EP2751854A1 - Piezoelektrisches bauelement und verfahren zur herstellung eines piezoelektrischen bauelements - Google Patents

Piezoelektrisches bauelement und verfahren zur herstellung eines piezoelektrischen bauelements

Info

Publication number
EP2751854A1
EP2751854A1 EP12737845.3A EP12737845A EP2751854A1 EP 2751854 A1 EP2751854 A1 EP 2751854A1 EP 12737845 A EP12737845 A EP 12737845A EP 2751854 A1 EP2751854 A1 EP 2751854A1
Authority
EP
European Patent Office
Prior art keywords
sintering
piezoelectric
piezoelectric ceramic
mixture
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12737845.3A
Other languages
English (en)
French (fr)
Other versions
EP2751854B1 (de
Inventor
Alexander Glazunov
Adalbert Feltz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP2751854A1 publication Critical patent/EP2751854A1/de
Application granted granted Critical
Publication of EP2751854B1 publication Critical patent/EP2751854B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5111Ag, Au, Pd, Pt or Cu
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • Piezoelectric devices such as piezoelectric
  • Multilayer devices are used, for example, as actuators in fuel injections.
  • the object of at least one embodiment of the invention is to provide a piezoelectric component with improved properties.
  • Object of at least one further embodiment of the invention is to provide a method for producing a piezoelectric
  • the invention relates to a piezoelectric component which has at least one piezoelectric ceramic layer and at least one adjacent to the piezoelectric ceramic layer
  • such a component may have an electrode on both sides of the piezoelectric ceramic layer.
  • the component may also be a multilayer component which has at least two, preferably contains at least 100 piezoelectric ceramic layers.
  • the electrodes adjacent to the piezoelectric ceramic layers are internal electrodes, with one inner electrode each between two
  • Ceramic layers is arranged.
  • Multilayer component may further comprise opposite outer surfaces, on each of which an outer electrode is applied.
  • the outer electrodes are made of the same material as the inner electrodes or have a different material than the inner electrodes.
  • the internal electrodes are then divided into two groups, one group of internal electrodes being in contact with one external electrode and the other group of internal electrodes being in contact with the other external electrode.
  • the piezoelectric ceramic material is a ceramic based on lead zirconate titanate (PZT) of the general formula ABO 3 or Pb (Z ri z Ti z ) O 3 and thus has a perovskite structure.
  • PZT ceramics have a
  • This PZT ceramic is doped on its B sites with W as donor and a rare earth metal SE as acceptor and, for x> 0 and / or y> 0, on the A sites with Ba and / or Sr.
  • the doping with Ba and / or Sr can cause a lowering of the Curie temperature of the ceramic material.
  • W can be present in the oxidation state VI.
  • the ceramic material has on A-sites Cu cations, which may be present in particular in the oxidation state I.
  • the Cu acts as an acceptor in the ceramic material during its production and causes temporary oxygen vacancies during sintering, resulting in stable
  • Stable piezoelectric properties can, for example, by sufficiently dense
  • piezoelectric ceramic materials for example ⁇ 96% of the theoretical density
  • a large grain growth with an average grain size of, for example, ⁇ 2 ym or> 3 ym.
  • Grain boundaries in the volume of the ceramic is, or the more grain growth is achieved up to an optimal average grain size in the process of sintering compaction.
  • Grain growth in PZT ceramics can be promoted by the acceptor-induced formation of oxygen vacancies.
  • a combined donor-acceptor doping on the B sites that is a doping with W and SE, can cause an increase in the concentration of the vacancies V ', which is due to the incorporation of SE acceptor centers.
  • the donor-acceptor ratio can be adjusted so that there is a slight excess of vacancies on A sites in the finished ceramic.
  • the oxygen vacancy concentration induced by SE centers during sintering is then no longer present in the finished ceramic.
  • a partial occupation of the vacancies can be achieved by Cu acceptors on the A sites, which is the
  • Pb 11 on the A sites can be substituted by a higher valency cation, which is referred to as a positive defect (since now a positive charge is more localized on the A site), thereby forming a negatively charged defect (electron donor).
  • Neutralization occurs either by formation of Ti 111 on a B-site or by formation of a vacancy on an adjacent Pb 11 or A-site, for example V '/ 2
  • Pb 11 can be substituted at the A sites by a lower valent cation, which is referred to as a negative defect, since now a positive charge is located less on the A site, thereby inducing the formation of a positively charged defect
  • V 0 '' Formation of a vacancy on an oxygen site V 0 '', for example V 0 '' / 2 (defect triplet). V 0 '' can be occupied by ⁇ O2, then forms 2 0 and thus
  • Neutralization occurs either by formation of Ti 111 on a B-site or by formation of a vacancy on an adjacent Pb 11 or A-site, for example V '/ 2 (Defect triplet).
  • (Ti / Zr) may be substituted on the B sites by a lower valent cation, which is called a defect, because now a positive charge is located less on the B site, thereby inducing the formation of a positively charged defect
  • V 0 '' can be occupied by ⁇ O2, then forms 2 0 and thus
  • the rare earth element SE may be selected from a group comprising Lu, Yb, Tm, Er, Y, Ho and Dy. According to one
  • Embodiment is the rare earth element Yb. This may be present in the above-mentioned piezoelectric ceramic material in the oxidation state III.
  • the at least one electrode may contain or consist of Cu. Thus, it is the device
  • a piezoelectric multilayer component with Cu internal electrodes for example, a piezoelectric multilayer component with Cu internal electrodes.
  • the use of Cu electrodes or Cu internal electrodes is compared to conventional ones
  • Electrodes which consist for example of the precious metals Ag / Pd, cheaper, which in particular at
  • the piezoelectric is piezoelectric
  • Ceramic material Pbo, 9451 o, 00128 '' Cuo, oo3Bao, o29sSro, o2ii [Tio, 467Zro, 5i6 Wo, 00753 Y o, oo95] 03 be.
  • This ceramic material has a high density of, for example, 97.3% to 97.5% of the theoretical density and a large grain size of 2 to 3 ym.
  • V ' is a Pb vacancy.
  • Layer containing ceramic precursor material a layer containing Cu is applied.
  • some layers containing ceramic precursor material be arranged one above the other, between which no
  • the formed stack has at least one layer containing the ceramic
  • Such a stack is formed in method step D) to form a multilayer component with Cu internal electrodes.
  • a device can be prepared according to the above statements.
  • Under “layer” in process step C) can both pellets and
  • the method thus enables a doping with W and a rare earth metal SE on the B sites of a PZT ceramic with perovskite structure and, in addition, the incorporation of Cu acceptor centers on the A sites. Due to the doping on the B-sites is already a high level of effectiveness of
  • method step A) may comprise the steps: AI) providing a mixture of starting materials selected from a group comprising Pb 3 O 4 , TiO 2 , ZrO 2 , WO 3 , SE 2 O 3 , BaCO 3 and SrCO 3 ,
  • SE2O 3 can be Yb2Ü 3, LU2O 3, Tm 2 03 2 03 He, H0 2 O 3, Dy 2 be 03 or Y 2 O 3rd If BaC03 and / or SrC03 is also added to the mixture, a reduction of the Curie temperature of the ceramic in the finished component can be achieved.
  • Oxide components can be reacted in process step A2) at a first temperature which is selected from the range 850 ° C to 925 ° C.
  • the reaction can be carried out after the components have been mixed, for example, in an aqueous slurry using ZrO 2 milling media, the water has been evaporated off and the mixture has been screened.
  • the duration of the conversion can be, for example, 2 hours.
  • the product obtained is then placed on a first middle
  • Diameter dso which can be chosen smaller than 1 ym, ground.
  • the product can first be slurried in water.
  • process step A3) the mixture obtained in process step A2) can be reacted a second time
  • the mixture obtained in process step A2) can first be evaporated and sieved.
  • PbO or Pb3Ü 4 can be added as sintering aid.
  • Pb3Ü 4 may be on heating from 500 ° C below
  • Sintering aid can be between 0.5 and 3 mol%, in particular between 0.5 and 2 mol% based on 1 mol of ceramic
  • Process step A) are added.
  • the added PbO forms a melt from a temperature of about 890 ° C, whereby mechanisms of liquid phase sintering come into play, which promote the grain growth and shrinkage kinetically.
  • Sintering aids can thus according to the targeted
  • the mixture obtained in process step A) can be ground to a second average diameter which is smaller than the first average diameter. It can be a fine grinding, which can additionally promote the sintering activity.
  • the mixture ie the conversion product of process step A) in an aqueous slurry or in a nonaqueous medium such as ethanol by means of Zr0 2 ⁇ balls, which a
  • Diameter of ⁇ 0.8 mm are ground.
  • the second mean diameter dso can be from the range ⁇ 0.4 ⁇ m, in particular from the range 0.3 ⁇ m to 0.35 ⁇ m.
  • the combination of high specific surface energy and donor-acceptor doping on the B sites can effectively render the resulting driving force effective for sintering densification.
  • Process step B) additionally CU 2 O in a proportion of 0.05 to 0, 1 mol%, corresponding to the proportion p in the be added to the general formula.
  • Cu acceptor centers can be produced in the PZT ceramic on the A sites, which additionally induce oxygen vacancies during sintering and thereby promote sintering densification and grain growth.
  • the CU 2 O may be added to the mixture already finely ground to the second average diameter or to a slip made from the finely ground powder.
  • the finely dispersed powder obtained in process step B) can be converted into a granulate after addition of a binder. From the granules, in turn, disc-shaped pellets or a slurry for the production of
  • Ceramic films are prepared. For the production of a
  • Schlickers can be an aqueous or a non-aqueous
  • Dispersing medium for example, butyl acetate
  • the layer containing the ceramic precursor material can be sputtered with Cu or printed with a Cu paste. If the layer containing the ceramic precursor material is a compact, this can be sputtered with Cu, for example. If the layer is a film, it can be printed with Cu paste, for example.
  • Oxygen partial pressure can be additionally reduced by a targeted supply of hydrogen gas (forming gas).
  • Debinding is preceded by sintering first to eliminate the organic components. This can be done at temperatures up to 550 ° C. Under formation of H 2 and CO 2 can in a so-called
  • Hydroreforming process to reduce the residual carbon content to less than 300 ppm.
  • binders based on polyurethanes due to their
  • Debinding reduces the risk of oxidation of Cu or the reduction of Pb by organic components.
  • the sintering in process step D) can at a
  • thermodynamic data can be calculated from thermodynamic data and controlled by an oxygen probe.
  • PbTiOs / Pb, T1O 2 and the equilibrium partial pressure of Cu / Cu 2 ⁇ 0, and the temperature can be adjusted depending on the temperature, For example, oxidation of Cu to CU2O and reduction of PbO to Pb or PbTi0 3 to Pb and T1O2 can be avoided.
  • W VI and Yb 111 can be redox-stable under such conditions, and thus subject to no reduction. Accordingly, W VI and Yb 111 may become indirectly fully effective as defects in their sintering densification and grain growth promoting function due to temporary vacancy formation.
  • the sintering in process step D) can at a
  • Temperature which is selected from the range 1000 to 1050 ° C, in particular from the range 1000 to 1010 ° C.
  • the stack can be heated at a heating rate of about 3 K / min to 1000 ° C to 1050 ° C, in particular to 1010 ° C, and held for several hours, for example 3h. Cooling can be slower than heating up.
  • ceramic precursor material which is sintered to the doped PZT ceramic take up small amounts of Cu from the electrodes, which is present in the oxidation state I, on the vacancies of the A-sites.
  • minor amounts for example, about 600 ppm, which corresponds to 0.003 mol of Cu, based on one mol of PZT ceramic, can be understood.
  • a piezoelectric ceramic which Pbi-xyt ( 2a- b ) / 2] -p / 2V [ ( 2a- b ) / 2-p / 2] '' Cu p Ba x Sr y [(Ti z Zri - z) i- _ a b W a SE b] contains 0 3, wherein 0 x -S -S 0, 035, 0 -S -S y 0, 025, 0.42 ⁇ z ⁇ 0.5, 0.0045 ⁇ a ⁇ 0.009, 0.009 ⁇ b ⁇ 0.011, 2a> b, p -S 2a-b.
  • the sintering densification power resulting from the specific surface energy by fine grinding and the donor-acceptor doping at B sites may be due to mechanisms of sintering densification
  • actuators are produced.
  • This ceramic material has improved piezoelectric properties such as high density, high deflection parameters and a large mean grain diameter.
  • Sintered compacts or films can light or
  • the dielectric and piezoelectric properties can be determined by means of deflection and resonance measurements.
  • Figure 1 shows the schematic side view of a
  • Figure 2 shows partial pressures of different systems
  • Figure 3 shows a section of an X-ray diffractogram
  • FIG. 1 shows a schematic side view of a
  • piezoelectric component which is designed as a multilayer component, in the form of a piezoelectric actuator.
  • the component has a stack 1 arranged one above the other
  • the inner electrodes 20 are formed as electrode layers.
  • the piezoelectric ceramic layers 10 and the internal electrodes 20 are formed as electrode layers.
  • Outer electrodes 30 are arranged on opposite side surfaces of the stack 1 and run in strips along the stacking direction.
  • the outer electrodes 30 include For example, Ag or Cu and can be applied as a metal paste on the stack 1 and baked.
  • the inner electrodes 20 are alternately guided along the stacking direction to one of the outer electrodes 30 and spaced from the second outer electrode 30.
  • the outer electrodes 30 are alternately electrically connected to the inner electrodes 20 along the stacking direction.
  • a connection element (not shown here), for. B. by soldering applied.
  • the internal electrodes 20 are Cu internal electrodes.
  • the piezoelectric ceramic layers contain as a material PBI x - y - 1 (2a-b) / 2] - P / 2V t (2a-b) 12 p / 2] "p Cu Ba x Sr y [(Ti z Zr 1 z ) 1 - a - b W a SE b ] 0 3 where 0 ⁇ x ⁇ 0, 035, 0 ⁇ y ⁇ 0.025, 0.42 ⁇ z ⁇ 0.5, 0.0045 ⁇ a ⁇ 0.009, 0.009 ⁇ b ⁇ 0.011, 2a> b, p ⁇ 2a-b, SE is a rare earth metal and V 'is a Pb vacancy
  • FIG. 3 shows as a section of an X-ray diffractogram in which the angle ⁇ in against the intensity Int
  • Diameter and a thickness of 1.4 to 1.5 mm are pressed.
  • the disk-shaped compacts are first through
  • Comparative sample 1 Further compacts are sintered at 950 ° C with 4h holding time for the same debindering and heating ramp (comparative sample 2). Further compacts are sintered at 1010 ° C with 4h holding time in an atmosphere with reduced oxygen partial pressure, which is already set temperature-dependent when heating at 3K / min by the ratio of steam to Formiergas
  • FIG. 2 shows different partial pressures according to which the suitable oxygen partial pressure is temperature-dependent
  • the oxygen partial pressure P 0 2 may vary, if an oxidation of Cu to CU 2 O and a reduction of PbO to Pb (or of PbTi03 to Pb and T 1 O 2) should be avoided.
  • Figure 2 is a possible course the partial pressure of oxygen, throughout the
  • the under defined The sintering density obtained in the process conditions is 7.7 to 7.9 g / cm 3 .
  • PbO in the form of Pb 3 Ü 4 is after sintering at 1000 ° C for the relative
  • FIG. 4 shows images of grain structures of FIG
  • Holding time of 4h corresponds to the course shown in Figure 2.
  • the effect of the additional incorporation of Cu acceptor centers on the grain growth is significantly increased

Abstract

Es wird ein piezoelektrisches Bauelement aufweisend zumindest eine piezoelektrische Keramikschicht (10) und mindestens eine an die piezoelektrische Keramikschicht angrenzende Elektrode (20) angegeben, wobei die piezoelektrische Keramikschicht (10) ein piezoelektrisches Keramikmaterial der allgemeinen Formel Pb1-x-y- [(2a-b) /2] -p/2V [(2a-b) /2-p/2] ' ' CupBaxSry [(TizZr1-z) 1-a-bWaSEb] O3 aufweist und wobei gilt: 0 ≤ x ≤ 0,035, 0 ≤ y ≤ 0,025, 0,42 ≤ z ≤ 0,5, 0,0045 ≤ a ≤ 0,009, 0,009 ≤ b ≤ 0,011, 2a > b, p ≤ 2a-b, SE ist ein Seltenerdmetall und V ' ' eine Pb-Leerstelle.

Description

Beschreibung
Piezoelektrisches Bauelement und Verfahren zur Herstellung eines piezoelektrischen Bauelements
Es wird ein piezoelektrisches Bauelement und ein Verfahren zur Herstellung eines piezoelektrischen Bauelements
angegeben . Piezoelektrische Bauelemente wie piezoelektrische
Vielschichtbauelemente, werden zum Beispiel als Aktoren in Kraftstoffeinspritzungen verwendet .
Aufgabe zumindest einer Ausführungsform der Erfindung ist die Bereitstellung eines piezoelektrischen Bauelements mit verbesserten Eigenschaften. Aufgabe zumindest einer weiteren Ausführungsform der Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung eines piezoelektrischen
Bauelements mit verbesserten Eigenschaften.
Es wird ein piezoelektrisches Bauelement angegeben, das zumindest eine piezoelektrische Keramikschicht und mindestens eine an die piezoelektrische Keramikschicht angrenzende
Elektrode aufweist, wobei die piezoelektrische Keramikschicht ein piezoelektrisches Keramikmaterial der allgemeinen Formel
Pbi-x-y- [ (2a-b) /2] -p/2 [ (2a-b) /2-p/2] ' ' CupBaxSry [ (ΤίζΖΓι-ζ) i-a-b aSEb] O3 aufweist. Dabei gilt: 0 < x < 0,035, 0 < y < 0,025, 0,42 < z < 0,5, 0,0045 < a < 0,009, 0,009 < b < 0,011, 2a > b, p < 2a- b, SE ist ein Seltenerdmetall und V ' eine Pb-Leerstelle .
Ein solches Bauelement kann beispielsweise auf beiden Seiten der piezoelektrischen Keramikschicht jeweils eine Elektrode aufweisen. Alternativ kann es sich bei dem Bauelement auch um ein Vielschichtbauelement handeln, das mindestens zwei, bevorzugt mindestens 100 piezoelektrische Keramikschichten enthält. In diesem Fall sind die an die piezoelektrischen Keramikschichten angrenzenden Elektroden Innenelektroden, wobei jeweils eine Innenelektrode zwischen zwei
Keramikschichten angeordnet ist. Ein solches
Vielschichtbauelement kann weiterhin sich gegenüberliegende Außenflächen aufweisen, auf denen jeweils eine Außenelektrode aufgebracht ist. Die Außenelektroden sind aus dem gleichen Material wie die Innenelektroden hergestellt oder weisen ein unterschiedliches Material als die Innenelektroden auf. Die Innenelektroden sind dann in zwei Gruppen aufgeteilt, wobei eine Gruppe an Innenelektroden mit einer Außenelektrode kontaktiert ist und die andere Gruppe an Innenelektroden mit der anderen Außenelektrode kontaktiert ist.
Bei dem piezoelektrischen Keramikmaterial handelt es sich um eine auf Bleizirkonattitanat (PZT) der allgemeinen Formel ABO3 bzw. Pb ( Z ri_zTiz) O3 basierende Keramik und weist somit eine Perowskitstruktur auf. PZT-Keramiken weisen eine
sogenannte morphotrope Phasengrenze zweier koexistierender ferroelektrischer Phasen, einer tetragonalen und einer rhomboedrischen Phase, auf. Diese PZT-Keramik ist auf ihren B-Plätzen mit W als Donator und einem Seltenerdmetall SE als Akzeptor und, für x > 0 und/oder y > 0, auf den A-Plätzen mit Ba und/oder Sr dotiert. Die Dotierung mit Ba und/oder Sr kann eine Herabsetzung der Curie-Temperatur des Keramikmaterials bewirken. W kann in der Oxidationsstufe VI vorliegen. Darüber hinaus weist das Keramikmaterial auf A-Plätzen Cu-Kationen auf, die insbesondere in der Oxidationsstufe I vorliegen können. Das Cu wirkt in dem Keramikmaterial während seiner Herstellung als Akzeptor und bewirkt während der Sinterung temporäre Sauerstoffleersteilen, was zu stabilen
piezoelektrischen Eigenschaften des piezoelektrischen
Bauelements führt. Stabile piezoelektrische Eigenschaften können beispielsweise durch hinreichend dichte
piezoelektrische Keramikmaterialien (beispielsweise ^ 96% der theoretischen Dichte) und einem großen Kornwachstum (mit einer mittleren Korngröße von beispielsweise ^ 2 ym oder > 3 ym) bewirkt werden.
In Vielschichtbauelementen können vorteilhafte
piezoelektrische Eigenschaften von der Mobilität der
Verschiebung ferroelektrischer Domänenwände in der PZT- Keramik im elektrischen Feld abhängen. Die Mobilität wird umso weniger eingeschränkt, je geringer die Dichte der
Korngrenzen im Volumen der Keramik ist, beziehungsweise je mehr Kornwachstum bis zu einer optimalen mittleren Korngröße im Prozess der Sinterverdichtung zustande kommt. Kornwachstum kann in PZT-Keramiken durch die von Akzeptoren induzierte Bildung von Sauerstoff-Leerstellen gefördert werden.
Weiterhin kann eine kombinierte Donator-Akzeptor-Dotierung auf den B-Plätzen, also eine Dotierung mit W und SE, eine Erhöhung der Konzentration der Leerstellen V ' bewirken, was durch den Einbau von SE-Akzeptorzentren bedingt ist.
Gleichzeitig kann während der Sinterung eine entsprechend hohe Sauerstoff-Leerstellenkonzentration V0 herbeigeführt werden. Bei einem solchen Dotierungskonzept kann aufgrund der erhöhten Defektkonzentration bereits bei Temperaturen von etwa 950°C eine hinreichende Sinterverdichtung der
piezoelektrischen Keramik erreicht und das für die Ausbildung vorteilhafter piezoelektrischer Eigenschaften wesentliche Kornwachstum beträchtlich vergrößert werden. Das Donator- Akzeptor-Verhältnis kann dabei so eingestellt werden, dass sich in der fertigen Keramik ein geringfügiger Überschuss an Leerstellen auf A-Plätzen ergibt. Die durch SE-Zentren induzierte Sauerstoff-Leerstellenkonzentration während der Sinterung liegt dann in der fertigen Keramik nicht mehr vor. Eine partielle Besetzung der Leerstellen kann durch Cu- Akzeptoren auf den A-Plätzen zustande kommen, was das
Kornwachstum zusätzlich fördert. In PZT-Keramiken können folgende Substitutionen erfolgen: Pb11 auf den A-Plätzen kann durch ein höherwertiges Kation substituiert werden, was als positiver Defekt (da jetzt eine positive Ladung mehr auf dem A-Platz lokalisiert ist) bezeichnet wird, wodurch die Bildung eines negativ geladenen Defekts induziert wird (Elektronendonator) . Die
Neutralisation erfolgt entweder durch Bildung von Ti111 auf einem B-Platz oder durch Bildung einer Leerstelle auf einem benachbarten Pb11- bzw. A-Platz, beispielsweise V'/2
(Defekttripel) . Weiterhin kann Pb11 auf den A-Plätzen durch ein niedrigerwertiges Kation substituiert werden, was als negativer Defekt bezeichnet wird, da jetzt eine positive Ladung weniger auf dem A-Platz lokalisiert ist, wodurch die Bildung eines positiv geladenen Defekts induziert wird
(Elektronenakzeptor) . Die Neutralisation erfolgt durch
Bildung einer Leerstelle auf einem Sauerstoffplatz V0' ' beispielsweise V0''/2 (Defekttripel) . V0' ' kann durch ^ O2 besetzt werden, bildet dann 2 0 und somit
Defektelektronenzustände im Sauerstoff-Valenzband mit
Akzeptorwirkung, was eine schädliche Elektronenleitung blockiert.
(Ti/Zr)IV auf den B-Plätzen kann durch ein höherwertiges Kation substituiert werden, was als Defekt bezeichnet wird, da jetzt eine positive Ladung mehr auf dem B-Platz
lokalisiert ist, wodurch die Bildung eines negativ geladenen Defekts induziert wird (Elektronendonator) . Die
Neutralisation erfolgt entweder durch Bildung von Ti111 auf einem B-Platz oder durch Bildung einer Leerstelle auf einem benachbarten Pb11- bzw. A-Platz, beispielsweise V'/2 (Defekttripel) . Weiterhin kann (Ti/Zr) auf den B-Plätzen durch ein niedrigerwertiges Kation substituiert sein, was als Defekt bezeichnet wird, da jetzt eine positive Ladung weniger auf dem B-Platz lokalisiert ist, wodurch die Bildung eines positiv geladenen Defekts induziert wird
(Elektronenaktzeptor) . Die Neutralisation erfolgt Bildung einer Leerstelle auf einem Sauerstoffplatz V0' ' ,
beispielsweise V0''/2 (Defekttripel) . V0' ' kann durch ^ O2 besetzt werden, bildet dann 2 0 und somit
Defektelektronenzustände im Sauerstoff-Valenzband mit
Akzeptorwirkung, was eine schädliche Elektronenleitung blockiert .
Durch kombinierte Donator/Akzeptor-Dotierung kann gleichfalls eine Neutralisation erreicht werden, wobei je nachdem, welcher Anteil überwiegt, Donatoren oder Akzeptoren
verbleiben .
Das Seltenerdmetall SE kann aus einer Gruppe ausgewählt sein, die Lu, Yb, Tm, Er, Y, Ho und Dy umfasst. Gemäß einer
Ausführungsform ist das Seltenerdmetall Yb . Dieses kann in dem oben genannten piezoelektrischen Keramikmaterial in der Oxidationsstufe III vorliegen. Die zumindest eine Elektrode kann Cu enthalten oder daraus bestehen. Somit handelt es sich bei dem Bauelement
beispielsweise um ein piezoelektrisches Vielschichtbauelement mit Cu-Innenelektroden . Die Verwendung von Cu-Elektroden oder Cu-Innenelektroden ist im Vergleich zu herkömmlichen
Elektroden, die beispielsweise aus den Edelmetallen Ag/Pd bestehen, kostengünstiger, was insbesondere bei
Vielschichtbauelementen zum Tragen kommt. Gemäß einer Ausführungsform kann das piezoelektrische
Keramikmaterial Pbo, 9451 o, 00128 ' ' Cuo, oo3Bao,o29sSro,o2ii[Tio, 467Zro,5i6 Wo, 00753 Y o,oo95]03 sein. Dieses Keramikmaterial weist eine hohe Dichte von beispielsweise 97,3% bis 97,5% der theoretischen Dichte auf sowie eine große Korngröße von 2 bis 3 ym. Die Dielektrizitätskonstante beträgt ε = 2100 und der
Kopplungsfaktor kp = 0,65. Damit weist dieses Keramikmaterial vorteilhafte piezoelektrische Eigenschaften auf. Es wird weiterhin ein Verfahren zur Herstellung eines piezoelektrischen Bauelements angegeben. Das Verfahren umfasst die Verfahrensschritte:
A) Herstellung eines keramischen Vorstufenmaterials der allgemeinen Formel
Pbi-x-y-(2a-b)/2V(2a-b)/2' 'BaxSry [ (TizZri-z) i_a_bWaSEb] 03,
B) Mischen des keramischen Vorstufenmaterials mit einem
Sinterhilfsmittel ,
C) Bilden eines Stapels, der abwechselnd eine Schicht
enthaltend das keramische Vorstufenmaterial und eine Schicht enthaltend eine Cu aufweist,
D) Entbindern und Sintern des Stapels, wobei ein Bauelement mit Cu-Elektroden und mindestens einer piezoelektrischen Keramikschicht, die Pbi-x-y- 1 (2a-b) /2] -p/2V[ (2a-b) 12-
P/2] CupBaxSry [ (TizZri_z) i_a_bWaSEb] 03 enthält, gebildet wird, wobei gilt 0 < x < 0,035, 0 < y < 0,025, 0,42 < z < 0,5,
0,0045 < a < 0,009, 0,009 < b < 0,011, 2a > b, p < 2a-b, SE ist ein Seltenerdmetall und V ' eine Pb-Leerstelle .
„Abwechselnd" in Bezug auf den im Verfahrensschritt C) gebildeten Stapel kann auch bedeuten, dass nicht auf jeder
Schicht enthaltend keramisches Vorstufenmaterial eine Schicht enthaltend Cu aufgebracht wird. Beispielsweise können einige Schichten enthaltend keramisches Vorstufenmaterial übereinander angeordnet sein, zwischen denen sich keine
Schichten enthaltend Cu befinden. Der gebildete Stapel weist mindestens eine Schicht enthaltend das keramische
Vorstufenmaterial auf, und zwei auf gegenüber liegenden
Seiten der Schicht angeordnete Schichten enthaltend Cu . Unter Stapel ist ebenso eine Anordnung von mehr als zwei,
insbesondere mehr als 100 Schichten enthaltend keramisches Vorstufenmaterial zu verstehen, zwischen denen Schichten enthaltend Cu angeordnet sind. Ein solcher Stapel wird im Verfahrensschritt D) zu einem Vielschichtbauelement mit Cu- Innenelektroden gebildet.
Mit dem Verfahren kann beispielsweise ein Bauelement gemäß den obigen Ausführungen hergestellt werden. Unter „Schicht" im Verfahrensschritt C) können sowohl Presslinge als auch
Folien verstanden werden. Aus Folien kann beispielsweise ein Vielschichtbauelement gebildet werden.
Das Verfahren ermöglicht somit eine Dotierung mit W und einem Seltenerdmetall SE auf den B-Plätzen einer PZT-Keramik mit Perowskitstruktur und zusätzlich den Einbau von Cu- Akzeptorzentren auf den A-Plätzen. Durch die Dotierung auf den B-Plätzen wird bereits eine hohe Effektivität der
Ausbildung von Defekten und dadurch die Schwindung, also die Sinterverdichtung, und ein erhöhtes Kornwachstum beim Sintern bewirkt. Durch den zusätzlichen Einbau der Cu-Akzeptorzentren können mit dem Verfahren weiterhin unter Verwendung
kostengünstiger Cu-Elektroden Bauelemente mit hoher
Performance hergestellt werden.
Gemäß einer Ausführungsform kann der Verfahrensschritt A) die Schritte aufweisen: AI) Bereitstellen einer Mischung von Ausgangsmaterialien, die aus einer Gruppe ausgewählt sind, die Pb304, Ti02, ZrÜ2, WO3, SE2O3, BaC03 und SrC03 umfasst,
A2) Kalzinieren der Mischung bei einer ersten Temperatur und Mahlen der Mischung auf einen ersten mittleren Durchmesser, A3) Kalzinieren der Mischung bei einer zweiten Temperatur, die höher als die erste Temperatur ist.
Damit wird in dem Verfahrensschritt A) also mittels eines Mischoxidverfahrens je nach gewünschter stöchiometrischer Zusammensetzung ein keramisches Vorstufenmaterial der
allgemeinen Formel Pbi-x-y- (2a-b) /2V(2a-b) 12' 'BaxSry [ (TizZri_z) i_a_ bWaSEb]03 hergestellt, wobei die Indizes aus 0 -S x -S 0, 035, 0 < y < 0,025, 0,42 < z < 0,5, 0,0045 < a < 0,009, 0,009 < b < 0,011 und 2a > b ausgewählt werden. SE2O3 kann beispielsweise Yb2Ü3, LU2O3, Tm203, Er203, H02O3, Dy203 oder Y2O3 sein. Wird der Mischung auch BaC03 und/oder SrC03 zugesetzt, kann damit eine Herabsetzung der Curie-Temperatur der Keramik in dem fertigen Bauelement erreicht werden.
In den Verfahrensschritten A2) und A3) können die
Oxidkomponenten in zwei Kalzinationsschritten mit
Zwischenmahlung umgesetzt werden, was zur Ausbildung eines in Bezug auf die Rezeptur besonders homogenen PZT-Keramikpulvers führt. Die im Verfahrensschritt AI) gemischten
Oxidkomponenten können im Verfahrensschritt A2) bei einer ersten Temperatur umgesetzt werden, die aus dem Bereich 850 °C bis 925°C ausgewählt ist. Die Umsetzung kann erfolgen, nachdem die Komponenten beispielsweise in einem wässrigen Schlicker mittels Zr02-Mahlkörpern gemischt, das Wasser abgedampft und die Mischung gesiebt wurde. Die Dauer der Umsetzung kann beispielsweise 2h betragen. Das erhaltene Produkt wird anschließend auf einen ersten mittleren
Durchmesser dso, der kleiner als 1 ym gewählt werden kann, gemahlen. Dazu kann das Produkt zunächst in Wasser aufgeschlämmt werden.
Im Verfahrensschritt A3) kann die im Verfahrensschritt A2) erhaltene Mischung ein zweites Mal umgesetzt werden,
beispielsweise bei einer zweiten Temperatur, die aus dem Bereich 930°C bis 970°C ausgewählt sein kann. Die Dauer dieser Umsetzung kann beispielsweise 2h betragen. Dazu kann die im Verfahrensschritt A2) erhaltene Mischung zunächst eingedampft und gesiebt werden.
Somit kann bereits im Verfahrensschritt A) , in dem eine zweitstufige Kalzination mit Zwischenmahlung durchgeführt wird, ein pulverförmiges keramisches Vorstufenmaterial mit einer weitgehenden Gleichverteilung der Komponenten in der Perowskitstruktur der PZT-Keramik erreicht werden.
Gemäß einer Weiterbildung kann im Verfahrensschritt B) PbO oder Pb3Ü4 als Sinterhilfsmittel zugegeben werden. Pb3Ü4 kann sich beim Erhitzen bereits ab 500°C unter
Sauerstoffabspaltung in PbO umwandeln. Der Anteil des
Sinterhilfsmittels kann zwischen 0,5 und 3 mol%, insbesondere zwischen 0,5 und 2 mol% bezogen auf 1 mol keramisches
Vorstufenmaterial gewählt werden. Somit kann das eigentliche Sinterhilfsmittel PbO in Form von Pb304 der im
Verfahrensschritt A) erhaltenen Mischung zugesetzt werden. Das zugesetzte PbO bildet ab einer Temperatur von etwa 890°C eine Schmelze, wodurch Mechanismen der Flüssigphasensinterung zum Tragen kommen, die das Kornwachstum und die Schwindung kinetisch fördern. Dadurch, dass das Sinterhilfsmittel nicht der Oxidmischung im Verfahrensschritt A) zugefügt wird, sondern erst nach der Synthese der eigenschaftstragenden PZT- Keramikvorstufe zugegeben wird, ist die Zugabe des
Sinterhilfsmittels definiert und kontrolliert und somit die Anwendung des Sinterhilfsmittels verbessert. Eine unkontrollierte partielle Eliminierung von PbO infolge
Verdampfung und Reaktion mit Brennhilfsmitteln bei der
Kalzination können somit vermieden werden. Das
Sinterhilfsmittel kann damit entsprechend der gezielt
eingesetzten Menge im Prozess der Sinterverdichtung wirksam werden .
Gleichzeitig, vor oder nach der Zugabe des Sinterhilfsmittels kann im Verfahrensschritt B) die im Verfahrensschritt A) erhaltene Mischung auf einen zweiten mittleren Durchmesser, der kleiner als der erste mittlere Durchmesser ist, gemahlen werden. Dabei kann es sich um eine Feinmahlung handeln, die die Sinteraktivität zusätzlich fördern kann. Dazu kann die Mischung, also das Umsatzprodukt des Verfahrensschrittes A) in einer wässrigen Aufschlämmung oder in einem nichtwässrigen Medium wie Ethanol mittels Zr02~Kugeln, welche einen
Durchmesser von < 0,8 mm aufweisen, gemahlen werden. Der zweite mittlere Durchmesser dso, kann aus dem Bereich < 0,4 ym, insbesondere aus dem Bereich 0,3 ym bis 0,35 ym,
ausgewählt werden. Damit kann eine hohe spezifische
Oberflächenenergie erzielt werden und die daraus
resultierende Sinteraktivität für die Ausbildung eines optimalen Keramikgefüges bei etwa 1000°C bis 1050°C,
insbesondere bei 1000°C bis 1010°C, in Gegenwart von Cu- Elektroden genutzt werden.
Die Kombination aus hoher spezifischer Oberflächenenergie und der Donator-Akzptor-Dotierung auf den B-Plätzen kann die resultierende Triebkraft zur Sinterverdichtung effektiv wirksam machen.
Gemäß einer weiteren Ausführungsform kann im
Verfahrensschritt B) zusätzlich CU2O mit einem Anteil von 0,05 bis 0, 1 mol%, entsprechend dem Anteil p in der allgemeinen Formel zugegeben werden. Damit können Cu- Akzeptorzentren in der PZT-Keramik auf den A-Plätzen erzeugt werden, die bei der Sinterung zusätzlich Sauerstoff- Leerstellen induzieren und dadurch die Sinterverdichtung und das Kornwachstum fördern. Damit können auch die vorteilhaften piezoelektrischen Eigenschaften gefördert werden. Das CU2O kann der Mischung zugegeben werden, die bereits auf den zweiten mittleren Durchmesser feingemahlen ist oder einem Schlicker, der aus dem feingemahlenen Pulver hergestellt ist.
Das im Verfahrensschritt B) erhaltene feindisperse Pulver kann nach Zusatz eines Binders in ein Granulat überführt werden. Aus dem Granulat können wiederum scheibchenförmige Presslinge oder ein Schlicker zur Herstellung von
Keramikfolien bereitet werden. Zur Herstellung eines
Schlickers kann ein wässriges oder ein nichtwässriges
Dispergiermedium, beispielsweise Butylacetat, in Kombination mit geeigneten Dispergatoren und Bindern angewendet werden. Weiterhin kann im Verfahrensschritt C) die Schicht enthaltend das keramische Vorstufenmaterial mit Cu besputtert oder mit einer Cu-Paste bedruckt werden. Ist die Schicht enthaltend das keramische Vorstufenmaterial ein Pressling, kann dieser beispielsweise mit Cu besputtert werden. Handelt es sich bei der Schicht um eine Folie, kann diese beispielsweise mit Cu- Paste bedruckt werden.
Gemäß einer Weiterbildung kann im Verfahrensschritt D) die Entbinderung unter Wasserdampf unter Ausschluss von
Sauerstoff erfolgen. Dabei kann ab etwa 400°C der aus der thermischen WasserdampfZersetzung resultierende geringe
Sauerstoffpartialdruck noch zusätzlich durch eine gezielte Zuführung von Wasserstoff-Gas (Formiergas) herabgesetzt werden. Die Entbinderung ist der Sinterung vorgelagert, um zunächst die organischen Bestandteile zu eliminieren. Dies kann bei Temperaturen von bis zu 550 °C durchgeführt werden. Unter Bildung von H2 und CO2 kann in einem sogenannten
Hydroreforming-Prozess der Restkohlenstoffgehalt auf weniger als 300 ppm reduziert werden. Beispielsweise können Binder auf der Basis von Polyurethanen auf Grund ihrer
hydrolytischen Spaltung in Monomere für eine Entbinderung durch Wasserdampf bei Ausschluss von Luft besonders geeignet sein. Durch den geringen Restkohlenstoffgehalt nach der
Entbinderung wird die Gefahr der Oxidation von Cu bzw. der Reduktion von Pb durch organische Bestandteile vermindert.
Die Sinterung im Verfahrensschritt D) kann bei einem
Sauerstoffpartialdruck erfolgen, der zwischen dem
Gleichgewichtspartialdruck von PbO/Pb und dem
Gleichgewichtspartialdruck von Cu/Cu2<0 liegt. Dabei kann der Sauerstoffpartialdruck durch ein Gemisch von Wasserdampf und Formiergas eingestellt werden. Es liegt somit eine
Wasserdampf-Wasserstoff-Atmosphäre vor, deren Zusammensetzung für das Prozessfenster zwischen dem Gleichgewichts- Sauerstoffpartialdruck von PbO/Pb und dem von Cu/Cu2<0 aus tabellierten thermodynamischen Daten in Abhängigkeit von der Temperatur berechnet werden kann und beispielsweise bei
1000°C zu einem Sauerstoffpartialdruck von etwa 10~7 führt.. Die Einstellung des Sauerstoffpartialdruckes kann also individuell für die jeweilige Temperatur eingestellt werden. Welcher Sauerstoffpartialdruck bei welcher Temperatur
anwendbar ist, kann aus thermodynamischen Daten berechnet und durch eine Sauerstoff-Messsonde kontrolliert werden.
Durch die Anwendung eines Sauerstoffpartialdruckes , der zwischen dem Gleichgewichtspartialdruck von PbO/Pb (bzw.
PbTiOs/Pb, T1O2) und dem Gleichgewichtspartialdruck von Cu/Cu2<0 liegt, und der temperaturabhängig eingestellt werden kann, kann eine Oxidation von Cu zu CU2O und eine Reduktion von PbO zu Pb bzw. von PbTi03 zu Pb und T1O2 vermieden werden.
Gleichzeitig können WVI und Yb111 unter derartigen Bedingungen redoxstabil sein, und somit keiner Reduktion unterliegen. Dementsprechend können WVI und Yb111 als Defekte in ihrer die Sinterverdichtung und das Kornwachstum fördernden Funktion infolge temporärer Ausbildung von Leerstellen mittelbar voll wirksam werden. Die Sinterung im Verfahrensschritt D) kann bei einer
Temperatur erfolgen, die aus dem Bereich 1000 bis 1050°C, insbesondere aus dem Bereich 1000 bis 1010°C, ausgewählt ist. Dazu kann der Stapel mit einer Heizrate von etwa 3 K/min auf 1000°C bis 1050°C, insbesondere bis 1010°C aufgeheizt werden, und einige Stunden, beispielsweise 3h gehalten werden. Die Abkühlung kann langsamer als das Aufheizen erfolgen.
Durch die Durchführung der Entbinderung und der Sinterung unter den oben erwähnten Prozessbedingungen kann das
keramische Vorstufenmaterial, das zur dotierten PZT-Keramik gesintert wird, geringfügige Mengen an Cu aus den Elektroden, das in der Oxidationsstufe I vorliegt, auf den Leerstellen der A-Plätze aufnehmen. Unter geringfügigen Mengen kann beispielsweise etwa 600 ppm, was 0,003 mol Cu bezogen auf ein mol PZT-Keramik entspricht, verstanden werden. Diese Cu- Akzeptorenzentren induzieren bei der Sintertemperatur
zusätzlich Sauerstoff-Leerstellen und fördern dadurch die Sinterverdichtung und das Kornwachstum. Durch die oben genannte, optionale Zugabe von CU2O im Verfahrensschritt B) kann dieser Effekt noch verstärkt werden.
Damit kann eine piezoelektrische Keramik hergestellt werden, die Pbi-x-y-t (2a-b)/2]-p/2V[ (2a-b)/2-p/2] ' ' CupBaxSry [ (TizZri-z) i-a_bWaSEb] 03 enthält, wobei gilt: wobei gilt 0 -S x -S 0, 035, 0 -S y -S 0, 025, 0,42 < z < 0,5, 0,0045 < a < 0,009, 0,009 < b < 0,011, 2a > b, p -S 2a-b.
Es kann mit dem Verfahren somit ein Bauelement mit
verbesserter Performance hergestellt werden. Diese wird durch den Einbau von Cu-Akzeptoren und den definierten Zusatz eines Sinterhilfsmittels für die Sinterverdichtung und Ausbildung eines hinreichend groben Korngefüges mit weniger Korngrenzen im Volumen der Keramik bewirkt. Die aus der spezifischen Oberflächenenergie durch Feinmahlung und die Donator- Akzeptor-Dotierung auf B-Plätzen resultierende Triebkraft zur Sinterverdichtung kann durch Mechanismen der
Flüssigphasensinterung kinetisch bedingt effektiv wirksam werden .
Mit dem Verfahren können beispielsweise Stapel von mehreren hundert Keramikschichten mit dazwischen angeordneten Cu- Elektroden gesintert, dadurch verdichtet und in einem
nachfolgenden Schritt vereinzelt werden. Somit können
beispielsweise Aktoren hergestellt werden.
Gemäß einer Ausführungsform kann in dem Verfahren x = 0,0295, y = 0,0211, z = 0,475, a = 0,00753, b = 0,0095 und SE = Yb gewählt werden so dass im Verfahrensschritt D) mindestens eine piezoelektrische Keramikschicht enthaltend
Pbo, 9451Vo, 00128 ' ' CUo, 003Bao, 0295Sro,0211 [ Tio, 467Zro, 516^0, 00753
Ybo, 0095 ] O3 hergestellt wird. Dieses Keramikmaterial weist verbesserte piezoelektrische Eigenschaften, wie eine hohe Dichte, hohe Auslenkungsparameter und einen großen mittleren Korndurchmesser auf.
Die Eigenschaften der mit dem Verfahren hergestellten
Sinterpresslinge oder Folien können licht- oder
elektronenmikroskopisch sowie röntgenographisch bezüglich ihrer Dichte und ihres Gefüges charakterisiert werden. Die dielekterischen und piezoelektrischen Eigenschaften können mittels Auslenkungs- und Resonanzmessungen ermittelt werden. Im Folgenden werden das angegebene Bauelement und das
Verfahren und ihre vorteilhaften Ausgestaltungen anhand von schematischen und nicht maßstabsgetreuen Figuren sowie anhand eines Ausführungsbeispiels erläutert. Figur 1 zeigt die schematische Seitenansicht eines
piezoelektrischen Bauelements
Figur 2 zeigt Partialdrücke von verschiedenen Systemen Figur 3 zeigt einen Ausschnitt eines Röntgendiffraktogramms
Figur 4 a) bis c) zeigt Abbildungen von Korngefügen von
piezoelektrischen Keramiken. Figur 1 zeigt eine schematische Seitenansicht eines
piezoelektrischen Bauelements, das als Vielschichtbauelement ausgeführt ist, in Form eines Piezoaktors. Das Bauelement weist einen Stapel 1 aus übereinander angeordneten
piezoelektrischen Keramikschichten 10 und dazwischen
liegenden Innenelektroden 20 auf. Die Innenelektroden 20 sind als Elektrodenschichten ausgebildet. Die piezoelektrischen Keramikschichten 10 und die Innenelektroden 20 sind
übereinander angeordnet. In der hier gezeigten Ausführungsform sind die
Außenelektroden 30 auf gegenüberliegenden Seitenflächen des Stapels 1 angeordnet und verlaufen streifenförmig entlang der Stapelrichtung. Die Außenelektroden 30 enthalten beispielsweise Ag oder Cu und können als Metallpaste auf den Stapel 1 aufgebracht und eingebrannt werden.
Die Innenelektroden 20 sind entlang der Stapelrichtung abwechselnd bis zu einer der Außenelektroden 30 geführt und von der zweiten Außenelektrode 30 beabstandet. Auf diese Weise sind die Außenelektroden 30 entlang der Stapelrichtung abwechselnd mit den Innenelektroden 20 elektrisch verbunden. Zur Herstellung des elektrischen Anschlusses kann auf die Außenelektroden 30 ein Anschlusselement (hier nicht gezeigt) , z. B. durch Löten, aufgebracht werden.
Bei den Innenelektroden 20 handelt es sich um Cu- Innenelektroden . Die piezoelektrischen Keramikschichten enthalten als Material Pbi-x-y- 1 (2a-b) /2 ] -P/2Vt (2a-b) 12- p/2]"CupBaxSry[ (TizZr1_z)1-a-bWaSEb]03 wobei gilt: 0 < x < 0, 035, 0 < y < 0,025, 0,42 < z < 0,5, 0,0045 < a < 0,009, 0,009 < b ^ 0,011, 2a > b, p ^ 2a-b, SE ist ein Seltenerdmetall und V ' eine Pb-Leerstelle . Beispielsweise enthalten die
piezoelektrischen Keramikschichten das Material
Pbo, 9451Vo, 00128 ' ' CUo, 003Bao, 0295Sro, 021 l[Tio,467Zro,516
Anhand des folgenden Ausführungsbeispiels soll die
Herstellung des Bauelements enthaltend das Material
Pbo, 9451 o, 00128 ' ' CUo, 003Bao, 0295Sro, 021 l[Tio,467Zro,516
W0 , o o 753Yb0 , o o 95 ] 03 erläutert werden:
Gemäß der allgemeinen Formel Pbi-x-y- < 2a-b) /2 (2a- b) /2 ' ' BaxSry [ (TizZri_z) i_a_bWaSEb] O3, werden die Parameter x =
0,0295, y = 0,0211, z = 0,475, a = 0,00753, b = 0,0095 und SE = Yb ausgewählt, woraus sich
Pb 0 , 9466 0 , 00278 ' 'Bao, 295Sro, o2 i i [ Tio, 467Zro, 516W0 , oo753Ybo, 0095 ] O3 ergibt. Zunächst werden die Rohstoffe Pb304, T 1 O2 , Z rÜ2 , WO3, Yb2Ü3, BaC03 und SrC03, deren Verunreinigungsgehalt kontrolliert und deren Metallgehalt jeweils gesondert bestimmt wurde, im entsprechenden Molverhältnis eingewogen und mit Zr02~
Mahlkörpern 24h in einem wässrigen Schlicker rotierend gemischt (Verfahrensschritt AI) . Nach dem Eindampfen und Sieben wird bei 925°C mit einer Haltezeit von 2 Stunden in einer Zr02~Kapsel umgesetzt und das Reaktionsprodukt unter Zusatz von Wasser einer Mahlung mit Zr02~Kugeln (Durchmesser 2 mm) in einer Excentermühle unterworfen (Verfahrensschritt A2) . Bei 300 cycl/min wird bereits nach 30 Minuten ein erster mittlerer Durchmesser dso von 0,66 ym (entsprechend dgo = 1,64 ym) erhalten. Der Schlicker wird eingedampft, durch ein Sieb gerieben und bei 2h Haltezeit bei 950°C ein zweites Mal umgesetzt, um die Reaktion zu vervollständigen
(Verfahrensschritt A3) .
Figur 3 zeigt als Ausschnitt eines Röntgendiffraktogramms , bei dem der Winkel λ in gegen die Intensität Int
aufgetragen ist, den Vergleich zwischen dem ersten und zweiten Kalzinationsschritt , also der Produkte nach dem
Verfahrensschritt A2) und nach dem Verfahrensschritt A3). Nach dem ersten Umsatz (Kurve I) liegen noch Ti-reichere tetragonale Partikel neben Zr-reicheren rhomboedrischen
Kristalliten vor, was an einer Aufspaltung des 200/002- Reflexes erkennbar ist. Nach dem zweiten Umsatz (Kurve II) ist die Aufspaltung nicht mehr auflösbar, worin die bessere Gleichverteilung von Ti und Zr im Gitter der PZT- Perowskitstruktur erkennbar ist. Das bei 950°C erhaltene Umsatzpulver wird nach dem Zusatz von 2,5 mol% PbO in Form von Pb304 in einer Excentermühle in Wasser oder Ethanol mit Zr02~Kugeln (Durchmesser 0,8 mm) einer Feinmahlung auf 0,3 bis 0,35 ym unterzogen (Verfahrensschritt B) . Dazu sind bei 300 cycl/min etwa 2h erforderlich. Das Dispergiermedium wird abgedampft, gesiebt und nach Zugabe eines PEG-Binders ( Polyethylenglykol ) ein Granulat angefertigt, aus dem Scheibchen von 15,5 mm
Durchmesser und einer Dicke von 1,4 bis 1,5 mm gepresst werden .
Diese Grünkörper werden vor der Sinterung durch Sputtern mit Cu-Elektroden versehen (Verfahrensschritt C) .
Die scheibchenförmigen Presslinge werden zunächst durch
Aufheizen an der Luft bis auf 500°C entbindert und
anschließend mit einer Aufheizrampe von 6K/min bei 1000°C und einer Haltezeit von 3h gesintert (Verfahrensschritt D,
Vergleichsprobe 1) . Weitere Presslinge werden bei gleicher Entbinderung und Aufheizrampe bei 950°C mit 4h Haltezeit gesintert (Vergleichsprobe 2). Weitere Presslinge werden in einer Atmosphäre mit vermindertem Sauerstoffpartialdruck, der bereits beim Aufheizen mit 3K/min durch das Verhältnis von Wasserdampf zu Formiergas temperaturabhängig eingestellt wird, bei 1010°C mit 4h Haltezeit gesintert
(Ausführungsbeispiel) .
Figur 2 zeigt dazu verschiedene Partialdrücke, nach denen der geeignete Sauerstoffpartialdruck temperaturabhängig
ausgewählt werden kann. In dem Graphen sind die Temperatur T in K gegen den logarithmischen Sauerstoffpartialdruck log (p(02)) aufgetragen. Gezeigt sind der
Gleichgewichtspartialdruck des Systems Cu/ Cu2<0 Pcu/cu2o und des Systems PbO/Pb PPbo/Pb- Zwischen diesen
Gleichgewichtspartialdrücken darf der Sauerstoffpartialdruck P02 variieren, wenn eine Oxidation von Cu zu CU2O und eine Reduktion von PbO zu Pb (bzw. von PbTi03 zu Pb und T 1 O2 ) vermieden werden soll. In Figur 2 ist ein möglicher Verlauf des Sauerstoffpartialdrucks , der während des gesamten
Sintervorgangs zwischen den Gleichgewichtspartialdrucken Pcu/cu2o und Ppbo/Pb liegt, gezeigt. Dieser weist bei 940K und bei 1170 K Sprünge auf. Die Sprünge liegen zwischen drei, in der Figur 2 ebenfalls gezeigten Linien, welche
unterschiedlichen Mengen an Formiergas entsprechen (Linie mit kleinen Punkten, Linie mit kleinen Quadraten, Linie mit
Lücken) . Wenn die Mengen an 2 und des H20-Dampfs konstant bleiben, kann man durch die Einstellung der Formiergasmenge den Sauerstoffpartialdruck während der Sinterung einstellen.
Bei der Sinterung tritt, auch unter den definierten
Prozessbedingungen des Ausführungsbeispiels, eine
Kontamination von Cu aus den Elektroden im Bereich von etwa 600 ppm auf. Die Cu-Kationen der Oxidationsstufe I werden als Cu-Akzeptoren unter Eliminierung einer äquivalenten Menge von 0,0015 mol PbO eingebaut, so das sich für die
Endzusammensetzung einer unter diesen Bedingungen
hergestellten Piezokeramik die folgende Formel ergibt:
Pbo, 9451V0, 00128 ' ' Cuo, oo3Bao, o29s S ro , o2 i i[Tio, 467 Z ro,5i6
Die Sinterdichte wird an den scheibchenförmigen Proben durch Wägung und Ermittlung der geometrischen Abmessungen an jeweils fünf Einzelproben bestimmt und die relative Dichte prei durch Vergleich mit der Röntgendichte der PZT- Perowskitphase mit pth = 8,03 g/cm3 berechnet. Bei den mit 2,5 mol% PbO als Sinterhilfsmittel versehenen Proben wird nach dem Sintern bei 1000°C eine Dichte p = 7,83 ± 0,04 g/cm3 entsprechend 97,5% der theoretischen Dichte gefunden, und selbst bei einer Sinterung bei 950°C wird ein vergleichbarer Wert p = 8,81 ± 0,04 g/cm3 entsprechend 97,3% der
theoretischen Dichte erreicht. Die unter definierten Prozessbedingungen erhaltene Sinterdichte liegt bei 7,7 bis 7,9 g/cm3. Bei Verzicht auf den Zusatz von PbO in Form von Pb3Ü4 wird nach dem Sintern bei 1000°C für die relative
Dichte nur ein Wert prei = 84,9% festgestellt.
Die durch Feinmahlung eingebrachte freie spezifische
Oberflächenenergie und die durch Donator-Akzeptor-Dotierung auf den B-Plätzen induzierte Bildung sinterfördernder Defekte reichen demnach nicht aus, um bereits bei 1000°C eine hohe Sinterverdichtung zu ermöglichen. Die Zugabe von 2,5 mol% PbO in Form von Pb304 als Sinterhilfsmittel erweist sich als notwendig, um eine hinreichend dichte Piezokeramik zu
erhalten . Figur 4 zeigt Abbildungen von Korngefügen von
piezoelektrischen Keramiken. In Figur 4 a) ist das beim
Sintern bei 1010°C erhaltene Gefüge gezeigt, wenn der
Sauerstoffpartialdruck temperaturabhängig während der
Haltezeit von 4h dem in Figur 2 gezeigten Verlauf entspricht. Die Wirkung der durch den zusätzlichen Einbau der Cu- Akzeptorzentren auf das Kornwachstum ist deutlich zu
erkennen. Der durchschnittliche Korndurchmesser beträgt 2 bis 3 ym. Dagegen zeigen die in den Figuren 4 b) und 4 c)
gezeigten Korngefüge der Vergleichsproben 1 und 2 (Sinterung an Luft bei 1000°C für 3h bzw. Sinterung an Luft bei 950°C für 4 h) kleinere durchschnittliche Korndurchmesser von 1 bis 2,5 ym (Figur 4b) und 0,5 bis 2 ym (Figur 4c) .
Weitere charakteristische Größen des mit Cu-Elektroden versehenen Presslings gemäß dem Ausführungsbeispiels sind im Folgenden angegeben: Der Auslenkungsparameter d33, der der piezoelektrischen Ladungskonstante entspricht, kann durch die Beziehung S3 = d33*E3 mit der relativen Dehnung S = Δ1/1 und der elektrischen Feldstärke E definiert werden. Die nach der Polung mit ca. 3 kV/mm ausgeführte Messung ergibt d33 = 520 pm/V. Aus einer Kapazitätsmessung ergibt sich für die
Dielektrikzitätskonstante der Wert ε = 2100. Für den planaren Kopplungsfaktor wurde gemäß der Beziehung
der Wert kp = 0,65 ermittelt.
Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt, vielmehr umfasst die
Erfindung jedes neue Merkmal sowie jede Kombination von
Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den
Patentansprüchen oder Ausführungsbeispielen angegeben ist.
Bezugs zeichenliste
1 Stapel
1 0 piezoelektrische Keramikschicht
2 0 Innenelektrode
30 Außenelektroden
Int Intensität
λ Winkel
I Röntgendiffraktogramm nach erstem
Kalzinationsschritt
11 Röntgendiffraktogramm nach zweitem
Kalzinationsschritt
T Temperatur
P ( OP2 ) Sauerstoffpartialdruck
Pcu/cu2o Gleichgewichtspartialdruck von Cu/Cu2<0
Ppbo/Pb Gleichgewichtspartialdruck von PbO/ Pb

Claims

Patentansprüche
1. Piezoelektrisches Bauelement aufweisend zumindest eine piezoelektrische Keramikschicht (10) und mindestens eine an die piezoelektrische Keramikschicht angrenzende Elektrode (20), wobei die piezoelektrische Keramikschicht (10) ein piezoelektrisches Keramikmaterial der allgemeinen Formel Pbi- x-y- [ (2a-b) 12} -p 2 [ (2a-b) /2-p/2] ' ' CupBaxSry [ (ΤίζΖΓι-ζ) i-a-b aSEb] O3
aufweist und wobei gilt: 0 < x < 0,035, 0 < y < 0,025, 0,42 < z < 0,5, 0,0045 < a < 0,009, 0,009 < b < 0,011, 2a > b, p < 2a-b, SE ist ein Seltenerdmetall und V ' eine Pb-Leerstelle .
2. Bauelement nach dem vorhergehenden Anspruch, wobei SE ausgewählt ist aus einer Gruppe, die Lu, Yb, Tm, Er, Y, Ho und Dy umfasst.
3. Bauelement nach einem der vorhergehenden Ansprüche, wobei die Elektrode (20) Kupfer enthält.
4. Vielschichtbauelement nach einem der vorhergehenden
Ansprüche 2 oder 3, wobei das piezoelektrische
Keramikmaterial Pbo, 9451 0, 00128 ' ' Cuo, oo3Bao, o29s S ro , o2 i i[Tio, 467 Z ro,5i6
Wo, 00753 Yb0, 0095 ] O3 lSt . 5. Verfahren zur Herstellung eines piezoelektrischen
Bauelements mit den Verfahrensschritten
A) Herstellung eines keramischen Vorstufenmaterials der allgemeinen Formel
Pbi-x-y- (2a-b) /2V(2a-b) Ii' ' BaxSry [ (ΤίζΖΓι-ζ) i-a-bWaSEb] O3,
B) Mischen des keramischen Vorstufenmaterials mit einem
Sinterhilfsmittel ,
C) Bilden eines Stapels (1), der abwechselnd eine Schicht enthaltend das keramische Vorstufenmaterial und eine Schicht enthaltend Cu aufweist, D) Entbindern und Sintern des Stapels (1), wobei ein
Bauelement mit Cu-Elektroden (20) und mindestens einer piezoelektrischen Keramikschicht (10), die Pbi-x-y- [ <2a-b) n\ - P/2V[ (2a-b)/2-p/2] ' ' CupBaxSry [ (TizZri-z) i-a_bWaSEb] 03 enthält, wobei gilt 0 < x < 0,035, 0 < y < 0,025, 0,42 < z < 0,
5, 0,0045 < a < 0,009, 0,009 < b < 0,011, 2a > b, p < 2a-b, SE ist ein Seltenerdmetall und V ' eine Pb-Leerstelle, gebildet wird.
6. Verfahren nach dem vorhergehenden Anspruch, wobei der Verfahrensschritt A) die Schritte
AI) Bereitstellen einer Mischung von Ausgangsmaterialien, die aus einer Gruppe ausgewählt sind, die Pb3Ü4, Ti02, ZrÜ2, WO3, SE2O3, BaC03 und SrC03 umfasst,
A2) Kalzinieren der Mischung bei einer ersten Temperatur und Mahlen der Mischung auf einen ersten mittleren Durchmesser, A3) Kalzinieren der Mischung bei einer zweiten Temperatur, die höher als die erste Temperatur ist, umfasst.
7. Verfahren nach einem der vorhergehenden Ansprüche 5 oder 6, wobei im Verfahrensschritt B) PbO oder Pb304 als
Sinterhilfsmittel zugegeben wird, und der Anteil des
Sinterhilfsmittels zwischen 0,5 und 3 mol% bezogen auf 1 mol keramisches Vorstufenmaterial gewählt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche 5 bis 7, wobei im Verfahrensschritt B) die im Verfahrensschritt A) erhaltene Mischung auf einen zweiten mittleren Durchmesser, der kleiner als der erste mittlere Durchmesser ist, gemahlen wird .
9. Verfahren nach einem der Ansprüche 7 oder 8, wobei im Verfahrensschritt B) zusätzlich CU2O mit einem Anteil von 0,05 bis 0,1 mol% zugegeben wird.
10. Verfahren nach einem der Ansprüche 5 bis 9, wobei im Verfahrensschritt C) die Schicht enthaltend das keramische Vorstufenmaterial mit Cu besputtert oder mit einer Cu-Paste bedruckt wird.
11. Verfahren nach einem der Ansprüche 5 bis 10, wobei im Verfahrensschritt D) die Entbinderung unter Wasserdampf unter Ausschluss von Sauerstoff erfolgt.
12. Verfahren nach einem der Ansprüche 5 bis 11, wobei im Verfahrensschritt D) die Sinterung bei einem
Sauerstoffpartialdruck erfolgt, der zwischen dem
Gleichgewichtspartialdruck von PbO/Pb und dem
Gleichgewichtspartialdruck von CU/CU2O liegt.
13. Verfahren nach dem vorhergehenden Anspruch, wobei der Sauerstoffpartialdruck durch ein Gemisch von Wasserdampf und Formiergas eingestellt wird.
14. Verfahren nach einem der Ansprüche 5 bis 13, wobei die Sinterung im Verfahrensschritt D) bei einer Temperatur erfolgt, die aus dem Bereich 1000 bis 1050°C ausgewählt ist.
15. Verfahren nach einem der Ansprüche 5 bis 14, wobei x = 0,0295, y = 0,0211, z = 0,475, a = 0,00753, b = 0,0095 und SE = Yb ausgewählt werden und im Verfahrensschritt D) eine piezoelektrische Keramikschicht (10) enthaltend
Pbo, 945 lVo , 00128 ' ' CUo, 003Bao , 0295 S ro,0211 [ Tio, 467 Z ro , 516^0, 00753
Ybo, 0095 ] O3 hergestellt wird.
EP12737845.3A 2011-08-30 2012-07-24 Verfahren zur herstellung eines piezoelektrischen bauelements Active EP2751854B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011112008.8A DE102011112008B4 (de) 2011-08-30 2011-08-30 Piezoelektrisches Bauelement und Verfahren zur Herstellung eines piezoelektrischen Bauelements
PCT/EP2012/064538 WO2013029884A1 (de) 2011-08-30 2012-07-24 Piezoelektrisches bauelement und verfahren zur herstellung eines piezoelektrischen bauelements

Publications (2)

Publication Number Publication Date
EP2751854A1 true EP2751854A1 (de) 2014-07-09
EP2751854B1 EP2751854B1 (de) 2015-11-25

Family

ID=46548503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12737845.3A Active EP2751854B1 (de) 2011-08-30 2012-07-24 Verfahren zur herstellung eines piezoelektrischen bauelements

Country Status (5)

Country Link
US (2) US9570669B2 (de)
EP (1) EP2751854B1 (de)
JP (1) JP5816371B2 (de)
DE (1) DE102011112008B4 (de)
WO (1) WO2013029884A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112008B4 (de) * 2011-08-30 2018-01-11 Epcos Ag Piezoelektrisches Bauelement und Verfahren zur Herstellung eines piezoelektrischen Bauelements
DE102011117709A1 (de) * 2011-11-04 2013-05-08 Epcos Ag Keramikmaterial, Verfahren zur Herstellung desselben und elektrokeramisches Bauelement umfassend das Keramikmaterial
DE102013107110A1 (de) * 2013-07-05 2015-01-22 Epcos Ag Verfahren zur Behandlung von Grünteilen und Träger für Grünteile
EP3304571A1 (de) * 2015-05-27 2018-04-11 Epcos AG Dielektrische zusammensetzung auf basis von wismut-natriumstrontiumtitanat, dielektrisches element, elektronische komponente und laminierte elektronische komponente davon
DE102018125341A1 (de) * 2018-10-12 2020-04-16 Tdk Electronics Ag Piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung eines piezoelektrischen Vielschichtbauelements

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157418A (ja) 1987-12-15 1989-06-20 Fujitsu General Ltd 共振変位アクチュエータ用圧電材料
US5850089A (en) * 1992-03-13 1998-12-15 American Research Corporation Of Virginia Modulated-structure of PZT/PT ferroelectric thin films for non-volatile random access memories
AU2830701A (en) * 1999-12-16 2001-06-25 Epcos Ag Piezoelectric component
JP4688329B2 (ja) 2001-03-29 2011-05-25 京セラ株式会社 アクチュエータ用圧電磁器及び積層型圧電アクチュエータ並びに噴射装置
DE102004002204A1 (de) * 2004-01-15 2005-08-11 Epcos Ag Keramikmaterial
DE102005018791A1 (de) * 2005-01-18 2006-07-27 Epcos Ag Piezoaktor mit niedriger Streukapazität
JP2006256925A (ja) 2005-03-18 2006-09-28 Taiheiyo Cement Corp 圧電セラミックス用焼結助剤および圧電セラミックス
JP2006265059A (ja) 2005-03-25 2006-10-05 Denso Corp 圧電材料及び積層型圧電素子の製造方法
JP4877232B2 (ja) * 2005-12-08 2012-02-15 株式会社村田製作所 積層型圧電素子およびその製造方法
DE102005061528B8 (de) * 2005-12-22 2010-06-10 Siemens Ag Piezokeramisches Bauteil mit Bleizirkonattitanat mit Eisen-Wolfram-Dotierung, Verfahren zum Herstellen des piezokeramischen Bauteils und seine Verwendung
JP2007266469A (ja) 2006-03-29 2007-10-11 Kyocera Corp 積層型圧電体とその製造方法
JP4793579B2 (ja) 2006-11-30 2011-10-12 Tdk株式会社 圧電磁器組成物および積層型圧電素子
JP5044437B2 (ja) 2007-03-20 2012-10-10 日本碍子株式会社 圧電/電歪磁器焼結体の製造方法
US9598319B2 (en) * 2007-10-18 2017-03-21 Ceramtec Gmbh Piezoceramic multi-layer element
DE102009058795A1 (de) * 2009-12-18 2011-06-22 Epcos Ag, 81669 Piezoelektrisches Keramikmaterial, Verfahren zur Herstellung des piezoelektrischen Keramikmaterials, piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung des piezoelektrischen Vielschichtbauelements
JP4888572B2 (ja) * 2010-01-25 2012-02-29 Tdk株式会社 導電性ペーストおよび電子部品の製造方法
DE102011112008B4 (de) * 2011-08-30 2018-01-11 Epcos Ag Piezoelektrisches Bauelement und Verfahren zur Herstellung eines piezoelektrischen Bauelements

Also Published As

Publication number Publication date
JP5816371B2 (ja) 2015-11-18
US9570669B2 (en) 2017-02-14
DE102011112008B4 (de) 2018-01-11
US20140232238A1 (en) 2014-08-21
JP2014529902A (ja) 2014-11-13
WO2013029884A1 (de) 2013-03-07
EP2751854B1 (de) 2015-11-25
US10483454B2 (en) 2019-11-19
US20170141294A1 (en) 2017-05-18
DE102011112008A1 (de) 2013-02-28

Similar Documents

Publication Publication Date Title
EP2130239B1 (de) Piezoelektrisches material, vielschicht-aktuator und verfahren zur herstellung eines piezoelektrischen bauelements
DE10062672B4 (de) Piezoelektrisches Bauelement
EP2459497B1 (de) Piezoelektrische keramikzusammensetzung, verfahren zur herstellung der zusammensetzung und elektrisches bauelement, umfassend die zusammensetzung
EP2349949B1 (de) Keramischer werkstoff, verfahren zur herstellung des keramischen werkstoffs und bauelement mit dem keramischen werkstoff
DE102007057475B4 (de) Piezoelektrische Keramikzusammensetzung und laminiertes piezoelektrisches Element
EP1704602B1 (de) Keramikmaterial
EP2773598B1 (de) Keramikmaterial, verfahren zur herstellung desselben und elektrokeramisches bauelement umfassend das keramikmaterial
EP2837044B1 (de) Keramisches material und kondensator umfassend das keramische material
EP1362020B1 (de) Piezoelektrisches keramisches material, verfahren zu dessen herstellung und elektrokeramisches mehrlagenbauteil
EP2616411B1 (de) Keramischer werkstoff auf der basis von dem perowskit bi0,5na0,5tio3, piezoelektrischer aktor enthaltend den keramischen werkstoff und verfahren zur herstellung des keramischen werkstoffs
EP2200951B1 (de) Keramikmaterial, verfahren zur herstellung desselben und elektrokeramisches bauelement umfassend das keramikmaterial
DE60124182T2 (de) Piezoelektrisches keramisches Material
EP2751854B1 (de) Verfahren zur herstellung eines piezoelektrischen bauelements
EP1668715B1 (de) Piezoelektrisches keramikmaterial, vielschichtbauelement und verfahren zur herstellung des keramikmaterials
DE102005061528B4 (de) Piezokeramisches Bauteil mit Bleizirkonattitanat mit Eisen-Wolfram-Dotierung, Verfahren zum Herstellen des piezokeramischen Bauteils und seine Verwendung
DE102006008742B4 (de) Bleifreier piezokeramischer Werkstoff mit Erdalkalidotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff und Verwendung des Bauteils
DE102010019712B9 (de) Keramischer Werkstoff, Bauelement enthaltend den keramischen Werkstoff, Verwendung des Bauelements und Verfahren zur Herstellung des keramischen Werkstoffs
WO2008155222A1 (de) Blei-zirkonat-titanat-keramik mit texturierung, verfahren zum herstellen der keramik und verwendung der keramik
WO2009015958A2 (de) Bleifreier, zweiphasiger piezokeramischer werkstoff, verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff und verwendung des bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012005359

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0041187000

Ipc: H01L0041273000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 41/273 20130101AFI20150429BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150618

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 762987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012005359

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012005359

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 762987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012005359

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012005359

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012005359

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0041273000

Ipc: H10N0030053000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230725

Year of fee payment: 12