WO2014114577A1 - Revêtement thermique régulé - Google Patents

Revêtement thermique régulé Download PDF

Info

Publication number
WO2014114577A1
WO2014114577A1 PCT/EP2014/050978 EP2014050978W WO2014114577A1 WO 2014114577 A1 WO2014114577 A1 WO 2014114577A1 EP 2014050978 W EP2014050978 W EP 2014050978W WO 2014114577 A1 WO2014114577 A1 WO 2014114577A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
material flow
electrode
voltage
flow rate
Prior art date
Application number
PCT/EP2014/050978
Other languages
German (de)
English (en)
Inventor
Mario Felkel
Sascha Martin Kyeck
Johannes Richter
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN201480005540.7A priority Critical patent/CN104937127B/zh
Priority to EP14702468.1A priority patent/EP2931933A1/fr
Priority to US14/762,530 priority patent/US20150361542A1/en
Publication of WO2014114577A1 publication Critical patent/WO2014114577A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to a process of thermal coating.
  • Thermal spray processes are used for the preparation of metalli ⁇ rule and ceramic layers, in which a material is melted completely or at least partially.
  • the material is injected into a die, for example a plasma torch ⁇ or externally.
  • a plasma torch ⁇ or externally.
  • very high plasma Tempe ⁇ temperatures and the powder material influence at least the nozzle wears. This leads to wear-related fluctuations in the coating process, which are mainly caused by a voltage drop at the burner.
  • the object is achieved by a method according to claim 1.
  • FIGS. 1 to 3 parameter curves from the prior art
  • FIGS. 4 to 9 parameter profiles according to the invention
  • FIG. 10 shows a nozzle
  • Coatings are applied by thermal coating processes such as SPPS, HVOF, APS, LPPS, VPS, ...
  • a plasma or a flame is generated in a nozzle, wherein a material flows through the nozzle or at the end of the nozzle.
  • the wear on the nozzle or on the coating device changes the material flow properties and thus also the degree of melting of the material, in particular of the powder.
  • FIG. 1 shows an exemplary profile of the voltage U B between the nozzle 30 and an electrode 36 (FIG. 10) according to the prior art.
  • the voltage U B between the nozzle 30 and the electrode drops with time t and then goes into saturation.
  • a continuous drop in the voltage U B over the time t or other gradients is possible.
  • the layer weight m c decreases with time (FIG. 2) and / or the porosity p (FIG. 3) increases.
  • the properties of the flame or of the plasma and / or of the molten material which emerge from the nozzle 30 during the thermal coating, in particular during the plasma coating or HVOF coating, are determined.
  • target values ZI, Z2, Z3 such as in particular by clamping ⁇ voltage U B between the nozzle 30 and the electrode 36, material Current velocity v p , temperature T of the material flow 42 determined.
  • Primary gases are argon (Ar) and / or helium (He), secondary gas is e.g. Hydrogen (H2) flowing through the nozzle 30.
  • One, two or three controlled variables can be used, starting from an optimum nominal state for ZI, Z2, Z3, for the three controlled variables R1, R2, R3 used here.
  • the gas flow rate m G of argon 30 can ge ⁇ be adjusted to achieve the desired results m Ar (Fig. 8) and that of hydrogen m H 2 (FIG. 9) on the nozzle, in particular for the voltage U B.
  • the material flow rate m M of the material flow is preferably not changed during the control.
  • Layer thickness and the layer weight m c (FIG. 6) of the blade and porosity p (FIG. 7) are constant over time t.
  • the power P is kept relatively constant (FIG. 5). This is then also recognizable by the constant values of the particle temperatures and the particle velocities V p (not shown).
  • FIG. 10 shows a nozzle 30 in which argon (Ar), helium (He) and / or hydrogen (H 2 ) are introduced as the primary gas at a nozzle end 31 and material (Mx, y) is added at the other end 33.
  • FIG. 11 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
  • the vane 130 may be pointed on its shovel 415 have a further platform (not Darge ⁇ asserted).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is, for example, as a hammerhead out staltet ⁇ . Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406 on a leading edge 409 and a trailing edge 412th
  • massive metallic materials in particular superalloys, are used.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can hereby be manufactured by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, for general language use, referred to as directionally solidified) or a monocrystalline structure, ie the entire workpiece ⁇ is of a single crystal.
  • a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, for general language use, referred to as directionally solidified
  • a monocrystalline structure ie the entire workpiece ⁇ is of a single crystal.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
  • Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrC> 2, Y2Ü3-Zr02, ie it is not, partially ⁇ or fully stabilized by yttria
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, will also
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Lors d'un procédé de formation de revêtement, il est possible de maintenir à une valeur constante la structure, l'épaisseur et le poids de la couche malgré les fluctuations liées à l'usure, par mesure combinée de la vitesse, de la température et de l'intensité des particules, et de la tension au niveau du brûleur et par régulation de ces paramètres dans une plage de tolérance.
PCT/EP2014/050978 2013-01-22 2014-01-20 Revêtement thermique régulé WO2014114577A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480005540.7A CN104937127B (zh) 2013-01-22 2014-01-20 热控覆层
EP14702468.1A EP2931933A1 (fr) 2013-01-22 2014-01-20 Revêtement thermique régulé
US14/762,530 US20150361542A1 (en) 2013-01-22 2014-01-20 Controlled thermal coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13152231.0 2013-01-22
EP13152231.0A EP2757174A1 (fr) 2013-01-22 2013-01-22 Revêtement thermique réglé

Publications (1)

Publication Number Publication Date
WO2014114577A1 true WO2014114577A1 (fr) 2014-07-31

Family

ID=47681678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/050978 WO2014114577A1 (fr) 2013-01-22 2014-01-20 Revêtement thermique régulé

Country Status (4)

Country Link
US (1) US20150361542A1 (fr)
EP (2) EP2757174A1 (fr)
CN (1) CN104937127B (fr)
WO (1) WO2014114577A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757173A1 (fr) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Revêtement thermique réglé

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (fr) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Procede d'application d'un revetement sur une piece

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034979A1 (en) * 2006-06-28 2010-02-11 Fundacion Inasmet Thermal spraying method and device
CN102031475A (zh) * 2010-12-27 2011-04-27 重庆工商大学 一种废油处理装备涂层力学性能的喷涂智能控制方法与装置
EP2757173A1 (fr) * 2013-01-22 2014-07-23 Siemens Aktiengesellschaft Revêtement thermique réglé

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (fr) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Procede d'application d'un revetement sur une piece

Also Published As

Publication number Publication date
EP2757174A1 (fr) 2014-07-23
CN104937127A (zh) 2015-09-23
CN104937127B (zh) 2017-05-31
US20150361542A1 (en) 2015-12-17
EP2931933A1 (fr) 2015-10-21

Similar Documents

Publication Publication Date Title
EP1845171B1 (fr) Utilisation de poudres métalliques ayant des particles de taille diverse pour fabriquer un système de couches
EP2444590B1 (fr) Procédé de revêtement de trous de refroidissement
WO2009124802A1 (fr) Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin
EP2760614A1 (fr) Procédé de refusion et comblement subséquent et élément
EP2849893A1 (fr) Dispositif de mesure et de protection pour des processus de revêtement
EP3500395B1 (fr) Procédé en 3 étapes de fabrication d'orifices de refroidissement par air utlisant un laser dans le domaine des nanosecondes et des millisecondes et pièce obtenue
EP3033439A1 (fr) Revêtement céramique à deux couches comprenant des microstructures différentes
EP2774710A1 (fr) Surfaces et réparation de fissures par différents matériaux de brasage
WO2015071011A1 (fr) Adaptation des mouchetures de pulvérisation fonction de la géométrie pour procédé de revêtement
EP2931933A1 (fr) Revêtement thermique régulé
EP2604377A1 (fr) Procédé de traitement laser d'une pièce doté d'une couche en céramique
EP2547178B1 (fr) Tuyère d'injection de plasma dotée d'une injection située à l'intérieur
WO2014114598A1 (fr) Détermination de paramètre pour procédé de formation de revêtement
WO2014114597A1 (fr) Revêtement thermique régulé
EP3177750A1 (fr) Surveillance et commande d'une opération de revêtement avec distribution de chaleur sur la pièce
EP2402096A1 (fr) Structure de poutres poreuse
DE102013224566A1 (de) Vorrichtung zur Maskierung auf Wolframlegierungsbasis und eine Wolframlegierung
EP2340909A1 (fr) Fermeture d'ouvertures rondes et ovales dans des sols de couronnes d'aubes directrices de turbines dotées de bouchons coniques
EP2099948A2 (fr) Procédé pour l'enduction d'un composant
EP2716779A1 (fr) Alliage métallique avec particules quasi-cristallines, poudre, composant, procédé et système de couche
EP2906383A1 (fr) Soudage par apport de matière avec contours d'encadrement extérieurs épais
WO2013060500A1 (fr) Stratégie du mouvement de déplacement pour obtenir la structure monocristalline lors du soudage par métal d'apport
EP2614920A1 (fr) Procédé de soudage à l'aide d'un matériau de soudage différent, dispositif associé ainsi que composant
DE102014226078A1 (de) Laterales Einführen eines pulverförmigen Zusatzwerkstoffs in einen zum Auftragsschweißen verwendeten Laserstrahl oder Lichtbogen
EP2255913A1 (fr) Composant doté d'une couche de réducteur de point de fusion, composant doté d'un composant soudé à l'intérieur et procédé de soudage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14702468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014702468

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14762530

Country of ref document: US