EP2739843A1 - Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d'utilisation dudit dispositif - Google Patents

Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d'utilisation dudit dispositif

Info

Publication number
EP2739843A1
EP2739843A1 EP12743424.9A EP12743424A EP2739843A1 EP 2739843 A1 EP2739843 A1 EP 2739843A1 EP 12743424 A EP12743424 A EP 12743424A EP 2739843 A1 EP2739843 A1 EP 2739843A1
Authority
EP
European Patent Office
Prior art keywords
additive
fuel
vehicle
dispensing device
circulation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12743424.9A
Other languages
German (de)
English (en)
Other versions
EP2739843B1 (fr
Inventor
Virginie Harle
Michael Lallemand
Thierry Seguelong
Guy MONSALLIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Sogefi Filtration SA
Original Assignee
Filtrauto SA
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Filtrauto SA, Rhodia Operations SAS filed Critical Filtrauto SA
Publication of EP2739843A1 publication Critical patent/EP2739843A1/fr
Application granted granted Critical
Publication of EP2739843B1 publication Critical patent/EP2739843B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0082Devices inside the fuel tank other than fuel pumps or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality

Definitions

  • Device for distributing a liquid additive in a fuel circulation circuit for an internal combustion engine comprising such a device and method for using said device
  • the technical field of the present invention is that of internal combustion engines, in particular motor vehicles, and more particularly devices for dispensing a liquid additive into the fuel circulation circuit of the internal combustion engine.
  • New engine technologies such as common-rail diesel engines and ultra-high-pressure fuel injection engines, are very efficient but very sensitive to fuel quality.
  • additives for improving its quality in particular additives for improving the distribution of fuel in the engine, additives for improving the performance of engine operation and additives for improving engine performance.
  • additives for improving the performance of engine operation in particular additives for improving the performance of engine operation and additives for improving engine performance.
  • the stability of the engine operation are, for example, detergent agents, lubricating additives or anticorrosive additives.
  • the dosage of the additive is then generally performed using high precision metering pumps controlled using an additional electronic unit (or ECU).
  • ECU electronic unit
  • This metering device is finely managed to ensure an additive content in the fuel sufficient to allow good regeneration of the particulate filter, but not too excessive to prevent premature clogging of the particulate filter via the mineral residues of the particulate filter. regeneration of the particulate filter which remains collected within it.
  • a calculator indicates to the pump the amount of additive to be injected into the tank so as to maintain a constant additive concentration in the fuel and this to any time.
  • a device for dispensing a liquid additive in a fuel circulation circuit for an internal combustion engine of a vehicle has been protected by the applicant under the filing number FR 1 1 00316.
  • This device comprises:
  • an enclosure communicating with the fuel circulation circuit and inside which is inserted the reservoir containing the additive, at least one movable and sealed wall between said enclosure and said reservoir ensuring on one hand a tight separation and on the other hand maintaining an identical pressure between the additive in the tank and the fuel in the chamber,
  • the applicant has also protected the integration of a device for dispensing a liquid additive in a fuel tank under the filing number FR 1 1 55310.
  • One of the aims of the invention is to propose a dispensing device as described above making it possible to extend the autonomy of the additive reservoir by limiting the additive intake or even stopping it to avoid, under certain conditions, an excessive concentration of additive in the fuel.
  • One of the aims of the invention is also to optimize the concentration of additive in the fuel in order to find a compromise between the sufficient quantity needed and overconcentration that can reduce the autonomy of the additive reservoir and / or have repercussions. negative effects on other vehicle components, such as clogging of the particulate filter.
  • the invention aims to optimize the injection of additive so that the injection takes place only when the vehicle needs, particularly depending on the driving conditions and / or the quality of the fuel.
  • the subject of the invention is a device for dispensing a liquid additive in a fuel circulation circuit for an internal combustion engine, in particular for a motor equipping a vehicle, said device comprising:
  • an enclosure communicating with the fuel circulation circuit and inside which is inserted the reservoir containing the additive, at least one movable and sealed wall between said enclosure and said reservoir ensuring on one hand a tight separation and on the other hand maintaining an identical pressure between the additive in the tank and the fuel in the chamber,
  • means for injecting the additive connected to the tank and to the fuel circulation circuit and for distributing the additive in the fuel circulation circuit comprising a distribution channel connecting the reservoir and the circulation circuit; fuel, and
  • control means for controlling the injection means, characterized in that the control means are associated with:
  • the injection means may comprise a closure means of the distribution channel, the sealing means being adapted to completely or partially close the distribution channel, the closure means being in particular valve type or solenoid valve;
  • the dispensing device may comprise a temperature sensor intended to indicate the temperature of the fuel in the fuel circulation circuit, particularly in the vicinity of the distribution channel, and / or of the additive, the temperature of the additive and or fuel constituting a parameter representative of the evolution of the additive flow rate and / or the use of the vehicle and / or climatic conditions;
  • the dispensing device may comprise a temperature sensor external to the vehicle, the external temperature constituting a parameter representative of the climatic conditions;
  • the dispensing device may comprise a sensor detecting the energization of the vehicle and / or of an element belonging to the fuel circulation circuit, in particular a fuel filter, the power-up being a parameter representative of the use of the vehicle;
  • the dispensing device may comprise pressure sensors measuring the pressure at a dispensing orifice of the additive disposed at one end of the dispensing channel situated at the level of the fuel circulation circuit, and at a level fuel inlet port disposed upstream of the dispensing orifice in the circulation circuit, a pressure difference between the orifices constituting a parameter representative of the use of the vehicle and / or the evolution of the additive flow rate and / or the rolling conditions;
  • the dispensing device may comprise a noise sensor preferably disposed near the engine, the detection of noise by the sensor constituting a parameter representative of the use of the vehicle;
  • the distribution device may comprise GPS-type location means or a motion sensor, the detection of a movement by the locating means or the motion sensor constituting a parameter representative of the use of the vehicle and / or driving conditions of the vehicle;
  • the average speed and / or the instantaneous speed of the vehicle may constitute a parameter representative of the driving conditions of the vehicle
  • the temperature of the exhaust gas may constitute a parameter representative of the vehicle running conditions
  • the evolution of the pressure in the circulation circuit in particular in a high-pressure circuit of the vehicle composed of a high pressure pump and a common injection rail, may constitute a parameter representative of the running conditions of the vehicle;
  • the evolution of the air flow supplying the combustion chamber of the engine may constitute a parameter representative of the driving conditions of the vehicle
  • the evolution of the fuel flow rate in the circulation circuit may constitute a parameter representative of the evolution of the additive flow rate
  • NOx, soot or other carbon particles emissions or NOx soot and / or NOx particulate matter ratios may be representative parameters of pollutant emissions from fuel combustion
  • the evolution of the quality and / or the quantity of oil allowing the lubrication of the engine may constitute a parameter representative of the evolution of the quality of the regeneration of the particulate filter disposed in the exhaust line of the engine;
  • the distribution device may comprise a GPS type of locating means indicating the geographical area in which the vehicle is located, the location of the vehicle provided by the means constituting a parameter representative of the quality of the fuel marketed in the geographical area;
  • parameters representative of the fuel combustion in the engine cylinders can be a parameter representative of the fuel quality
  • the fuel consumption of the engine may be a representative parameter of the driving conditions of the vehicle;
  • the additive may be a particulate filter regeneration additive based on a rare earth and / or a metal selected from groups MA, IVA, VIIA, VIII, IB, MB, IIIB and IVB of the classification periodic;
  • the additive may be in the form of a colloidal dispersion
  • the particles of the colloidal dispersion may be based on cerium and / or iron;
  • the additive may be a combination of a colloidal dispersion of particles which comprises an organic phase and at least one amphiphilic agent and a detergent;
  • the additive may be an additive allowing the improvement of the fuel distribution in the engine and / or the improvement of the performance of the engine operation and / or the improvement of the stability of the operation of the engine;
  • the additive may be a combination of a detergent additive and a lubricating additive.
  • the invention applies in particular to combustion engines using gasoline or diesel fuel.
  • the engines equipped with the device according to the invention can equip stationary installations, or so-called “off road” vehicles, such as construction machinery, or so-called “on road” vehicles, such as motor vehicles.
  • the invention also relates to a motor vehicle comprising:
  • an enclosure communicating with the fuel circulation circuit and inside which is inserted the reservoir containing the additive, at least one movable and sealed wall between said enclosure and said reservoir ensuring on one hand a tight separation and on the other hand maintaining an identical pressure between the additive in the tank and the fuel in the chamber,
  • means for injecting the additive connected to the tank and to the fuel circulation circuit and for distributing the additive in the fuel circulation circuit said means comprising a distribution channel connecting the reservoir and the circulation circuit; fuel ,
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive distribution is stopped when the vehicle engine is not running or when the vehicle is stopped.
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive distribution is activated when the sealing means is under electrical supply.
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive distribution is activated when a pressure difference greater than 2 millibars between the dispensing orifice of the additive disposed at one end of the distribution channel, and the fuel inlet port disposed upstream in the circulation circuit is measured.
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive distribution is activated when the temperature of the fuel flowing in the circulation circuit and / or the additive is greater than at a threshold value representative of a running engine, for example greater than 15 ° C.
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive distribution is stopped when the external temperature and / or the temperature of the additive and / or the temperature of the fuel in the fuel circulation circuit are lower than a minimum threshold temperature or greater than a maximum threshold temperature, said minimum and maximum threshold temperatures being defined for a given additive, the minimum threshold temperature possibly corresponding to a value for which the viscosity of the additive reaches a threshold value and the maximum threshold temperature that can correspond to the vaporization value of the additive.
  • the invention also relates to a method of using a dispensing device according to the invention for which the injection is discontinuous and in that the frequency and / or the duration of opening of the sealing means depend on the information collected. by the control means, the additive distribution being carried out so as to keep a constant additive concentration in the fuel or to inject the additive into the fuel circulation circuit only when necessary.
  • the frequency of distribution and / or the duration of additive distribution depends either on the time of use of the vehicle and / or on the number of kilometers traveled by the vehicle and / or on the consumption in vehicle fuel.
  • the frequency and / or the duration of additive distribution depend on the temperature of the fuel and / or the additive, and / or the pressure between the dispensing orifice of the additive disposed at one end of the distribution channel, and the fuel inlet port disposed upstream in the circulation circuit.
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive is injected at each addition of fuel in the fuel tank, the added amount of additive can be fixed or variable, the variable volume being determined according to the amount of fuel added.
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive is injected when the analysis of the pollutant emissions resulting from the combustion of the fuel indicates that the gases and / or the particles emitted differ from the expected theoretical value.
  • the invention also relates to a method of using a dispensing device according to the invention for which the additive is injected before the regeneration of the particulate filter.
  • the invention also relates to a method of using a dispensing device according to the invention for which an additional amount of additive is injected before the regeneration of the particulate filter when the previous regeneration has not been of good quality.
  • Figure 1 is a schematic representation of a device for dispensing an additive in a fuel circulation circuit of an internal combustion engine
  • Figure 2 is a schematic representation identical to that of Figure 1, the additive dispensing device being disposed in a fuel tank;
  • Figure 3 is a sectional view illustrating a liquid additive dispensing device
  • Figures 4 to 7 illustrate different strategies of opening / closing a closure means controlling the distribution of additive in the fuel circulation circuit.
  • FIG. 1 schematically represents a fuel circulation circuit 2 for an internal combustion engine of a motor vehicle.
  • the fuel circulation circuit 2 is arranged between a fuel tank 4 and the high pressure rail 6 (also called “common rail") and ensures the flow of fuel between the tank and the high pressure rail, and possibly the return fuel to the tank 4.
  • the circulation circuit comprises a filter 8 for filtering the fuel and a high pressure pump 10.
  • the high pressure pump 10 and the high pressure ramp 6 constitute the fuel injection system.
  • a first conduit 12, called “feed line”, ensures the flow of fuel from the tank 4 to the high pressure ramp 6 and a second conduit 14, said “return line” ensures the flow of fuel from the injection system to the tank 4.
  • the fuel is pumped into the tank 4, then filtered in the filter 8 and is sent under pressure, through the pump 10, in the high pressure rail 6 and a portion is directed to the injectors 16 of the engine and another part returned to the tank 4 by the return line 14. A portion of the fuel can also be sent from the high pressure pump 10 to the return line 14.
  • the fuel circulation circuit 2 also comprises a device 18 for dispensing a liquid additive according to the invention, whose operation will be described later.
  • a device 18 for dispensing an additive has been shown on the feed line 12, but said device 18 for dispensing an additive may also be placed on the fuel return line 14.
  • the device 18 for dispensing an additive may also be disposed in the fuel tank 4.
  • the fuel circulation circuit 2 ensures the flow of fuel between the inside of the fuel tank 4 and the engine, and possibly the return of the fuel to the tank 4.
  • the part of the circuit 2 of the fuel fuel circulation supporting the dispensing device 18 extends inside the fuel tank 4.
  • Figure 3 shows a sectional view of an exemplary embodiment of a dispensing device 18.
  • the device 18 for dispensing an additive comprises a head 20 and a replaceable cartridge 22 forming an additive enclosure 24 in which is disposed a reservoir 26 of liquid additive.
  • the head 20 has a fuel inlet port 28, a fuel outlet port 30, a venturi 32 located between the fuel inlet and outlet ports 30, a conduit 34 providing a fuel passage between the fuel inlet port 28 and the additive enclosure 24 inside the replaceable cartridge 22 and an additive distribution channel 36 ensuring the passage of the liquid additive from the reservoir 26 to a diffusion orifice 38 additive in the venturi 32.
  • the additive distribution channel 36 has a first portion 40 and a second portion 42 of reduced section.
  • An actuator 44 consisting of a finger 46 and a coil 48, closes the passage between the portions 40 and 42 of the additive distribution channel.
  • the reservoir 26 of additive is in the form of a flexible bag 50 constituting a movable and sealed wall between the fuel present in the additive enclosure 24 and the additive inside the tank 26.
  • the device 18 for dispensing an additive is connected to the circulation circuit 2.
  • the fuel therefore circulates continuously between the orifices 28 and 30 of entry and exit of the fuel.
  • the venturi 32 which is a known pressure difference generation means, generates a vacuum between the additive distribution port 38 and the fuel inlet port 28.
  • the additive enclosure 24, communicating via the conduit 34 with the fuel inlet port 28, is filled with fuel at the same pressure as the fuel flowing at the fuel inlet port 28, the flexible bag 50, constituting the movable and sealed wall of the additive reservoir maintains an identical pressure between the additive in the additive reservoir 26 and the fuel in the enclosure 24.
  • the pressure in the additive reservoir 26 is therefore greater than the pressure at the level of the additive diffusion orifice 38, which forces the additive to move from the reservoir 26 to the diffusion orifice 38. additive then to diffuse into the fuel flowing in the venturi 32 and therefore in the fuel circulation circuit.
  • the actuator 44 makes it possible to totally or partially prevent the flow of the additive.
  • the actuator 44 illustrates an electromechanical means for total or partial closure of the additive distribution channel, but a valve or solenoid valve may, for example, also be used. In the following description these different means will be called shutter means.
  • pollution control means such as a catalyzed particle filter or not, not shown, may be arranged in the exhaust line of the vehicle.
  • the catalyzed particle filters generally contain a catalyst that directly or indirectly aids the regeneration of the coated particle filter in the porosity of its filtering walls.
  • These CSF-type particle filters may in particular contain precious metals such as platinum and / or palladium.
  • the regeneration of these CSF type particle filters can be improved using additive injected into the fuel.
  • the term "particle filter” will be used to evoke indifferently a non-catalyzed particulate filter or a catalyzed particulate filter.
  • the control of the closure means for controlling the flow rate of additive dispensed in the dispensing circuit goes from here to be described more particularly, the different control modes being grouped according to their goal to achieve.
  • the piloting is intended to inject the additive discontinuously and thus makes it possible to control the closing / opening frequency of the distribution channel 36 and / or the amplitude of the opening and / or closing times, and / or of modulating the degree of shutter in the case of partial sealing means.
  • the objective of this first driving mode is to minimize the fluctuations in concentration of additive in the fuel, especially in the fuel tank 4.
  • this first control mode aims to detect the periods of stopping the vehicle and to interrupt the distribution of additive when such periods are detected.
  • This first control mode also makes it possible to interrupt the distribution of the additive in the circulation circuit during certain periods of the life of the vehicle in order to use the additive wisely and / or to avoid that the tank containing the additive does not empty too quickly.
  • the interruption of the additive distribution can take place when the stopping of the engine of the vehicle is detected. This avoids an excess of additive in the fuel while the vehicle is parked and therefore does not consume the injected additive. Such a stop of the additive distribution makes it possible to increase the autonomy of the additive reservoir.
  • the control of the additive distribution is aimed at ensuring that the concentration is between a minimum value, for which the regeneration of the particulate filter is facilitated, and a maximum value, beyond which the channels of the filter at particles get clogged quickly.
  • the distribution device may comprise means for analyzing at least one parameter representative of the use of the vehicle, such as means for detecting the operation of the engine. and / or to indicate whether the vehicle is moving.
  • these means can be adapted to detect the energization of the fuel filter and / or closure means of the distribution channel, and / or more generally the power of the vehicle.
  • These means may also include a temperature sensor adapted to detect the temperature of the additive and / or the fuel flowing in the fuel circulation circuit. Indeed, these temperatures are, when the engine is in operation, greater than a threshold value, for example greater than 15 ° C.
  • these means may comprise pressure sensors for measuring the pressure at the orifice 38 for dispensing the additive and at the orifice 28 for the entry of fuel, a pressure difference between these two orifices greater than a threshold value, generally greater than 2 mbar, indicating the flow of fuel and thus the operation of the engine.
  • FIG. 4 illustrates this mode of operation.
  • the curve 52 of this figure represents an example of evolution as a function of time of the pressure difference between the orifices 38 and 28, the time being represented along the abscissa axis.
  • Curve 54 represents the evolution as a function of time of the state of the closure means according to the pressure difference, the line portion disposed at the abscissa representing the closing state of the closure means, while that the line portion disposed at a distance from the abscissa represents the open state of the closure means.
  • Curve 56 represents the triggering threshold, the shutter means being closed for a value of the pressure difference below this threshold and open for a value of the pressure difference greater than this threshold.
  • An identical curve can be obtained when the control is performed using a threshold temperature value triggering the opening / closing of the closure means.
  • these means may comprise a GPS-type geolocation means or a motion sensor indicating the movement of the vehicle.
  • these means may comprise a noise sensor disposed near the engine, the detection of noise by said sensor constituting a parameter representative of the use of the vehicle.
  • a closure means for completely closing the distribution channel is used, for example a thermoclapet, an "umbrella” valve, a non-return valve, a hydraulically or electromechanically operated valve or a solenoid valve.
  • This second mode of control is to interrupt the distribution of additive when the conditions, in particular climatic conditions, are not favorable to the latter.
  • a temperature sensor for taking the temperature of the additive and / or fuel in the fuel circulation circuit, disposed in particular near the dispensing device 18, may be used.
  • the distribution device interrupts the distribution of additive in the circulation circuit.
  • the minimum threshold temperature may correspond to a temperature for which the additive has a viscosity that is too high or for which the additive has reached its cloudy point or even becomes en masse;
  • the maximum threshold temperature may correspond to the vaporization value of the additive, the minimum and maximum threshold temperatures being defined for a given additive.
  • an outdoor temperature sensor may be used.
  • This variant is particularly advantageous when the dispensing device 18 is disposed in the fuel tank 4. Indeed, in this configuration the dispensing device 18 is more sensitive to changes in the outside temperature.
  • this second control mode it is intended to avoid any degradation of the distribution device and / or the circulation circuit created by the additive whose physical state has changed. Indeed, when for example the temperature is lower than the minimum threshold temperature, excessive viscosity of the additive may in particular block the channel 36 of additive distribution.
  • the objective of this third mode of control is also to minimize the fluctuations of concentration of additive in the fuel.
  • the additive distribution is carried out in such a way as to minimize the fluctuations in the concentration of additive in the fuel following the fluctuations of parameters external to the device that can vary the concentration of additive.
  • the frequency and / or the opening time of the shutter means are not dependent on the operation of the motor. Thus, even when the engine is running the additive distribution can be interrupted.
  • this third control mode aims at correcting the fluctuations due, in particular to the evolution of the amount of fuel in the fuel tank of the vehicle.
  • This evolution can be linked on the one hand to the running conditions of the vehicle when the engine is running, and in particular to the fuel consumption, the latter being continuous but variable over time, and on the other hand to the addition of fuel in the tank by the user, causing a sharp increase in the amount of fuel in the tank.
  • the control can be done by controlling the opening / closing of the shutter means from either parameters managed autonomously by the device, or from external parameters provided for example by the electronic unit (ECU) of the vehicle, the control consisting in adapting the frequency and / or the duration of opening and / or the opening of the closure means to allow to adjust either the amount of additive introduced to each injection, ie the time interval between each injection, the quantity injected being then identical.
  • ECU electronic unit
  • a first variant consists in injecting the additive at regular intervals, the duration of distribution of the additive being constant at each distribution period.
  • the frequency and duration of distribution will be evaluated according to the vehicle manufacturer's average vehicle fuel consumption and / or fuel tank size, both of which are known during vehicle design.
  • the frequency may be either temporal, for example by injecting all the hours of the additive into the circulation circuit, or depending on the number of kilometers traveled by the vehicle, for example by injecting every 100 km of the vehicle. 'additive.
  • the distance traveled by the vehicle can be retrieved either locally by a GPS chip, or any other geolocation system installed at the level of the distribution device, either by retrieving the data from the ECU or GPS of the vehicle.
  • a second variant is to inject the variable frequency additive, the duration of distribution of the additive may also be variable from one distribution period to another.
  • the frequency and / or the duration of distribution are adjusted according to the average consumption of the vehicle.
  • the average consumption of the vehicle can be obtained by recovering the data of the vehicle ECU.
  • this second variant has the advantage of being more precise by adapting the amount of additive to be injected to the actual consumption of the vehicle.
  • a third variant is to inject the additive to each addition of fuel in the vehicle tank, the amount of additive dispensed being constant at each distribution period.
  • This additive addition can be made as soon as the opening of the fuel filler flap for filling the tank is detected or when a signal from the vehicle ECU indicates that the fuel volume in the tank has increased .
  • the amount of additive to be injected and therefore the injection time can then be calculated by considering a standard addition of fuel in the tank. It is considered that the user does not wait to completely empty the tank of his vehicle before filling it. Thus, for example for a tank with a total capacity of 60 liters, the quantity of additive injected will be evaluated so as to enrich 40 liters of fuel.
  • a fourth variant consists in injecting the additive with each addition of fuel in the tank of the vehicle, the quantity of additive dispensed being variable at each distribution period depending on the amount of fuel added.
  • This variant makes it possible to adjust the amount of additive to the amount of fuel actually introduced when adding fuel to the tank.
  • This addition of additive can be achieved as soon as a signal from the vehicle ECU indicates that a certain amount of fuel has been added to the tank, the amount of additive and therefore the duration of distribution being adapted to the amount of fuel added.
  • FIG. 5 illustrates this mode of operation.
  • the curve 58 of this figure represents an example of evolution as a function of time of the volume of fuel in the tank 4, the time being represented along the abscissa axis.
  • Each sudden increase referenced 60 corresponding to an addition of fuel in the tank.
  • Curve 62 represents the evolution as a function of time of the state of the closure means according to the volume of fuel added, the line portion arranged at the abscissa representing the closing state of the closure means, while the line portion disposed at a distance from the abscissa represents the open state of the closure means.
  • the amount of fuel added is calculated so as to know the amount of additive to be added, which allows to calculate the opening time of the sealing means to deliver a quantity of additive proportional to the amount of fuel added.
  • FIG. 5 illustrates three successive additions of variable volume fuel, respectively corresponding to the first addition to a volume V, for the second addition to a third of this volume V and for the third addition to half of this volume V.
  • each duration of opening of the sealing means is then proportional to the added volume and corresponds respectively to a duration T, to a third of this duration T and to half this duration T.
  • the fluctuations in the additive concentration in the fuel of the reservoir may be related to a variation of the additive flow rate as a result of a variation in the temperature prevailing at the level of the circulation circuit and / or a variation of the fuel flow rate in the fuel system. the circulation circuit.
  • the temperature influences the viscosity of the additive and can therefore change the flow rate of the additive during its distribution.
  • an increase in temperature reduces the viscosity and the density of the additive and causes an increase in the mass flow rate of additive.
  • the origin of this fluctuation can be related in particular to the temperature of the air surrounding the distribution device, to the position of the dispensing device in the vehicle or to the temperature of the fuel, the temperature variations of the fuel circulation circuit. which can classically for a motor vehicle vary from ambient temperature, variable depending on the season, up to temperatures up to typically 120 ° C.
  • a temperature sensor installed at the dispensing device makes it possible to know the temperature of the fuel circulating at the level of the device.
  • the duration and / or the injection frequency and / or the opening amplitude of the closure means can be adapted.
  • Figure 6 illustrates this mode of operation.
  • the curve 64 of this figure represents an example of evolution as a function of time of the temperature measured at the dispensing device, the time being represented along the abscissa axis.
  • Curve 66 represents the evolution as a function of time of the state of the shutter means according to the measured temperature, the line portion arranged at the abscissa representing the closing state of the shutter means, while the line portion disposed at a distance from the abscissa represents the open state of the closure means.
  • Curve 68 represents the tripping threshold, the shutter means being closed for a value of the temperature below this threshold and open for a value of the temperature above this threshold. Thus, adding additive is only allowed when the temperature has a value greater than the determined threshold value.
  • this control mode is adapted to take into account the evolution of the physicochemical characteristics of the fuel and the additive with the temperature.
  • the additive used has a viscosity which increases when the temperature decreases.
  • the opening of the sealing means is done regularly and each dose of injected additive is adapted to the measured temperature, the duration of the opening being all the longer as the temperature is low.
  • the fuel flow in the circulation system can vary especially for vehicles equipped with low pressure fuel pump, whose flow is variable to save energy when the fuel consumption is lower.
  • Variable flow pumps allow, for example, flow rates of 1 10 l / h +/- 50 l / h in the case of a particular vehicle engine (typically 2L displacement).
  • Fluctuations in fuel flow cause a fluctuation of the pressure difference between the additive delivery port 38 and the fuel inlet port 28, which influences the additive flow rate.
  • an increase in the flow rate of the fuel causes an increase in the pressure difference between the orifice 38 for dispensing the additive and the orifice 28 for the entry of fuel, which causes an increase in the injection flow rate. additive.
  • pressure sensors installed at the orifices 28 and 38 can be used to control the fuel flow fluctuations and therefore to know the evolution of the additive flow rate in the distribution circuit.
  • the duration and / or the injection frequency can be adapted.
  • FIG. 7 illustrates this mode of operation.
  • the curve 70 of this figure represents an example of evolution as a function of time of the pressure difference between the orifices 38 and 28, the time being represented along the abscissa axis.
  • Curve 72 represents the evolution as a function of time of the state of the closure means according to the pressure difference, the line portion arranged at the abscissa representing the closing state of the closure means, while that the line portion disposed at a distance from the abscissa represents the open state of the closure means.
  • the opening of the shutter means is regularly.
  • the opening time of the shutter means is inversely proportional to the difference in measured pressure which makes it possible to compensate the impact of a variable flow of fuel circulation and thus ensure the absence of fluctuation of the flow of additive when the flow of fuel circulation is variable.
  • This third control mode is to be able to dispense the additive with a higher flow rate over a shorter time, the additive distribution being blocked the rest of the time by closing the closure means.
  • a dispensing device whose dimensions, especially at the level of the means for generating a pressure difference at the level of the additive distribution channel, such as the venturi, are larger.
  • the dimensions of the distribution channel 36 can be increased. This allows to control more precisely the amount of additive distributed in the circulation circuit.
  • a shutter means for completely closing the distribution channel will be used.
  • the objective of this fourth control mode is to inject the additive into the circulation circuit only when it is necessary, this can notably be done in order to adjust the concentration of additive to the momentary needs of the vehicle.
  • the injection of additive can take place at a regular interval, such as every minute, every hour or at each tank filling or for a determined rolling interval, for example every 100 kms.
  • the concentration of additive evolves voluntarily in time, the frequency and / or the duration of opening of the closure means being adapted according to the amount of additive to be injected.
  • the dose of additive delivered may be dependent on the conditions of travel and use of the vehicle, or the type of fuel used.
  • the embodiments of the fourth control mode can be coupled with one or more examples of embodiments previously described and belonging to the first, second and third control modes.
  • the additive used is intended to improve the properties of the fuel, in particular to stabilize the fuel used or to reduce the effects of its degradation on the engine or the fuel circulation circuit or to improve its combustion properties
  • examples of additives will be given later
  • an additional injection of additive can be performed when it is detected that the engine is fed by a fuel of poor quality or unsuitable quality.
  • the amount of additive to be added will depend on the quality of the fuel used, a lower quality fuel generally requiring a larger amount of additive.
  • a fuel of poor quality leads to a fouling of the injectors and therefore deteriorates the quality of the fuel jet, which increases the time of realization of the air / fuel mixture and thus degrades the combustion.
  • fuel consumption and pollutant emissions are increased.
  • a fuel can also have a variable composition and intrinsic properties which will influence its combustion properties and thereby the engine performance and its polluting emissions.
  • a fuel may also have fractions that are unstable over time, such as certain fractions of biofuels, these unstable fractions being degraded for example by oxidation and may lead to fouling of the fuel circulation circuit.
  • a fuel may also have poor properties leading to premature degradation or aging of the equipment of the fuel circulation circuit, for example by lack of lubricating property.
  • the amount of additive used may depend on the geographical area in which the vehicle rolls, the fuel meeting different standards known for each geographical area of the world.
  • a GPS chip, or any other means of geolocation installed at the level of the distribution device or the GPS of the vehicle makes it possible to locate the zone in which the vehicle is traveling and therefore the type of fuel sold in said zone.
  • an additional quantity of additive may be distributed, the quantity injected may also depend on the geographical area.
  • a specific probe for analyzing the fuel used may be mounted at any point in the fuel circulation circuit and / or in the fuel tank.
  • This probe may for example comprise a Near Infra Red (PI R) type sensor which may for example measure the fatty acid methyl ester (FAME) type biodiesel fraction of the diesel fuel.
  • PI R Near Infra Red
  • FAME fatty acid methyl ester
  • analyzes can provide access to fuel combustion properties, such as cetane number for diesel and octane number for gasolines. These analyzes can be managed by the vehicle ECU or directly by the distribution device.
  • the quality of the fuel can be deduced from the parameters of the combustion carried out in the engine cylinders, such as rattling, the noise of combustion or the evolution of the pressure in the cylinders.
  • This data can in particular be retrieved from the vehicle ECU.
  • certain characteristics of the fuel such as the cetane number modify the combustion parameters: the lower the cetane number, the more the combustion in the cylinders starts late generating a significant increase in pressure, which generates noise.
  • the amount of additive to be dispensed will be adapted.
  • the concentration of additive may also be adapted according to the driving conditions of the vehicle, by rolling condition is meant the profile of urban, road, highway or mixed vehicle traffic.
  • rolling condition is meant the profile of urban, road, highway or mixed vehicle traffic.
  • the temperature of the exhaust gas is higher, which facilitates the regeneration of the particulate filter. Indeed, the temperature difference between the temperature of the exhaust gas and the temperature for the regeneration of the particulate filter is then lower.
  • the quantity of nitrogen oxides NOx emitted is higher, which is also favorable for the regeneration of the particulate filter.
  • the amount of additive used will be adapted to the running conditions of the vehicle. More particularly, a significant amount of additive, to increase the concentration of additive in the fuel, will be injected when it will be detected that the vehicle is driven in an urban environment for a specified period. Conversely, a reduced amount of additive will be injected when it will be detected that the vehicle is driving in a motorway for a specified period.
  • a GPS chip or any other means of geolocation, installed at the level of the distribution device or the GPS of the vehicle makes it possible to locate the geographical zone in which the vehicle is traveling and therefore to know the rolling profile of the vehicle. In addition, it is also possible to obtain from these equipment the average speed of the vehicle.
  • the average speed of the vehicle can be recovered by the vehicle computer.
  • the additive is adapted to the regeneration of the filter at particles, when an average speed of less than 50 km / h and more particularly less than 30 km / h is detected, the concentration of additive is increased.
  • the concentration of additive being increased when the instantaneous speed of the vehicle is, for example, less than 50 km / h over more than one hour.
  • the temperature of the exhaust gas can be used, the latter being recovered from the ECU or directly by a dedicated sensor disposed in the exhaust line of the vehicle.
  • an additional amount of additive can be dispensed when the temperature of the gases is low, especially when it is below 300 ° C., and especially below 250 ° C.
  • the fuel consumption of the engine indicates for a given vehicle, the driving conditions of the vehicle, each vehicle having ranges of different consumption for urban / mixed / road use. For a given vehicle, high consumption is generally associated with urban use. These ranges are known during vehicle design and can be used to adjust the concentration of additive.
  • this data is preferable to couple this data with other accessible data representative of the running conditions of the vehicle, such as the temperature of the exhaust gas.
  • other accessible data representative of the running conditions of the vehicle such as the temperature of the exhaust gas.
  • a large consumption coupled with a low temperature of the exhaust gas, typically less than 300 ° C, is characteristic of urban use whereas a high consumption associated with a high temperature of the exhaust gas is characteristic of a road or motorway use requiring less additive for the regeneration of the particulate filter.
  • the fluctuation of the pressure in the high-pressure system of the fuel circulation circuit in particular in the high-pressure pump compressing the fuel or in the common injector feed-rail, can be used in order to know the driving conditions. of the vehicle.
  • some vehicles have a pressure level in the high pressure part of the circulation circuit which varies. This is particularly the case for vehicles equipped with a device called “Stop and Start” or “Stop and Go” for stopping and restarting the engine automatically when it goes to neutral for example, or for hybrid-thermal vehicles. for which the engine does not operate continuously. So for these vehicles, the recorded pressure, provided for example by the vehicle ECU, in the high pressure part of the circulation circuit is reduced at each stop of the engine. Such operations are typically encountered during urban and / or short-term trips and can therefore be used to adjust the concentration of additive.
  • the air flow to the combustion chamber of the engine can be used to know the driving conditions of the vehicle.
  • the concentration of additive can also be adapted according to the pollutant emissions of the engine, and more particularly according to the evolution of these pollutant emissions.
  • the concentration of additive aids in the regeneration of the Particle filter can be increased.
  • control of the injection of additive can then be achieved by comparing the recovered data and the expected theoretical values.
  • a concentration of NOx higher than the expected value is the sign of a degradation of the combustion, it may then be advantageous to increase the concentration of detergent type additive to improve the fuel combustion properties and / or allow better operation of the high pressure injectors.
  • the additive used aids in the regeneration of depollution means, such as a particulate filter
  • the evolution of the pressure drop during the soot loading of the particulate filter can be monitored in order to know the level. of emission in carbonaceous particles.
  • an increase in the pressure drop corresponds to an increase in emissions of carbonaceous particles and can therefore trigger an additive distribution in order to increase the concentration of the latter in the fuel.
  • the concentration of additive may also be adapted according to the quality of the regeneration of pollution control means of the particulate filter type.
  • This example relates only to the additives used to help the regeneration of pollution control means disposed in the vehicle exhaust line, such as a particulate filter.
  • the quality of a regeneration can be evaluated in different ways.
  • the evolution of the pressure drop during the previous regeneration is a first indicator.
  • the concentration of additive can be increased.
  • engine oil the evolution of the properties of the engine lubricating oil, called engine oil, can be observed.
  • the quality of the engine oil tends to deteriorate when the regeneration of the particulate filter is slower than usual. Indeed, slow regeneration requires late post-injections of fuel in the cylinders for a long time so as to maintain a high temperature in the particulate filter throughout the regeneration period. These post-injections or late injections with respect to Top Dead Center in the cylinder compression / decompression cycle result in a portion of the fuel in the engine oil, leading to the dilution of the engine oil. This dilution causes, on the one hand, an increase in the level of liquid in the engine oil circuit and, on the other hand, a deterioration in the properties of the engine oil, in particular a change in its viscosity, its lubricating properties and its acidity. . In addition, the oil can be contaminated with soot or carbonaceous particles.
  • the concentration of additive can be increased so as to assist the next regeneration of the particulate filter.
  • the data can be retrieved from probes or sensors analyzing the engine oil, and sent directly to the control means controlling the injection means of the additive or the vehicle ECU in relation to said control means.
  • the means of analysis of the engine oil used may consist of:
  • a sensor detecting the variation of the dielectric constant of the oil, variation related to the state of degradation and pollution by carbonaceous materials such as soot,
  • a sensor detecting the change in viscosity of the engine oil, and / or a sensor detecting the evolution of the oxidation state and acidity of the oil by monitoring the corrosion of a wire in contact with the oil.
  • the objective of this fifth control mode is to recognize the nature and / or characteristics of the additive contained in the additive reservoir 26.
  • the additive distribution can be adapted to take into account either the identified additive or the precise value of certain physico-chemical characteristics of the batch of additive used.
  • This control mode thus makes it possible to change the nature and / or the characteristics of the additive used during the life of the vehicle, the latter being indeed able to be changed, for example to improve the performance of an aging engine, or more a modification of a fuel standard in a given geographical area, or when the vehicle changes its geographical location, or when modifications have been made to the vehicle, such as the addition of a particulate filter.
  • this control mode allows to adapt precisely to the additive used, the latter may have a viscosity, a density and / or a varying concentration from one batch to another.
  • the tank containing the additive especially when it is in the form of a pocket, can be equipped with a barcode type information system for transmitting information and the dispensing device can be equipped with a means for reading the information.
  • the frequency and / or the duration of opening of the closure means allowing the distribution of the additive are recalculated in order to deliver the desired quantity of active elements in the fuel.
  • the various piloting described above as examples are not limiting, other parameters for analyzing the use of the vehicle, and / or the vehicle running conditions, and / or the evolution the quantity of fuel contained in the fuel tank, and / or the quality of the fuel, and / or the polluting emissions resulting from the combustion of the fuel in the engine, and / or the quality of the regeneration of depollution means disposed in the exhaust line of the engine, and / or the type of additive used, and / or the evolution of the flow rate of additive dispensed into the fuel circulation circuit, which can be used.
  • additives each stored in an independent reservoir can be distributed in the circulation circuit using the dispensing device according to the invention, each additive being injectable according to an embodiment previously described.
  • the choice of additives is made by those skilled in the art taking into account, for example, the geographical area in which the vehicle is marketed, the quality of the fuel available in this geographical area, including the possible presence of biofuels in this area. or the weather conditions that we encounter there.
  • composition of the additive can also be made according to the engine technology of the vehicle such as the nature and design of the high pressure fuel injectors, the type of fuel filter or the pressure available in the high pressure rail. supplying each of the injectors with pressurized fuel.
  • additives can also be done according to the mapping of the polluting emissions of the engine.
  • the additives used are generally in liquid form and can consist of a liquid or a mixture of liquids, a colloidal suspension in a liquid base, or in the form of a gel whose viscosity allows the flow of the additive.
  • additives are ideally liquid in the operating temperature range, generally between 20 and 45 ° C but they can also be in another physical form such as a gel.
  • additives may contain any type of catalyst effective to catalyze the combustion of soot including platinum, strontium, sodium, manganese, cerium, iron and / or their combination.
  • the amount of additive required in the fuel is generally at least about 1 ppm and at most about 100 ppm, this amount being expressed as a mass of metal additive element relative to the fuel mass.
  • additives may be in the form of an organometallic salt or a mixture of organometallic salts which are soluble or dispersible in the fuel.
  • organometallic salts which are soluble or dispersible in the fuel.
  • These salts are characterized in that they comprise at least one metal part and a complexing organic part generally of acid origin, all suspended in a solvent.
  • the BCF additives may also be in the form of an organometallic complex or a mixture of organometallic complexes soluble or dispersible in the fuel. These complexes are characterized in that they comprise at least one metal part and at least two organic complexing parts. Such a product is for example described in GB 2,254,610. Also, the BCF additives may also be in the form of a colloidal suspension or dispersion of nanoparticles, for example amorphous or crystalline metal oxide or oxyhydroxide.
  • colloidal dispersion designates in the present description any system consisting of fine solid particles of colloidal dimensions based on the additive, in suspension in a liquid phase, said particles possibly also possibly containing residual amounts of bound or adsorbed ions such as, for example, nitrates, acetates, citrates, ammoniums or chlorides.
  • colloidal dimensions is meant dimensions of between about 1 nm and about 500 nm. These particles may more particularly have an average size of at most 100 nm and even more particularly of at most 20 nm.
  • the particles may be based on a rare earth and / or a metal selected from groups MA, IVA, VIIA, VIII, IB, MB, IIIB and IVB. the periodic table.
  • Rare earth means the elements of the group constituted by yttrium and the elements of the periodic classification of atomic number inclusive between 57 and 71.
  • the rare earth may be chosen more particularly from cerium, lanthanum, yttrium, neodymium, gadolinium and praseodymium. Cerium can be chosen especially.
  • the metal may be selected from zirconium, iron, copper, gallium, palladium and manganese. Iron can be chosen especially. The iron may be in the form of an amorphous or crystalline compound.
  • Colloidal dispersions based on a combination of cerium and iron may also be mentioned more particularly.
  • the colloidal dispersions may more particularly comprise:
  • particles of the additive of the type described above (in particular rare earth and / or a metal chosen from groups MA, IVA, VIIA, VIII, IB, MB, IIIB and IVB), in suspension in the organic phase;
  • At least one amphiphilic agent at least one amphiphilic agent.
  • colloidal dispersions may especially contain an additive based on iron or an iron compound.
  • the colloidal dispersions may be in various embodiments described in particular the following patent applications: EP 671 205, WO 97/19022, WO 01/10545, WO 03/053560, WO 2008/1 16550.
  • additives different from BCFs and having a function other than a catalytic function, can also be injected into the circulation circuit. These additives allow the improvement of the fuel distribution in the engine and / or the improvement of the performance of the engine operation and / or the improvement of the stability of the operation of the engine.
  • additives for improving the fuel distribution in the engine are, for example, anti-foam additives, such as organosilicones, de-icing additives, such as low molecular weight alcohols or glycols.
  • additives are those improving the operation of the cold engine. These include polymeric additives that reduce the temperature at which fuel is cloudy or freeze, flow-promoting additives, such as high molecular weight polymers that reduce turbulence in fluids, and can increase throughput by 20 to 40 percent. .
  • Corrosion inhibiting additives may also be used.
  • Engine performance improvement additives may also be used, such as procetane additives, prooctane additives, smoke inhibiting additives, friction loss reducing additives called FM additives for "Friction Modifier” or “additive” additives. extreme pressure. .
  • Detergent additives intended to limit any deposit at the injectors can also be used.
  • the fuel can form deposits in the fuel system, especially at the high-pressure fuel injectors and especially at the holes of the injectors.
  • the extent of deposition formation varies with the design of the engine, including the characteristics of the injectors, the fuel composition and the composition of the oil used to lubricate the engine.
  • these detergents are also effective in reducing the negative impact of the presence of metal compounds in the fuel such as Zn or Cu that may arise from a contamination for example of the fuel distribution system or be traces of compounds from the process of synthesis of fatty acid esters.
  • Excessive deposits can alter the aerodynamics of, for example, the jet of fuel from the injector, which in turn can impede the air-fuel mixture. In some cases this results in overconsumption of fuel, loss of engine power and increased pollutant emissions.
  • Detergent additives have the particularity of dissolving already formed deposits and reducing the formation of deposit precursors, in order to avoid the formation of new deposits.
  • An example of a detergent additive is, for example, described in WO 2010/150040.
  • Additives for improving the lubricating power can also be used to avoid wear or seizure of the high-pressure pumps and injectors, the lubricating power of the fuels being poor. They contain a polar group that is attracted to the metal surfaces to form a protective film on the surface.
  • Additives for improving the operating stability of the engines can be envisaged. Indeed, the instability of fuels causes the formation of gums that participate in the fouling of the injectors, the clogging of the fuel filter and fouling of the pumps and the injection system.
  • antioxidant type additives
  • metal deactivator additives to neutralize the catalytic effects of certain metals
  • dispersant additives to disperse the formed particles and prevent agglomeration of rather large particles.
  • the additive is a combination of a detergent additive and a lubricating additive, and possibly a corrosion inhibiting additive.
  • additive combinations can be envisaged such as that combining one or more detergents with a lubricating additive and a corrosion inhibitor.

Abstract

L'invention concerne un dispositif de distribution d'un additif liquide dans un circuit de circulation (2) de carburant pour un moteur à combustion interne, notamment pour un moteur équipant un véhicule, ledit dispositif comportant : - un réservoir (26) contenant l'additif, - une enceinte (24) communiquant avec le circuit de circulation (2) de carburant et à l'intérieur de laquelle est inséré le réservoir (26) contenant l'additif, - des moyens d'injection de l'additif reliés au réservoir (26) et au circuit de circulation (2) de carburant et permettant de distribuer l'additif dans le circuit de circulation (2) de carburant, et - des moyens de commande des moyens d'injection.

Description

Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d'utilisation dudit dispositif Le domaine technique de la présente invention est celui des moteurs à combustion interne, notamment des véhicules automobiles, et plus particulièrement des dispositifs de distribution d'un additif liquide dans le circuit de circulation de carburant du moteur à combustion interne.
Les nouvelles technologies moteur, comme les moteurs diesel à système Common Rail et à injection très haute pression de carburant, sont très performantes mais toutefois très sensibles à la qualité du carburant.
Ainsi, il y a bénéfice à utiliser un carburant contenant des additifs améliorant sa qualité, notamment les additifs d'amélioration de la distribution du carburant dans le moteur, les additifs d'amélioration des performances du fonctionnement du moteur et les additifs d'amélioration de la stabilité du fonctionnement du moteur. Il s'agit par exemple d'agents détergents, d'additifs de lubrification ou encore d'additifs anticorrosion.
Toutefois, la qualité des carburants commerciaux disponibles ne permet pas toujours d'alimenter le moteur avec un carburant contenant suffisamment d'additifs. Par ailleurs, les carburants répondent à travers le monde à des normes plus ou moins exigeantes et possèdent donc une qualité variable. Il y a donc intérêt pour un fonctionnement optimal du moteur à adapter la concentration en additif contenue dans le carburant.
De plus, pour répondre aux nouvelles normes de contrôle des émissions des véhicules, notamment diesel, les véhicules sont progressivement équipés de moyens de dépollution de type filtre à particules. C'est déjà le cas en Europe depuis l'avènement de la norme Euro 5. Dans la plupart des cas, un catalyseur est utilisé pour aider à brûler les suies périodiquement et ainsi régénérer le filtre à particules. L'utilisation d'un additif de régénération du filtre à particules, vectorisé par le carburant alimentant le moteur ou encore Fuel Borne Catalyst (FBC), s'est avéré répondre à de nombreux critères puisqu'il permet de régénérer le filtre à particules plus rapidement et à plus basse température que la technologie concurrente appelée Catalysed Soot Filter (CSF) ou Filtre à Particules Catalysé.
On a donc intérêt à équiper le véhicule d'un dispositif permettant d'introduire dans le carburant un additif d'aide à la régénération du filtre à particules et/ou des additifs carburants améliorant la qualité du carburant et/ou le fonctionnement du moteur et/ou sa durabilité. On sait qu'il existe des systèmes permettant d'introduire dans le carburant de tels additifs, notamment les additifs catalytiques FBC d'aide à la régénération des filtres à particules. Ces systèmes reposent généralement sur un réservoir de grande taille de 2 à 3 litres minimum de volume renfermant la réserve d'additif et qu'il faut implanter dans des zones proches du réservoir à carburant.
Le dosage de l'additif est alors généralement réalisé à l'aide de pompes doseuses de haute précision pilotées à l'aide d'une unité électronique (ou ECU) additionnelle. Ce dispositif de dosage est géré de manière fine afin d'assurer une teneur en additif dans le carburant suffisante pour permettre une bonne régénération du filtre à particules, mais pas trop excessive pour éviter l'encrassement prématuré du filtre à particules via les résidus minéraux de régénération du filtre à particules qui restent collectés en son sein.
Classiquement lorsque le niveau de carburant augmente dans le réservoir, suite à l'ajout de carburant, un calculateur indique à la pompe la quantité d'additif à injecter dans le réservoir de façon à maintenir une concentration en additif constante dans le carburant et ceci à tout moment.
Ces pompes doseuses d'une extrême précision, ainsi que la gestion de l'ECU, augmentent significativement le coût de ces dispositifs de distribution d'additif.
De plus, l'utilisation d'un tel dispositif de distribution d'additif implique d'asservir le système de dosage de l'additif et de bien vérifier son état de fonctionnement, ce qui reste particulièrement intrusif dans la gestion des modes de défaut du véhicule.
En terme de maintenance, le remplissage du réservoir est plutôt difficile notamment car il s'effectue souvent à travers une connectique complexe. De plus, selon son emplacement, l'accessibilité au réservoir peut également être difficile.
Un dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne d'un véhicule a été protégé par la demanderesse sous le numéro de dépôt FR 1 1 00316. Ce dispositif comporte :
- un réservoir contenant l'additif,
- une enceinte communiquant avec le circuit de circulation de carburant et à l'intérieur de laquelle est inséré le réservoir contenant l'additif, au moins une paroi mobile et étanche entre ladite enceinte et ledit réservoir assurant d'une part une séparation étanche et d'autre part maintenant une pression identique entre l'additif dans le réservoir et le carburant dans l'enceinte,
- des moyens d'injection de l'additif reliés au réservoir et au circuit de circulation de carburant et permettant de distribuer l'additif dans le circuit de circulation de carburant, lesdits moyens comprenant un canal de distribution reliant le réservoir et le circuit de circulation de carburant. De même, la demanderesse a également protégé l'intégration d'un dispositif de distribution d'un additif liquide dans un réservoir à carburant sous le numéro de dépôt FR 1 1 55310.
De tels dispositifs sont simples à mettre en œuvre et plus économiques que les pompes doseuses haute précision couramment utilisées.
Toutefois, de tels dispositifs ne permettent pas d'adapter l'apport en additif, notamment aux conditions de roulage du véhicule.
L'un des buts de l'invention est de proposer un dispositif de distribution tel que décrit ci-dessus permettant d'allonger l'autonomie du réservoir d'additif en limitant l'apport en additif ou même en l'arrêtant pour éviter, sous certaines conditions, une concentration excessive d'additif dans le carburant.
L'un des buts de l'invention est également d'optimiser la concentration en additif dans le carburant afin de trouver un compromis entre la quantité nécessaire suffisante et une surconcentration pouvant réduire l'autonomie du réservoir d'additif et/ou avoir des répercussions négatives sur d'autres organes du véhicule, tel qu'un encrassement du filtre à particules.
De même, l'invention vise à optimiser l'injection d'additif de façon à ce que l'injection n'ait lieu que lorsque le véhicule en a besoin, notamment en fonction des conditions de roulage et/ou la qualité du carburant.
A cet effet, l'invention a pour objet un dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, notamment pour un moteur équipant un véhicule, ledit dispositif comportant :
- un réservoir contenant l'additif,
- une enceinte communiquant avec le circuit de circulation de carburant et à l'intérieur de laquelle est inséré le réservoir contenant l'additif, au moins une paroi mobile et étanche entre ladite enceinte et ledit réservoir assurant d'une part une séparation étanche et d'autre part maintenant une pression identique entre l'additif dans le réservoir et le carburant dans l'enceinte,
- des moyens d'injection de l'additif reliés au réservoir et au circuit de circulation de carburant et permettant de distribuer l'additif dans le circuit de circulation de carburant, lesdits moyens comprenant un canal de distribution reliant le réservoir et le circuit de circulation de carburant, et
- des moyens de commande des moyens d'injection, caractérisé en ce que les moyens de commande sont associés :
- à des moyens d'analyse d'au moins un paramètre représentatif de l'utilisation du véhicule, et/ou - à des moyens d'analyse des conditions de roulage du véhicule, et/ou
- à des moyens d'analyse de l'évolution de la quantité de carburant contenu dans un réservoir à carburant, ledit réservoir étant accessible à un utilisateur afin d'effectuer l'ajout de carburant, et/ou
- à des moyens d'analyse de la qualité du carburant, et/ou
- à des moyens d'analyse des émissions polluantes issues de la combustion du carburant dans le moteur, et/ou
- à des moyens d'analyse de la qualité de la régénération d'un filtre à particules disposé dans la ligne d'échappement du moteur, et/ou
- à des moyens d'analyse du type d'additif utilisé, et/ou
- à des moyens d'analyse de l'évolution du débit d'additif distribué dans le circuit de circulation de carburant, et/ou
- à des moyens d'analyse des conditions climatiques,
pour contrôler le fonctionnement des moyens d'injection.
Le dispositif de distribution selon l'invention peut comporter une ou plusieurs des caractéristiques suivantes :
- les moyens d'injection peuvent comprendre un moyen d'obturation du canal de distribution, le moyen d'obturation étant adapté pour obturer totalement ou partiellement le canal de distribution, le moyen d'obturation étant notamment de type clapet ou électrovanne ;
- le dispositif de distribution peut comprendre un capteur de température destiné à indiquer la température du carburant dans le circuit de circulation de carburant, notamment à proximité du canal de distribution, et/ou de l'additif, la température de l'additif et/ou du carburant constituant un paramètre représentatif de l'évolution du débit d'additif et/ou de l'utilisation du véhicule et/ou des conditions climatiques ;
- le dispositif de distribution peut comprendre un capteur de température extérieure au véhicule, la température extérieure constituant un paramètre représentatif des conditions climatiques ;
- le dispositif de distribution peut comprendre un capteur détectant la mise sous- tension du véhicule et/ou d'un élément appartenant au circuit de circulation de carburant, notamment un filtre à carburant, la mise sous-tension constituant un paramètre représentatif de l'utilisation du véhicule ;
- le dispositif de distribution peut comprendre des capteurs de pression mesurant la pression au niveau d'un orifice de distribution de l'additif disposé à une extrémité du canal de distribution située au niveau du circuit de circulation de carburant, et au niveau d'un orifice d'entrée du carburant disposé en amont de l'orifice de distribution dans le circuit de circulation, une différence de pression entre les orifices constituant un paramètre représentatif de l'utilisation du véhicule et/ou de l'évolution du débit d'additif et/ou des conditions de roulage ;
- le dispositif de distribution peut comprendre un capteur de bruit disposé de préférence à proximité du moteur, la détection d'un bruit par le capteur constituant un paramètre représentatif de l'utilisation du véhicule ;
- le dispositif de distribution peut comprendre un moyen de localisation de type GPS ou un capteur de mouvement, la détection d'un mouvement par le moyen de localisation ou le capteur de mouvement constituant un paramètre représentatif de l'utilisation du véhicule et/ou des conditions de roulage du véhicule ;
- la vitesse moyenne et/ou la vitesse instantanée du véhicule peut constituer un paramètre représentatif des conditions de roulage du véhicule ;
- la température des gaz d'échappement peut constituer un paramètre représentatif des conditions de roulage du véhicule ;
- l'évolution de la pression dans le circuit de circulation, notamment dans un circuit haute pression du véhicule composé d'une pompe haute pression et d'une rampe commune d'injection, peut constituer un paramètre représentatif des conditions de roulage du véhicule ;
- l'évolution du débit d'air alimentant la chambre de combustion du moteur peut constituer un paramètre représentatif des conditions de roulage du véhicule ;
- l'évolution du débit de carburant dans le circuit de circulation peut constituer un paramètre représentatif de l'évolution du débit d'additif ;
- l'évolution des émissions de NOx, de suies ou d'autres particules carbonées ou des rapports NOx suies et/ou NOx particules peut constituer des paramètres représentatifs des émissions polluantes issues de la combustion du carburant ;
- l'évolution de la qualité et/ou de la quantité d'huile permettant la lubrification du moteur peut constituer un paramètre représentatif de l'évolution de la qualité de la régénération du filtre à particules disposé dans la ligne d'échappement du moteur ;
- le dispositif de distribution peut comprendre un moyen de localisation de type GPS indiquant la zone géographique dans laquelle le véhicule se trouve, la localisation du véhicule fournie par le moyen constituant un paramètre représentatif de la qualité du carburant commercialisé dans la zone géographique ;
- des paramètres représentatifs de la combustion du carburant dans les cylindres du moteur peuvent constituer un paramètre représentatif de la qualité du carburant ;
- la consommation en carburant du moteur peut constituer un paramètre représentatif des conditions de roulage du véhicule ; - l'additif peut être un additif de régénération de filtre à particules à base d'une terre rare et/ou d'un métal choisi dans les groupes MA, IVA, VIIA, VIII, IB, MB, IIIB et IVB de la classification périodique ;
- l'additif peut se présenter sous forme d'une dispersion colloïdale ;
- les particules de la dispersion colloïdale peuvent être à base de cérium et/ou de fer ;
- l'additif peut être une combinaison d'une dispersion colloïdale de particules qui comprend une phase organique et au moins un agent amphiphile et d'un détergent ;
- l'additif peut être un additif permettant l'amélioration de la distribution du carburant dans le moteur et/ou l'amélioration des performances du fonctionnement du moteur et/ou encore l'amélioration de la stabilité du fonctionnement du moteur ;
- l'additif peut être une combinaison d'un additif détergent et d'un additif de lubrification.
L'invention s'applique notamment aux moteurs à combustion utilisant de l'essence ou du diesel comme carburant.
De même, les moteurs équipés du dispositif selon l'invention peuvent équiper des installations stationnaires, ou des véhicules dits « off road », tels que des engins de chantier, ou des véhicules dits « on road », tels que des véhicules automobiles.
L'invention concerne également un véhicule automobile comportant :
- un circuit de circulation de carburant pour un moteur à combustion interne du véhicule,
- un réservoir contenant un additif liquide,
- une enceinte communiquant avec le circuit de circulation de carburant et à l'intérieur de laquelle est inséré le réservoir contenant l'additif, au moins une paroi mobile et étanche entre ladite enceinte et ledit réservoir assurant d'une part une séparation étanche et d'autre part maintenant une pression identique entre l'additif dans le réservoir et le carburant dans l'enceinte,
- des moyens d'injection de l'additif reliés au réservoir et au circuit de circulation de carburant et permettant de distribuer l'additif dans le circuit de circulation de carburant, lesdits moyens comprenant un canal de distribution reliant le réservoir et le circuit de circulation de carburant ,
caractérisé en ce que l'additif est injecté à l'aide d'un dispositif de distribution selon l'invention.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel la distribution d'additif est arrêtée lorsque le moteur du véhicule ne fonctionne pas ou lorsque que le véhicule est à l'arrêt. L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel la distribution d'additif est activée lorsque le moyen d'obturation est sous alimentation électrique.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel la distribution d'additif est activée lorsque d'une différence de pression supérieure à 2 millibars entre l'orifice de distribution de l'additif disposé à une extrémité du canal de distribution, et l'orifice d'entrée du carburant disposé en amont dans le circuit de circulation est mesurée.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel la distribution d'additif est activée lorsque la température du carburant circulant au niveau du circuit de circulation et/ou de l'additif est supérieure à une valeur seuil représentative d'un moteur en fonctionnement, par exemple supérieure à 15°C.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel la distribution d'additif est arrêtée lorsque la température extérieure et/ou la température de l'additif et/ou la température du carburant dans le circuit de circulation de carburant sont inférieures à une température minimale seuil ou supérieure à une température maximale seuil, lesdites températures minimale et maximale seuil étant définies pour un additif donné, la température minimale seuil pouvant correspondre à une valeur pour laquelle la viscosité de l'additif atteint une valeur seuil et la température maximale seuil pouvant correspondre à la valeur de vaporisation de l'additif.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel l'injection est discontinue et en ce que la fréquence et/ou la durée d'ouverture du moyen d'obturation dépendent des informations recueillies par les moyens de commande, la distribution d'additif étant réalisée de manière à garder une concentration d'additif constante dans le carburant ou à injecter de l'additif dans le circuit de circulation du carburant uniquement lorsque cela est nécessaire.
Selon un premier mode de réalisation, la fréquence de distribution et/ou la durée de distribution d'additif dépendent soit du temps d'utilisation du véhicule et/ou soit du nombre de kilomètres parcourus par le véhicule et/ou soit de la consommation en carburant du véhicule.
Selon un second mode de réalisation, la fréquence et/ou la durée de distribution d'additif dépendent de la température du carburant et/ou de l'additif, et/ou de la pression entre l'orifice de distribution de l'additif disposé à une extrémité du canal de distribution, et l'orifice d'entrée du carburant disposé en amont dans le circuit de circulation. L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel l'additif est injecté à chaque ajout de carburant dans le réservoir à carburant, le volume d'additif ajouté pouvant être fixe ou variable, le volume variable étant déterminé selon la quantité de carburant ajoutée.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel l'additif est injecté lorsque l'analyse des émissions polluantes issues de la combustion du carburant indique que les gaz et/ou les particules émis divergent de la valeur théorique attendue.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel l'additif est injecté avant la régénération du filtre à particules.
L'invention concerne également un procédé d'utilisation d'un dispositif de distribution selon l'invention pour lequel une quantité supplémentaire d'additif est injectée avant la régénération du filtre à particules lorsque la précédente régénération n'a pas été de bonne qualité.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels :
la figure 1 est une représentation schématique d'un dispositif de distribution d'un additif dans un circuit de circulation de carburant de moteur à combustion interne ;
la figure 2 est une représentation schématique identique à celle de la figure 1 , le dispositif de distribution d'additif étant disposé dans un réservoir de carburant ;
la figure 3 est une vue en coupe illustrant un dispositif de distribution d'additif liquide ; et
les figures 4 à 7 illustrent différentes stratégies d'ouverture/fermeture d'un moyen d'obturation contrôlant la distribution d'additif dans le circuit de circulation de carburant.
La figure 1 représente schématiquement un circuit 2 de circulation de carburant pour moteur à combustion interne de véhicule automobile.
Classiquement, le circuit 2 de circulation de carburant est disposé entre un réservoir 4 de carburant et la rampe haute pression 6 (également appelée « common rail ») et assure la circulation du carburant entre le réservoir et la rampe haute pression, et éventuellement le retour du carburant vers le réservoir 4. Le circuit de circulation comporte un filtre 8 destiné à filtrer le carburant et une pompe haute pression 10. La pompe haute pression 10 et la rampe haute pression 6 constituent le système d'injection du carburant.
Un premier conduit 12, dit « ligne d'alimentation », assure la circulation de carburant depuis le réservoir 4 vers la rampe haute pression 6 et un second conduit 14, dit « ligne retour » assure la circulation de carburant depuis le système d'injection vers le réservoir 4. Le carburant est donc pompé dans le réservoir 4, puis filtré dans le filtre 8 et est envoyé sous pression, par l'intermédiaire de la pompe 10, dans la rampe haute pression 6 puis une partie est dirigée vers les injecteurs 16 du moteur et une autre partie retournée au réservoir 4 par la ligne retour 14. Une partie du carburant peut également être envoyé de la pompe haute pression 10 vers la ligne retour 14.
Le circuit 2 de circulation de carburant comporte également un dispositif 18 de distribution d'un additif liquide selon l'invention dont le fonctionnement sera décrit par la suite. A titre illustratif et non limitatif, le dispositif 18 de distribution d'un additif a été représenté sur la ligne d'alimentation 12 mais ledit dispositif 18 de distribution d'un additif peut également être disposé sur la ligne retour 14 de carburant.
En variante, comme représenté à la figure 2, le dispositif 18 de distribution d'un additif peut également être disposé dans le réservoir de carburant 4.
Dans ce mode de réalisation, le circuit 2 de circulation de carburant assure la circulation du carburant entre l'intérieur du réservoir de carburant 4 et le moteur, et éventuellement le retour du carburant vers le réservoir 4. Ainsi, la partie du circuit 2 de circulation de carburant supportant le dispositif 18 de distribution s'étend à l'intérieur du réservoir de carburant 4.
La figure 3 représente, une vue de coupe d'un exemple de réalisation d'un dispositif 18 de distribution. Dans cet exemple de réalisation, le dispositif 18 de distribution d'un additif comporte une tête 20 et une cartouche remplaçable 22 formant une enceinte d'additif 24 dans laquelle est disposé un réservoir 26 d'additif liquide. La tête 20 comporte un orifice 28 d'entrée de carburant, un orifice 30 de sortie du carburant, un venturi 32 situé entre les orifices d'entrée 28 et de sortie du carburant 30, un conduit 34 assurant un passage de carburant entre l'orifice d'entrée du carburant 28 et l'enceinte d'additif 24 à l'intérieur de la cartouche remplaçable 22 et un canal 36 de distribution d'additif assurant le passage de l'additif liquide du réservoir 26 vers un orifice 38 de diffusion d'additif dans le venturi 32.
Dans cet exemple de réalisation, le canal 36 de distribution d'additif présente une première portion 40 et une seconde portion 42 de section réduite. Un actionneur 44, constitué d'un doigt 46 et d'une bobine 48, permet d'obturer le passage entre les portions 40 et 42 du canal de distribution d'additif.
Dans cet exemple de réalisation, le réservoir 26 d'additif se présente sous la forme d'une poche souple 50 constituant une paroi mobile et étanche entre le carburant présent dans l'enceinte d'additif 24 et l'additif à l'intérieur du réservoir 26.
Le fonctionnement de l'invention est le suivant :
Le dispositif 18 de distribution d'un additif est connecté au circuit de circulation 2. Le carburant circule donc de manière continue entre les orifices 28 et 30 d'entrée et de sortie du carburant.
Le venturi 32, qui constitue un moyen connu de génération de différence de pression, génère une dépression entre l'orifice 38 de distribution d'additif et l'orifice 28 d'entrée de carburant.
L'enceinte d'additif 24, communiquant par le conduit 34 avec l'orifice 28 d'entrée de carburant, est rempli de carburant à la même pression que le carburant circulant à l'orifice 28 d'entrée de carburant, la poche souple 50, constituant la paroi mobile et étanche du réservoir d'additif maintient une pression identique entre l'additif dans le réservoir d'additif 26 et le carburant dans l'enceinte 24.
La pression dans le réservoir 26 d'additif est donc supérieure à la pression régnant au niveau de l'orifice 38 de diffusion d'additif, ce qui contraint l'additif à se déplacer du réservoir 26 vers l'orifice 38 de diffusion d'additif puis à se diffuser dans le carburant circulant dans le venturi 32 et donc dans le circuit de circulation de carburant.
L'actionneur 44 permet d'empêcher totalement ou partiellement la circulation de l'additif.
Dans cet exemple de réalisation, l'actionneur 44 illustre un moyen électromécanique d'obturation totale ou partielle du canal de distribution de l'additif, mais un clapet ou une électrovanne peuvent, par exemple, également être utilisés. Dans la suite de la description ces différents moyens seront nommés moyens d'obturation.
De plus, des moyens de dépollution, tel qu'un filtre à particules catalysé ou non, non représenté, peuvent être disposés dans la ligne d'échappement du véhicule.
Les filtres à particules catalysés, dits de type CSF, contiennent généralement un catalyseur aidant directement ou indirectement la régénération du filtre à particules enduit dans la porosité de ses parois filtrantes. Ces filtres à particules de type CSF peuvent notamment contenir des métaux précieux comme le platine et/ou le palladium. Cependant dans certaines conditions de roulage, la régénération de ces filtres à particules de type CSF peut être améliorée à l'aide d'additif injecté dans le carburant. Par la suite on utilisera le terme de filtre à particules pour évoquer indifféremment un filtre à particule non catalysé ou un filtre à particules catalysé.
Le pilotage des moyens d'obturation visant à contrôler le débit d'additif distribué dans le circuit de distribution va à partir de ce point être décrit plus particulièrement, les différents modes de pilotage étant regroupés selon leur but à atteindre.
Le pilotage vise à injecter de façon discontinue l'additif et permet ainsi de piloter la fréquence d'obturation/ouverture du canal de distribution 36 et/ou l'amplitude des durées d'ouverture et/ou de fermeture, et/ou de moduler le degré d'obturation dans le cas d'un moyen d'obturation partiel.
Premier mode de pilotage
L'objectif de ce premier mode de pilotage est de minimiser les fluctuations de concentration en additif dans le carburant, notamment dans le réservoir de carburant 4.
Ainsi, ce premier mode de pilotage vise à détecter les périodes d'arrêt du véhicule et à interrompre la distribution d'additif lorsque de telles périodes sont détectées.
Ce premier mode de pilotage permet aussi d'interrompre la distribution de l'additif dans le circuit de circulation au cours de certaines périodes de la vie du véhicule dans l'objectif d'utiliser l'additif à bon escient et/ou d'éviter que le réservoir contenant l'additif ne se vide trop rapidement.
Ainsi, dans ce premier mode de pilotage, l'interruption de la distribution d'additif peut avoir lieu lorsque l'arrêt du moteur du véhicule est détecté. Ceci permet d'éviter un excès d'additif dans le carburant alors que le véhicule est stationné et ne consomme donc pas l'additif injecté. Un tel arrêt de la distribution d'additif permet d'augmenter l'autonomie du réservoir d'additif.
De plus, lorsque l'additif utilisé est destiné à aider la régénération d'un filtre à particules disposé dans la ligne d'échappement du véhicule, des exemples d'additifs seront donnés ultérieurement, il est également intéressant de limiter la concentration en additif dans le carburant afin de ne pas boucher trop rapidement les canaux du filtre à particules par les résidus minéraux de l'additif. Le pilotage de la distribution d'additif vise dans ce cas à ce que la concentration soit comprise entre une valeur minimale, pour laquelle la régénération du filtre à particules est facilitée, et une valeur maximale, au-delà de laquelle les canaux du filtre à particules se bouchent rapidement.
Afin de mettre en œuvre ce premier mode de pilotage, le dispositif de distribution selon l'invention peut comprendre des moyens d'analyse d'au moins un paramètre représentatif de l'utilisation du véhicule, tels que des moyens de détection du fonctionnement du moteur et/ou visant à indiquer si le véhicule est en mouvement. Notamment, ces moyens peuvent être adaptés pour détecter la mise sous-tension du filtre à carburant et/ou des moyens d'obturation du canal de distribution, et/ou plus généralement la mise sous tension du véhicule.
Ces moyens peuvent également comprendre un capteur de température adapté pour détecter la température de l'additif et/ou du carburant circulant au niveau du circuit de circulation du carburant. En effet, ces températures sont, lorsque le moteur est en fonctionnement, supérieures à une valeur seuil, par exemple supérieure à 15°C.
De même, ces moyens peuvent comprendre des capteurs de pression visant à mesurer la pression au niveau de l'orifice 38 de distribution de l'additif et au niveau de l'orifice 28 d'entrée de carburant, une différence de pression entre ces deux orifices supérieure à une valeur seuil, généralement supérieure à 2 mbars, indiquant la circulation du carburant et ainsi le fonctionnement du moteur.
La figure 4 illustre ce mode de fonctionnement. La courbe 52 de cette figure représente un exemple d'évolution en fonction du temps de la différence de pression entre les orifices 38 et 28, le temps étant représenté selon l'axe des abscisses. La courbe 54 représente l'évolution en fonction du temps de l'état du moyen d'obturation selon la différence de pression, la portion de trait disposée au niveau de l'abscisse représentant l'état de fermeture du moyen d'obturation, alors que la portion de trait disposée à distance de l'abscisse représente l'état d'ouverture du moyen d'obturation. La courbe 56 représente le seuil de déclenchement, le moyen d'obturation étant fermé pour une valeur de la différence de pression inférieure à ce seuil et ouvert pour une valeur de la différence de pression supérieure à ce seuil. Ainsi, tant que la différence de pression dépasse le seuil de déclenchement, le moyen d'obturation reste ouvert de manière à permettre l'ajout d'additif, l'ajout d'additif étant stoppé dès que la différence de pression présente une valeur inférieure à la valeur de seuil déterminée.
Une courbe identique peut être obtenue lorsque le pilotage est réalisé en utilisant une valeur de température seuil déclenchant l'ouverture/la fermeture du moyen d'obturation.
De même, ces moyens peuvent comprendre un moyen de géolocalisation de type GPS ou un capteur de mouvement indiquant le déplacement du véhicule.
De même, ces moyens peuvent comprendre un capteur de bruit disposé à proximité du moteur, la détection d'un bruit par ledit capteur constituant un paramètre représentatif de l'utilisation du véhicule.
De préférence, dans ce premier mode de pilotage, un moyen d'obturation permettant d'obturer totalement le canal de distribution est utilisé, par exemple un thermoclapet, un clapet « parapluie », un clapet anti-retour, un clapet à commande hydraulique ou électromécanique ou une électrovanne.
Second mode de pilotage
L'objectif de ce second mode de pilotage est d'interrompre la distribution d'additif lorsque les conditions, notamment climatiques, ne sont pas favorables à cette dernière.
A cet effet, un capteur de température visant à prendre la température de l'additif et/ou du carburant dans le circuit de circulation du carburant, disposé notamment à proximité du dispositif de distribution 18, peut être utilisé.
Dès que le capteur de température détecte une température inférieure à une température minimale seuil ou une température supérieure à une température maximale seuil, le dispositif de distribution interrompt la distribution d'additif dans le circuit de circulation.
Selon l'additif utilisé, la température minimale seuil peut correspondre à une température pour laquelle l'additif possède une viscosité trop élevée ou pour laquelle l'additif a atteint son point trouble voire prend en masse ; la température maximale seuil peut correspondre à la valeur de vaporisation de l'additif, les températures minimale et maximale seuil étant définies pour un additif donné.
En variante, un capteur de température extérieure peut être utilisé. Cette variante est particulièrement intéressante lorsque le dispositif de distribution 18 est disposé dans le réservoir à carburant 4. En effet, dans cette configuration le dispositif de distribution 18 est plus sensible aux variations de la température extérieure.
Dans ce second mode de pilotage, on vise à éviter toute dégradation du dispositif de distribution et/ou du circuit de circulation créée par l'additif dont l'état physique a changé. En effet, lorsque par exemple la température est inférieure à la température minimale seuil, une viscosité trop importante de l'additif peut notamment boucher le canal 36 de distribution d'additif.
Troisième mode de pilotage
L'objectif de ce troisième mode de pilotage est également de minimiser les fluctuations de concentration en additif dans le carburant.
Dans ce troisième mode de pilotage, la distribution d'additif est réalisée de façon à minimiser les fluctuations de concentration en additif dans le carburant suite aux fluctuations de paramètres externes au dispositif pouvant faire varier la concentration en additif. Dans ce troisième mode de pilotage, la fréquence et/ou la durée d'ouverture du moyen d'obturation ne sont pas dépendantes du fonctionnement du moteur. Ainsi, même lorsque le moteur fonctionne la distribution d'additif peut être interrompue.
Pour un additif donné et un dispositif de distribution donné, ce troisième mode de pilotage vise à corriger les fluctuations dues, notamment à l'évolution de la quantité de carburant dans le réservoir à carburant du véhicule. Cette évolution peut être liée d'une part aux conditions de roulage du véhicule lorsque le moteur est en fonctionnement, et notamment à la consommation en carburant, cette dernière étant continue mais variable dans le temps, et d'autre part à l'ajout de carburant dans le réservoir par l'utilisateur, engendrant une augmentation brutale de la quantité de carburant dans le réservoir.
Comme dans le premier mode de pilotage, le pilotage peut se faire en pilotant l'ouverture/fermeture du moyen d'obturation à partir soit de paramètres gérés de façon autonome par le dispositif, soit à partir de paramètres externes fournis par exemple par l'unité électronique (ECU) du véhicule, le pilotage consistant à adapter la fréquence et/ou la durée d'ouverture et/ou l'amplitude d'ouverture du moyen d'obturation pour permettre d'adapter soit la quantité d'additif introduite à chaque injection, soit l'intervalle de temps entre chaque injection, la quantité injectée étant alors identique.
Différentes variantes de pilotage peuvent être envisagées afin de garder une concentration moyenne en additif sensiblement constante dans le carburant du réservoir et/ou de réduire les fluctuations minimales et maximales de cette concentration.
Une première variante consiste à injecter à fréquence régulière de l'additif, la durée de distribution de l'additif étant constante à chaque période de distribution.
La fréquence et la durée de distribution seront évaluées selon la consommation moyenne en carburant du véhicule établie par le constructeur du véhicule et/ou la taille du réservoir à carburant, ces deux paramètres étant connus lors de la conception du véhicule.
Selon cette première variante, la fréquence peut être soit temporelle, par exemple en injectant toutes les heures de l'additif dans le circuit de circulation, soit dépendante du nombre de kilomètres parcourus par le véhicule, par exemple en injectant tous les 100 km de l'additif. A cet effet, la distance parcourue par le véhicule peut être récupérée soit localement par une puce GPS, ou tout autre système de géolocalisation, installé au niveau du dispositif de distribution, soit en récupérant les données de l'ECU ou du GPS du véhicule.
Une seconde variante consiste à injecter de l'additif à fréquence variable, la durée de distribution de l'additif pouvant également être variable d'une période de distribution à l'autre. La fréquence et/ou la durée de distribution sont ajustées en fonction de la consommation moyenne du véhicule. A cet effet, la consommation moyenne du véhicule peut être obtenue en récupérant les données de l'ECU du véhicule.
Par rapport à la première variante, cette seconde variante présente l'avantage d'être plus précise en adaptant la quantité d'additif à injecter à la consommation réelle du véhicule.
Une troisième variante consiste à injecter de l'additif à chaque ajout de carburant dans le réservoir du véhicule, la quantité d'additif distribuée étant constante à chaque période de distribution.
Cet ajout d'additif peut être réalisé dès que l'ouverture de la trappe à carburant permettant le remplissage du réservoir est détectée ou dès qu'un signal en provenance de l'ECU du véhicule indique que le volume de carburant dans le réservoir a augmenté.
La quantité d'additif à injecter et donc la durée d'injection peut alors être calculée en considérant un ajout standard de carburant dans le réservoir. On considère alors que l'utilisateur n'attend pas de vider complètement le réservoir de son véhicule avant de remplir celui-ci. Ainsi, par exemple pour un réservoir dont la contenance totale est de 60 litres, la quantité d'additif injectée sera évaluée de manière à enrichir 40 litres de carburant.
Une quatrième variante consiste à injecter de l'additif à chaque ajout de carburant dans le réservoir du véhicule, la quantité d'additif distribuée étant variable à chaque période de distribution selon la quantité de carburant ajoutée.
Cette variante permet d'ajuster la quantité d'additif à la quantité de carburant réellement introduite lors de l'ajout de carburant dans le réservoir. Cet ajout d'additif peut être réalisé dès qu'un signal en provenance de l'ECU du véhicule indique qu'une certaine quantité de carburant a été ajoutée dans le réservoir, la quantité d'additif et donc la durée de distribution étant adaptées à la quantité de carburant ajoutée.
La figure 5 illustre ce mode de fonctionnement. La courbe 58 de cette figure représente un exemple d'évolution en fonction du temps du volume de carburant dans le réservoir 4, le temps étant représenté selon l'axe des abscisses. Chaque augmentation brutale référencée 60 correspondant à un ajout de carburant dans le réservoir. La courbe 62 représente l'évolution en fonction du temps de l'état du moyen d'obturation selon le volume de carburant ajouté, la portion de trait disposée au niveau de l'abscisse représentant l'état de fermeture du moyen d'obturation, alors que la portion de trait disposée à distance de l'abscisse représente l'état d'ouverture du moyen d'obturation.
Ainsi lorsque le niveau de carburant est stabilisé dans le réservoir, la quantité de carburant ajoutée est calculée de manière à connaître la quantité d'additif à ajouter, ce qui permet de calculer le temps d'ouverture du moyen d'obturation pour délivrer une quantité d'additif proportionnelle à la quantité de carburant ajoutée.
Ici, la figure 5 illustre trois ajouts successifs de carburant de volume variable, correspondant respectivement pour le premier ajout à un volume V, pour le second ajout à un tiers de ce volume V et pour le troisième ajout à la moitié de ce volume V. Comme on peut le constater sur la figure 5, chaque durée d'ouverture du moyen d'obturation est alors proportionnelle au volume ajouté et correspond respectivement à une durée T, à un tiers de cette durée T et à la moitié de cette durée T.
De même, les fluctuations de concentration en additif dans le carburant du réservoir peuvent être liées à une variation du débit d'additif suite à une variation de la température régnant au niveau du circuit de circulation et/ou à une variation du débit de carburant dans le circuit de circulation.
En effet, la température influence la viscosité de l'additif et peut donc modifier le débit de l'additif lors de sa distribution. Ainsi, généralement une augmentation de la température réduit la viscosité et la densité de l'additif et entraine une augmentation du débit massique d'additif. L'origine de cette fluctuation peut être notamment liée à la température de l'air environnant le dispositif de distribution, à la position du dispositif de distribution dans le véhicule ou à la température du carburant, les variations de température du circuit de circulation de carburant pouvant classiquement pour un véhicule automobile varier de la température ambiante, variable selon la saison, jusqu'à des températures allant jusqu'à typiquement 120°C.
Il en est de même pour le carburant dont la densité et la viscosité sont impactées par l'évolution de la température au niveau du circuit de circulation. Ces modifications peuvent conduire à une évolution sensible de la concentration en additif dans le carburant, les variations de la densité et de la viscosité du carburant en fonction de la température étant bien connues.
Avantageusement, un capteur de température installé au niveau du dispositif de distribution permet de connaître la température du carburant circulant au niveau du dispositif. Selon la valeur de la température, la durée et/ou la fréquence d'injection et/ou l'amplitude d'ouverture du moyen d'obturation peuvent être adaptées.
La figure 6 illustre ce mode de fonctionnement. La courbe 64 de cette figure représente un exemple d'évolution en fonction du temps de la température mesurée au niveau du dispositif de distribution, le temps étant représenté selon l'axe des abscisses.
La courbe 66 représente l'évolution en fonction du temps de l'état du moyen d'obturation selon la température mesurée, la portion de trait disposée au niveau de l'abscisse représentant l'état de fermeture du moyen d'obturation, alors que la portion de trait disposée à distance de l'abscisse représente l'état d'ouverture du moyen d'obturation. La courbe 68 représente le seuil de déclenchement, le moyen d'obturation étant fermé pour une valeur de la température inférieure à ce seuil et ouvert pour une valeur de la température supérieure à ce seuil. Ainsi, l'ajout d'additif n'est permis que lorsque la température présente une valeur supérieure à la valeur seuil déterminée.
Comme représenté, ce mode de pilotage est adapté pour prendre en compte l'évolution des caractéristiques physico-chimiques du carburant et de l'additif avec la température. Dans cet exemple, l'additif utilisé présente une viscosité qui augmente lorsque la température diminue. Ainsi, l'ouverture du moyen d'obturation se fait régulièrement et chaque dose d'additif injecté est adaptée à la température mesurée, la durée de l'ouverture étant d'autant plus longue que la température est faible.
De même, le débit du carburant dans le circuit de circulation peut varier notamment pour les véhicules équipés de pompe à carburant basse pression, dont le débit est variable pour permettre d'économiser de l'énergie lorsque la consommation en carburant est moindre. Les pompes à débit variable permettent, par exemple, des débits de 1 10 l/h +/- 50 l/h dans le cas d'un moteur de véhicule particulier (typiquement 2L de cylindrée).
Les fluctuations de débit de carburant engendrent une fluctuation de la différence de pression entre l'orifice 38 de distribution de l'additif et l'orifice 28 d'entrée de carburant, ce qui influence le débit d'additif. Ainsi, une augmentation du débit de circulation du carburant engendre une augmentation de la différence de pression entre l'orifice 38 de distribution de l'additif et l'orifice 28 d'entrée de carburant, ce qui entraîne une augmentation du débit d'injection de l'additif.
Avantageusement, des capteurs de pression installés au niveau des orifices 28 et 38 peuvent permettre de contrôler les fluctuations de débit de carburant et donc de connaître l'évolution du débit d'additif dans le circuit de distribution. Selon les valeurs recueillies par les capteurs, la durée et/ou la fréquence d'injection peuvent être adaptées.
La figure 7 illustre ce mode de fonctionnement. La courbe 70 de cette figure représente un exemple d'évolution en fonction du temps de la différence de pression entre les orifices 38 et 28, le temps étant représenté selon l'axe des abscisses. La courbe 72 représente l'évolution en fonction du temps de l'état du moyen d'obturation selon la différence de pression, la portion de trait disposée au niveau de l'abscisse représentant l'état de fermeture du moyen d'obturation, alors que la portion de trait disposée à distance de l'abscisse représente l'état d'ouverture du moyen d'obturation.
Dans cet exemple, l'ouverture du moyen d'obturation se fait régulièrement. Le temps d'ouverture du moyen d'obturation est inversement proportionnel à la différence de pression mesurée ce qui permet de compenser l'incidence d'un débit variable de circulation du carburant et ainsi d'assurer l'absence de fluctuation du débit d'additif lorsque le débit de circulation du carburant est variable.
Un des avantages de ce troisième mode de pilotage est de pouvoir distribuer l'additif avec un débit plus important sur un temps plus court, la distribution d'additif étant bloquée le reste du temps par la fermeture du moyen d'obturation. Ainsi, il est possible d'utiliser un dispositif de distribution dont les dimensions, notamment au niveau du moyen permettant de générer une différence de pression au niveau du canal de distribution de l'additif, comme le venturi, sont plus grandes. De même, les dimensions du canal de distribution 36 peuvent être augmentées. Ce qui permet de contrôler avec plus de précision la quantité d'additif distribuée dans le circuit de circulation.
De préférence, dans ce troisième mode de pilotage, un moyen d'obturation permettant d'obturer totalement le canal de distribution sera utilisé.
Avantageusement, il est possible de coupler les différents exemples de réalisations décrits dans les premier, second et troisième modes de pilotage.
Par exemple, il est possible de contrôler la température régnant au niveau du circuit de circulation et la variation du débit de carburant dans le circuit de circulation entre l'orifice 38 de distribution de l'additif et l'orifice 28 d'entrée de carburant, de manière à adapter la durée et/ou la fréquence d'injection d'additif.
De même, il est possible de disposer pour un même véhicule de moyens visant à détecter les arrêts du véhicule de manière à interrompre la distribution d'additif lors de l'arrêt du véhicule, de moyens visant à identifier la quantité de carburant dans le réservoir de manière à injecter de l'additif dans le circuit de circulation suite à un ajout de carburant, de moyens visant à suivre l'évolution de la température au niveau du dispositif de distribution, et de moyens visant à suivre l'évolution du débit de carburant dans le circuit de circulation, de manière à adapter la fréquence et/ou la durée d'ouverture du moyen d'obturation afin que la concentration en additif reste sensiblement constante dans le carburant du réservoir. Quatrième mode de pilotage
L'objectif de ce quatrième mode de pilotage est d'injecter l'additif dans le circuit de circulation uniquement lorsque cela est nécessaire, ceci pouvant notamment être réalisé dans le but d'ajuster la concentration en additif aux besoins momentanés du véhicule. Ainsi, l'injection d'additif peut avoir lieu à un intervalle régulier, tel que toutes les minutes, toutes les heures ou à chaque remplissage de réservoir ou pour un intervalle de roulage déterminé, par exemple tous les 100 kms. Ainsi, seulement une dose d'additif nécessaire au bon fonctionnement du véhicule est distribuée dans le circuit de circulation. Dans ce mode de pilotage, la concentration en additif évolue volontairement dans le temps, la fréquence et/ou la durée d'ouverture du moyen d'obturation étant adaptées selon la quantité d'additif à injecter.
De préférence, et comme cela va être détaillé par la suite, la dose d'additif délivrée peut être dépendante des conditions de roulages et d'utilisation du véhicule, ou encore du type de carburant utilisé.
De préférence, les exemples de réalisation du quatrième mode de pilotage peuvent être couplés avec un ou des exemples de réalisations précédemment décrits et appartenant aux premier, second et troisième modes de pilotage.
.Qualité, d u_ca rbuja nt
Dans le cas où l'additif utilisé vise à améliorer les propriétés du carburant, notamment à stabiliser le carburant utilisé ou à réduire les effets de sa dégradation sur le moteur ou le circuit de circulation du carburant ou encore à améliorer ses propriétés de combustion, des exemples d'additifs seront donnés ultérieurement, une injection supplémentaire d'additif peut être réalisée lorsqu'il est détecté que le moteur est alimenté par un carburant de médiocre qualité ou de qualité inadaptée. Ainsi, la quantité d'additif à ajouter sera fonction de la qualité du carburant utilisé, un carburant de moindre qualité nécessitant généralement une quantité plus importante d'additif.
En effet, un carburant de médiocre qualité conduit à un encrassement des injecteurs et détériore donc la qualité du jet de carburant, ce qui augmente le temps de réalisation du mélange air/carburant et de ce fait dégrade la combustion. La consommation de carburant et les émissions polluantes sont ainsi notamment augmentées. Un carburant peut également avoir une composition et des propriétés intrinsèques variables ce qui va influencer ses propriétés de combustion et par là le rendement du moteur et ses émissions polluantes.
Un carburant peut également présenter des fractions instables dans le temps, comme certaines fractions de biocarburants, ces fractions instables se dégradant par exemple par oxydation et pouvant conduire à un encrassement du circuit de circulation du carburant.
Un carburant peut aussi présenter des propriétés médiocres conduisant à une dégradation ou un vieillissement précoce des équipements du circuit de circulation du carburant, par exemple par défaut de propriété lubrifiante.
La quantité d'additif utilisée peut dépendre de la zone géographique dans laquelle roule le véhicule, le carburant répondant à des normes différentes connues pour chaque zone géographique du monde. A cet effet, une puce GPS, ou tout autre moyen de géolocalisation, installé au niveau du dispositif de distribution ou le GPS du véhicule permet de localiser la zone dans laquelle le véhicule circule et donc le type de carburant vendu dans ladite zone. Selon la zone géographique identifiée, une quantité supplémentaire d'additif peut être distribuée, la quantité injectée pouvant également dépendre de la zone géographique.
En variante, une sonde spécifique destinée à analyser le carburant utilisé peut être montée à tout endroit du circuit de circulation du carburant et/ou dans le réservoir de carburant.
Cette sonde peut par exemple comprendre un capteur de type Proche Infra Rouge (PI R) pouvant par exemple mesurer la teneur en fraction biodiesel de type Ester méthylique d'acide gras (EMAG) du carburant diesel. En effet, plus cette concentration est élevée, plus le carburant est sujet à se dégrader dans le temps, ce qui risque d'engendrer des perturbations du fonctionnement du moteur et plus il sera nécessaire d'ajouter de l'additif pour le stabiliser.
D'autres types d'analyses spécifiques peuvent bien sûr être utilisés, comme la teneur en composé alcoolique par exemple l'éthanol du carburant essence, la fraction de composé alcoolique modifiant les propriétés de combustion du carburant. De même des analyses peuvent permettre d'accéder aux propriétés de combustion du carburant, comme l'indice de cétane pour les diesels et l'indice d'octane pour les essences. Ces analyses peuvent être gérées par l'ECU du véhicule ou directement par le dispositif de distribution.
De même, la qualité du carburant peut être déduite des paramètres de la combustion réalisée dans les cylindres du moteur, comme le cliquetis, le bruit de la combustion ou encore l'évolution de la pression dans les cylindres. Ces données peuvent notamment être récupérées auprès de l'ECU du véhicule. En effet, certaines caractéristiques du carburant comme l'indice de cétane modifient les paramètres de combustion : plus l'indice de cétane est bas, plus la combustion dans les cylindres démarre tardivement engendrant une augmentation de pression importante, ce qui génère du bruit.
Ainsi, selon les résultats obtenus, la quantité d'additif à distribuer sera adaptée.
.Ç Q D d it ip_n_s_ d e jpul ge
La concentration en additif peut également être adaptée selon les conditions de roulage du véhicule, par condition de roulage on entend le profil de roulage urbain, routier, autoroutier, ou mixte du véhicule. Ces conditions de roulage sont particulièrement importantes lorsque l'additif utilisé aide à la régénération de moyens de dépollution disposés dans la ligne d'échappement du véhicule, tel qu'un filtre à particules. En effet, lorsque le profil de roulage est de type urbain, les gaz d'échappement possèdent une température plus basse par rapport à celle rencontrée lors d'un profil de roulage de type autoroutier, cette situation est défavorable à la régénération du filtre à particules. De plus, la durée des trajets urbains est généralement plus courte, ce qui peut empêcher la régénération totale du filtre à particules.
Alors qu'à l'opposé, lorsque le profil de roulage est de type routier ou autoroutier et que la vitesse du véhicule est élevée, la température des gaz d'échappement est plus élevée, ce qui facilite la régénération du filtre à particules. En effet, l'écart de température entre la température des gaz d'échappement et la température permettant la régénération du filtre à particules est alors plus faible.
De plus, pour un profil de roulage de type autoroutier, la quantité d'oxydes d'azote NOx émise est plus élevée ce qui est également favorable à la régénération du filtre à particules.
Ainsi, lors de la mise en œuvre de cet exemple, la quantité d'additif utilisée sera adaptée aux conditions de roulage du véhicule. Plus particulièrement, une quantité importante d'additif, permettant d'augmenter la concentration en additif dans le carburant, sera injectée dès lors qu'il sera détecté que le véhicule roule en milieu urbain pendant une période déterminée. A l'inverse, une quantité réduite d'additif sera injectée dès lors qu'il sera détecté que le véhicule roule en milieu autoroutier pendant une période déterminée.
De même, dans d'autres cas et selon l'additif à injecter, on peut avoir intérêt à augmenter la concentration en additif dans le carburant, selon que l'on souhaite que le véhicule possède plus de puissance, c'est notamment le cas lorsque le profil de roulage est de type autoroutier ou dans des conditions à forte charge comme en montagne.
Afin d'apprécier les conditions de roulage du véhicule, une puce GPS, ou tout autre moyen de géolocalisation, installé au niveau du dispositif de distribution ou le GPS du véhicule permet de localiser la zone géographique dans laquelle le véhicule circule et donc de connaître le profil de roulage du véhicule. De plus, il est également possible d'obtenir à partir de ces équipements la vitesse moyenne du véhicule.
Il est à noter que lorsque le GPS, ou tout autre moyen de géolocalisation, du véhicule est utilisé, le cas échéant, le signal correspondant au trajet prévu peut être récupéré et les besoins en additif peuvent alors être anticipés.
De même, la vitesse moyenne du véhicule peut être récupérée par l'ordinateur de bord du véhicule. Ainsi, dans le cas où l'additif est adapté à la régénération du filtre à particules, lorsqu'une vitesse moyenne inférieure à 50 km/h et plus particulièrement inférieure à 30 km/h est détectée, la concentration en additif est augmentée.
Il est également possible d'utiliser la vitesse instantanée du véhicule, la concentration en additif étant augmentée lorsque la vitesse instantanée du véhicule est, par exemple, inférieure à 50 km/h sur plus d'une heure.
De même, la température des gaz d'échappement peut être utilisée, cette dernière étant récupérée auprès de l'ECU ou directement par un capteur dédié disposé dans la ligne d'échappement du véhicule.
Ainsi, lorsque l'additif utilisé est adapté à la régénération du filtre à particules, une quantité supplémentaire d'additif peut être distribuée lorsque la température des gaz est basse, notamment lorsqu'elle est inférieure à 300°C, et tout particulièrement en dessous de 250°C.
De même, la consommation en carburant du moteur, accessible soit par un capteur de niveau dans le réservoir à carburant ou auprès de l'ECU du véhicule, indique pour un véhicule donné, les conditions de roulage du véhicule, chaque véhicule possédant des gammes de consommations différentes pour un usage urbain/mixte/ routier. Pour un véhicule donné, une consommation élevée est généralement associée à un usage urbain. Ces gammes sont connues lors de la conception du véhicule et peuvent être utilisées pour adapter la concentration en additif.
Toutefois, il est préférable de coupler cette donnée avec d'autres données accessibles représentatives des conditions de roulage du véhicule, comme la température des gaz d'échappement. En effet, une consommation importante couplée à une température faible des gaz d'échappement, typiquement inférieure à 300°C, est caractéristique d'un usage urbain alors qu'une consommation élevée associée à une température élevée des gaz d'échappement est caractéristique d'un usage routier ou autoroutier nécessitant moins d'additif pour la régénération du filtre à particules.
De même, la fluctuation de la pression dans le système haute pression du circuit de circulation de carburant, notamment dans la pompe haute pression comprimant le carburant ou encore dans la rampe commune d'alimentation des injecteurs peut être utilisée afin de connaître les conditions de roulage du véhicule.
En effet, certains véhicules ont un niveau de pression dans la partie haute pression du circuit de circulation qui varie. Ceci est notamment le cas des véhicules équipés de dispositif dit « Stop and Start » ou « Stop and Go » permettant d'arrêter et de redémarrer automatiquement le moteur lorsque celui-ci passe au point mort par exemple, ou pour les véhicules hydrides thermique-électrique pour lesquels le moteur thermique ne fonctionne pas en permanence. Ainsi pour ces véhicules, la pression enregistrée, fournie par exemple par l'ECU du véhicule, dans la partie haute pression du circuit de circulation se réduit à chaque arrêt du moteur. De tels fonctionnements se rencontrent typiquement lors de trajets urbains et/ou de courte durée et peuvent donc être utilisés pour adapter la concentration en additif.
De même, le débit d'air alimentant la chambre de combustion du moteur, fourni par exemple par l'ECU du véhicule, peut être utilisée afin de connaître les conditions de roulage du véhicule.
En effet, par exemple pour les moteurs diesel, une diminution du débit d'air indique un ralentissement du moteur et peut donc être associée à un usage urbain. Il peut alors être intéressant pour des véhicules équipés de moyens de dépollution de type filtre à particules, lorsque ces conditions sont détectées, d'augmenter la concentration en additif aidant à la régénération du filtre à particules.
Emjssions j3QlLu_antes_du nnotejjr
La concentration en additif peut également être adaptée selon les émissions polluantes du moteur, et plus particulièrement selon l'évolution de ces émissions polluantes.
Ainsi, lorsqu'un additif aidant à la régénération de moyens de dépollution du type filtre à particules est utilisé, il est particulièrement intéressant de suivre l'évolution des émissions de NOx, de suies ou d'autres particules carbonées ou des rapports NOx/suies et/ou NOx particules, ces différents paramètres étant représentatifs des émissions polluantes issues de la combustion du carburant.
Par exemple, lorsque les émissions de suies et des autres particules carbonées augmentent, et/ou lorsque les émissions de NOx se réduisent, et/ou lorsque le rapport NOx/suies ou NOx/particules diminue, la concentration en additif aidant à la régénération du filtre à particules peut être augmentée.
Ces différentes émissions peuvent être évaluées directement par le biais de capteurs disposés dans la ligne d'échappement.
Le pilotage de l'injection d'additif peut alors être réalisé en comparant les données récupérées et les valeurs théoriques attendues.
Ainsi, une concentration en NOx plus élevée que la valeur attendue est le signe d'une dégradation de la combustion, il peut être alors avantageux d'augmenter la concentration en additif de type détergent pour améliorer les propriétés de combustion du carburant et/ou permettre un meilleur fonctionnement des injecteurs haute pression.
II est également possible de récupérer auprès de l'ECU du véhicule les paramètres de combustion du moteur, puis de comparer ces valeurs aux valeurs théoriques attendues afin de définir le positionnement de la combustion dans la cartographie du moteur reliant la vitesse de rotation du moteur à son couple, chaque point de combustion correspondant à des émissions type définissant une cartographie d'émissions polluantes.
De même, lorsque l'additif utilisé aide à la régénération de moyens de dépollution, tel qu'un filtre à particules, l'évolution de la perte de charge lors du chargement en suies du filtre à particules peut être surveillée afin de connaître le niveau d'émission en particules carbonées. En effet, pour un filtre à particules donné et pour une architecture de la ligne d'échappement donnée, une augmentation de la perte de charge correspond à une augmentation des émissions en particules carbonées et peut donc déclencher une distribution d'additif afin d'augmenter la concentration de ce dernier dans le carburant.
La concentration en additif peut également être adaptée selon la qualité de la régénération de moyens de dépollution de type filtre à particules.
Cet exemple concerne uniquement les additifs utilisés pour aider à la régénération de moyens de dépollution disposés dans la ligne d'échappement du véhicule, tel qu'un filtre à particules.
Ainsi, lorsque la régénération précédente ne s'est pas bien passée, c'est-à-dire lorsque les suies contenues dans le filtre à particules n'ont pas totalement brûlées, la concentration en additif dans le carburant est augmentée afin de favoriser la régénération suivante.
La qualité d'une régénération peut être évaluée de différentes façons.
L'évolution de la perte de charge lors de la régénération précédente est un premier indicateur. Ainsi, lorsque la perte de charge ne revient pas à la ligne de base attendue, ou à proximité de cette ligne de base, et qu'il y a par exemple au moins 5 mbars d'écart, et/ou qu'elle revient lentement, par exemple en plus de 20 minutes, à la ligne de base, la concentration en additif peut être augmentée.
De même, l'évolution des propriétés de l'huile lubrifiant le moteur, dite huile moteur, peut être observée.
La qualité de l'huile moteur a tendance à se dégrader lorsque la régénération du filtre à particules est plus lente qu'à l'accoutumée. En effet, une régénération lente nécessite des post-injections tardives de carburant dans les cylindres pendant une durée importante de façon à maintenir une température élevée dans le filtre à particules durant toute la période de régénération. Ces post-injections ou injections tardives par rapport au Point Mort Haut dans le cycle de compression/décompression des cylindres, entraînent une partie du carburant dans l'huile moteur, conduisant à la dilution de l'huile moteur. Cette dilution entraîne d'une part une augmentation du niveau de liquide dans le circuit d'huile moteur et d'autre part une dégradation des propriétés de l'huile moteur, notamment une modification de sa viscosité, de ses propriétés lubrifiantes et de son acidité. De plus l'huile peut alors être contaminée par des suies ou des particules carbonées.
Ainsi, lorsqu'il est détecté une augmentation du niveau d'huile au cours du temps et/ou une dégradation de la qualité de l'huile, la concentration en additif peut être augmentée de façon à aider la prochaine régénération du filtre à particules.
Les données peuvent être récupérées auprès de sondes ou capteurs analysant l'huile moteur, et envoyées directement aux moyens de commande pilotant les moyens d'injection de l'additif ou à l'ECU du véhicule en relation avec lesdits moyens de commande.
Les moyens d'analyse de l'huile moteur utilisée peuvent être constitués :
- d'un capteur détectant la variation de la constante diélectrique de l'huile, variation reliée à l'état de dégradation et de pollution par les matières charbonneuse comme les suies,
d'un capteur détectant la variation de viscosité de l'huile moteur, et/ou d'un capteur détectant l'évolution de l'état d'oxydation et d'acidité de l'huile par un suivi de la corrosion d'un fil métallique au contact de l'huile.
Cinquième mode de pilotage
L'objectif de ce cinquième mode de pilotage est de reconnaître la nature et/ou les caractéristiques de l'additif contenu dans le réservoir d'additif 26.
Ainsi, la distribution d'additif peut être adaptée pour tenir compte soit de l'additif identifié, soit de la valeur précise de certaines caractéristiques physico-chimiques du lot d'additif utilisé.
Ce mode de pilotage permet ainsi de changer la nature et/ou les caractéristiques de l'additif utilisé au cours de la vie du véhicule, ce dernier pouvant en effet être changé, par exemple pour améliorer les performances d'un moteur vieillissant, ou suite à une modification d'une norme sur les carburants dans une zone géographique donnée, ou lorsque le véhicule change de zone géographique de roulage, ou lorsque des modifications ont été opérées sur le véhicule, telles que l'ajout d'un filtre à particules.
En outre, ce mode de pilotage permet de s'adapter précisément à l'additif utilisé, ce dernier pouvant avoir une viscosité, une densité et/ou une concentration variables d'un lot à l'autre. Dans ce dernier cas, le réservoir contenant l'additif, notamment lorsqu'il est sous forme d'une poche, peut être équipé d'un système d'informations de type code barres permettant de transmettre une information et le dispositif de distribution peut être équipé d'un moyen permettant de lire l'information.
Ainsi, selon les informations recueillies par le dispositif de distribution, la fréquence et/ou la durée d'ouverture du moyen d'obturation permettant la distribution de l'additif sont recalculées afin de délivrer la quantité voulue d'éléments actifs dans le carburant.
Bien évidemment, les différents pilotages décrits ci-dessus à titre d'exemples ne sont nullement limitatifs, d'autres paramètres permettant d'analyser l'utilisation du véhicule, et/ou les conditions de roulage du véhicule, et/ou l'évolution de la quantité de carburant contenu dans le réservoir à carburant, et/ou la qualité du carburant, et/ou les émissions polluantes issues de la combustion du carburant dans le moteur, et/ou la qualité de la régénération de moyens de dépollution disposés dans la ligne d'échappement du moteur, et/ou le type d'additif utilisé, et/ou l'évolution du débit d'additif distribué dans le circuit de circulation de carburant, pouvant être utilisés.
De plus, comme mentionné précédemment différents exemples de pilotage peuvent être combinés entre eux.
De même, plusieurs additifs stockés chacun dans un réservoir indépendant peuvent être distribués dans le circuit de circulation à l'aide du dispositif de distribution selon l'invention, chaque additif pouvant être injecté selon un exemple de réalisation précédemment décrit. Le choix des additifs est fait par l'homme du métier en tenant compte par exemple, de la zone géographique dans laquelle le véhicule est commercialisé, de la qualité du carburant disponible dans cette zone géographique, notamment de la présence éventuelle de biocarburants dans cette zone ou encore des conditions atmosphériques que l'on y rencontre.
Le choix des additifs peut se faire aussi en regard de la réglementation régulant les niveaux d'émissions de polluants maximum dans cette même zone. Dans les zones où le filtre à particules est requis pour respecter la norme antipollution sur les émissions de suies, on incorporera avantageusement un additif adapté pour aider à régénérer le filtre à particules.
Le choix de la composition de l'additif peut se faire également en fonction de la technologie moteur du véhicule comme la nature et le design des injecteurs haute pression à carburant, le type de filtre à carburant ou encore la pression disponible dans la rampe haute pression alimentant chacun des injecteurs en carburant pressurisé.
Le choix du/des additifs peut aussi se faire selon la cartographie des émissions polluantes du moteur. Additifs
Les différents additifs pouvant être utilisés par le dispositif de distribution selon l'invention vont à partir de ce point être plus particulièrement décrits, ces additifs étant connus et largement répandus dans le milieu automobile.
Comme cela a été indiqué précédemment lors de la description des différents modes de pilotage, certains additifs sont plus particulièrement concernés par les exemples décrits précédemment.
Ces additifs, qui vont maintenant être décrits, peuvent être classés en deux catégories : d'une part ceux qui ont une fonction catalytique d'aide à la régénération des filtres à particules et d'autre part ceux qui ont une fonction autre qu'une fonction catalytique.
Les additifs utilisés se présentent généralement sous forme liquide et peuvent être constitués d'un liquide ou d'un mélange de liquides, d'une suspension colloïdale dans une base liquide, ou sous forme de gel dont la viscosité permet l'écoulement de l'additif.
.Les additif s_d'aid_e_ àja jégénération
Ces additifs sont idéalement liquides dans la plage de température de fonctionnement, comprise généralement entre 20 et 45°C mais ils peuvent aussi être sous une autre forme physique comme un gel.
Ces additifs peuvent contenir tout type de catalyseur efficace pour catalyser la combustion des suies notamment le platine, le strontium, le sodium, le manganèse, le cérium, le fer et /ou leur combinaison.
La quantité d'additif nécessaire dans le carburant est généralement au moins d'environ 1 ppm et au plus d'environ 100 ppm, cette quantité étant exprimée en masse d'élément additif métallique par rapport à la masse de carburant.
Ces additifs peuvent se présenter sous la forme d'un sel organométallique ou d'un mélange de sels organométalliques solubles ou dispersibles dans le carburant. Ces sels sont caractérisés en ce qu'ils comprennent au moins une partie métallique et une partie organique complexante généralement d'origine acide, le tout en suspension dans un solvant.
Les additifs FBC peuvent aussi se présenter sous la forme d'un complexe organométallique ou d'un mélange de complexes organométalliques solubles ou dispersibles dans le carburant. Ces complexes sont caractérisés en ce qu'ils comprennent au moins une partie métallique et au moins deux parties organiques complexantes. Un tel produit est par exemple décrit dans GB 2 254 610. Egalement, les additifs FBC peuvent aussi se présenter sous la forme d'une suspension ou dispersion colloïdale de nanoparticules par exemple d'oxyde ou d'oxyhydroxyde métallique, amorphe ou cristallisé.
L'expression « dispersion colloïdale» désigne dans la présente description tout système constitué de fines particules solides de dimensions colloïdales à base de l'additif, en suspension dans une phase liquide, lesdites particules pouvant, en outre, éventuellement contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des nitrates, des acétates, des citrates, des ammoniums ou des chlorures. Par dimensions colloïdales, on entend des dimensions comprises entre environ 1 nm et environ 500 nm. Ces particules peuvent plus particulièrement présenter une taille moyenne d'au plus 100 nm et encore plus particulièrement d'au plus 20 nm.
Dans le cas des additifs FBC sous forme de dispersion colloïdale, les particules peuvent être à base d'une terre rare et/ou d'un métal choisi dans les groupes MA, IVA, VIIA, VIII, IB, MB, IIIB et IVB de la classification périodique.
Par terre rare on entend les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
La classification périodique des éléments à laquelle il est fait référence est celle publiée dans le Supplément au Bulletin de la Société Chimique de France n° 1 (janvier 1966).
Pour ces additifs susceptibles d'être utilisés sous forme d'une dispersion colloïdale, la terre rare peut être choisie plus particulièrement parmi le cérium, le lanthane, l'yttrium, le néodyme, le gadolinium et le praséodyme. Le cérium peut être choisi tout particulièrement. Le métal peut être choisi parmi le zirconium, le fer, le cuivre, le gallium, le palladium et le manganèse. Le fer peut être choisi tout particulièrement. Le fer peut être sous la forme d'un composé amorphe ou cristallisée.
On peut mentionner plus particulièrement aussi les dispersions colloïdales à base d'une combinaison de cérium et de fer.
Les dispersions colloïdales peuvent comprendre plus particulièrement :
- une phase organique,
- des particules de l'additif, du type décrit ci-dessus (notamment terre rare et/ou d'un métal choisi dans les groupes MA, IVA, VIIA, VIII, IB, MB, IIIB et IVB), en suspension dans la phase organique ;
- au moins un agent amphiphile.
Ces dispersions colloïdales peuvent notamment contenir un additif à base de fer ou d'un composé de fer. Les dispersions colloïdales peuvent se présenter selon différents modes de réalisation décrits notamment les demandes de brevet suivantes : EP 671 205, WO 97/19022, WO 01/10545, WO 03/053560, WO 2008/1 16550.
Les autre_s_add itif s
D'autres types d'additifs connus, différents des FBC et qui ont une fonction autre qu'une fonction catalytique, peuvent également être injectés dans le circuit de circulation. Ces additifs permettent l'amélioration de la distribution du carburant dans le moteur et/ou l'amélioration des performances du fonctionnement du moteur et/ou encore l'amélioration de la stabilité du fonctionnement du moteur.
Parmi les additifs d'amélioration de la distribution de carburant dans le moteur, on trouve par exemple les additifs antimousse, comme les organosilicones, les additifs dégivrants, comme les alcools de poids moléculaires bas ou les glycols.
D'autres additifs sont ceux améliorant le fonctionnement du moteur à froid. On peut citer les additifs polymériques réduisant la température à laquelle le carburant se trouble ou se fige, les additifs favorisant l'écoulement, comme les polymères de hauts poids moléculaires qui réduisent la turbulence dans les fluides et peuvent augmenter le débit de 20 à 40%.
Des additifs inhibiteurs de corrosion peuvent également être utilisés.
Des additifs d'amélioration des performances de fonctionnement des moteurs peuvent également être utilisés, comme les additifs procétane, les additifs prooctane, les additifs inhibiteurs de fumée, les additifs réduisant les pertes par friction appelés additifs FM pour « Friction Modifier » ou additifs « d'extrême pression ». .
Des additifs détergents, destinés à limiter tout dépôt au niveau des injecteurs, peuvent également être utilisés. Le carburant peut former en effet des dépôts dans le circuit carburant, notamment au niveau des injecteurs haute pression à carburant et tout particulièrement au niveau des trous des injecteurs. L'ampleur de la formation du dépôt varie avec la conception du moteur, notamment les caractéristiques des injecteurs, la composition du carburant et la composition de l'huile servant à lubrifier le moteur. De plus, ces détergents sont aussi efficaces pour réduire l'impact négatif de la présence de composés métalliques dans le carburant comme le Zn ou le Cu pouvant provenir d'une contamination par exemple du système de distribution du carburant ou encore être des traces de composés provenant du procédé de synthèse des esters d'acide gras.
Les dépôts excessifs peuvent modifier l'aérodynamique par exemple du jet de carburant issu de l'injecteur, laquelle à son tour peut entraver le mélange air-carburant. Dans certains cas, il en résulte une surconsommation de carburant, une perte de puissance du moteur et des émissions de polluants augmentées. Les additifs détergents présentent la particularité de dissoudre les dépôts déjà formés et de réduire la formation des précurseurs de dépôt, afin d'éviter la formation de nouveaux dépôts. Un exemple d'additif détergent est, par exemple, décrit dans WO 2010/150040.
Des additifs d'amélioration du pouvoir lubrifiant peuvent également être utilisés pour éviter l'usure ou le grippage des pompes à haute pression notamment et des injecteurs, le pouvoir lubrifiant des carburants étant lui médiocre. Ils contiennent un groupe polaire qui est attiré par les surfaces métalliques pour former un film de protection à la surface.
Des additifs d'amélioration de la stabilité de fonctionnement des moteurs peuvent être envisagés. En effet, l'instabilité des carburants entraîne la formation de gommes qui participent à l'encrassement des injecteurs, au colmatage du filtre à carburant et à l'encrassement des pompes et du système d'injection.
Les additifs suivants peuvent également être utilisés :
des additifs de type antioxydants ;
- des additifs stabilisateurs ;
des additifs désactivateurs de métaux visant à neutraliser les effets catalytiques de certains métaux ;
des additifs dispersants visant à disperser les particules formées et prévenir l'agglomération de particules assez grosses.
Selon un mode de réalisation particulier, l'additif est une combinaison d'un additif détergent et d'un additif de lubrification, et éventuellement d'un additif inhibiteur de corrosion.
Dans le cas d'un véhicule équipé d'un filtre à particules, on aura avantage à associer à un additif de type FBC au moins un additif de performance carburant de type détergent comme décrit dans la demande de brevet WO 2010/150040.
Dans le cas d'un véhicule équipé d'un filtre à particules, on aura avantage également à associer à un additif de type FBC plusieurs additifs de performance carburant, notamment lorsque le véhicule est commercialisé dans une zone géographique où le carburant est de qualité variable et/ou médiocre.
Dans le cas d'un véhiculé non équipé d'un filtre à particules, différents types d'associations d'additifs peuvent être envisagés comme celle associant un ou plusieurs détergents à un additif de lubrification et à un inhibiteur de corrosion.

Claims

REVENDICATIONS
1. - Dispositif de distribution d'un additif liquide dans un circuit de circulation (2) de carburant pour un moteur à combustion interne, notamment pour un moteur équipant un véhicule, ledit dispositif comportant :
- un réservoir (26) contenant l'additif,
- une enceinte (24) communiquant avec le circuit de circulation (2) de carburant et à l'intérieur de laquelle est inséré le réservoir (26) contenant l'additif, au moins une paroi (50) mobile et étanche entre ladite enceinte (24) et ledit réservoir (26) assurant d'une part une séparation étanche et d'autre part maintenant une pression identique entre l'additif dans le réservoir (26) et le carburant dans l'enceinte (24),
- des moyens d'injection de l'additif reliés au réservoir (26) et au circuit de circulation (2) de carburant et permettant de distribuer l'additif dans le circuit de circulation (2) de carburant, lesdits moyens comprenant un canal de distribution (36) reliant le réservoir (26) et le circuit de circulation (2) de carburant, et
- des moyens de commande des moyens d'injection, caractérisé en ce que les moyens de commande sont associés :
- à des moyens d'analyse d'au moins un paramètre représentatif de l'utilisation du véhicule, et/ou
- à des moyens d'analyse des conditions de roulage du véhicule, et/ou
- à des moyens d'analyse de l'évolution de la quantité de carburant contenu dans un réservoir à carburant (4), ledit réservoir étant accessible à un utilisateur afin d'effectuer l'ajout de carburant, et/ou
- à des moyens d'analyse de la qualité du carburant, et/ou
- à des moyens d'analyse des émissions polluantes issues de la combustion du carburant dans le moteur, et/ou
- à des moyens d'analyse de la qualité de la régénération d'un filtre à particules disposé dans la ligne d'échappement du moteur, et/ou
- à des moyens d'analyse du type d'additif utilisé, et/ou
- à des moyens d'analyse de l'évolution du débit d'additif distribué dans le circuit de circulation de carburant (2), et/ou
- à des moyens d'analyse des conditions climatiques,
pour contrôler le fonctionnement des moyens d'injection.
2. - Dispositif de distribution selon la revendication 1 , caractérisé en ce que les moyens d'injection comprennent un moyen d'obturation dudit canal de distribution (36), ledit moyen d'obturation étant adapté pour obturer totalement ou partiellement le canal de distribution (36), ledit moyen d'obturation étant notamment de type clapet ou électrovanne.
3. - Dispositif de distribution selon la revendication 1 ou 2, caractérisé en ce qu'il comprend un capteur de température destiné à indiquer la température du carburant dans le circuit de circulation (2) de carburant, notamment à proximité du canal de distribution (36), et/ou de l'additif, la température de l'additif et/ou du carburant constituant un paramètre représentatif de l'évolution du débit d'additif et/ou de l'utilisation du véhicule et/ou des conditions climatiques.
4. Dispositif de distribution selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend un capteur de température extérieure au véhicule, ladite température extérieure constituant un paramètre représentatif des conditions climatiques.
5. - Dispositif de distribution selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend un capteur détectant la mise sous-tension du véhicule et/ou d'un élément appartenant au circuit de circulation (2) de carburant, notamment un filtre à carburant, ladite mise sous-tension constituant un paramètre représentatif de l'utilisation du véhicule.
6. - Dispositif de distribution selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend des capteurs de pression mesurant la pression au niveau d'un orifice de distribution (38) de l'additif disposé à une extrémité du canal de distribution (36) située au niveau du circuit de circulation (2) de carburant, et au niveau d'un orifice d'entrée du carburant (28) disposé en amont de l'orifice de distribution dans le circuit de circulation (2), une différence de pression entre lesdits orifices constituant un paramètre représentatif de l'utilisation du véhicule et/ou de l'évolution du débit d'additif et/ou des conditions de roulage.
7.- Dispositif de distribution selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend un capteur de bruit disposé de préférence à proximité du moteur, la détection d'un bruit par ledit capteur constituant un paramètre représentatif de l'utilisation du véhicule.
8. - Dispositif de distribution selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend un moyen de localisation de type GPS ou un capteur de mouvement, la détection d'un mouvement par ledit moyen de localisation ou ledit capteur de mouvement constituant un paramètre représentatif de l'utilisation du véhicule et/ou des conditions de roulage du véhicule.
9. - Dispositif de distribution selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la vitesse moyenne et/ou la vitesse instantanée du véhicule constitue un paramètre représentatif des conditions de roulage du véhicule.
10. - Dispositif de distribution selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la température des gaz d'échappement constitue un paramètre représentatif des conditions de roulage du véhicule.
1 1. - Dispositif de distribution selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'évolution de la pression dans le circuit de circulation (2), notamment dans un circuit haute pression du véhicule composé d'une pompe haute pression et d'une rampe commune d'injection, constitue un paramètre représentatif des conditions de roulage du véhicule.
12. - Dispositif de distribution selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que l'évolution du débit d'air alimentant la chambre de combustion du moteur constitue un paramètre représentatif des conditions de roulage du véhicule.
13. - Dispositif de distribution selon l'une quelconque des revendications 1 à 12, caractérisé en ce que l'évolution du débit de carburant dans le circuit de circulation (2) constitue un paramètre représentatif de l'évolution du débit d'additif.
14.- Dispositif de distribution selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'évolution des émissions de NOx, de suies ou d'autres particules carbonées ou des rapports NOx/suies et/ou NOx/particules constitue des paramètres représentatifs des émissions polluantes issues de la combustion du carburant.
15. - Dispositif de distribution selon l'une quelconque des revendications 1 à 14, caractérisé en ce que l'évolution de la qualité et/ou de la quantité d'huile permettant la lubrification du moteur constitue un paramètre représentatif de l'évolution de la qualité de la régénération du filtre à particules disposé dans la ligne d'échappement du moteur.
16. - Dispositif de distribution selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comprend un moyen de localisation de type GPS indiquant la zone géographique dans laquelle le véhicule se trouve, la localisation du véhicule fournie par ledit moyen constituant un paramètre représentatif de la qualité du carburant commercialisé dans ladite zone géographique.
17. - Dispositif de distribution selon l'une quelconque des revendications 1 à 16, caractérisé en ce que des paramètres représentatifs de la combustion du carburant dans les cylindres du moteur constituent un paramètre représentatif de la qualité du carburant.
18. - Dispositif de distribution selon l'une quelconque des revendications 1 à 17, caractérisé en ce que la consommation en carburant du moteur constitue un paramètre représentatif des conditions de roulage du véhicule.
19. - Dispositif de distribution selon l'une quelconque des revendications 1 à 18, caractérisé en ce que l'additif est un additif de régénération de filtre à particules à base d'une terre rare et/ou d'un métal choisi dans les groupes MA, IVA, VIIA, VIII, IB, MB, IIIB et IVB de la classification périodique.
20.- Dispositif de distribution d'un additif liquide selon la revendication 19, caractérisé en ce que l'additif se présente sous forme d'une dispersion colloïdale.
21.- Dispositif de distribution d'un additif liquide selon la revendication 20, caractérisé en ce que les particules de la dispersion colloïdale sont à base de cérium et/ou de fer.
22. - Dispositif de distribution d'un additif liquide selon l'une quelconque des revendications 19 à 21 , caractérisé en ce que l'additif est une combinaison d'une dispersion colloïdale de particules qui comprend une phase organique et au moins un agent amphiphile et d'un détergent.
23. - Dispositif de distribution selon l'une quelconque des revendications 1 à 18, caractérisé en ce que l'additif est un additif permettant l'amélioration de la distribution du carburant dans le moteur et/ou l'amélioration des performances du fonctionnement du moteur et/ou encore l'amélioration de la stabilité du fonctionnement du moteur.
24. - Dispositif de distribution d'un additif liquide selon la revendication 23, caractérisé en ce que l'additif est une combinaison d'un additif détergent et d'un additif de lubrification.
25. - Véhicule automobile comportant :
- un circuit de circulation de carburant (2) pour un moteur à combustion interne du véhicule,
- un réservoir (26) contenant un additif liquide,
- une enceinte (24) communiquant avec le circuit de circulation (2) de carburant et à l'intérieur de laquelle est inséré le réservoir (26) contenant l'additif, au moins une paroi (50) mobile et étanche entre ladite enceinte (24) et ledit réservoir (26) assurant d'une part une séparation étanche et d'autre part maintenant une pression identique entre l'additif dans le réservoir (26) et le carburant dans l'enceinte (24),
- des moyens d'injection de l'additif reliés au réservoir (26) et au circuit de circulation (2) de carburant et permettant de distribuer l'additif dans le circuit de circulation (2) de carburant, lesdits moyens comprenant un canal de distribution (36) reliant le réservoir (26) et le circuit de circulation (2) de carburant ,
caractérisé en ce que l'additif est injecté à l'aide d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24.
26. - Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24, caractérisé en ce que la distribution d'additif est arrêtée lorsque le moteur du véhicule ne fonctionne pas ou lorsque que le véhicule est à l'arrêt.
27.- Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24 combiné avec la revendication 2, caractérisé en ce que la distribution d'additif est activée lorsque le moyen d'obturation est sous alimentation électrique.
28.- Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24 combiné avec la revendication 6, caractérisé en ce que la distribution d'additif est activée lorsque d'une différence de pression supérieure à 2 millibars entre l'orifice de distribution (38) de l'additif disposé à une extrémité du canal de distribution (36), et l'orifice d'entrée du carburant (28) disposé en amont dans le circuit de circulation (2) est mesurée.
29. - Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24 combiné avec la revendication 3, caractérisé en ce que la distribution d'additif est activée lorsque la température du carburant circulant au niveau du circuit de circulation (2) et/ou de l'additif est supérieure à une valeur seuil représentative d'un moteur en fonctionnement, par exemple supérieure à 15°C.
30. - Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24 combiné avec les revendications 3 ou 4, caractérisé en ce que la distribution d'additif est arrêtée lorsque la température extérieure et/ou la température de l'additif et/ou la température du carburant dans le circuit de circulation (2) de carburant sont inférieures à une température minimale seuil ou supérieure à une température maximale seuil, lesdites températures minimale et maximale seuil étant définies pour un additif donné, la température minimale seuil pouvant correspondre à une valeur pour laquelle la viscosité de l'additif atteint une valeur seuil et la température maximale seuil pouvant correspondre à la valeur de vaporisation de l'additif.
31.- Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24 combiné avec la revendication 2, caractérisé en ce que l'injection est discontinue et en ce que la fréquence et/ou la durée d'ouverture du moyen d'obturation dépendent des informations recueillies par les moyens de commande, la distribution d'additif étant réalisée de manière à garder une concentration d'additif constante dans le carburant ou à injecter de l'additif dans le circuit de circulation (2) du carburant uniquement lorsque cela est nécessaire.
32.- Procédé selon la revendication 31 , caractérisé en ce que la fréquence de distribution et/ou la durée de distribution d'additif dépendent soit du temps d'utilisation du véhicule et/ou soit du nombre de kilomètres parcourus par le véhicule et/ou soit de la consommation en carburant du véhicule.
33. - Procédé selon la revendication 31 combiné avec les revendications 3 et 6, caractérisé en ce que la fréquence et/ou la durée de distribution d'additif dépendent de la température du carburant et/ou de l'additif, et/ou de la pression entre l'orifice de distribution (38) de l'additif disposé à une extrémité du canal de distribution (36), et l'orifice d'entrée du carburant (28) disposé en amont dans le circuit de circulation (2).
34. - Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24, caractérisé en ce que l'additif est injecté à chaque ajout de carburant dans le réservoir à carburant (4), le volume d'additif ajouté pouvant être fixe ou variable, le volume variable étant déterminé selon la quantité de carburant ajoutée.
35.- Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24, caractérisé en ce que l'additif est injecté lorsque l'analyse des émissions polluantes issues de la combustion du carburant indique que les gaz et/ou les particules émis divergent de la valeur théorique attendue.
36. - Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24, caractérisé en ce que l'additif est injecté avant la régénération du filtre à particules.
37. - Procédé d'utilisation d'un dispositif de distribution selon l'une quelconque des revendications 1 à 24, caractérisé en ce qu'une quantité supplémentaire d'additif est injectée avant la régénération du filtre à particules lorsque la précédente régénération n'a pas été de bonne qualité.
EP12743424.9A 2011-08-05 2012-07-24 Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d'utilisation dudit dispositif Active EP2739843B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157206A FR2978803B1 (fr) 2011-08-05 2011-08-05 Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur a combustion interne, vehicule comportant un tel dispositif et procede d'utilisation dudit dispositif
PCT/EP2012/064523 WO2013020805A1 (fr) 2011-08-05 2012-07-24 Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d'utilisation dudit dispositif

Publications (2)

Publication Number Publication Date
EP2739843A1 true EP2739843A1 (fr) 2014-06-11
EP2739843B1 EP2739843B1 (fr) 2015-08-19

Family

ID=46614461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12743424.9A Active EP2739843B1 (fr) 2011-08-05 2012-07-24 Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d'utilisation dudit dispositif

Country Status (12)

Country Link
US (1) US9938943B2 (fr)
EP (1) EP2739843B1 (fr)
JP (1) JP5873172B2 (fr)
KR (1) KR101870866B1 (fr)
CN (1) CN103890368B (fr)
BR (1) BR112014002417A2 (fr)
CA (1) CA2843028C (fr)
ES (1) ES2550972T3 (fr)
FR (1) FR2978803B1 (fr)
MX (1) MX351858B (fr)
RU (1) RU2606166C2 (fr)
WO (1) WO2013020805A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985311B1 (fr) * 2012-01-04 2015-11-27 Rhodia Operations Procede pour le diagnostic du dysfonctionnement d'un dispositif d'additivation d'un additif dans un carburant pour un vehicule et systeme pour la mise en oeuvre de ce procede
AU2015283227B2 (en) * 2014-07-03 2019-02-21 Avocet Ip Ltd Combustion system and method
US10202929B1 (en) 2014-09-22 2019-02-12 National Technology & Engineering Solutions Of Sandia, Llc Additive-mixing fuel-injection system for internal combustion engines
KR101688734B1 (ko) * 2015-06-16 2016-12-21 김태호 차량용 공기조절장치 및 이를 이용한 공기조절시스템
WO2018013599A1 (fr) 2016-07-11 2018-01-18 Terra Primoris Holdings, Llc Procédé d'aération d'un liquide inflammable pour extraire de la vapeur inflammable
WO2018084834A1 (fr) * 2016-11-01 2018-05-11 Sandia Corporation Système d'injection de combustible à mélange d'additif pour moteurs à combustion interne
DE102017125571A1 (de) 2016-11-04 2017-12-28 FEV Europe GmbH Verfahren zum betreiben eines verbrennungsmotors und verbrennungsmotor
US10538237B2 (en) * 2016-11-28 2020-01-21 Cummins Inc. Fuel and reagent degradation reduction in hybrid electrical vehicle systems
KR102180987B1 (ko) * 2019-10-14 2020-11-19 이경은 선박용 연료첨가제 자동 주입 시스템 및 장치
KR102180985B1 (ko) * 2019-10-14 2020-11-19 이경은 차량용 연료첨가제 주입기를 제어하는 장치 및 방법
KR102389274B1 (ko) * 2020-08-13 2022-04-21 이경은 상용차용 연료첨가제 주입기를 제어하는 장치 및 방법
US11313292B1 (en) * 2021-03-25 2022-04-26 Real Time Automated Technologies Llc Methods and systems for real-time dosing of additives into a fuel supply unit

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL88127C (fr) 1952-09-18
BE549967A (fr) 1955-08-02
US3392753A (en) * 1966-01-03 1968-07-16 Phillips Petroleum Co Apparatus for blending of additives into fluid streams
US3720230A (en) * 1971-04-14 1973-03-13 Coronet Mfg Co Inc Apparatus for admixing liquids in predetermined ratio
JPS60209645A (ja) * 1984-04-04 1985-10-22 Nissan Motor Co Ltd 内燃機関の燃料供給装置
SU1469380A1 (ru) * 1984-06-13 1989-03-30 Войсковая Часть 74242 Способ исследовани вли ни качества топлива на работу двигател внутреннего сгорани и устройство дл его осуществлени
US4621593A (en) * 1984-12-24 1986-11-11 Ford Motor Company Automotive dispensing apparatus for fuel additive
FR2669967B1 (fr) * 1990-11-30 1993-03-19 Peugeot Procede et dispositif d'introduction d'un additif en quantite dosee dans le circuit d'injection d'un moteur a allumage par compression.
GB2254610B (en) 1991-04-02 1994-10-05 Ass Octel Method for the preparation of aquo and other small protic lewis base complexes of metal salts of organic acids
DE69516569T2 (de) 1994-02-18 2001-01-04 Rhone Poulenc Chimie Organische Sole von vierwertigen Metalloxid und deren Verwendung in Kohlenwasserstoffzusammensetzungen
FR2741281B1 (fr) 1995-11-22 1998-02-13 Rhone Poulenc Chimie Sol organique comportant au moins un compose oxygene de terre(s) rare(s), procede de synthese du dit sol et utilisation du dit sol pour la catalyse
DE19805311B4 (de) * 1997-02-18 2010-06-10 Walbro Corp., Cass City Vorrichtung und Verfahren zur Zugabe von Kraftstoffadditiven
US6277794B1 (en) * 1998-12-28 2001-08-21 Infineum Usa L.P. Lubricant compositions
FR2797199B1 (fr) * 1999-08-04 2001-10-05 Rhodia Terres Rares Dispersion colloidale organique de particules essentiellement monocristallines d'au moins un compose a base d'au moins une terre rare, son procede de preparation et son utilisation
JP3760725B2 (ja) * 2000-05-16 2006-03-29 日産自動車株式会社 圧縮自己着火式ガソリン機関
US6321692B1 (en) * 2000-05-22 2001-11-27 Bradford William Rayner Fuel treatment dispenser
FR2809450B1 (fr) * 2000-05-26 2002-07-26 Renault Procede d'additivation de carburant
US20020007804A1 (en) * 2000-07-18 2002-01-24 Tichenor Clyde Leroy Fuel additive controlling and maintaining apparatus
DE20102002U1 (de) * 2001-02-06 2001-04-26 Eberspaecher J Gmbh & Co Flüssigkeitszudosiersystem
US7882789B2 (en) * 2001-03-27 2011-02-08 General Electric Company System and method for managing emissions from diesel powered systems
JP2002339808A (ja) * 2001-05-16 2002-11-27 Nagase & Co Ltd 微粒子焼却システム
FR2834004B1 (fr) * 2001-12-20 2004-05-28 Marwal Systems Dispositif d'alimentation en additif pour carburant embarque dans un vehicule automobile
FR2833862B1 (fr) 2001-12-21 2004-10-15 Rhodia Elect & Catalysis Dispersion colloidale organique de particules de fer, son procede de preparation et son utilisation comme adjuvant de carburant pour moteurs a combustion interne
US7328573B2 (en) * 2003-01-07 2008-02-12 Peugeot Citroen Automobiles Sa Aid system for regeneration of a particle filter for an exhaust line
US7332001B2 (en) * 2003-10-02 2008-02-19 Afton Chemical Corporation Method of enhancing the operation of diesel fuel combustion systems
ES2897425T3 (es) * 2004-01-12 2022-03-01 Combustion Science & Eng Inc Sistema y método para la estabilización y el control de la llama
JP4515797B2 (ja) * 2004-03-19 2010-08-04 新日本石油株式会社 ディーゼルエンジン用潤滑油組成物
FR2870172B1 (fr) * 2004-05-13 2006-07-07 Inergy Automotive Systems Res Reservoir a additif pour vehicule ayant un moteur a combustion interne
MX2007007822A (es) * 2004-12-23 2007-10-10 Clean Diesel Tech Inc Sistema de dosificacion de concentrado de aditivo de combustible impulsado por el encendido de un motor y controlador.
FR2886980A1 (fr) * 2005-06-09 2006-12-15 Ti Fuel Systems Sas Soc Par Ac Procede de dosage d'un additif a partir d'un systeme a additif pour carburant, ce systeme, systeme d'alimentation en carburant, et procede pour l'entretien d'un vehicule
JP2007016662A (ja) * 2005-07-06 2007-01-25 Denso Corp 清浄剤添加装置
FR2888289B1 (fr) * 2005-07-11 2007-08-17 Coutier Moulage Gen Ind Dispositif d'injection d'additif liquide dans le circuit d'alimentation en carburant d'un moteur a combustion interne de vehicule automobile
US20070209607A1 (en) * 2006-01-30 2007-09-13 Chemtec Energy Services, Inc. Fuel additive injection system
US8210826B2 (en) * 2006-04-15 2012-07-03 William Freeman Controlled liquid injection and blending apparatus
US20080022666A1 (en) * 2006-07-31 2008-01-31 Driscoll James J Balanced partial two-stroke engine
US20080080682A1 (en) * 2006-09-29 2008-04-03 Garmin Ltd. System and method for displaying prices via an electronic device
GB0705920D0 (en) 2007-03-28 2007-05-09 Infineum Int Ltd Method of supplying iron to the particulate trap of a diesel engine exhaust
JP4710961B2 (ja) * 2008-11-19 2011-06-29 株式会社デンソー 燃料性状検出装置
US8342151B2 (en) * 2008-12-18 2013-01-01 GM Global Technology Operations LLC Deactivation of high pressure pump for noise control
US8468982B2 (en) * 2009-03-09 2013-06-25 GM Global Technology Operations LLC Systems and methods for dispensing oil and fuel additives
EP2446000B1 (fr) 2009-06-23 2016-10-05 Rhodia Opérations Combinaison synergique, détergent et composé métallique actif
FR2949503B1 (fr) * 2009-08-27 2012-11-16 Coutier Moulage Gen Ind Reservoir souple pour produit additif
US20110146234A1 (en) * 2009-12-23 2011-06-23 Caterpillar Inc. Power system having additive injector
JP2011226328A (ja) * 2010-04-16 2011-11-10 Nikki Co Ltd エンジンの空燃比制御装置
US8452520B2 (en) * 2010-06-01 2013-05-28 GM Global Technology Operations LLC Control system and method for low quantity fuel injection
JP2012026428A (ja) * 2010-06-22 2012-02-09 Mitsubishi Heavy Ind Ltd 内燃機関の排気浄化装置
FR2971016B1 (fr) * 2011-02-02 2015-08-07 Filtrauto Dispositif de distribution d'un additif
FR2985311B1 (fr) * 2012-01-04 2015-11-27 Rhodia Operations Procede pour le diagnostic du dysfonctionnement d'un dispositif d'additivation d'un additif dans un carburant pour un vehicule et systeme pour la mise en oeuvre de ce procede
US9422874B2 (en) * 2012-12-05 2016-08-23 Electromotive, Inc. Simplified method to inject ethanol or other solution additives into diesel engines equipped with a digital data bus
US20140294606A1 (en) * 2013-03-28 2014-10-02 Liquid Automation LLC Automatic Fuel Additive Controller and Dispenser
JP6101865B2 (ja) * 2013-12-31 2017-03-22 アイガス・アノニム・シルケティAygaz Anonim Sirketi 添加物安全投入システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013020805A1 *

Also Published As

Publication number Publication date
RU2606166C2 (ru) 2017-01-10
FR2978803A1 (fr) 2013-02-08
US20140238349A1 (en) 2014-08-28
KR20140096021A (ko) 2014-08-04
FR2978803B1 (fr) 2015-04-10
RU2014108312A (ru) 2015-09-10
CN103890368A (zh) 2014-06-25
JP2014524534A (ja) 2014-09-22
CN103890368B (zh) 2016-09-07
JP5873172B2 (ja) 2016-03-01
CA2843028C (fr) 2016-09-20
WO2013020805A1 (fr) 2013-02-14
MX351858B (es) 2017-10-31
CA2843028A1 (fr) 2013-02-14
MX2014001390A (es) 2015-03-20
BR112014002417A2 (pt) 2017-03-14
EP2739843B1 (fr) 2015-08-19
ES2550972T3 (es) 2015-11-13
KR101870866B1 (ko) 2018-06-25
US9938943B2 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
EP2739843B1 (fr) Dispositif de distribution d'un additif liquide dans un circuit de circulation de carburant pour un moteur à combustion interne, véhicule comportant un tel dispositif et procédé d'utilisation dudit dispositif
CA2825363C (fr) Dispositif de distribution d'un additif
EP1588032A1 (fr) Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel
EP2800891B1 (fr) Système d'additivation de carburant et de diagnostic pour un véhicule à moteur à combustion interne
EP1731590A2 (fr) Additif pour un dispositif d'introduction automatique de moyens formant additif dans un réservoir de carburant d'un véhicule automobile
EP2092188A2 (fr) Vehicule automobile, injecteur et procede d'utilisation de ce vehicule
EP1982068B1 (fr) Dispositif d'introduction automatique de moyens formant additif dans le circuit de distribution de carburant d'un vehicule automobile
FR2972766A1 (fr) Procede de fonctionnement d'un moteur alimente par un carburant contenant un catalyseur de regeneration d'un filtre a particules
FR2886648A1 (fr) Additif pour un dispositif d'introduction automatique de moyens formant additif dans un reservoir de carburant d'un vehicule automobile
EP2174822A1 (fr) Véhicule comportant un réservoir d'additifs carburant et un réservoir d'agent de réduction sélective
FR2886647A1 (fr) Additif pour un dispositif d'introduction automatique de moyens formant additif dans un reservoir de carburant d'un vehicule automobile
FR2886649A1 (fr) Additif pour un dispositif d'introduction automatique de moyens formant additif dans un reservoir de carburant d'un vehicule automobile
WO2006010869A1 (fr) Procede et dispositif de reduction/elimination de la quantite de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
FR2897363A1 (fr) Composition de moyens formant additif pour un dispositif d'introduction automatique de moyens formant additif dans un reservoir de carburant d'un vehicule automobile
FR2865239A1 (fr) Dispositif de filtration des gaz d'echappement pour moteur diesel associant un additif de combustion compose de nano-particules et un filtre a particules a surface de filtration variable
FR2985316A1 (fr) Procede pour le diagnostic externe du dysfonctionnement d'un dispositif d'additivation d'un additif dans un carburant pour un vehicule
FR2927374A1 (fr) Systeme de recirculation de gaz d'echappement pourvu d'un injecteur de nettoyage d'un echangeur de chaleur et procede de nettoyage correspondant.
WO2009047459A2 (fr) Systeme et procede de desulfatation d'un piege a oxydes d'azote pour moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEGUELONG, THIERRY

Inventor name: LALLEMAND, MICHAEL

Inventor name: MONSALLIER, GUY

Inventor name: HARLE, VIRGINIE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 744012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012009822

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2550972

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151113

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012009822

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160724

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 744012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200617

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200716

Year of fee payment: 9

Ref country code: ES

Payment date: 20200805

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200710

Year of fee payment: 9

Ref country code: AT

Payment date: 20200625

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 744012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210724

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220613

Year of fee payment: 11

Ref country code: GB

Payment date: 20220606

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231027

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012009822

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230724