EP2740927B1 - Kraftstoffeinspritzventil für Brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für Brennkraftmaschinen Download PDF

Info

Publication number
EP2740927B1
EP2740927B1 EP13188371.2A EP13188371A EP2740927B1 EP 2740927 B1 EP2740927 B1 EP 2740927B1 EP 13188371 A EP13188371 A EP 13188371A EP 2740927 B1 EP2740927 B1 EP 2740927B1
Authority
EP
European Patent Office
Prior art keywords
nozzle needle
switching sleeve
pressure
fuel
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13188371.2A
Other languages
English (en)
French (fr)
Other versions
EP2740927A1 (de
Inventor
Henning Kreschel
Christian Grimminger
Holger Rapp
Marco Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2740927A1 publication Critical patent/EP2740927A1/de
Application granted granted Critical
Publication of EP2740927B1 publication Critical patent/EP2740927B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves

Definitions

  • the invention relates to a fuel injection valve for internal combustion engines, as it is preferably used for injecting fuel into the combustion chambers of self-igniting, high-speed internal combustion engines.
  • the fuel injectors operate by means of a longitudinally movable valve needle which cooperates with a valve seat for opening and closing at least one injection port.
  • the nozzle needle is moved hydraulically, as at fuel pressures of up to 2500 bar, the necessary forces for a movement directly by means of magnets or other actuator are usually too high.
  • the nozzle needle delimits with its valve seat facing away from the end face a control chamber, via the hydraulic pressure, a closing force is exerted on the nozzle needle, the nozzle needle against the Nozzle seat presses.
  • the pressure in the control chamber can be lowered, so that the nozzle needle, driven by the fuel pressure surrounding the nozzle needle, is moved away from the nozzle seat and thus releases the injection openings. If the pressure in the control room increases again, this presses the nozzle needle back into its closed position.
  • the individual injections are made with high precision in order to achieve optimal and soft combustion.
  • Each injection is usually subdivided into a plurality of sub-injections, for example into a pilot injection, a main injection and a post-injection, which are only a few degrees apart from each other.
  • the closed state of the nozzle needle causes the pressure in the pressure chamber of the injector in cooperation between the control chamber diameter and the nozzle seat diameter of the nozzle needle, a hydraulic opening force on the nozzle needle.
  • the pressure in the control chamber causes a hydraulic closing force on the end face of the nozzle needle.
  • the idle state ie with the control valve closed, the same pressure prevails in the control chamber, which also acts on the nozzle needle in the pressure chamber.
  • the control chamber pressure drops and tends to that pressure level at which the outflow volume flow from the outlet throttle would be equal to the inflowing volume flow through the inlet throttle.
  • the hydraulic closing force proportional to the control chamber pressure drops below the hydraulic opening force and the nozzle needle begins to open.
  • the control chamber volume decreases and indeed the faster the faster the nozzle needle moves upwards.
  • the equilibrium pressure in the control chamber increases with increasing opening speed of the nozzle needle, so that the nozzle needle does not accelerate uninhibitedly, but only until the pressure in the control room is reached as a result of its opening speed, at which point the nozzle needle is always in equilibrium of forces.
  • the fuel injection valve according to the invention has the advantage that in the injection of fuel by means of the fuel injection valve at the injection openings of the full injection pressure is present, the nozzle needle still closes quickly.
  • the fuel injection valve to a housing in which a pressure chamber is formed, which can be filled with fuel under high pressure and in which a nozzle needle is arranged longitudinally displaceable, which controls a fuel flow to at least one injection port.
  • a hydraulic closing force in the direction of the valve seat is exerted on the nozzle needle by the hydraulic pressure in a control chamber.
  • valve seat facing away from the end of the nozzle needle is received in a longitudinally movable shift sleeve, wherein the shift sleeve cooperates with a sealing seat in the pressure chamber, so that when lifting the shift sleeve of this sealing seat between the shift sleeve and the sealing seat, a flow cross-section is opened by the Fuel within the pressure chamber can flow unrestricted in the direction of the injection openings.
  • the fuel can thus unthrottled with the open switching sleeve flow through the open sealing seat in the direction of the injection openings, while the fuel flow is closed when the switching sleeve closed unthrottled way.
  • the shift sleeve is acted upon in the direction of the sealing seat with a spring force. As a result, it is always in a defined position at the beginning of the injection.
  • the switching sleeve and the valve seat facing away from the end of the nozzle needle limit the control chamber, so that a force is exerted on the shift sleeve in the direction of the paragraph by the pressure in the control chamber.
  • the shift sleeve is in turn guided radially outwardly in a valve piece. This allows the mobility of the shift sleeve in the longitudinal direction and at the same time ensures the exact position within the fuel injection valve and the tightness of the control chamber.
  • the parts of the pressure chamber upstream and downstream of the paragraph are connected by a closing throttle.
  • a closing throttle This always provides, so even when the sealing seat of the shift sleeve is closed, a connection between these two parts of the pressure chamber, which are located upstream or downstream of this sealing seat, and leads to a pressure equalization within the pressure chamber when the nozzle needle is in its closed position. It is particularly advantageous if the closing throttle is formed in the shift sleeve, as the production is particularly easy and inexpensive.
  • the nozzle needle has a diameter extension, which forms a guide portion and with which the nozzle needle is additionally guided in the shift sleeve, wherein an annular space is limited in the axial direction by the guide portion in the shift sleeve. Through this annular space, an additional closing force is exerted on the nozzle needle when the switching sleeve is closed and at the same time the nozzle is open.
  • FIG. 1 a fuel injection valve known from the prior art is shown schematically in longitudinal section.
  • the fuel injection valve has a housing 1, which comprises a holding body 2 and a nozzle body 3, which are braced against each other by means of a clamping nut 4.
  • a pressure chamber 5 is formed, which consists of a high-pressure accumulator 15 via a high-pressure line 16 and a high pressure bore formed in the holding body 2 17 can be filled with fuel under high pressure.
  • a nozzle needle 7 is arranged longitudinally displaceable, which cooperates with its combustion chamber end with a nozzle seat 8 and thereby controls the flow of fuel from the pressure chamber 5 to one or more injection ports 10, which are formed in the nozzle body 3.
  • the nozzle needle 7 is surrounded by a closing spring 12 in the region of the nozzle body 3, which is supported with one end on the holding body 2 and with the other end to an annular shoulder 13 which is formed on the nozzle needle 7.
  • the closing spring 12 presses the nozzle needle 7 against the nozzle seat 8 and brings the nozzle needle 7 thus in a defined starting position, even if the fuel pressure in the pressure chamber 5 is eliminated.
  • the nozzle seat facing away from the end of the nozzle needle 7 is guided in a valve member 20 which limits the pressure chamber 5 valve seat facing away and having a sleeve portion 22 which receives the end of the nozzle needle 7.
  • the combustion chamber facing away from the end of the nozzle needle 7 and the valve member 20 define a control chamber 25 which is connected via a formed in the throttle plate 20 outlet throttle 28 with a control valve 30.
  • the control valve 30 connects the outlet throttle 28 with a low-pressure chamber within the fuel injection valve, which is not shown in the drawing and which is ultimately connected via a low-pressure line 49 to a tank 50, in which the controlled from the control chamber 25 fuel is passed.
  • an inlet throttle 27 is formed in the valve piece 20, which connects the control chamber 25 with the pressure chamber 5.
  • a closing throttle 14 is formed between the nozzle needle 7 and the wall of the pressure chamber 5, so that there is a slight pressure drop at this point when the nozzle needle is open.
  • the closing throttle 14 there is a somewhat higher pressure than downstream, so that the hydraulic forces acting in the opening direction are reduced to the combustion chamber-side end face of the nozzle needle 7.
  • the control valve 30 is actuated and the control chamber 25 is connected via the outlet throttle 28 with the low-pressure chamber, whereupon fuel flows out of the control chamber 25.
  • the actuation of the control valve 30 is terminated and it returns to its closed position.
  • the outflow of fuel through the outlet throttle 28 is prevented from the control chamber 25 and there is only an inflow of fuel via the inlet throttle 27 into the control chamber 25 instead.
  • This influx displaces the nozzle needle 7 back down in the direction of the nozzle seat 8.
  • the pressure in the control chamber 25 is adjusted so that the nozzle needle 7 is in equilibrium.
  • the thereby adjusting differential pressure at the inlet throttle 27 determines the volume flow which flows to the control chamber 25 and thus the closing speed of the nozzle needle 7. It should be noted that the nozzle seat 8 facing the front side of the nozzle needle 7 due to the closing throttle 14 is less than that is exposed to 27 prevailing pressure at the inlet of the inlet throttle.
  • the closing throttle 14 causes a significant reduction of the control chamber pressure compared to the inlet pressure of the injector and thus a significant differential pressure at the inlet throttle 27. Only this differential pressure, for which the closing throttle 14 is essentially responsible, leads to a sufficient closing speed of the nozzle needle. 7
  • FIG. 2 shows a first embodiment of the invention. On a description of the already in FIG. 1 described components is omitted. For a better overview shows the FIG. 3 an enlarged view of FIG. 2 in the combustion chamber remote area.
  • the nozzle needle 7 is taken with its end remote from the valve seat in a switching sleeve 23, which in turn guided in the sleeve portion 22 of the valve member 20 is.
  • the switching sleeve 23 is in this case surrounded by a spring 24 which presses the switching sleeve 23 against a sealing seat 34 which is formed within the pressure chamber 5.
  • a sealing edge 33 is formed, with which this rests on the sealing seat 34 and so the pressure chamber 5 divided into two sections which are connected when the switching sleeve 23 on the sealing seat 34 only by a closing throttle 32 formed in the switching sleeve 23 is.
  • the switching sleeve 23 defines together with the end face of the nozzle needle 7 and the valve member 20, the control chamber 25 which is connected via the inlet throttle 27 to the pressure chamber 5.
  • the hydraulic force acting in the direction of the valve seat 8 is now reduced both to the switching sleeve 23 and to the nozzle needle 7.
  • the fuel pressure in the pressure chamber 5 then first forces the switching sleeve 23 from the sealing seat 34 and then the nozzle needle 7 away from the nozzle seat 8, so that on the one hand, a flow cross section is opened between the switching sleeve 23 and the sealing seat 34 and on the other hand between the nozzle needle 7 and the nozzle seat 8.
  • the fuel can now flow freely and unthrottled through the pressure chamber 5 in the direction of the injection openings 10 and is ejected through the injection openings 10.
  • the switching sleeve 23 thereby moves into abutment against a stop 36, which is within the valve piece 20 is formed as a paragraph, while the nozzle needle 7 usually does not reach its stroke limit during its opening phase, which is referred to as ballistic operation.
  • the control valve 30 is closed again, so that the fuel no longer flows from the control chamber 25. Since the nozzle needle 7 is still in its upward movement, that is operated ballistically, then increases the pressure in the control chamber 25, which brakes the opening movement of the nozzle needle 7. Similarly, an increased hydraulic force is exerted on the end face of the shift sleeve 23 again, which presses the shift sleeve 23 in the direction of the sealing seat 34 until it rests with its sealing edge 33 on the sealing seat 34 and interrupts the fuel flow within the pressure chamber 5 at this point. The further fuel flow can now take place only through the closing throttle 32, which leads to a slight pressure drop in that part of the pressure chamber 5, which is located downstream of the closing throttle 32.
  • FIG. 4 is a further embodiment of the fuel injection valve according to the invention shown, this embodiment of the in FIG. 3 shown in the embodiment of the switching sleeve 23 and the nozzle needle 7 different.
  • the nozzle needle 7 has, within the switching sleeve 23, a diameter extension which forms a guide section 40, with which the nozzle needle 7 is additionally guided within the switching sleeve 23.
  • Through the guide section 40 and the switching sleeve 23 is limited so an annular space 38 which is connected by a bore 39 in the switching sleeve 23 to the pressure chamber 5.
  • the sealing edge 33 is displaced radially on the shift sleeve 23 so far outward that its diameter is greater than the diameter of the guide portion 40.
  • the hydraulic forces on the nozzle needle 7 and the switching sleeve 23 changes: Is located when closing the Injector the switching sleeve 23 already in contact with the sealing seat 34, while the nozzle needle 7 is still in its open position, so acts by the pressure in the annular space 38, an additional hydraulic closing force on the nozzle needle 7, which further accelerates the closing movement. Since the diameter of the sealing edge 33 is greater than the diameter of the guide portion 40, resulting from the pressure difference between the region of the pressure chamber 5 outside the shift sleeve 23 and within an additional closing force on the shift sleeve 23. This prevents the shift sleeve 23 at the sealing seat 34th bounces and raises again, which could disturb the closing process.

Description

  • Die Erfindung betrifft ein Kraftstoffeinspritzventil für Brennkraftmaschinen, wie es vorzugsweise zum Einspritzen von Kraftstoff in die Brennräume von selbstzündenden, schnelllaufenden Brennkraftmaschinen verwendet wird.
  • Stand der Technik
  • Zum Betrieb einer schnelllaufenden, selbstzündenden Brennkraftmaschine ist es notwendig, den Kraftstoff direkt in die Brennräume der entsprechenden Brennkraftmaschine einzubringen. Zu diesem Zweck ist es bekannt, Kraftstoff unter hohem Druck mittels eines Kraftstoffeinspritzventils direkt in den Brennraum einzuspritzen und dabei fein zu zerstäuben. Ein solches Kraftstoffeinspritzventil ist beispielsweise aus der Offenlegungsschrift DE 10 2010 003 202 A1 bekannt. Dazu wird der Kraftstoff mittels einer Kraftstoffhochdruckpumpe verdichtet und einem Kraftstoffhochdruckspeicher zugeführt, der Abzweigleitungen zu jedem Einspritzventil aufweist. Jedes der Kraftstoffeinspritzventile wird also mit Kraftstoff unter hohem Druck versorgt und spritzt diesen Kraftstoff zum richtigen Zeitpunkt und in der richtigen Menge direkt in den zugeordneten Brennraum der Brennkraftmaschine. Die Kraftstoffeinspritzventile arbeiten mittels einer längsbeweglichen Ventilnadel, die mit einem Ventilsitz zum Öffnen und Schließen wenigstens einer Einspritzöffnung zusammenwirkt. Die Düsennadel wird hydraulisch bewegt, da bei Kraftstoffdrücken von bis zu 2500 bar die notwendigen Kräfte für eine Bewegung direkt mittels Magneten oder eines sonstigen Aktors in aller Regel zu hoch sind. Die Düsennadel begrenzt dazu mit ihrer dem Ventilsitz abgewandten Stirnseite einen Steuerraum, über dessen hydraulischen Druck eine Schließkraft auf die Düsennadel ausgeübt wird, die die Düsennadel gegen den Düsensitz presst. Mittels eines Steuerventils kann der Druck in dem Steuerraum abgesenkt werden, so dass die Düsennadel, angetrieben durch den Kraftstoffdruck, der die Düsennadel umgibt, vom Düsensitz weg bewegt wird und so die Einspritzöffnungen freigibt. Wird der Druck im Steuerraum wieder erhöht, drückt dies die Düsennadel zurück in ihre Schließstellung.
  • Die einzelnen Einspritzungen erfolgen mit hoher Präzision, um eine optimale und weiche Verbrennung zu erreichen. Jede Einspritzung ist dazu in der Regel in mehrere Teileinspritzungen unterteilt, zum Beispiel in eine Piloteinspritzung, eine Haupt- und eine Nacheinspritzung, die nur wenige Grad Kurbelwinkel von einander beabstandet sind. Im geschlossenen Zustand der Düsennadel bewirkt der Druck im Druckraum des Injektors im Zusammenwirken zwischen dem Steuerraumdurchmesser und dem Düsensitzdurchmesser der Düsennadel eine hydraulische Öffnungskraft auf die Düsennadel. Gleichzeitig bewirkt der Druck im Steuerraum eine hydraulische Schließkraft auf die Stirnseite der Düsennadel. Im Ruhezustand, also bei geschlossenem Steuerventil, herrscht im Steuerraum derselbe Druck, der auch die Düsennadel im Druckraum beaufschlagt. Die Kreisfläche, auf die dieser in Schließrichtung wirkt, ist aber größer als die Ringfläche, auf die er in Öffnungsrichtung wirkt. Daraus ergibt sich eine resultierende hydraulische Schließkraft, die als Produkt aus der vom Düsensitzdurchmesser umschlossenen Fläche und dem Kraftstoffdruck berechnet werden kann. Zudem wirkt die Vorspannkraft einer Schließfeder in Schließrichtung auf die Düsennadel. Diese Düsenfederkraft ist aber im Vergleich zu den hydraulischen Kräften gering und wird deshalb in den folgenden Ausführungen vernachlässigt.
  • Wird das Steuerventil geöffnet, so sinkt der Steuerraumdruck ab und strebt jenem Druckniveau entgegen, bei dem der abfließende Volumenstrom aus der Ablaufdrossel gleich dem zufließenden Volumenstrom über die Zulaufdrossel wäre. Bevor dieser Druck erreicht wird, unterschreitet aber die zum Steuerraumdruck proportionale hydraulische Schließkraft die hydraulische Öffnungskraft, und die Düsennadel beginnt zu öffnen. Durch die Öffnungsbewegung der Düsennadel verkleinert sich das Steuerraumvolumen und zwar um so schneller, je schneller sich die Düsennadel nach oben bewegt. In Folge dieses Pumpeffekts steigt der Gleichgewichtsdruck im Steuerraum mit zunehmender Öffnungsgeschwindigkeit der Düsennadel an, so dass die Düsennadel nicht ungehemmt beschleunigt, sondern nur so lange, bis sich in Folge ihrer Öffnungsgeschwindigkeit im Steuerraum jener Druck einstellt, bei dem sich die Düsennadel jeweils im Kräftegleichgewicht befindet.
  • In Folge der mit steigendem Düsennadelhub abnehmenden Sitzdrosselung am Düsennadelsitz steigt der Druck unterhalb der Düsensitzes mit zunehmendem Düsennadelhub an. Dies bedeutet, dass auch die hydraulische Öffnungskraft mit steigendem Düsennadelhub zunimmt. Um die Düsennadel im Kräftegleichgewicht zu halten, werden also auch der Steuerraumdruck und die Öffnungsgeschwindigkeit mit zunehmendem Düsennadelhub ansteigen. Bei vernachlässigbarer Sitzdrosselung, also großem Düsennadelhub, wirkt der die Düsennadel umgebende Druck praktisch vollständig auf die vom Steuerraumdurchmesser umgebene Kreisfläche und erzeugt so die maximal mögliche hydraulische Öffnungskraft. Folglich wird zur Erreichung des Kräftegleichgewichts der Steuerraumdruck denselben Wert annehmen, wie der die Düsennadel umgebende Kraftstoff. In diesem Zustand ist also der Differenzdruck an der Zulaufdrossel und folglich der Volumenstrom durch die Zulaufdrossel gleich null. Die in diesem Zustand durch die Ablaufdrossel aus dem Steuerraum abströmende Menge wird dann komplett durch die Öffnungsbewegung der Düsennadel kompensiert. Schließt nun das Schaltventil, so wird das Abströmen durch die Ablaufdrossel unterbunden. Die Öffnungsbewegung der Düsennadel führt zu einem kurzzeitigen Druckanstieg im Steuerraum, der die Düsennadel abbremst und für eine Richtungsumkehr sorgt. Da beim Schließen der Düsennadel das Steuerraumvolumen zunimmt, muss diese Volumenzunahme durch den Zustrom durch die Zulaufdrossel kompensiert werden. Ansonsten nimmt der Steuerraumdruck unter das Kräftegleichgewicht ab und die Schließbewegung der Düsennadel wird wieder abgestoppt. Da aber im Kräftegleichgewicht zunächst nahezu kein Differenzdruck an der Zulaufdrossel anliegt, ist der Zustrom durch die Zulaufdrossel und damit die Schließgeschwindigkeit der Düsennadel sehr gering. Dieser geringe Differenzdruck an der Zulaufdrossel wird nur durch die nahezu vernachlässigbare Düsenfederkraft und einen geringen Druckverlust des Kraftstoffs beim Durchströmen des Injektors bewirkt. Erst wenn der Hub der Düsennadel so gering geworden ist, dass der Sitzspalt des Düsennadelsitzes wieder zu drosseln beginnt und folglich die hydraulische Öffnungskraft und der Steuerraumdruck wieder sinken, steigt die Schließgeschwindigkeit der Düsennadel wieder nennenswert und die sie wird quasi vollends auf ihren Dichtsitz gesaugt. Das über einen großen Hubbereich und damit Zeitraum extrem langsame Schließen der Düsennadel hätte eine extreme Ungenauigkeit der eingespritzten Menge und ein nicht akzeptables Zumessverhalten des Injektors zur Folge.
  • Um dem abzuhelfen ist beispielsweise aus der DE 10 2009 055 036 A1 bekannt, im Druckraum eine Schließdrossel vorzusehen, die dafür sorgt, dass bei geöffnetem Einspritzventil der Druck an der Sitzfläche der Düsennadel gegenüber dem oberhalb der Schließdrossel anliegenden Druck etwas gemindert ist, was entsprechend die hydraulische Öffnungskraft auf die Düsennadel senkt. Dies führt zu einem geringeren Steuerraumdruck während des Schließvorgangs der Düsennadel und damit einer deutlich höheren Druckdifferenz an der Zulaufdrossel, was wiederum zu einer deutlich höheren und damit ausreichenden Schließgeschwindigkeit der Düsennadel führt. Die Schließdrossel bewirkt jedoch auch, dass an den Einspritzöffnungen nicht der volle Einspritzdruck, wie er von der Hochdruckpumpe erzeugt wird, zur Verfügung steht, was sich nachteilig auf die Gemischbildung im Brennraum auswirken kann und gegebenenfalls eine Erhöhung des Drucks am Injektorzulauf erforderlich macht.
  • Offenbarung der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzventil weist den Vorteil auf, dass bei der Einspritzung von Kraftstoff mittels des Kraftstoffeinspritzventils an den Einspritzöffnungen der volle Einspritzdruck ansteht, wobei die Düsennadel trotzdem schnell schließt. Dazu weist das Kraftstoffeinspritzventil ein Gehäuse auf, in dem ein Druckraum ausgebildet ist, der mit Kraftstoff unter hohem Druck befüllbar ist und in dem eine Düsennadel längsverschiebbar angeordnet ist, die einen Kraftstofffluss zu wenigstens einer Einspritzöffnung steuert. Dabei wird durch den hydraulischen Druck in einem Steuerraum eine hydraulische Schließkraft in Richtung des Ventilsitzes auf die Düsennadel ausgeübt. Das ventilsitzabgewandte Ende der Düsennadel ist in einer längsbeweglichen Schalthülse aufgenommen, wobei die Schalthülse mit einem Dichtsitz im Druckraum zusammenwirkt, so dass beim Abheben der Schalthülse von diesem Dichtsitz zwischen der Schalthülse und dem Dichtsitz ein Durchflussquerschnitt aufgesteuert wird, durch den Kraftstoff innerhalb des Druckraums ungedrosselt in Richtung der Einspritzöffnungen fließen kann.
  • Der Kraftstoff kann also bei geöffneter Schalthülse ungedrosselt durch den geöffneten Dichtsitz in Richtung der Einspritzöffnungen fließen, während dem Kraftstofffluss bei geschlossener Schalthülse dieser ungedrosselte Weg verschlossen bleibt.
  • In einer ersten vorteilhaften Ausgestaltung der Erfindung wird die Schalthülse in Richtung auf den Dichtsitz mit einer Federkraft beaufschlagt. Dadurch befindet sie sich zu Beginn der Einspritzung stets in einer definierten Stellung.
  • In einer weiteren vorteilhaften Ausgestaltung begrenzen die Schalthülse und das ventilsitzabgewandte Ende der Düsennadel den Steuerraum, so dass durch den Druck im Steuerraum eine Kraft auf die Schalthülse in Richtung auf den Absatz ausgeübt wird. Dadurch wird eine einfache Steuerung der Schalthülse ermöglicht, da bei Beginn der Einspritzung der Steuerraum entlastet wird und sich damit die Kraft auf die Schalthülse erniedrigt, die daraufhin in Längsrichtung bewegt wird, um den Durchflussquerschnitt zwischen der Schalthülse und dem zugehörigen Dichtsitz im Druckraum freizugeben.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Schalthülse ihrerseits in einem Ventilstück radial außen geführt. Dies ermöglicht die Beweglichkeit der Schalthülse in Längsrichtung und stellt gleichzeitig die genaue Position innerhalb des Kraftstoffeinspritzventils sowie die Dichtheit des Steuerraums sicher.
  • In einer weiteren vorteilhaften Ausgestaltung sind die Teile des Druckraums stromaufwärts und stromabwärts des Absatzes durch eine Schließdrossel verbunden. Diese stellt stets, also auch bei geschlossenem Dichtsitz der Schalthülse, eine Verbindung zwischen diesen beiden Teilen des Druckraums, die sich stromaufwärts bzw. stromabwärts dieses Dichtsitzes befinden, sicher und führt zu einem Druckausgleich innerhalb des Druckraums, wenn sich die Düsennadel in ihrer Schließposition befindet. Besonders vorteilhaft ist es, wenn die Schließdrossel in der Schalthülse ausgebildet ist, da so die Fertigung besonders leicht und kostengünstig ist.
  • In einer weiteren vorteilhaften Ausgestaltung weist die Düsennadel eine Durchmesser-Erweiterung auf, die einen Führungsabschnitt bildet und mit der die Düsennadel in der Schalthülse zusätzlich geführt ist, wobei durch den Führungsabschnitt in der Schalthülse ein Ringraum in axialer Richtung begrenzt wird. Durch diesen Ringraum wird bei geschlossener Schalthülse und gleichzeitig geöffneter Düse eine zusätzliche Schließkraft auf die Düsennadel ausgeübt.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der Beschreibung und der Zeichnung entnehmbar.
  • Zeichnung
  • In der Zeichnung sind verschiedene Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
  • Figur 1
    einen Längsschnitt in schematischer Darstellung eines bekannten Kraftstoffeinspritzventils,
    Figur 2
    einen Längsschnitt ebenfalls in schematischer Darstellung eines ersten erfindungsgemäßen Ausführungsbeispiels,
    Figur 3
    eine vergrößerte Darstellung der Figur 2 im Bereich der Schalthülse und
    Figur 4
    in der gleichen Darstellung wie Figur 3 ein weiteres Ausführungsbeispiel der Erfindung.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein aus dem Stand der Technik bekanntes Kraftstoffeinspritzventil im Längsschnitt schematisch dargestellt. Das Kraftstoffeinspritzventil weist ein Gehäuse 1 auf, das einen Haltekörper 2 und einen Düsenkörper 3 umfasst, die mittels einer Spannmutter 4 gegeneinander verspannt sind. Innerhalb des Gehäuses 1 ist ein Druckraum 5 ausgebildet, der aus einem Hochdruckspeicher 15 über eine Hochdruckleitung 16 und eine im Haltekörper 2 ausgebildete Hochdruckbohrung 17 mit Kraftstoff unter hohem Druck befüllt werden kann. Innerhalb des Druckraums 5 ist eine Düsennadel 7 längsverschiebbar angeordnet, die mit ihrem brennraumseitigen Ende mit einem Düsensitz 8 zusammenwirkt und dadurch den Kraftstofffluss aus dem Druckraum 5 zu einer oder zu mehreren Einspritzöffnungen 10 steuert, die im Düsenkörper 3 ausgebildet sind. Die Düsennadel 7 ist dabei von einer Schließfeder 12 im Bereich des Düsenkörpers 3 umgeben, die sich mit einem Ende am Haltekörper 2 abstützt und mit dem anderen Ende an einem Ringabsatz 13, der an der Düsennadel 7 ausgebildet ist. Durch ihre Vorspannung drückt die Schließfeder 12 die Düsennadel 7 gegen den Düsensitz 8 und bringt die Düsennadel 7 damit in eine definierte Ausgangsstellung, auch wenn der Kraftstoffdruck im Druckraum 5 wegfällt.
  • Das düsensitzabgewandte Ende der Düsennadel 7 ist in einem Ventilstück 20 geführt, das den Druckraum 5 ventilsitzabgewandt begrenzt und das einen Hülsenabschnitt 22 aufweist, der das Ende der Düsennadel 7 aufnimmt. Das brennraumabgewandte Ende der Düsennadel 7 und das Ventilstück 20 begrenzen einen Steuerraum 25, der über eine in der Drosselplatte 20 ausgebildete Ablaufdrossel 28 mit einem Steuerventil 30 verbunden ist. Das Steuerventil 30 verbindet die Ablaufdrossel 28 mit einem Niederdruckraum innerhalb des Kraftstoffeinspritzventils, der in der Zeichnung nicht dargestellt ist und der letztlich über eine Niederdruckleitung 49 mit einem Tank 50 verbunden ist, in den der aus dem Steuerraum 25 abgesteuerte Kraftstoff geleitet wird. Zur Versorgung des Steuerraums 25 mit Kraftstoff ist im Ventilstück 20 eine Zulaufdrossel 27 ausgebildet, die den Steuerraum 25 mit dem Druckraum 5 verbindet.
  • Innerhalb des Düsenkörpers 3 ist zwischen der Düsennadel 7 und der Wand des Druckraums 5 eine Schließdrossel 14 ausgebildet, so dass es bei geöffneter Düsennadel an dieser Stelle zu einem leichten Druckabfall kommt. Es herrscht also vor der Schließdrossel 14 ein etwas höherer Druck als stromabwärts, so dass die in Öffnungsrichtung wirkenden hydraulischen Kräfte auf die brennraumseitige Stirnseite der Düsennadel 7 verringert sind.
  • Zur Einspritzung von Kraftstoff wird das Steuerventil 30 betätigt und der Steuerraum 25 über die Ablaufdrossel 28 mit dem Niederdruckraum verbunden, worauf Kraftstoff aus dem Steuerraum 25 abfließt. Dadurch sinkt der Druck im Steuerraum 25 ab und damit vermindert sich die hydraulische Kraft auf die ventilsitzabgewandte Stirnseite der Düsennadel 7. Unterschreitet diese in Schließrichtung wirkende Kraft die hydraulische Kraft, die durch den Kraftstoffdruck im Druckraum 5 erzeugt wird und die in Öffnungsrichtung auf die Düsennadel 7 wirkt, so beginnt die Düsennadel 7 zu öffnen, so dass die Einspritzöffnungen 10 freigegeben werden und Kraftstoff aus dem Druckraum 5 zu den Einspritzöffnungen 10 strömt und durch diese austritt. Aufgrund der Schließdrossel 14 ist der Druck, der an den Einspritzöffnungen 10 anliegt, etwas niedriger als der Druck, der im Hochdruckspeicher 15 zur Verfügung steht.
  • Zur Beendigung der Einspritzung wird die Betätigung des Steuerventils 30 beendet und es kehrt in seine Schließstellung zurück. Damit wird das Abströmen von Kraftstoff über die Ablaufdrossel 28 aus dem Steuerraum 25 unterbunden und es findet nur noch ein Zuströmen von Kraftstoff über die Zulaufdrossel 27 in den Steuerraum 25 statt. Dieser Zustrom verdrängt die Düsennadel 7 wieder nach unten in Richtung des Düsensitzes 8. Der Druck im Steuerraum 25 stellt sich dabei so ein, dass sich die Düsennadel 7 im Kräftegleichgewicht befindet. Der sich dabei einstellende Differenzdruck an der Zulaufdrossel 27 bestimmt den Volumenstrom, der dem Steuerraum 25 zufließt und damit die Schließgeschwindigkeit der Düsennadel 7. Dabei ist zu beachten, dass die dem Düsensitz 8 zugewandte Stirnseite der Düsennadel 7 bedingt durch die Schließdrossel 14 einem geringeren als dem am Eingang der Zulaufdrossel 27 herrschenden Druck ausgesetzt ist. Deshalb bewirkt die Schließdrossel 14 eine nennenswerte Absenkung des Steuerraumdrucks gegenüber dem Zulaufdruck des Injektors und folglich einen nennenswerten Differenzdruck an der Zulaufdrossel 27. Erst dieser Differenzdruck, für den im Wesentlichen die Schließdrossel 14 verantwortlich ist, führt zu einer ausreichenden Schließgeschwindigkeit der Düsennadel 7.
  • Figur 2 zeigt ein erstes Ausführungsbeispiel der Erfindung. Auf eine Beschreibung der bereits in Figur 1 beschriebenen Bauteile wird dabei verzichtet. Zur besseren Übersicht zeigt die Figur 3 eine vergrößerte Darstellung der Figur 2 im brennraumabgewandten Bereich.
  • Die Düsennadel 7 ist mit ihrem ventilsitzabgewandten Ende in einer Schalthülse 23 aufgenommen, die ihrerseits im Hülsenabschnitt 22 des Ventilstücks 20 geführt ist. Die Schalthülse 23 ist hierbei von einer Feder 24 umgeben, die die Schalthülse 23 gegen einen Dichtsitz 34 drückt, der innerhalb des Druckraums 5 ausgebildet ist. An der Schalthülse ist eine Dichtkante 33 ausgebildet, mit der diese am Dichtsitz 34 aufliegt und so den Druckraum 5 in zwei Abschnitte unterteilt, die bei Anlage der Schalthülse 23 auf dem Dichtsitz 34 nur durch eine Schließdrossel 32 verbunden sind, die in der Schalthülse 23 ausgebildet ist. Die Schalthülse 23 begrenzt zusammen mit der Stirnseite der Düsennadel 7 und dem Ventilstück 20 den Steuerraum 25, der über die Zulaufdrossel 27 mit dem Druckraum 5 verbunden ist. Die im Stand der Technik beschriebene und in Fig. 1 dargestellte Schließdrossel 14, die dort zwischen der Düsennadel 7 und der Innenwand des Druckraums 5 ausgebildet ist, entfällt zu Gunsten der in der Schalthülse 23 ausgebildeten Schließdrossel 32. Dies wird konstruktiv einfach durch eine Vergrößerung des Durchströmquerschnitts im Bereich der ursprünglichen Schließdrossel 14 realisiert.
  • Die Funktionsweise des Kraftstoffeinspritzventils ist wie folgt:
    • Zu Beginn der Einspritzung befindet sich das Kraftstoffeinspritzventil in dem in Figur 2 und Figur 3 gezeigten Zustand. Im Steuerraum 25 herrscht der gleiche Kraftstoffdruck wie in Druckraum 5, da beide Räume über die Zulaufdrossel 27 hydraulisch verbunden sind. Soll eine Einspritzung erfolgen, so wird das Steuerventil 30 geöffnet und der Kraftstoff fließt aus dem Steuerraum 25 über die Ablaufdrossel 28 in den Niederdruckraum. Dadurch sinkt der Druck im Steuerraum 25 ab.
  • Durch den absinkenden Druck im Steuerraum 25 vermindert sich nun die in Richtung des Ventilsitzes 8 wirkende hydraulische Kraft sowohl auf die Schalthülse 23 als auch auf die Düsennadel 7. Der Kraftstoffdruck im Druckraum 5 drückt daraufhin zunächst die Schalthülse 23 vom Dichtsitz 34 und dann die Düsennadel 7 vom Düsensitz 8 weg, so dass einerseits zwischen der Schalthülse 23 und dem Dichtsitz 34 und andererseits zwischen der Düsennadel 7 und dem Düsensitz 8 ein Durchflussquerschnitt aufgesteuert wird. Der Kraftstoff kann jetzt ungehindert und ungedrosselt durch den Druckraum 5 in Richtung der Einspritzöffnungen 10 fließen und wird durch die Einspritzöffnungen 10 ausgespritzt. Die Schalthülse 23 bewegt sich dabei bis in Anlage an einen Anschlag 36, der innerhalb des Ventilstücks 20 als Absatz ausgebildet ist, während die Düsennadel 7 in der Regel ihre Hubbegrenzung während ihrer Öffnungsphase nicht erreicht, was als ballistischer Betrieb bezeichnet wird.
  • Zur Beendigung der Einspritzung wird das Steuerventil 30 wieder geschlossen, so dass der Kraftstoff nicht mehr weiter aus dem Steuerraum 25 abfließt. Da sich die Düsennadel 7 noch in ihrer Aufwärtsbewegung befindet, also ballistisch betrieben wird, erhöht sich daraufhin der Druck im Steuerraum 25, was die Öffnungsbewegung der Düsennadel 7 bremst. Desgleichen wird auf die Stirnseite der Schalthülse 23 wieder eine erhöhte hydraulische Kraft ausgeübt, die die Schalthülse 23 in Richtung des Dichtsitzes 34 drückt, bis diese mit ihrer Dichtkante 33 am Dichtsitz 34 anliegt und den Kraftstofffluss innerhalb des Druckraums 5 an dieser Stelle unterbricht. Der weitere Kraftstofffluss kann jetzt nur noch durch die Schließdrossel 32 erfolgen, was zu einem leichten Druckrückgang in jenem Teil des Druckraums 5 führt, der sich stromabwärts der Schließdrossel 32 befindet. Dadurch verringert sich die hydraulische Kraft, die in Öffnungsrichtung auf die Düsennadel 7 wirkt und die Düsennadel 7 beschleunigt nach unten. Da mit zunehmender Schließgeschwindigkeit der Düsennadel 7 der Druck im Steuerraum 25 wegen der Drosselung des in den Steuerraum 25 nachfließenden Kraftstoffs an der Zulaufdrossel 27 sinkt, endet der Beschleunigungsvorgang, wenn jene Geschwindigkeit erreicht ist, bei der sich die Düsennadel 7 im Kräftegleichgewicht befindet. Dieser Steuerraumdruck, bei dem sich die Düsennadel im Kräftegleichgewicht befindet, ist in Folge des abgesenkten Drucks im stromabwärts der Schließdrossel 32 befindlichen Teil des Druckraums 5 deutlich geringer als der Druck vor der Zulaufdrossel 27. Folglich besteht im Kräftegleichgewicht ein nennenswerter Differenzdruck an der Zulaufdrossel 27und damit ein nennenswerter Volumenstrom in den Steuerraum 25 hinein, woraus sich wiederum eine ausreichende Schließgeschwindigkeit der Düsennadel 7 ergibt.
  • In Figur 4 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt, wobei sich dieses Ausführungsbeispiel von dem in Figur 3 gezeigten in der Ausgestaltung der Schalthülse 23 und der Düsennadel 7 unterscheidet. Die Düsennadel 7 weist innerhalb der Schalthülse 23 eine Durchmesser-Erweiterung auf, die einen Führungsabschnitt 40 bildet, mit der die Düsennadel 7 zusätzlich innerhalb der Schalthülse 23 geführt ist. Durch den Führungsabschnitt 40 und die Schalthülse 23 wird so ein Ringraum 38 begrenzt, der durch eine Bohrung 39 in der Schalthülse 23 mit dem Druckraum 5 verbunden ist. Darüber hinaus ist die Dichtkante 33 an der Schalthülse 23 radial soweit nach außen verlagert, dass deren Durchmesser größer ist als der Durchmesser des Führungsabschnitts 40. Durch diese Maßnahmen ändern sich die hydraulischen Kräfte auf die Düsennadel 7 und die Schalthülse 23: Befindet sich beim Schließen des Einspritzventils die Schalthülse 23 bereits in Anlage am Dichtsitz 34, während die Düsennadel 7 noch in ihrer Öffnungsposition ist, so wirkt durch den Druck im Ringraum 38 eine zusätzliche hydraulische Schließkraft auf die Düsennadel 7, die die Schließbewegung weiter beschleunigt. Da der Durchmesser der Dichtkante 33 größer ist als der Durchmesser des Führungsabschnitts 40, ergibt sich durch die Druckdifferenz zwischen dem Bereich des Druckraums 5 außerhalb der Schalthülse 23 und innerhalb eine zusätzliche Schließkraft auf die Schalthülse 23. Dies verhindert, dass die Schalthülse 23 am Dichtsitz 34 prellt und wieder anhebt, was den Schließvorgang stören könnte.

Claims (9)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Gehäuse (1), in dem ein Druckraum (5) ausgebildet ist, der mit Kraftstoff unter hohem Druck befüllbar ist, und mit einer Düsennadel (7), die längsverschiebbar im Druckraum (5) angeordnet ist und mit einem Ventilsitz (8) zusammenwirkt und dadurch einen Kraftstofffluss aus dem Druckraum (5) zu wenigstens einer Einspritzöffnung (10) steuert, und mit einem Steuerraum (25), über den eine hydraulische Schließkraft in Richtung des Ventilsitzes (8) auf die Düsennadel (7) ausgeübt wird, wobei das ventilsitzabgewandte Ende der Düsennadel (7) in einer längsbeweglichen Schalthülse (23) aufgenommen ist, wobei die Schalthülse (23) mit einem Dichtsitz (34) im Druckraum (5) zusammenwirkt, so dass beim Abheben der Schalthülse (23) von diesem Dichtsitz (34) zwischen der Schalthülse (23) und dem Dichtsitz (34) ein Durchflussquerschnitt aufgesteuert wird, durch den Kraftstoff innerhalb des Druckraums (5) ungedrosselt in Richtung der Einspritzöffnungen (10) fließen kann, dadurch gekennzeichnet, dass der Durchmesser, bei dem die Schalthülse (23) auf dem Dichtsitz (34) abdichtet, größer ist als der Außendurchmesser der den Steuerraum (25) begrenzenden Stirnfläche der Schalthülse (23).
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Schalthülse (23) durch eine Feder (35) in Richtung des Dichtsitzes (34) mit einer Federkraft beaufschlagt ist.
  3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch die Schalthülse (23) und das ventilsitzabgewandte Ende der Düsennadel (5) der Steuerraum (25) begrenzt wird, so dass durch den hydraulischen Druck im Steuerraum (25) eine hydraulische Kraft auf die Schalthülse (23) in Richtung des Dichtsitzes (34) ausgeübt wird.
  4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Schalthülse (23) in einem Ventilstück (20) an ihrer Außenseite geführt ist.
  5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass die Schalthülse (23) in einem Hülsenabschnitt (22) des Ventilstücks (20) geführt ist.
  6. Kraftstoffeinspritzventil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Schließdrossel (32) vorgesehen ist, durch die die Teile des Druckraums (5) vor und nach dem Dichtsitz (34) verbunden sind und durch die Kraftstoff gedrosselt in Richtung der Einspritzöffnungen (10) fließen kann.
  7. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, dass die Schließdrossel (32) in der Schalthülse (23) ausgebildet ist.
  8. Kraftstoffeinspritzventil nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Düsennadel (7) einen durch eine Durchmesser-Erweiterung gebildeten Führungsabschnitt (40) aufweist, mit der sie ebenfalls in der Schalthülse (23) geführt ist, so dass durch den Führungsabschnitt (40) ein in der Schalthülse (23) ausgebildeter Ringraum (38) in axialer Richtung begrenzt wird.
  9. Kraftstoffeinspritzventil nach Anspruch 8, dadurch gekennzeichnet, dass der Ringraum (38) durch eine in der Schalthülse (23) ausgebildete Bohrung (39) mit dem Druckraum (5) hydraulisch verbunden ist.
EP13188371.2A 2012-12-10 2013-10-11 Kraftstoffeinspritzventil für Brennkraftmaschinen Active EP2740927B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201210222633 DE102012222633A1 (de) 2012-12-10 2012-12-10 Kraftstoffeinspritzventil für Brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP2740927A1 EP2740927A1 (de) 2014-06-11
EP2740927B1 true EP2740927B1 (de) 2016-01-20

Family

ID=49378111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13188371.2A Active EP2740927B1 (de) 2012-12-10 2013-10-11 Kraftstoffeinspritzventil für Brennkraftmaschinen

Country Status (2)

Country Link
EP (1) EP2740927B1 (de)
DE (1) DE102012222633A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113250876B (zh) * 2021-06-18 2022-04-26 中国北方发动机研究所(天津) 一种滑阀式共轨喷油器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6637675B2 (en) * 2001-07-13 2003-10-28 Cummins Inc. Rate shaping fuel injector with limited throttling
DE10348925A1 (de) * 2003-10-18 2005-05-12 Bosch Gmbh Robert Kraftstoffinjektor mit mehrteiligem, direktgesteuertem Einspritzventilglied
DE102004030445A1 (de) * 2004-06-24 2006-01-12 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung
EP1851427B1 (de) * 2005-02-22 2011-05-11 Continental Automotive Systems US, Inc. Common-rail-injektor mit aktiver nadelverschlussvorrichtung
AT501914B1 (de) * 2005-10-03 2006-12-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
JP4710892B2 (ja) * 2007-09-20 2011-06-29 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2010151025A (ja) * 2008-12-25 2010-07-08 Toyota Motor Corp 燃料噴射装置
DE102010003202A1 (de) 2010-03-24 2011-09-29 Robert Bosch Gmbh Common-Rail-Injektor mit druckausgeglichenem Schaltventil und zusätzlichem Speichervolumen

Also Published As

Publication number Publication date
EP2740927A1 (de) 2014-06-11
DE102012222633A1 (de) 2014-06-12

Similar Documents

Publication Publication Date Title
DE2500644C2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2171255B1 (de) Drossel an einer ventilnadel eines kraftstoffeinspritzventils für brennkraftmaschinen
EP1747370B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2867517B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP3234344A1 (de) Einspritzdüse für kraftstoffe
DE102007000095B4 (de) Kraftstoffeinspritzelement
DE10335059A1 (de) Schaltventil für einen Kraftstoffinjektor mit Druckübersetzer
DE102005010453A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2740927B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2743493A2 (de) Kraftstoffinjektor
DE102015226350A1 (de) Kraftstoffinjektor
EP2511514B1 (de) Brennstoffeinspritzventil
EP1314881A2 (de) Injektor für ein Common-Rail-Kraftstoffeinspritzsystem mit Einspritzverlaufsformung
WO2017194260A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102012224397A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2798192B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1483499A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
WO2005045233A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2019138009A1 (de) Injektor zur dosierung von gasförmigem kraftstoff, gaseinblassystem mit einem solchen injektor und verfahren zum betreiben dieses injektors
DE10312738B4 (de) Einspritzventil mit hydraulisch betätigter Nadel und Hohlnadel und Verfahren zum Steuern einer Einspritzung
EP2655850B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102004051756A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102012223199A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
EP2818684A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141211

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 771853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001841

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160421

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001841

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

26N No opposition filed

Effective date: 20161021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161011

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161011

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131011

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 771853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 11

Ref country code: FR

Payment date: 20231023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 11