EP2743368B1 - Metal strip stabilizer - Google Patents

Metal strip stabilizer Download PDF

Info

Publication number
EP2743368B1
EP2743368B1 EP12821917.7A EP12821917A EP2743368B1 EP 2743368 B1 EP2743368 B1 EP 2743368B1 EP 12821917 A EP12821917 A EP 12821917A EP 2743368 B1 EP2743368 B1 EP 2743368B1
Authority
EP
European Patent Office
Prior art keywords
coil
metal strip
position correction
vibration suppression
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12821917.7A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2743368A1 (en
EP2743368A4 (en
Inventor
Yusuke ISHIGAKI
Yoshiaki Nishina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of EP2743368A1 publication Critical patent/EP2743368A1/en
Publication of EP2743368A4 publication Critical patent/EP2743368A4/en
Application granted granted Critical
Publication of EP2743368B1 publication Critical patent/EP2743368B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • C23C2/5245Position of the substrate for reducing vibrations of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/20Calculating means; Controlling methods
    • B65H2557/264Calculating means; Controlling methods with key characteristics based on closed loop control
    • B65H2557/2644Calculating means; Controlling methods with key characteristics based on closed loop control characterised by PID control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/50Use of particular electromagnetic waves, e.g. light, radiowaves or microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2601/00Problem to be solved or advantage achieved
    • B65H2601/50Diminishing, minimizing or reducing
    • B65H2601/52Diminishing, minimizing or reducing entities relating to handling machine
    • B65H2601/524Vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/173Metal

Definitions

  • the present invention relates to a metal strip stabilizer and a method of manufacturing a hot-dip coated metal strip using that.
  • suppressing vibration or warp of a metal strip to maintain a stable metal strip pass line contributes to improve not only quality of the metal strip but also efficiency of the manufacturing line.
  • a process of adhering molten metal to a surface of a metal strip by passing and immersing the metal strip through a hot-dip metal bath there is a process of adhering molten metal to a surface of a metal strip by passing and immersing the metal strip through a hot-dip metal bath.
  • an adjustment is performed to shake off the molten metal excessively adhering to the metal strip by discharging wiping gas from a gas wiper provided subsequent to the hot-dip metal bath.
  • a technique that stabilizes the metal strip pass line by suppressing the warp or the vibration of a metal strip in a non-contact manner by using an electromagnet.
  • a method is known that disposes a pair of electromagnets to face each other with respect to a pass line moving a metal strip and makes attraction forces of the electromagnets, while being switched alternatively in accordance with a signal from a position detector disposed separately, act on the metal strip (see Patent Document 1).
  • the above-described metal strip vibration control using the electromagnets requires responsiveness of the electromagnets, and the warp correction and the pass line correction require the attraction forces of the electromagnets.
  • a combination of warp correction and pass line correction is hereinafter called the position correction. That is, in order to realize suppressing of vibration and correction of position of a metal strip simultaneously, mutually contradictory characteristics of responsiveness and attraction force are necessary. That is because responsiveness of the electromagnet becomes worsened if the winding number of a coil is increased to increase attraction force of the electromagnet, and on the other hand, attraction force of the electromagnet decreases if the winding number is decreased to improve responsiveness of the electromagnet.
  • the metal strip stabilizer using the electromagnets having two independent systems of coils one for suppressing vibration and the other for correcting position, can perform the control with establishing both vibration-control performance and position correction performance, there was a problem that a mutual induction between the vibration suppression coil and the position correction coil decreased the vibration suppression performance.
  • the present invention has been made in view of the above-mentioned circumstances and an object thereof is to provide a metal strip stabilizer which is capable of avoiding lowering of vibration suppression performance caused by an induced current between a vibration suppression coil and a position correction coil and a method of manufacturing a hot-dip coated metal strip using that.
  • a metal strip stabilizer according to the present invention has the features of claim 1.
  • the metal strip stabilizer of the present invention and the method of manufacturing a hot-dip coated metal strip, it is possible to avoid lowering of the vibration suppression performance caused by an induced current between the vibration suppression coil and the position correction coil.
  • FIG. 1 is a schematic view showing a configuration of a metal strip stabilizer 1 according to the embodiment of the present invention.
  • the stabilizer 1 according to the embodiment of the present invention includes a pair of electromagnets 3a and 3b disposed to face each other and to put therebetween a metal strip 2 running in a direction of an arrow A in the drawing, a non-contact displacement sensor 4 disposed in the vicinity of the electromagnets 3a and 3b, and a control unit 5 controlling the electromagnets 3a and 3b based on input from the non-contact displacement sensor 4.
  • FIG. 2 is a schematic view showing an example of the electromagnet 3a used in the metal strip stabilizer 1 according to the embodiment of the present invention. It should be noted that herein only the electromagnet 3a for use of an obverse surface of the metal strip 2 will be explained, the following explanation is effective for the electromagnet 3b for use of a reverse surface of the metal strip 2.
  • the electromagnet 3a shown in FIG. 2 is configured as a concentric coil consisting of a coil 7a and a coil 7b constituted by winding two coils concentrically around a core 6. Two coils 7a and 7b are configured by changing their winding numbers, one of the coils 7a and 7b having a smaller winding number is the vibration suppression coil 7a and the other one having a larger winding number is the position correction coil 7b.
  • the vibration suppression coil 7a Although high responsiveness is required for the vibration suppression coil 7a in order to be capable of fully following a vibration frequency (usually, a natural vibration frequency of bending or warp of a metal strip) of the target metal strip 2, but, for suppressing vibration at a natural frequency of a metal strip, a large attraction force is not required. Therefore, the winding number of the vibration suppression coil 7a is configured to be smaller than that of the position correction coil 7b.
  • the winding number of the position correction coil 7b is large within a range in which a size and a value of electric resistance of the electromagnet 3a are not too large.
  • e Ldi / dt + Ri
  • e an applied voltage
  • i an electric current flowing in the coil
  • L indicates an inductance of the coil
  • R indicates resistance of the coil
  • the attraction force F of the electromagnet is in proportion with the square of the winding number N of the coil and the square of the electric current i flowing in the coil.
  • F ⁇ N 2 i 2 Therefore, for obtaining the larger attraction force with the same current, it is advantageous to increase the winding number N of the coil.
  • the winding number of the vibration suppression coil 7a which needs the high responsiveness but no large attraction force is configured to be smaller than the winding number of the position correction coil 7b.
  • the winding number of the position correction coil 7b which needs the large attraction force but no high responsiveness is configured to be larger than the winding number of the vibration suppression coil 7a.
  • FIG. 3 is a block diagram showing a configuration of the control unit 5 in the metal strip stabilizer 1 according to the embodiment of the present invention.
  • the control unit 5 of the metal strip stabilizer 1 according to the embodiment of the present invention includes an operation amount calculation unit 8, obverse/reverse distribution units 9a and 9b, amplifiers 10a, 10b, 10c, and 10d, and inductors 11a and 11b.
  • the operation amount calculation unit 8 performs a so-called PID control such as proportion, differentiation, and integration, etc. to a difference signal between a measured value of displacement of a metal strip by the non-contact displacement sensor 4 and a target value set by an input unit 12, and thereafter outputs a vibration suppression signal and a position correction signal.
  • FIG. 4 is a block diagram explaining an example of a configuration of the operation amount calculation unit 8.
  • the operation amount calculation unit 8 includes a vibration suppression PID control unit 8a and a position correction PID control unit 8b.
  • the vibration suppression PID control unit 8a is a calculation means to which a difference signal between a measured value and a target value of displacement of a metal strip is input and from which a vibration suppression signal is output
  • the position correction PID control unit 8b is a calculation means to which a difference signal between a measured value and a target value of displacement of the metal strip and from which a position correction signal is output.
  • the calculation by the vibration suppression PID control unit 8a is responsiveness-focused calculation
  • the calculation by the position correction PID control unit 8b is static-attraction-force-focused calculation. That is, the calculation by the vibration suppression PID control unit 8a is set so that a gain for a high frequency component included in an input signal is larger, and the calculation by the position correction PID control unit 8b is set so that a gain for a low frequency component included in an input signal is larger. For example, by setting a derivative gain larger in the vibration suppression PID control unit 8a and setting an integral gain larger in the position correction PID control unit 8b, the above-described setting is realized.
  • the high frequency and the low frequency mentioned here mean relatively high or low in comparison between the vibration suppression PID control unit 8a and the position correction PID control unit 8b.
  • the fact that the vibration suppression signal includes a lot of the high frequency component and the position correction signal includes a lot of low frequency component means that an average value of the frequency components of the vibration suppression signal is higher than an average value of the frequency components of the position correction signal, and the above-described configuration allows existence of overlapping portion between a frequency distribution of the vibration suppression signal and a frequency distribution of the position correction signal.
  • the operation amount calculation unit 8 separates the component used for suppressing vibration and the component used for correcting position from the measured value of displacement of a metal strip by the non-contact displacement sensor 4, and transmits the vibration suppression signal and the position correction signal to the vibration suppression obverse/reverse distribution unit 9a and the position correction obverse/reverse distribution unit 9b, respectively.
  • the explanation returns to reference to FIG. 3 .
  • the obverse/reverse distribution units 9a and 9b distributes the vibration suppression signal and the position correction signal calculated by the operation amount calculation unit 8 to the electromagnet 3a for use on an obverse surface and the electromagnet 3b for use on a reverse surface of the metal strip 2.
  • the amplifier 10a supplies power to the vibration suppression coil of the electromagnet 3a in accordance with the vibration suppression signal distributed by the obverse/reverse distribution unit 9a for use on the obverse surface
  • the amplifier 10b supplies power to the position correction coil of the electromagnet 3a in accordance with the position correction signal distributed by the obverse/reverse distribution unit 9b for use at the obverse surface.
  • the amplifier 10c supplies power to the vibration suppression coil of the electromagnet 3b in accordance with the vibration suppression signal distributed by the obverse/reverse distribution unit 9a for use on the reverse surface
  • the amplifier 10d supplies power to the position correction coil of the electromagnet 3b in accordance with the position correction signal distributed by the obverse/reverse distribution unit 9b for use on the reverse surface.
  • FIG. 5 is a schematic view showing an electric circuit of the electromagnet 3a in the metal strip stabilizer 1 according to the embodiment of the present invention.
  • an electric circuit corresponding to the electromagnet 3a for use on the obverse surface of the metal strip 2 is schematically shown.
  • the vibration suppression amplifier 10a and the position correction amplifier 10b are connected to the vibration suppression coil 7a and the position correction coil 7b, respectively.
  • the vibration suppression amplifier 10a supplies power to the vibration suppression coil 7a via an electric circuit in accordance with the input vibration suppression signal.
  • the position correction amplifier 10b supplies power to the position correction coil 7b via an electric circuit in accordance with the input position correction signal.
  • an electric circuit including the position correction coil 7b and the position correction amplifier 10b includes coils 13a in series as an inductor 11a.
  • this is called the counter induced current coil 13a.
  • the counter induced current coil 13a In an example of the counter induced current coil 13a shown in FIG. 5 , an example of a coil in which the magnetic circuit 13b is configured by a closed circuit is shown. It should be noted that the coil in which the magnetic circuit 13b is configured by the closed circuit is called a toroidal coil.
  • the magnetic circuit 13b of the counter induced current coil 13a can obtain the effect even if it is configured by an open circuit, it is preferable to configure the magnetic circuit 13b of the counter induced current coil 13a by the closed circuit for not being affected by an environmental change by leak, etc. of magnetic flux.
  • the counter induced current coil 13a configured in the above-described manner operates as follows in the metal strip stabilizer 1 according to the embodiment of the present invention.
  • High frequency current is supposed to flow in the vibration suppression coil 7a in accordance with the vibration frequency of the metal strip 2. Then, since the vibration suppression coil 7a and the position correction coil 7b are configured as concentric coils, a high frequency electromotive force is generated in the position correction coil 7b by a mutual induction.
  • the electric current in the position correction coil 7b fluctuated by the electromotive force of the mutual induction, thereby the attraction force of the position correction coil 7b fluctuated, and a bad influence was exerted to the vibration control.
  • the counter induced current coil 13a is connected to the electric circuit of the position correction coil 7b, a change in the electric current in the electric circuit of the position correction coil 7b can be suppressed by the inductance of the counter induced current coil 13a.
  • a mechanism of suppressing fluctuation in the electric current in the electric circuit of the position correction coil 7b by the counter induced current coil 13a will be explained.
  • the induced electromotive force e 1 generated in the vibration suppression coil 7a and the induced electromotive force e 2 generated in the position correction coil 7b are represented by the following equations.
  • e 1 ⁇ Mdi 2 / dt
  • e 2 ⁇ Mdi 1 / dt
  • M is mutual inductance between the vibration suppression coil 7a and the position correction coil 7b and is represented by the following equation.
  • M k ⁇ ⁇ L 1 ⁇ L 2
  • k is a coefficient determined in accordance with a shape or a mutual position of the coils
  • L 1 is the inductance of the vibration suppression coil 7a
  • L 2 is the inductance of the position correction coil 7b.
  • a static current for conducting the position correction is supposed to flow in the position correction coil 7b, and a temporal change di 2 /dt in the electric current becomes substantially zero. Therefore, as understood from the above-described equation (4), the very little induced electromotive force e 1 is generated in the vibration suppression coil 7a. That is, the position correction current flowing in the position correction coil 7b exerts a very little influence to the vibration suppression control by the vibration suppression coil 7a.
  • the counter induced current coil 13a is connected to the electric circuit of the position correction coil 7b, the current generated by the induced electromotive force is suppressed by a combined inductance of the position correction coil 7b and the counter induced current coil 13a.
  • the combined inductance L of the position correction coil 7b and the counter induced current coil 13a is represented by the following equation.
  • L L 2 + L 3 where L 2 and L 3 are the inductances of the position correction coil 7b and the counter induced current coil 13a, respectively.
  • reactance of alternating current flowing in a coil is in proportion with a frequency of the alternating current and an inductance.
  • the vibration suppression signal is a signal including a lot of the high frequency components
  • the position correction signal is a signal including a lot of the low frequency components. Therefore, the electric current induced from the vibration suppression coil 7a to the position correction coil 7b is an electric current including a lot of the high frequency components and is affected to a significant degree by a magnitude of the combined inductance L, and thus suppressed.
  • the electric current flowing in the position correction coil 7b is not affected to a significant degree by the magnitude of the combined inductance L.
  • the movement of the electromagnet is in the primary delay system, and its time constant is given by the equation (2). Therefore, the larger the combined inductance L is, the larger the time constant is, and thus, it is possible to suppress the fluctuation in the electric current.
  • the combined inductance L can be increased by increasing the winding number of the counter induced current coil 13a, there are disadvantages in case where the winding number is larger, that a load to an amplifier becomes larger as resistance of an entire circuit becomes larger and more space is necessary for disposing as the counter induced current coil 13a becomes larger in size.
  • L 2 and L 3 are the inductances of the position correction coil 7b and the counter induced current coil 13a, respectively, and R 2 and R 3 are resistances of the position correction coil 7b and the counter induced current coil 13a, respectively.
  • FIG. 6 is a schematic view showing a part of a commonly used manufacturing line for a hot-dip coated metal strip.
  • the metal strip 2 is transferred from a previous step such as a cold-rolling process, undergoes annealing treatment in an annealing furnace 14 of which inside is maintained at non-oxidizing or reducing atmosphere, thereafter undergoes cooling treatment to a level similar to the temperature of molten metal, and is introduced into a hot-dip metal bath 15.
  • the metal strip 2 is immersed and passes through the molten metal, and the molten metal adheres on a surface of the metal strip 2. After that, excessive molten metal of the metal strip 2 pulled out from the hot-dip metal bath 15 is shaken off by a gas discharged from a gas wiper 16 to adjust the adhering amount of the molten metal.
  • the metal strip is reheated by using an alloying furnace 17 to conduct an alloying treatment for making a uniform alloy layer depending on usage, for example, in case where the metal strip 2 is used as an outer panel of an automobile.
  • the metal strip 2 undergoes a special rust-inhibiting and corrosion-resistant treatment by a chemical processing unit 19 and is wound in a coil, and then shipped.
  • FIG. 7 is an enlarged view showing the vicinity (an area indicated by a dotted line in FIG. 6 ) of the gas wiper of the manufacturing line for the hot-dip coated metal strip.
  • a drawing roller 20 draws the metal strip 2 into the hot-dip metal bath 15 to make molten metal adhered to the metal strip 2 in the hot-dip metal bath 15, and a pull-up roller 21 pulls up the metal strip 2 to outside the hot-dip metal bath 15.
  • the gas wiper 16 is disposed in the middle of a pass line of the pull-up roller 21 pulling up the metal strip 2 and adjusts the adhering amount of the molten metal by shaking off the excessive molten metal adhered to the metal strip 2.
  • the electromagnets 3a and 3b and the non-contact displacement sensor 4 of the metal strip stabilizer 1 according to the embodiment of the present invention are disposed at the pass line immediately above the gas wiper 16 to control vibration and position of the metal strip.
  • FIG. 8 is a graph showing data measured by a metal strip stabilizer according to a comparative example
  • FIG. 9 is a graph showing data measured by the metal strip stabilizer 1 according to the embodiment of the present invention
  • FIG. 10 is a graph in which magnitudes of noise included in the measured data shown in FIG. 8 and the measured data shown in FIG. 9 are compared.
  • the graph shown in FIG. 8 plots actual values of an electric current in a metal strip stabilizer without the counter induced current coil 13a when a vibration control command at an electric current of 3A at a frequency of 10 Hz is given to the vibration suppression coil 7a, and a control command at a constant current of 0A is given to the position correction coil 7b. It should be noted that, in the graph shown in FIG. 8 , the values of the electric current of the vibration control command is described together.
  • the graph shown in FIG. 9 plots actual values of an electric current in the metal strip stabilizer 1 according to the embodiment of the present invention when a vibration control command at an electric current of 3A at a frequency of 10 Hz is given to the vibration suppression coil 7a, and a control command at a constant current of 0A is given to the position correction coil 7b.
  • the inductance of the counter induced current coil 13a in this verification experiment is designed so that the serially-combined time constant of the position correction coil 7b and the counter induced current coil 13a is five times of the position correction coil 7b.
  • the metal strip stabilizer 1 according to the embodiment of the present invention can avoid lowering of the vibration-controlling performance due to the induced current between the vibration suppression coil and the position correction coil.
  • the metal strip stabilizer 1 since the metal strip stabilizer 1 according to the embodiment of the present invention includes the non-contact displacement sensor 4 that measures displacement of the metal strip 2 during online running, the control unit 5 that outputs the vibration suppression signal for suppressing vibration of the metal strip 2 and the position correction signal for correcting a position of the metal strip 2 after a signal is input from the non-contact displacement sensor 4, the vibration suppression coil 7a that generates a magnetic force in accordance with the vibration suppression signal output from the control unit 5, the position correction coil 7b that generates a magnetic force in accordance with the position correction signal output from the control unit 5, the winding number of the second coil being larger than a winding number of the vibration suppression coil 7a, the core 6 around which the vibration suppression coil 7a and the position correction coil 7b are wound concentrically and that induces the magnetic force generated by the vibration suppression coil 7a and the position correction coil 7b to the metal strip 2, and the counter induced current coil 13a that is disposed in series to the electric circuit supplying electricity to the position correction coil 7b; therefore, loss in the
  • control unit 5 of the metal strip stabilizer 1 outputs the vibration suppression signal by performing calculation to a difference signal between the signal input from the non-contact displacement sensor 4 and a target value such that the gain of the high frequency component becomes larger than the position correction signal, and outputs the position correction signal by performing calculation such that the gain of the low frequency component becomes larger than the vibration suppression signal; therefore, it is possible to allot an appropriate signal for the vibration control and an appropriate signal for the position correction from the measured displacement amount.
  • control unit 5 of the metal strip stabilizer 1 outputs the vibration suppression signal by performing the PID control calculation, in which the derivative gain is set to be larger than the position correction signal, to the difference signal between the signal input from the non-contact displacement sensor 4 and a target value, and outputs the position correction signal by performing the PID control calculation, in which the integral gain is set to be larger than the vibration suppression signal.
  • the serially-combined time constant of the position correction coil 7b and the counter induced current coil 13a of the metal strip stabilizer 1 according to the embodiment of the present invention is designed to be within a range of four to ten times of the time constant of the position correction coil 7b.
  • the position correction coil 7b and the counter induced current coil 13a of the metal strip stabilizer 1 satisfy the below-described equation: 4 L 2 / R 2 ⁇ L 2 + L 3 / R 2 + R 3 ⁇ 10 L 2 / R 2 where L 2 and L 3 are the inductances of the position correction coil 7b and the counter induced current coil 13a, respectively, and R 2 and R 3 are the resistances of the position correction coil 7b and the counter induced current coil 13a, respectively.
  • the metal strip stabilizer 1 disposes the vibration suppression coils 7a, the position correction coils 7b and the cores 6 on the obverse and the reverse surfaces of the metal strip 2, wherein the vibration suppression coil 7a, the position correction coil 7b and the core 6 for the obverse surface are disposed on the obverse surface, and the vibration suppression coil 7a, the position correction coil 7b and the core 6 for the reverse surface are disposed on the reverse surface; therefore, vibration to and displacement of the obverse and the reverse surfaces of the metal strip 2 can be suppressed.
  • control unit 5 of the metal strip stabilizer 1 includes the operation amount calculation unit 8 that outputs the vibration suppression signal suppressing vibration of the metal strip 2 and the position correction signal for correcting the position of the metal strip 2 after a signal is input from the non-contact displacement sensor 4, the obverse/reverse distribution unit 9a that distributes the vibration suppression signal output from the operation amount calculation unit 8 to the vibration suppression coil 7a for the obverse surface and the vibration suppression coil 7a for the reverse surface, the obverse/reverse distribution unit 9b that distributes the position correction signal output from the operation amount calculation unit 8 to the position correction coil 7b for the obverse surface and the position correction coil 7b for the reverse surface, the amplifier 10a that supplies power to the vibration suppression coil 7a for the obverse surface in accordance with the vibration suppression signal for the obverse surface distributed by the obverse/reverse distribution unit 9a, the amplifier 10b that supplies power to the position correction coil 7b for the obverse surface in accordance with the position
  • a magnetic circuit 13b of the counter induced current coil 13a is configured as a closed circuit, the metal strip stabilizer 1 according to the embodiment of the present invention is hardly affected by an environmental change due to leak, etc. of magnetic flux.
  • a method of manufacturing a hot-dip coated metal strip includes the steps of adhering molten metal to the metal strip 2 passing through the manufacturing line, adjusting the adhering amount of the molten metal by the gas wiper 16 shaking off the excessive molten metal adhering to the metal strip 2, and controlling vibration and a position of the metal strip 2 in a non-contact manner by the above-described metal strip stabilizer 1; therefore, unevenness in the amount of the molten metal adhered to the metal strip 2 can be suppressed.
  • the metal strip according to the embodiment of the present invention is manufactured by the above-described manufacturing method, unevenness in the adhering amount of the molten metal can be suppressed.
  • the present invention is useful for a manufacturing line for a metal strip, and in particular, a manufacturing line for a hot-dip coated metal strip.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Coating With Molten Metal (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Vibration Prevention Devices (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
EP12821917.7A 2011-08-09 2012-08-07 Metal strip stabilizer Active EP2743368B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011174204 2011-08-09
JP2012168154A JP5263433B2 (ja) 2011-08-09 2012-07-30 金属帯の安定装置および溶融めっき金属帯の製造方法
PCT/JP2012/070115 WO2013022004A1 (ja) 2011-08-09 2012-08-07 金属帯の安定装置、溶融めっき金属帯の製造方法、および金属帯

Publications (3)

Publication Number Publication Date
EP2743368A1 EP2743368A1 (en) 2014-06-18
EP2743368A4 EP2743368A4 (en) 2015-04-08
EP2743368B1 true EP2743368B1 (en) 2016-06-01

Family

ID=47668511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12821917.7A Active EP2743368B1 (en) 2011-08-09 2012-08-07 Metal strip stabilizer

Country Status (5)

Country Link
EP (1) EP2743368B1 (ko)
JP (1) JP5263433B2 (ko)
KR (1) KR101470906B1 (ko)
CN (1) CN103717778B (ko)
WO (1) WO2013022004A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112040B2 (ja) * 2014-02-26 2017-04-12 Jfeスチール株式会社 金属帯の非接触制御装置および溶融めっき金属帯の製造方法
WO2016079841A1 (ja) * 2014-11-20 2016-05-26 Jfeスチール株式会社 金属帯の安定装置およびこれを用いた溶融めっき金属帯の製造方法
JP6187577B2 (ja) * 2015-12-25 2017-08-30 Jfeスチール株式会社 金属帯の安定装置および溶融めっき金属帯の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629029B2 (ja) 1988-08-26 1997-07-09 川崎製鉄株式会社 鋼板の振動抑制および位置制御装置
DE10014867A1 (de) * 2000-03-24 2001-09-27 Sms Demag Ag Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband
JP3876810B2 (ja) * 2002-10-03 2007-02-07 Jfeスチール株式会社 金属帯の制振装置及び金属帯の製造方法
DE10255994A1 (de) * 2002-11-30 2004-06-09 Sms Demag Ag Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges
DE102004060425B3 (de) * 2004-08-24 2006-04-27 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Verfahren zur Bandbeschichtung
JP2009141255A (ja) * 2007-12-10 2009-06-25 Kobe Steel Ltd 超電導電磁石
JP5223451B2 (ja) * 2008-05-17 2013-06-26 Jfeスチール株式会社 溶融めっき金属帯の製造方法

Also Published As

Publication number Publication date
KR101470906B1 (ko) 2014-12-09
CN103717778A (zh) 2014-04-09
WO2013022004A1 (ja) 2013-02-14
KR20140035516A (ko) 2014-03-21
JP2013053367A (ja) 2013-03-21
JP5263433B2 (ja) 2013-08-14
EP2743368A1 (en) 2014-06-18
EP2743368A4 (en) 2015-04-08
CN103717778B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
KR101997790B1 (ko) 금속대의 안정 장치 및 이를 이용한 용융 도금 금속대의 제조 방법
EP2743368B1 (en) Metal strip stabilizer
CA2697194C (en) Process and hot-dip coating system for stabilizing a strip guided between stripping dies of the hot-dip coating system and provided with a coating
EP2265089B1 (en) Induction heating apparatus and induction heating method
JP3876810B2 (ja) 金属帯の制振装置及び金属帯の製造方法
JP2012503101A (ja) 浸漬金属被覆槽の出口で被覆液体金属を脱液するための方法及び装置
TWI617701B (zh) Stability device for metal belt and method for manufacturing hot dip metal strip
Marko et al. Magnetic actuator design for strip stabilizers in hot-dip galvanizing lines: Examining rules and basic tradeoffs
KR20150046344A (ko) 전자기 안정화기
Marko et al. Magnetic actuator design for strip stabilizers in hot dip galvanizing lines
JP2011183438A (ja) 金属帯の制振及び位置矯正装置、および該装置を用いた溶融めっき金属帯製造方法
JP6911631B2 (ja) 変圧器の騒音予測方法
JP6648650B2 (ja) 金属帯の安定装置および溶融めっき金属帯の製造方法
JP6881384B2 (ja) 鋼板の誘導加熱装置、誘導加熱方法、合金化溶融亜鉛メッキ鋼板の製造方法および鋼板の製造方法
JP2002294348A (ja) 鋼板の振動抑制装置
JP2001015336A (ja) 非接触制御用電磁石
JP2006274404A (ja) 冷延鋼板の焼鈍方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150305

RIC1 Information provided on ipc code assigned before grant

Ipc: F16F 15/02 20060101ALI20150227BHEP

Ipc: B65H 23/00 20060101ALI20150227BHEP

Ipc: C23C 2/00 20060101ALI20150227BHEP

Ipc: C23C 2/40 20060101AFI20150227BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B65H 23/00 20060101ALI20151130BHEP

Ipc: C23C 2/00 20060101ALI20151130BHEP

Ipc: F16F 15/02 20060101ALI20151130BHEP

Ipc: C23C 2/40 20060101AFI20151130BHEP

INTG Intention to grant announced

Effective date: 20151222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 803933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012019257

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 803933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161001

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161003

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012019257

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

26N No opposition filed

Effective date: 20170302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230629

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230703

Year of fee payment: 12

Ref country code: DE

Payment date: 20230627

Year of fee payment: 12