EP2757175A1 - Détermination de paramètres pour des procédés de revêtement - Google Patents

Détermination de paramètres pour des procédés de revêtement Download PDF

Info

Publication number
EP2757175A1
EP2757175A1 EP13152234.4A EP13152234A EP2757175A1 EP 2757175 A1 EP2757175 A1 EP 2757175A1 EP 13152234 A EP13152234 A EP 13152234A EP 2757175 A1 EP2757175 A1 EP 2757175A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
coating
variables
target
material flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13152234.4A
Other languages
German (de)
English (en)
Inventor
Karsten Barautzki
Johannes Richter
Rolf WILKENHÖNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13152234.4A priority Critical patent/EP2757175A1/fr
Priority to PCT/EP2014/051042 priority patent/WO2014114598A1/fr
Publication of EP2757175A1 publication Critical patent/EP2757175A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to a process of thermal coating and its parameter development.
  • Thermal spraying processes are used to produce metallic and ceramic layers in which a material melts completely or at least partially.
  • the material is injected into a nozzle of, for example, a plasma torch or externally. Due to very high plasma temperatures and the influence of the powder material, at least the nozzle wears out. This leads to wear-related fluctuations in the coating process, which are mainly caused by a voltage drop at the burner.
  • the object is achieved by a method according to claim 1.
  • Coatings are applied by thermal coating processes such as SPPS, HVOF, APS, LPPS, VPS, ...
  • a plasma or a flame is generated in a nozzle, wherein a material flows through the nozzle or at the end of the nozzle.
  • FIG. 1 shows an exemplary profile of the voltage U B between the nozzle 30 and an electrode 36 (FIG. Fig. 11 ) According to the state of the art.
  • the voltage U B between the nozzle 30 and the electrode drops with time t and then goes into saturation.
  • a continuous drop in the voltage U B over the time t or other gradients is possible.
  • the coating weight m c decreases with time ( FIG. 2 ) and / or the porosity p ( FIG. 3 ) is increasing.
  • the properties of the flame or of the plasma and / or of the molten material which emerge from the nozzle during the thermal coating, in particular during the plasma coating or HVOF coating, are determined.
  • the regulation of the target values takes place via the adaptation of controlled variables (R1, R2, R3), here preferably of the current intensity I B of the nozzle 30, the flow rates of the primary and / or secondary gases at the nozzle 30, through which the target parameters Z1, Z2 , Z3 can be set specifically.
  • controlled variables R1, R2, R3
  • Primary gases are argon (Ar) and / or helium (He), secondary gas is for example hydrogen (H 2 ) flowing through the nozzle 30.
  • One, two or three controlled variables can be used, starting from an optimal nominal state for Z1, Z2, Z3, for the three controlled variables R1, R2, R3 used here.
  • parameter sets K1, K2,... are determined in which the controlled variables R1, R2, R3 are increased simultaneously or partially (FIG. > 1.0) or decreased ( ⁇ 1.0) or constant (1.0).
  • 1.0 represents a nominated value for R1, R2, R3,..., Namely the set value divided by the optimum initial state of R1, R2,...
  • the values 1.1; 0.9 represent accordingly a corresponding increase or decrease of R1, R2, .... R1 R2 R3 K1 1, 1 1, 1 1, 1 K2 1, 1 1.0 1.0 K3 1, 1 1.0 1, 1 K4 1, 1 1.0 0, 9 K5 0, 9 0.9 0, 9 K6 0, 9 1.1 1, 0 K7 ... ... ...
  • the values 1.1; 0.9; 1.0 accordingly represent a corresponding increase, decrease or no change in the normalized optimal values of Z1, Z2,.
  • the changes of the target variables Z1, Z2, Z3 depend on the respective nozzle 30.
  • the layer structure, the layer thickness and the layer weight m c ( Fig. 6 ) of the blade and porosity p ( Fig. 7 ) is constant over time t.
  • FIG. 12 a distribution 36 of the temperature T (x, y) or the brightness distribution H (x, y) is shown.
  • the representation of several areas is here only schematically a continuous decrease or change.
  • H (x, y) is proportional to the product of the number n of particles M xy at the position (x, y) and the temperature T of the particles M xy in the measuring range around the point (x, y): (H (x, yxn M xy T Mxy ). H (x, y) also depends on the distance to the nozzle 30 (along the z-direction). This measurement result can be used for regulation. Either a pictorial comparison between two images is made and deviations are determined or an integral value R of an area ⁇ H (x, y) dxdy , ST (x, y) dxdy over the cross section according to FIG. 12 determined and there is a single integral brightness value or temperature value R, which is then repeatedly determined at different times and when deviations in this integral value R are detected, also occurs a regulation. This integral, singular R value then also represents a controlled variable Z.
  • the material flow rate ⁇ M of the material flow is preferably not changed.
  • FIG. 11 shows a nozzle 30, in which argon (Ar), helium and / or as a secondary gas hydrogen (H2) are introduced at one end 31 as the primary gas and at the other end 33 material (M) is added.
  • Ar argon
  • H2 helium
  • M material
  • a plasma is generated by a high-energy arc, which forms the gases and plasma flame.
  • FIG. 13 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 The density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10A1-0,4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , that is, it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • suitable coating processes such as electron beam evaporation (EB-PVD)
  • stalk-shaped grains are produced in the thermal barrier coating.
  • Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP13152234.4A 2013-01-22 2013-01-22 Détermination de paramètres pour des procédés de revêtement Withdrawn EP2757175A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13152234.4A EP2757175A1 (fr) 2013-01-22 2013-01-22 Détermination de paramètres pour des procédés de revêtement
PCT/EP2014/051042 WO2014114598A1 (fr) 2013-01-22 2014-01-20 Détermination de paramètre pour procédé de formation de revêtement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13152234.4A EP2757175A1 (fr) 2013-01-22 2013-01-22 Détermination de paramètres pour des procédés de revêtement

Publications (1)

Publication Number Publication Date
EP2757175A1 true EP2757175A1 (fr) 2014-07-23

Family

ID=47681679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13152234.4A Withdrawn EP2757175A1 (fr) 2013-01-22 2013-01-22 Détermination de paramètres pour des procédés de revêtement

Country Status (2)

Country Link
EP (1) EP2757175A1 (fr)
WO (1) WO2014114598A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071011A1 (fr) * 2013-11-14 2015-05-21 Siemens Aktiengesellschaft Adaptation des mouchetures de pulvérisation fonction de la géométrie pour procédé de revêtement

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (fr) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Procede d'application d'un revetement sur une piece

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949266A (en) * 1972-06-05 1976-04-06 Metco, Inc. Circuit means for automatically establishing an arc in a plasma flame spraying gun
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20040031776A1 (en) * 2002-04-29 2004-02-19 Gevelber Michael Alan Feedback enhanced plasma spray tool
US20040245354A1 (en) * 2003-06-04 2004-12-09 Siemens Westinghouse Power Corporation Method for controlling a spray process
WO2005085489A1 (fr) * 2004-03-05 2005-09-15 Mtu Aero Engines Gmbh Procede d'application d'un revetement sur une piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071011A1 (fr) * 2013-11-14 2015-05-21 Siemens Aktiengesellschaft Adaptation des mouchetures de pulvérisation fonction de la géométrie pour procédé de revêtement

Also Published As

Publication number Publication date
WO2014114598A1 (fr) 2014-07-31

Similar Documents

Publication Publication Date Title
EP2444590B1 (fr) Procédé de revêtement de trous de refroidissement
EP2760614A1 (fr) Procédé de refusion et comblement subséquent et élément
WO2009124802A1 (fr) Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin
EP3500395B1 (fr) Procédé en 3 étapes de fabrication d'orifices de refroidissement par air utlisant un laser dans le domaine des nanosecondes et des millisecondes et pièce obtenue
EP2865781A1 (fr) Couche céramique à deux couches dotée de microstructures différentes
EP2274130A1 (fr) Composant avec cordon de soudure et procédé de fabrication d'un cordon de soudure
EP2878697A1 (fr) Procédé de fabrication d'une fibre, élément doté de fibre et dispositif
EP2774710A1 (fr) Surfaces et réparation de fissures par différents matériaux de brasage
WO2015071011A1 (fr) Adaptation des mouchetures de pulvérisation fonction de la géométrie pour procédé de revêtement
EP2757175A1 (fr) Détermination de paramètres pour des procédés de revêtement
EP2757173A1 (fr) Revêtement thermique réglé
EP2591877A1 (fr) Procédé de refonte sous atmosphère de gaz réactif
EP2547178B1 (fr) Tuyère d'injection de plasma dotée d'une injection située à l'intérieur
EP2757174A1 (fr) Revêtement thermique réglé
EP3177750A1 (fr) Surveillance et commande d'une opération de revêtement avec distribution de chaleur sur la pièce
EP2591876A1 (fr) Procédé de soudage par rechargement d'une pièce métallique monocristalline ou à solidification dirigée
EP2340909A1 (fr) Fermeture d'ouvertures rondes et ovales dans des sols de couronnes d'aubes directrices de turbines dotées de bouchons coniques
EP2402096A1 (fr) Structure de poutres poreuse
DE102013224566A1 (de) Vorrichtung zur Maskierung auf Wolframlegierungsbasis und eine Wolframlegierung
EP2754528A1 (fr) Méthode de rechargement par soudage au travers de la refonte par laser d'un moule préfabriqué
EP2586561A1 (fr) Stratégie de déplacement pour l'obtention d'une structure monocristalline lors du soudage par rechargement
EP2906383A1 (fr) Soudage par apport de matière avec contours d'encadrement extérieurs épais
EP2614920A1 (fr) Procédé de soudage à l'aide d'un matériau de soudage différent, dispositif associé ainsi que composant
WO2015051951A1 (fr) Procédé de réparation de parois minces
EP2255913A1 (fr) Composant doté d'une couche de réducteur de point de fusion, composant doté d'un composant soudé à l'intérieur et procédé de soudage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150124