en) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Method for coating a workpiece

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034979A1 (en) * 2006-06-28 2010-02-11 Fundacion Inasmet Thermal spraying method and device
CN102031475A (en) * 2010-12-27 2011-04-27 重庆工商大学 Intelligent spray control method and device for mechanical property of waste oil treatment equipment coating
EP2757173A1 (en) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Regulated thermal coating

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (en) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines
EP0412397B1 (en) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rhenium-containing protective coating with high corrosion and oxidation resistance
EP0786017B1 (en) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (en) 1997-02-24 1999-01-20 Sulzer Innotec Ag Method for manufacturing single crystal structures
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1204776B1 (en) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft High-temperature part and method for producing the same
EP1306454A1 (en) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures
EP1319729A1 (en) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (en) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Method for coating a workpiece

Also Published As

Publication number Publication date
EP2931933A1 (en) 2015-10-21
CN104937127B (en) 2017-05-31
WO2014114577A1 (en) 2014-07-31
US20150361542A1 (en) 2015-12-17
CN104937127A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
EP2444590B1 (en) Method for coating cooling holes
WO2009124802A1 (en) Welding method with a controlled temperature profile and device therefor
EP2591872A1 (en) Remelting method and subsequent filling and resulting component
EP3500395B1 (en) 3-step method of producing air cooling holes using a nanosecond and millisecond laser and workpiece
EP2450471A1 (en) Method for applying material and repairing a component and a component
WO2009127504A1 (en) Component having weld seam and method for producing a weld seam
EP2878697A1 (en) Method for producing a chamfer, component with chamfer and device
EP2240293A1 (en) Method for fusing curved surfaces, and a device
EP2774710A1 (en) Surface and crack repair by means of different soldering materials
EP2591877A1 (en) Remelting method under reactive gas atmosphere
WO2015071011A1 (en) Geometrically adapted spraying in coating methods
EP2757174A1 (en) Regulated thermal coating
EP2583784A1 (en) Preparation of a welding point before welding and component
EP2547179B1 (en) Plasma spray nozzle with internal injection
EP2757175A1 (en) Determination of parameters for coating methods
EP2757173A1 (en) Regulated thermal coating
EP2604377A1 (en) Method for laser processing a laminated piece with ceramic coating
EP2591876A1 (en) Process for build-up welding a single or directionally solidified metallic article
EP3177750A1 (en) Monitoring and control of a coating process on the basis of a heat distribution on the workpiece
EP2754528A1 (en) Method of build up welding a substrate through laser remelting of a prefabricated mold
DE102013224566A1 (en) Tungsten alloy masking mask and a tungsten alloy
EP2716779A1 (en) Metal alloy with quasi-crystalline particles, powder, component, method and layer system
EP2586561A1 (en) Movement strategy for producing a single crystal structure by build-up welding
EP2614920A1 (en) Welding method with different welding material, device for same and component
EP2859989A1 (en) Method for repairing thin walls

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150124