EP2739661A1 - Procédé pour produire des caoutchoucs nitriles dans des solvants organiques - Google Patents

Procédé pour produire des caoutchoucs nitriles dans des solvants organiques

Info

Publication number
EP2739661A1
EP2739661A1 EP12740995.1A EP12740995A EP2739661A1 EP 2739661 A1 EP2739661 A1 EP 2739661A1 EP 12740995 A EP12740995 A EP 12740995A EP 2739661 A1 EP2739661 A1 EP 2739661A1
Authority
EP
European Patent Office
Prior art keywords
radical
general formula
group
acid
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12740995.1A
Other languages
German (de)
English (en)
Inventor
Sven Brandau
Andreas Kaiser
Michael Klimpel
Christopher Barner-Kowollik
Christoph Duerr
Sebastian EMMERLING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland GmbH filed Critical Lanxess Deutschland GmbH
Priority to EP12740995.1A priority Critical patent/EP2739661A1/fr
Publication of EP2739661A1 publication Critical patent/EP2739661A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles

Definitions

  • the present invention relates to a process for the preparation of nitrile rubbers by radical polymerization, which is carried out in solution with the combination of certain solvents, a process for hydrogenating the nitrile rubbers thereby obtained.
  • Nitrile rubbers also abbreviated to "NBR” are rubbers which are copolymers or terpolymers of at least one ⁇ , ⁇ -unsaturated nitrile, at least one conjugated diene and optionally one or more further copolymerizable monomers
  • NBR Nitrile rubbers
  • NBR and HNBR have been firmly established in the field of specialty elastomers for many years. They have an excellent property profile in terms of excellent oil resistance, good heat resistance and excellent resistance to ozone and chemicals, the latter being even more pronounced in the case of HNBR than NBR. NBR and HNBR also have very good mechanical and performance properties. For this reason, they are widely used in a variety of applications and are used, for example, for the production of seals, hoses, belts and damping elements in the automotive sector, also for stators, borehole seals and valve seals in the field of oil extraction as well as for many parts of the electrical industry, the machine industry. and shipbuilding.
  • Such crosslinking concepts also include polymers that are not accessible to all crosslinking forms and agents due to functional groups and therefore present a particular challenge.
  • nitrile rubbers are produced almost exclusively by so-called emulsion polymerization.
  • dodecylmercaptans in particular tertiary dodecylmercaptans ("TDDM” or "TDM” for short) are usually used.
  • TDDM tertiary dodecylmercaptans
  • TDM tertiary dodecylmercaptans
  • Hydrogenation of the nitrile rubber to HNBR is desired, this hydrogenation is also carried out by known methods of the prior art, for example using homogeneous or heterogeneous hydrogenation catalysts.
  • the catalysts are usually based on rhodium, ruthenium or titanium.
  • platinum, iridium, palladium, rhenium, ruthenium, osmium, cobalt or copper either as metal or else preferably in the form of metal compounds.
  • Nitrile rubbers in monochlorobenzene proven as an organic solvent.
  • the nitrile rubber obtained after the polymerization in aqueous emulsion must therefore first be isolated. This is procedurally and technically complex and thus not economically attractive.
  • nitrile rubbers may need to be subjected to molecular weight degradation (eg, by metathesis) prior to hydrogenation in a further step to ultimately produce a hydrogenated
  • WO-A-98/01478 describes the preparation of a wide variety of homopolymers and copolymers.
  • homopolymers e.g. Poly (meth) acrylates, poly (meth) acrylic acid, polyacrylamides and polystyrene synthesized.
  • block copolymers e.g.
  • WO-A-2011/032832 is not yet optimal with regard to the time-conversion behavior of the polymerization to the nitrile rubber.
  • GB1,005,988 describes a polymerization of conjugated dienes by free radical polymerization in an organic solvent.
  • the solvent may contain 1-20% extender oil. Described is the homopolymerization of butadiene in benzene, of isoprene in pentane or of isoprene in hexane.
  • the object of the present invention was thus to provide an improved process for the preparation of nitrile rubbers in organic solution.
  • nitrile rubber (s) is to be interpreted broadly and encompasses both the nitrile rubbers and hydrogenated nitrile rubbers.
  • the formula is "hydrogenated nitrile rubbers”
  • substituted in this application, this means that a hydrogen atom on a given radical or atom is replaced by one of the specified groups, with the proviso that the valency of the specified atom is not exceeded and always only on the condition that this substitution leads to a stable compound.
  • the invention thus provides a process for the preparation of nitrile rubbers by radical polymerization of at least one conjugated diene, at least one ⁇ , ⁇ -unsaturated nitrile and optionally one or more further copolymerizable monomers, which is characterized in that at least two solvents are used, wherein a Solvent is used in an amount ranging from 70 to 99.9 vol%, based on the sum of all solvents used.
  • H a linear or branched, saturated, mono- or polyunsaturated alkyl radical, a saturated, mono- or polyunsaturated carbo- or heterocyclyl radical, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxy, aryloxy, heteroaryloxy, amino, amido, hydroxyimino, Carbamoyl, alkoxycarbonyl, F, Cl, Br, I, hydroxy, phosphonato, phosphinato, alkylthio, arylthio, sulfanyl, thiocarboxy, sulfinyl, sulfono, sulfamoyl, sulfeno, sulfonic acids, sulfamoyl, silyl, silyloxy, nitrile, carbonyl, carboxy, Oxycarbonyl, oxysulfonyl, oxo, thioxo, borates
  • M represents repeat units of one or more mono- or polyunsaturated monomers, comprising conjugated or non-conjugated dienes, alkynes and vinyl compounds, or a structural element which derives polymers comprising polyethers, in particular polyalkylene glycol ethers and polyalkylene oxides, polysiloxanes, polyols, polycarbonates, Polyurethanes, polyisocyanates, polysaccharides, polyesters and polyamides,
  • n and m are the same or different and are each in the range of 0 to 10,000,
  • Solvents at the same reaction times to achieve a significant increase in sales compared to the sole use of that solvent, which is used in the process according to the invention with at least 70% by volume based on the sum of all solvents. This means that it is possible to achieve similar conversions as when using only one solvent in a shorter reaction time.
  • the use of a solvent mixture in the specific composition has no negative influence on the molecular weights obtained. It is thus possible to achieve technically acceptable molecular weights (Mn> 50,000 g / mol) with - compared to conventional emulsion NBR - very low polydispersities of significantly less than 2.0.
  • the free-radical polymerization of the process according to the invention is followed by a
  • Embodiment (2) of the method according to the invention is a thermoplastic material
  • At least one regulator of the abovementioned general formula (VI) is used.
  • radicals Z and R of the general formula (VI) may each be mono- or polysubstituted.
  • the following radicals preferably have a single or multiple substitution: alkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxy, aryloxy,
  • substituents in turn, as far as chemically stable compounds result, all meanings in question, which Z can assume.
  • Particularly suitable substituents are halogen, preferably fluorine, chlorine, bromine or iodine, nitrile (CN) and carboxy.
  • Z and R in the general formula (VI) also explicitly include salts of the radicals mentioned, provided that they are chemically possible and stable. This can be for example ammonium salts, alkali salts, alkaline earth salts, aluminum salts or protonated forms of the regulators of general formula (VI).
  • Z and R in the general formula (VI) also include organometallic radicals, for example those which give the regulator a Grignard function.
  • Z and R may further represent a carbanion with lithium, zinc, tin, aluminum, lead and boron as the counterion.
  • the regulator is coupled via the radical R via a linker to a solid phase or carrier substance.
  • the linker may be Wang, Sasrin, Rink acid, 2-chlorotrityl, Mannich, Safety-Catch, Traceless or photolabile linker known to those skilled in the art.
  • solid phases or carriers examples include silica, ion exchange resins, clays, montmorillonites, crosslinked polystyrene, polyethylene glycol grafted onto polystyrene, polyacrylamides ("pepsyn"), polyethylene glycol-acrylamide copolymers (PEGA), cellulose, cotton and granular porous glass (CPG, controlled pore glass) in question.
  • pepsyn polyacrylamides
  • PEGA polyethylene glycol-acrylamide copolymers
  • CPG controlled pore glass
  • regulators of general formula (VI) act as ligands for organometallic complex compounds, e.g. for those based on the central metals rhodium, ruthenium, titanium, platinum, iridium, palladium, rhenium, ruthenium, osmium, cobalt, iron or copper.
  • radical "M” can be monosubstituted or polysubstituted, meaning that M can be repeating units of one or more mono- or polyunsaturated monomers, preferably optionally an or multiply substituted conjugated or non-conjugated dienes, optionally mono- or poly-substituted alkynes or optionally mono- or polysubstituted vinyl compounds, for example fluorinated mono- or polyunsaturated vinyl compounds, or else a divalent structural element which is derived from substituted or unsubstituted polymers comprising polyethers, in particular polyalkylene glycol ethers and polyalkylene oxides, polysiloxanes, polyols, polycarbonates, polyurethanes, polyisocyanates, polysaccharides, polyesters and polyamides, meaning that behind these radicals "M” a monomeric or polymeric radical can be concealed.
  • polyethers in particular polyalkylene glycol ethers and polyalkylene oxides, polysiloxanes, poly
  • This preferred controller thus has the general structure (via)
  • This particularly preferred regulator of the general formula (VIb) is obtained from the regulator of the general formula (VI) by
  • alkyl radical is a linear or branched, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, preferably a corresponding C 3 -C 20 -alkyl radical, in particular sec-butyl, tert-butyl, isopropyl, 1-buten-3-yl, 2-chloro-1-buten-2-yl, propionic acid-2-yl, propionitril-2-yl, 2-methylpropanenitril-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H, 2-keto-3-oxo-4H, 4H, 5H, 5H-perfluoroundecanyl, or
  • aryl radical represents a (hetero) aryl radical, very particularly preferably a C 6 -C 24- (hetero) aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - represents a (hetero) aralkyl radical, very particularly preferably benzyl, phenylethyl or 1-methyl-1-phenyleth-2-yl, or
  • Z has the meanings previously given for the general formula (VI), but also with the additional restriction to such meanings that Z forms after homolytic cleavage of the Z-S bond either a secondary, tertiary or aromatic stabilized radical.
  • R and Z are the same or different and with the proviso that R and Z after homolytic cleavage of the R-S or Z-S bond in each case a secondary, tertiary or aromatic stabilized
  • alkyl radical is a linear or branched, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, preferably a corresponding C 3 -C 20 -alkyl radical, in particular sec-butyl, tert-butyl, isopropyl, 1-buten-3-yl, 2-chloro-1-buten-2-yl, propionic acid-2-yl, propionitril-2-yl, 2-methylpropanenitril-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H, 2-keto-3-oxo-4H, 4H, 5H, 5H-perfluoroundecanyl, or represents a saturated or mono- or polyunsaturated, optionally monosubstituted or polysubstituted carbo- or heterocyclyl radical, in particular cyclohexyl, cumyl or cyclohexane-1-nitrile-1-yl,
  • aryl radical represents a (hetero) aryl radical, very particularly preferably a C 6 -C 24- (hetero) aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - represents a (hetero) aralkyl radical, very particularly preferably benzyl, phenylethyl or 1-methyl-1-phenyleth-2-yl, or
  • radicals R and Z which lead to homolytic cleavage of the RS (or ZS) bond to a radical to be called "tertiary" are, for example, tert. Butyl, cyclohexane-1-nitril-1-yl and 2-methylpropanenitril-2-yl.
  • radicals R and Z which upon homolytic cleavage of the R-S (or Z-S) bond lead to a radical which is to be termed "secondary", are e.g. sec-butyl, iso-propyl and cycloalkyl, preferably cyclohexyl.
  • radicals Z which, on homolytic cleavage of the ZS bond, lead to a radical which is to be termed "primary" are thus, for example, H, straight-chain C 1 -C 20 -alkyl radicals, OH, SH, SR and C 2 -C 20 -alkyl radicals having branchings beyond the C atom that binds to S.
  • X is C (Z) 2
  • Z has the meanings given above for the general formula (VI)
  • alkyl radical is a linear or branched, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, preferably a corresponding C3-C20-alkyl radical, in particular sec-butyl, tert-butyl, iso-propyl, l Butan-3-yl, 2-chloro-l-buten-2-yl, propionic acid-2-yl, propionitril-2-yl, 2-methylpropanenitril-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H , 2-keto-3-oxo-4H, 4H, 5H, 5H-perfluoroundecanyl, or
  • aryl radical represents a (hetero) aryl radical, very particularly preferably a C 6 -C 24- (hetero) aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - represents a (hetero) arylalkyl radical, very particularly preferably a C7-C25- (hetero) arylalkyl radical, in particular benzyl, phenylethyl or 1-methyl-1-phenyleth-2-yl, or
  • At least one regulator of the general formula (VIII) is used, wherein
  • Z has the meanings given above for the general formula (VI), but with the restriction that Z forms a primary radical after homolytic cleavage of the SZ bond, and R may have the same meanings as Z in the general formula (VI) but with the proviso that after homolytic cleavage of the SR bond R forms either a secondary, tertiary or aromatically stabilized radical, and
  • Z has the meanings given above for the general formula (VI), but with the restriction that Z forms a primary radical after homolytic cleavage of the S-Z bond, and
  • R may have the same meanings as Z in the general formula (VI), but with the proviso that R forms after homolytic cleavage of the S-R bond either a secondary, tertiary or aromatic stabilized radical.
  • Z with the proviso that Z forms a primary radical after homolytic cleavage of the SZ bond, H, a linear or branched, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, very particularly preferably a corresponding Ci-Ciö alkyl radical , in particular methyl, ethyl, n-prop-1-yl, but-2-en-1-yl, n-pentyl
  • alkyl radical represents a linear, branched or cyclic, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, preferably a corresponding C 3 -C 20 -alkyl radical, in particular sec-butyl, tert-butyl, isopropyl, 1-buten-3-yl, 2-chloro-1-buten-2-yl, propionic acid-2-yl, propionitrile-2-yl, 2-methylpropanenitrile-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H, 2-keto-3-oxo-4H, 4H, 5H, 5H-perfluoroundecanyl, or
  • aryl radical or heteroaryl radical is an aryl radical or heteroaryl radical, very particularly preferably a C 6 -C 24 -aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - represents an aralkyl radical, very particularly preferably benzyl, phenylethyl or 1-methyl-1-phenyleth-2-yl, or
  • At least one regulator of the general formula (VIe) is used,
  • R may have the same meanings as Z in the general formula (VI), but with the
  • R forms after homolytic cleavage of the S-R bond either a secondary, tertiary or aromatic stabilized radical.
  • X is CH 2 ,
  • R may have the same meanings as Z in the general formula (VI), but with the
  • R forms after homolytic cleavage of the S-R bond either a secondary, tertiary or aromatic stabilized radical.
  • alkyl radical is a linear or branched, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, preferably a corresponding C3-C20-alkyl radical, in particular sec-butyl, tert-butyl, iso-propyl, l Butan-3-yl, 2-chloro-l-buten-2-yl, propionic acid-2-yl, propionitril-2-yl, 2-methylpropanenitril-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H , 2-keto-3-oxo-4H, 4H, 5H, 5H-perfluoroundecanyl, or
  • aryl radical represents a (hetero) aryl radical, very particularly preferably a C 6 -C 24- (hetero) aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - represents a (hetero) arylalkyl radical, very particularly preferably a C7-C25- (hetero) arylalkyl radical, in particular benzyl, phenylethyl or 1-methyl-1-phenyleth-2-yl, or
  • Particularly suitable as regulators in the embodiment (2) of the process according to the invention are dodecylpropanoic acid trithiocarbonate (DoPAT), dibenzoyl trithiocarbonate (DiBenT),
  • Cumylphenyldithioacetate CPDA
  • cumyldithiobenzoate phenylethyldithiobenzoate
  • cyanoisopropyldithiobenzoate CPDB
  • 2-cyanopropyldodecyltrithiocarbonate 2-
  • variant (2) of the process according to the invention from 5 to 2,000 mol% of the regulator are used, based on 1 mol of the initiator. Preferably, 20 to 1000 mol% of the regulator are used based on 1 mol of the initiator.
  • the compounds of general formula (VIb) which can be used in embodiment (2) of the process according to the invention are known from the so-called RAFT technology, see the references cited above.
  • Embodiment variant (3) of the process according to the invention :
  • Preferred mercaptans (i) are alkylmercaptans, particularly preferred are C 1 -C 6 -alkyl mercaptans, which may be branched or unbranched. Very particular preference is given to methylmercaptan, ethylmercaptan, n-butylmercaptan, n-hexylmercaptan, n-octylmercaptan, n-dodecylmercaptan, tert-nonylmercaptan and tert-dodecylmercaptans.
  • Tertiary mercaptans can be used both in the form of individual isomers and in the form of mixtures of two or more isomers.
  • Preferred mercaptoalcohols (ii) are aliphatic or cycloaliphatic mercaptoalcohols, in particular 2-mercapto-1-ethanol, 3-mercapto-1-propanol, 3-mercaptopropane-1,2-diol (also known as thioglycerol), 4-mercapto-1-ol butanol and 2-mercaptocyclohexanol.
  • Preferred mercaptocarboxylic acids (iii) are mercaptoacetic acid (also referred to as sulfanylacetic acid), 3-mercaptopropionic acid, mercaptobutanedioic acid (also known as mercaptosuccinic acid), cysteine and N-acetylcysteine.
  • Preferred mercaptocarboxylic esters (iii) are alkyl thioglycolates, in particular ethylhexyl thioglycolate.
  • a preferred thiocarboxylic acid (iv) is thioacetic acid.
  • Preferred disulphides (v) are xanthogen disulphides, particularly preferred is diisopropylxanthogen disulphide.
  • Preferred allyl compounds (vii) are allyl alcohol or allyl chloride.
  • a preferred aldehyde (viii) is crotonaldehyde.
  • Preferred aliphatic or araliphatic halogenated hydrocarbons are chloroform, carbon tetrachloride, iodoform or benzyl bromide.
  • the aforementioned molecular weight regulators are in principle known from the literature (see KC Berger and G. Brandrup in J. Brandrup, EH Immergut, Polymer Handbook, 3rd ed., John Wiley & Sons, New York, 1989, p 11/81 - 11/141) and commercially available or alternatively may be prepared by methods known to those skilled in the literature (see, for example, Chimie & Industrie, Vol. 90 (1963), No. 4, 358-368, US Pat. Nos. 2,531,602, DD 137,307, DD 160,222, US-A-3,137,735, WO-A-2005/082846, GB
  • Molecular weight regulators are characterized in that they accelerate chain transfer reactions in the context of the polymerization reaction and thus cause the reduction of the degree of polymerization of the resulting polymers.
  • the aforementioned regulators comprise mono-, bi- or polyfunctional regulators, depending on the number of functional groups in the molecule which can lead to one or more chain transfer reactions.
  • the molecular weight regulator to be used in the process according to the invention is particularly preferably tert-dodecylmercaptans, both in the form of individual isomers and in the form of mixtures of two or more isomers.
  • Ci2-01efin starting material also referred to as "Ci2 feed stock” are predominantly oligomer mixtures based on tetramerized propene (also called “tetrapropene” or “tetrapropylene”), trimerized isobutene (also “triisobutene” or “triisobutylene “called), trimerized n-butene and dimerized hexene used.
  • tert-dodecyl mercaptans selected from the group consisting of 2,2,4,6,6-pentamethylheptanethiol-4, 2,4,4,6,6-pentamethylheptanethiol-2,2 , 3,4,6,6-Pentamethylheptanthiol-2, 2,3,4,6,6-pentamethylheptanethiol-3 and any mixtures of two or more of the aforementioned isomers.
  • variant (3) of the process according to the invention uses a mixture which
  • Pentamethylheptanthiol-2 and 2,3,4,6,6-pentamethylheptanethiol-3 contains.
  • the preparation of this mixture is described in EP-A-2,162,430.
  • 1 to 5,000 mol% of the molecular weight regulator (i) to (ix) are used, based on 1 mol of initiator.
  • Preference is given to using 5 to 2000 mol% of the molecular weight regulator, based on 1 mol of the initiator.
  • the process according to the invention is a free-radical polymerization.
  • the manner in which this is initiated is not critical, insofar an initiation using one or more initiators selected from the group consisting of peroxidic initiators, azo initiators and redox systems in question or by photochemical initiation.
  • the azo initiators are preferred.
  • azo initiators for example, the following compounds can be used:
  • 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-cyano-2-butane), dimethyl 2,2 '-azobisdimethyl isobutyrate, 4,4'-azobis (4-cyanopentanoic acid), 2 - (t-butylazo) -2-cyanopropane, 2,2'-azobis [2-methyl-N- (1, 1) -bis (hydroxymethyl) -2-hydroxyethyl] propionamide, 2,2'-azobis [2- methyl-N-hydroxyethyl] propionamide, 2,2'-azobis (N, N-dimethyleneisobutyr-amidine) dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (N, N ') -dimethyleneisobutyramine), 2,2'-azobis (2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide), 2,2
  • the azo initiators are used in an amount of 10 to 10 "is 1 mol / 1, preferably in an amount of 10" 3 to 10 "2 mol / 1 is used.
  • the ratio of the amount of initiator used to the amount of controller used it is possible, to influence both the reaction kinetics and the molecular structure (molecular weight, polydispersity) targeted.
  • peroxidic initiators which can be used are the following peroxo compounds which have an -O-O unit: hydrogen peroxide, peroxodisulfates, peroxodiphosphates, hydroperoxides, peracids, peracid esters, peracid anhydrides and peroxides with two organic radicals.
  • peroxodisulfuric acid and peroxodiphosphoric acid sodium, potassium and ammonium salts can be used.
  • Suitable hydroperoxides are, for example, Butyl hydroperoxide, cumene hydroperoxide, pinane hydroperoxide and p-menthane hydroperoxide.
  • Suitable peroxides having two organic radicals are dibenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, 2,5-dimethylhexane-2,5-di-tert-butyl peroxide, bis (t-butylperoxy-isopropyl) benzene, tert-butyl cumyl peroxide, di-tert-butyl peroxide. butyl peroxide, dicumyl peroxide, t-butyl perbenzoate, t-butyl peracetate, 2,5-dimethylhexane-2,5-diperbenzoate, t-butyl-per-3,5,5-trimethylhexanoate. Preference is given to using p-menthane hydroperoxide, cumene hydroperoxide or pinane hydroperoxide.
  • azo or peroxide initiators are used with a prolonged disintegration time. It has proven useful to choose the azo initiator or the peroxidic initiator so that at a temperature of 70 ° C to 200 ° C, preferably 80 ° C to 175 ° C, more preferably 85 ° C to 160 ° C and in particular 90 ° C to 150 ° C, the half-life of the respective initiator in the chosen solvent is 10 hours or more than 10 hours.
  • Azoinitators of the following structural formulas (Ini-1) - (Ini-6) are particularly preferably used:
  • the aforementioned azo initiators of the structural formulas (Ini-1) - (Ini-6) are commercially available, for example, from Wako Pure Chemical Industries, Ltd.
  • half-life is familiar to the skilled person in connection with initiators.
  • a half-life of 10 hours in a solvent at a certain temperature means concretely that under these conditions half of the initiator has decomposed after 10 hours.
  • nitrile rubbers having a comparatively higher average can be used
  • oxidizing agent As redox systems, the following systems of an oxidizing agent and a reducing agent can be used.
  • the choice of suitable amounts of oxidizing and reducing agents is sufficiently familiar to the person skilled in the art.
  • salts of transition metal compounds such as iron, cobalt or nickel are frequently used in addition in combination with suitable complexing agents such as sodium ethylenediaminetetraacetate, sodium nitrilotriacetate and trisodium phosphate or tetrapotassium diphosphate.
  • suitable complexing agents such as sodium ethylenediaminetetraacetate, sodium nitrilotriacetate and trisodium phosphate or tetrapotassium diphosphate.
  • suitable complexing agents such as sodium ethylenediaminetetraacetate, sodium nitrilotriacetate and trisodium phosphate or tetrapotassium diphosphate.
  • peroxo compounds which have been mentioned above for the peroxidic initiators can be used as the oxidizing agent.
  • reducing agent for example, the following may be used in the process of the present invention: sodium formaldehyde sulfoxylate, sodium benzaldehydesulfoxylate, reducing
  • the initiation of the radical polymerization can also be carried out photochemically as described below:
  • a photoinitiator is added to the reaction mixture, which is excited by irradiation by means of light of suitable wavelength and initiates a free-radical polymerization.
  • the duration of irradiation depends on the power of the radiator, on the distance between the radiator and the radiator
  • Reaction vessel and is dependent on the irradiation area.
  • the choice of the appropriate amount of initiation is possible for the expert without any problems and serves to influence the time-turnover behavior of the polymerization.
  • photochemical initiators for example, the following may be used: benzophenone, 2-methylbenzophenone, 3,4-dimethylbenzophenone, 3-methylbenzophenone, 4,4'-
  • the inventive method is carried out in a mixture of at least two solvents, wherein the first solvent in an amount in the range of 70 to 99.9% by volume, based on the sum of all solvents used.
  • This first solvent is also referred to below as the "main solvent.”
  • the second (and optionally one or more) solvents used are accordingly together in an amount in the range of 0.01 to 30% by volume based on the sum of all solvents used.
  • the main solvent is used in an amount in the range from 75 to 99.9% by volume, more preferably from 85 to 99.5% by volume, based on the sum of all solvents used, and the additional solvent (s) preferably together in an amount of 0, 1 to 25% by volume, more preferably from 0.5 to 15% by volume, again based on the sum of all solvents used.
  • Suitable main solvents are, for example, dimethylacetamide, monochlorobenzene, toluene, ethyl acetate, 1,4-dioxane, acetonitrile, tert-butanol, tert-butylnitrile, dimethyl carbonate, methyl acetate, isobutyronitrile and acetone.
  • Suitable additional solvents are, for example, all solvents mentioned above, provided that the main solvent is other than the additional solvent.
  • Also suitable as additional solvents are: water, diisopropyl ether, di-n-propyl ether, diethyl carbonate, isopropyl methyl ketone, butyl acetate, octanoic acid, isopropyl acetate, propyl acetate, pivalonitrile, toluene, methyl tert-butyl ether, 1-butanol, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, 1-propanol, 2-methoxymethanol, ⁇ , ⁇ -dimethylformamide, ethanol, 1,3-butanediol, diethylene glycol, methanol.
  • the main solvent used is a solvent selected from the group consisting of dimethylacetamide, monochlorobenzene, Toluene, ethyl acetate, 1,4-dioxane, acetonitrile, tert-butanol, tert-butyl nitrile, dimethyl carbonate, methyl acetate, isobutyronitrile and acetone, and one or more other solvents other than the main solvent selected from the group consisting of water , Di-isopropyl ether, di-n-propyl ether, diethyl carbonate, isopropyl methyl ketone, butyl acetate, octanoic acid, isopropyl acetate, propyl acetate, pivalonitrile, toluene, methyl tert-butyl ether, 1-butanol, 2-ethoxyethanol,
  • water is used as an additional solvent, it is important that the entire amount of water present must be maintained so as not to precipitate the NBR polymer that forms. However, this is easy to determine for a person skilled in the art by experimental tests. It should be made clear at this point that the process according to the invention is not an emulsion polymerization.
  • the determining factor for the suitability of a solvent is that the nitrile rubber produced is completely concentrated at the reaction temperature, which is usually in the range specified below
  • Monochlorobenzene is preferred as the main solvent in combination with one or more, preferably one further solvent selected from the group consisting of water, di-isopropyl ether, di-n-propyl ether, diethyl carbonate , Isopropyl methyl ketone, butyl acetate, octanoic acid, isopropyl acetate, propyl acetate, pivalonitrile, toluene, methyl tert-butyl ether, 1-butanol, 2-ethoxyethanol, phenoxyethanol, 2-propanol, benzyl alcohol, 1-propanol, 2-methoxymethanol, N, N-dimethylformamide , Ethanol, 1,3-butanediol, diethylene glycol, methanol, isobutyronitrile,
  • Dimethyl carbonate, trimethylactononitrile, methyl acetate is particularly preferred.
  • Particularly preferred is the combination of monochlorobenzene as the main solvent and ⁇ , ⁇ -dimethylacetamide as additional solvent.
  • a main solvent in combination with one or more, preferably one further solvent are: tert. Butanol, 1,4-dioxane, acetonitrile, toulol, Isobutyronitrile, isopropyl methyl ketone, N, N-dimethylacetamide, dimethyl carbonate,
  • Trimethylacteonitrile methyl acetate as the main solvent with a further solvent selected from the group other than the main solvent consisting of water, diisopropyl ether, di-n-propyl ether, diethyl carbonate, isopropyl methyl ketone, butyl acetate, octanoic acid, isopropyl acetate, propyl acetate, pivalonitrile, toluene, methyl tert butyl ether, 1-butanol, 2-
  • the inventive method is usually carried out at a temperature in a range of 5 ° C to 150 ° C, preferably in a range of 8 ° C to 130 ° C, more preferably in a range of 9 ° C to 120 ° C and in particular in a range of 10 ° C to 110 ° C. If the temperature is chosen even lower, the polymerization is slowed down accordingly. At even higher temperatures, it is not excluded that the initiator used decomposes too fast or the RAFT
  • Agent is decomposed. In particular, when using peroxidic initiators, it is not excluded that it u.U. comes to the oxidation of the regulator.
  • the conducting of the process according to the invention usually takes place in such a way that the ⁇ , ⁇ -unsaturated nitrile and the optionally used further copolymerizable monomers, the solvent, the initiator and the regulator (s) are initially charged to a reaction vessel and then the one or more conjugated dienes is / are added. The polymerization is then started by increasing the temperature.
  • the oxidizing agent is typically metered into the reaction vessel together with one of the monomers.
  • the polymerization is then started by addition of the reducing agent.
  • the dosage eg by addition of the respective monomer, of initiator amounts, regulator amounts or solvent.
  • These additions can be carried out either continuously or in individual portions discontinuously.
  • the metered addition of the monomers or else the addition of initiator can be carried out batchwise either continuously or else in individual portions.
  • the resulting nitrile rubbers are characterized by the presence of one or more structural elements of the general formulas (I), (II), (III), (TV) or (V) either in the polymer backbone or as end groups.
  • Nitrile rubbers can be subjected to follow-on reactions with other polymerizable monomers because of these structural elements / end groups, since the structural elements / end groups can act as RAFT agents via further fragmentation. In this way, the targeted construction of various polymer architectures is possible. Moreover, these optionally hydrogenated nitrile rubbers according to the invention can also be more easily crosslinked than conventional nitrile rubbers, since the
  • Structural elements / end groups are structurally similar to the usual crosslinking agents, especially those based on sulfur.
  • a sufficient crosslinking density can be achieved with the optionally hydrogenated nitrile rubbers according to the invention even with a smaller amount of crosslinker.
  • cross-linking via the end groups reduces the number of loose polymer chain ends in the vulcanizate, thereby providing improved properties such as e.g. the dynamic properties comes.
  • Z is H, a linear or branched, saturated, mono- or polyunsaturated alkyl radical, a saturated, mono- or polyunsaturated carbo- or heterocyclyl radical, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxy, aryloxy, heteroaryloxy, amino, amido, hydroxyimino , Carbamoyl, alkoxycarbonyl, F, Cl, Br, I, hydroxy, phosphonato, phosphinato, alkylthio, arylthio, sulfanyl, thiocarboxy, sulfinyl, sulfono, sulfino, sulfeno, sulfonic acids, sulfamoyl, silyl, silyloxy, nitrile, carbonyl, carboxy, oxycarbonyl , Oxysulfonyl, oxo, thioxo,
  • M represents repeat units of one or more mono- or polyunsaturated monomers, comprising conjugated or non-conjugated dienes, alkynes and vinyl compounds, or a structural element which derives polymers comprising polyethers, in particular polyalkylene glycol ethers and polyalkylene oxides, polysiloxanes, polyols, polycarbonates, Polyurethanes, polyisocyanates, polysaccharides, polyesters and polyamides,
  • n and m are the same or different and are each in the range of 0 to 10,000,
  • R (a) for the case that m ⁇ 0, may have the same meanings as the radical Z and
  • Hydrogenated nitrile rubbers which have structural elements (ii) of the general formulas (VIb-1) and (VIb-2) may preferably be obtained via variant (2) of the process according to the invention and - R (Vlb-2)
  • R has the meanings given above for the general formula (I), but with the proviso that R after homolytic cleavage of the bond to the next bonded atom in the nitrile rubber forms either a secondary, tertiary or aromatic stabilized radical.
  • nitrile rubbers which contain as general structural elements (ii) the end group n (VIb-l) and (VIb-2), wherein R with the proviso that R after homolytic cleavage the bond to the next bonded atom forms either a secondary, tertiary or aromatically stabilized radical, - represents a linear or branched, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, preferably a corresponding C 3 -C 20 -alkyl radical especially for sec-butyl, tert-butyl, iso-propyl, 1-buten-3-yl, 2-chloro-1-buten-2-yl, propionic acid-2-yl, propionitrile-2-yl, 2 Methylpropanenitril-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H, 2-keto-3-oxo-4
  • aryl radical represents a (hetero) aryl radical, very particularly preferably a C 6 -C 24- (hetero) aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - represents a (hetero) aralkyl radical, very particularly preferably benzyl, phenylethyl or 1-methyl-1-phenyleth-2-yl, or
  • Variant (2) are optionally obtained hydrogenated nitrile rubbers containing as general structural elements (ii) the elements (III) and ( ⁇ ) and / or ( ⁇ ), wherein R and Z are the same or different and with the proviso that R and Z each form a secondary, tertiary or aromatically stabilized radical after homolytic cleavage of the bond to the next bonded atom,
  • alkyl radical preferably a corresponding C 3 -C 20 -alkyl radical, in particular sec-butyl, tert-butyl, isopropyl, 1-buten-3-yl, 2-chloro-l-buten-2-yl, propionic acid-2-yl, propionitril-2-yl, 2-methylpropanenitril-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H, 2-keto-3-oxo-4H, 4H, 5H, 5H-perfluoroundecanyl, or
  • aryl radical very particularly preferably a C 6 -C 24- (hetero) aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - stand for a (hetero) aralkyl, very particularly preferably benzyl, phenylethyl or
  • Variant (2) are optionally hydrogenated nitrile rubbers obtained as general
  • R has the meanings given above for the general formula (II), but with the proviso that R forms a secondary, tertiary or aromatically stabilized radical after homolytic cleavage of the bond to the next atom in the optionally hydrogenated nitrile rubber.
  • R with the proviso that R forms a secondary, tertiary or aromatic stabilized radical after homolytic cleavage of the bond to the next atom in the optionally hydrogenated nitrile rubber.
  • alkyl radical is a linear or branched, saturated or mono- or polyunsaturated, optionally mono- or polysubstituted alkyl radical, preferably a corresponding C 3 -C 20 -alkyl radical, in particular sec-butyl, tert-butyl, isopropyl, 1-buten-3-yl, 2-chloro-l-buten-2-yl, propionic acid-2-yl, propionitril-2-yl, 2-methylpropanenitril-2-yl, 2-methylpropionic acid-2-yl or 1H, 1H, 2-keto-3-oxo-4H, 4H, 5H, 5H-perfluoroundecanyl, or
  • aryl radical represents a (hetero) aryl radical, very particularly preferably a C 6 -C 24- (hetero) aryl radical, in particular phenyl, pyridinyl or anthracenyl,
  • - represents a (hetero) aralkyl radical, very particularly preferably benzyl, phenylethyl or 1-methyl-1-phenyleth-2-yl, or
  • the nitrile rubbers obtained, as well as the hydrogenated nitrile rubbers obtained therefrom optionally by hydrogenation are distinguished by the fact that, in contrast to corresponding rubbers obtained via the emulsion polymerization according to the prior art are completely emulsifier-free and also contain no salts, as they are usually used for coagulation of the latices after the emulsion polymerization in order to precipitate the nitrile rubber.
  • the conjugated diene in nitrile rubber can be of any nature. Preference is given to using (C 4 -C 6) conjugated dienes. Particular preference is given to 1,2-butadiene, 1,3-butadiene, isoprene, 2,3- Dimethyl butadiene, piperylene or mixtures thereof. Particular preference is given to 1,3-butadiene and isoprene or mixtures thereof. Very particular preference is 1, 3-butadiene.
  • ⁇ -unsaturated nitrile may be used any known ⁇ , ⁇ -unsaturated nitrile, preferred are (C3-C 5) -a, ß-unsaturated nitriles such as acrylonitrile, methacrylonitrile, ethacrylonitrile or
  • a particularly preferred nitrile rubber is a copolymer of acrylonitrile and 1,3-butadiene.
  • further copolymerizable termonomers are aromatic vinyl monomers, preferably styrene, ⁇ -methylstyrene and vinylpyridine, fluorine-containing vinyl monomers, preferably fluoroethylvinylether, fluoropropylvinylether, o-fluoromethylstyrene, vinylpenta-fluorobenzoate, difluoroethylene and tetrafluoroethylene, or else copolymerizable antiageing monomers, preferably N- ( 4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamide, N- (4-anilinophenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) aniline and N-pheny
  • (4-vinylbenzyloxy) aniline and non-conjugated dienes such as 4-cyanocyclohexene and 4-vinylcyclohexene, or alkynes, such as 1- or 2-butyne.
  • carboxy-containing, copolymerizable termonomers can be used as further copolymerizable termonomers, for example ⁇ , ⁇ -unsaturated monocarboxylic acids, their esters, ⁇ , ⁇ -unsaturated dicarboxylic acids, their mono- or diesters or their corresponding anhydrides or amides.
  • Acrylic acid and methacrylic acid may preferably be used as ⁇ , ⁇ -unsaturated monocarboxylic acids.
  • esters of ⁇ , ⁇ -unsaturated monocarboxylic acids preferably their alkyl esters and alkoxyalkyl esters. Preference is given to the alkyl esters, in particular CpCig alkyl esters of ⁇ , ⁇ -unsaturated monocarboxylic acids.
  • alkyl esters in particular CpCig alkyl esters of acrylic acid or of methacrylic acid, in particular methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, n-dodecyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate.
  • alkoxyalkyl esters of ⁇ , ⁇ -unsaturated monocarboxylic acids particularly preferably alkoxyalkyl esters of acrylic acid or of methacrylic acid, in particular C 2 -C 12 -alkoxyalkyl esters of acrylic acid or of methacrylic acid, very particularly preferably methoxymethyl acrylate, Methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate and methoxymethyl (meth) acrylate. It is also possible to use mixtures of alkyl esters, such as those mentioned above, with alkoxyalkyl esters, for example in the form of the abovementioned.
  • cyanoalkyl acrylates and cyanoalkyl methacrylates in which the C atom number of the cyanoalkyl group is 2-12, preferably ⁇ -cyanoethyl acrylate, ⁇ -cyanoethyl acrylate and cyanobutyl methacrylate. It is also possible to use hydroxyalkyl acrylates and
  • Hydroxyalkyl methacrylates in which the C atom number of the hydroxyalkyl groups is 1-12, preferably 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 3-hydroxypropyl acrylate; It is also possible to use fluorine-substituted benzyl-containing acrylates or methacrylates, preferably fluorobenzyl acrylates, and fluorobenzyl methacrylate. It is also possible to use fluoroalkyl-containing acrylates and methacrylates, preferably trifluoroethyl acrylate and tetrafluoropropyl methacrylate. It is also possible to use amino-containing ⁇ -unsaturated carboxylic acid esters, such as dimethylaminomethyl acrylate and diethylaminoethyl acrylate.
  • copolymerizable monomers which can also be used are ⁇ , ⁇ -unsaturated dicarboxylic acids, preferably maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid and mesaconic acid.
  • ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides preferably maleic anhydride, itaconic anhydride, citraconic anhydride and mesaconic anhydride.
  • ⁇ , ⁇ -unsaturated dicarboxylic acid mono- or diesters may, for example, be alkyl, preferably C 1 -C 10 -alkyl, in particular ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl or n-hexyl, alkoxyalkyl, preferably C2-C12 alkoxyalkyl, more preferably C 3 -C 8 - alkoxyalkyl, hydroxyalkyl, preferably C1-C12 hydroxyalkyl, more preferably C 2 -C 8 - hydroxyalkyl, epoxyalkyl, preferably C 3 -C 12 epoxyalkyl, cycloalkyl, preferably C 5 -C 12 -cycloalkyl, particularly preferably C 6 -C 12 -cycloalkyl, alkylcycloalkyl, preferably C 6 -C 12 -alkylcyclo
  • alkyl esters of ⁇ , ⁇ -unsaturated monocarboxylic acids are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate , 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, 2- Propylheptyl acrylate and lauryl (meth) acrylate.
  • n-butyl acrylate is used.
  • alkoxyalkyl esters of the ⁇ , ⁇ -unsaturated monocarboxylic acids are methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate and methoxymethyl (meth) acrylate.
  • methoxyethyl acrylate is used.
  • Particularly preferred hydroxyalkyl esters of the ⁇ , ⁇ -unsaturated monocarboxylic acids are hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate and hydroxybutyl (meth) acrylate.
  • Particularly preferred epoxyalkyl esters of the ⁇ , ⁇ -unsaturated monocarboxylic acids are 2-ethylglycidyl acrylate, 2-ethylglycidyl methacrylate, 2- (n-propyl) glycidyl acrylate, 2- (n-propyl) glycidyl methacrylate, 2- (n-butyl) glycidyl acrylate, 2- (n butyl) glycidylmethacrylate,
  • esters of ⁇ for example, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, N- (2-hydroxyethyl) acrylamides, N- (2-hydroxymethyl) acrylamides and urethane (meth) acrylate are used.
  • ⁇ , ⁇ -unsaturated dicarboxylic acid monoesters examples include
  • Maleic monoalkyl esters preferably monomethyl maleate, monoethyl maleate, monopropyl maleate and mono-n-butyl maleate;
  • Malemic monocycloalkyl ester preferably monocyclopentyl maleate, monocyclohexyl maleate and monocycloheptyl maleate;
  • Maleic acid monoalkylcycloalkyl ester preferably monomethylcyclopentyl maleate and monoethylcyclohexyl maleate;
  • Maleic monoaryl ester preferably monophenylmaleate
  • Fumaric acid monoalkyl esters preferably monomethyl fumarate, monoethyl fumarate, monopropyl fumarate and mono-n-butyl fumarate;
  • Fumaric monocycloalkyl esters preferably monocyclopentyl fumarate, monocyclohexyl fumarate and monocycloheptyl fumarate;
  • Fumarcic Acidmonoalkylcycloalkylester preferably Monomethylcyclopentylfumarat and Monoethylcyclohexylfumarat;
  • Fumaric monoaryl ester preferably monophenyl fumarate
  • Fumaric acid monobenzyl ester preferably monobenzyl furnarate
  • Citracon Acidmonoalkylester preferably Monomethylcitraconat, Monoethylcitraconat, Monopropylcitraconat and mono-n-butyl citraconate;
  • Citraconic monocycloalkyl esters preferably monocyclopentylcitraconate, monocyclohexyl citraconate and monocycloheptylcitraconate;
  • Citracon Acidmonoalkylcycloalkylester preferably Monomethylcyclopentylcitraconat and Monoethylcyclohexylcitraconat;
  • Citraconic monoaryl ester preferably monophenyl citraconate
  • Citraconic acid monobenzyl ester preferably monobenzyl citraconate
  • Itaconic acid monoalkyl ester preferably monomethyl itaconate, monoethyl itaconate, monopropyl itaconate and mono-n-butyl itaconate;
  • Itaconic acid monocycloalkyl ester preferably monocyclopentyl itaconate, monocyclohexyl itaconate and monocycloheptyl itaconate;
  • Itaconic acid monoalkylcycloalkyl ester preferably monomethylcyclopentyl itaconate and monoethylcyclohexyl itaconate;
  • Itaconic acid monoaryl ester preferably monophenyl itaconate
  • Itaconic acid monobenzyl ester preferably monobenzyl itaconate.
  • the analog diesters can be used based on the aforementioned monoester groups, wherein the ester groups may also be chemically different.
  • free-radically polymerizable compounds which contain two or more olefinic double bonds per molecule.
  • di- or polyunsaturated compounds are di- or polyunsaturated acrylates, methacrylates or itaconates of polyols, e.g. 1,6-hexanediol diacrylate (HDODA), 1,6-hexanediol dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate
  • ELDMA diethylene glycol dimethacrylate
  • triethylene glycol diacrylate butanediol 1, 4-diacrylate, propanediol 1, 2-diacrylate, butanediol 1, 3-dimethacrylate, neopentyl glycol diacrylate,
  • Hexamethylene-1, 6-bisacrylamide, diethylenetriamine-tris-methacrylamide, bis (methacrylamidopropoxy) ethane or 2-acrylamido-ethyl acrylate examples of polyunsaturated vinyl and allyl compounds are divinylbenzene, ethylene glycol divinyl ether, diallyl phthalate, allyl methacrylate, diallyl maleate, triallyl isocyanurate or triallyl phosphate.
  • the proportions of conjugated diene and ⁇ , ⁇ -unsaturated nitrile in the obtained NBR polymers can vary widely.
  • the proportion of or the sum of the conjugated dienes is usually in the range of 40 to 90 wt .-%, preferably in the range of 50 to 85 wt.%, Based on the total polymer.
  • the proportion of or the sum of the ⁇ , ⁇ -unsaturated nitriles is usually from 10 to 60 wt .-%, preferably from 15 to 50 wt .-%, based on the total polymer.
  • the proportions of the monomers in each case add up to 100% by weight.
  • the additional monomers may be present in amounts of from 0 to 40% by weight, based on the total polymer.
  • proportions of the conjugated dienes and / or of the ⁇ , ⁇ -unsaturated nitriles are replaced by the proportions of the additional monomers, the proportions of all monomers adding up to 100% by weight in each case.
  • tertiary radicals e.g., methacrylic acid
  • the aforementioned limitation of the additional monomers to max. 40% only for the constellation applies that the total amount of monomers are added to the polymerization mixture at the beginning or during the reaction (ie to generate random terpolymer systems).
  • an optionally hydrogenated nitrile rubber produced according to the invention by virtue of the fact that it can be used in the Polymer backbone and / or the Endgrappen has fragments of the regulator or used to use as a macro-controller and use by turnover with suitable monomers in any amount, for example, to generate block systems.
  • the glass transition temperatures of the optionally hydrogenated nitrile rubbers are in the range from -70 ° C to + 20 ° C, preferably in the range -60 ° C to 10 °.
  • Nitrile rubbers having a polydispersity index in the range from 1.1 to 6.0, preferably in a range from 1.3 to 5.0, particularly preferably in a range from 1.4 to 4.5, can be produced by means of the process according to the invention.
  • embodiment (2) because of the living nature of the polymerization, it is possible to obtain nitrile rubbers having a narrow molecular weight distribution. It is then possible to prepare nitrile rubbers having a polydispersity index in the range from 1.1 to 2.5, preferably in a range from 1.3 to 2.4, more preferably in a range from 1.4 to 2.2, in particular in one range from 1.5 to 2.0, most preferably in a range of from 1.5 to less than 2.
  • the process according to the invention allows a very precise adjustment of the desired molecular weight and, moreover, by the use of the regulators also the construction of targeted polymer architectures (eg production of blocks, forces on polymer backbones, surface bonding, the use of Termonomers with more than one
  • the free-radical polymerization of the process according to the invention is followed by hydrogenation of the nitrile rubber to completely or partially hydrogenated nitrile rubber.
  • a further object of the present invention is to provide hydrogenated nitrile rubbers by immediately following the first polymerization step a) the hydrogenation b), wherein no previous isolation of the nitrile rubber is necessary as in the previously used in the art NBR emulsion polymerization.
  • the hydrogenation can be immediate afterwards to the polymerization, if desired even be carried out in the same reactor. This leads to a substantial simplification and thus to economic advantages in the production of HNBR.
  • the hydrogenation can be carried out using homogeneous or heterogeneous hydrogenation catalysts.
  • the catalysts used are usually based on rhodium, ruthenium or titanium, but it is also possible to use platinum, iridium, palladium, rhenium, ruthenium, osmium, cobalt or copper either as metal or preferably in the form of metal compounds (see, for example, US Pat 3,700,637, DE-A-25 39 132, EP-A-0 134 023, DE-OS 35 41 689, DE-OS 35 40 918, EP-A-0 298 386, DE-OS 35 29 252 DE-OS-34 33 392, US-A-4,464,515 and US-A-4,503,196).
  • the selective hydrogenation can be achieved, for example, in the presence of a rhodium- or ruthenium-containing catalyst. It is possible, for example, to use a catalyst of the general formula
  • M is ruthenium or rhodium
  • R 1 are the same or different and represent a CpCg alkyl group, a C pCg cycloalkyl group, a C 6 -C 15 aryl group or a C 7 -C 15 aralkyl group.
  • X is hydrogen or an anion, preferably halogen and particularly preferably chlorine or bromine
  • 1 is 2,3 or 4
  • m is 2 or 3 and n is 1, 2 or 3, preferably 1 or 3.
  • Preferred catalysts are tris (triphenylphosphine) rhodium (I) chloride, tris (triphenylphosphine) rhodium (III) chloride and tris (dimethylsulfoxide) rhodium (III) chloride and tetrakis ( triphenylphosphine) rhodium hydride of the formula (CeHs ⁇ P ⁇ RhH and the corresponding compounds in which the triphenylphosphine has been wholly or partly replaced by tricyclohexylphosphine
  • the catalyst can be used in small amounts
  • Amount in the range of 0.01-1 wt.% Preferably in the range of 0.03-0.5 wt.% And particularly preferably in the range of 0.1-0.3 wt.% Based on the weight of the polymer suitable.
  • co-catalysts with trialkyl, tricycloalkyl, triaryl, triaralkyl, diaryl-monoalkyl, diaryl-monocycloalkyl, dialkyl-monoaryl, dialkyl monocycloalkyl, dicycloalkyl-monoaryl or dicyclalkyl-monoaryl radicals.
  • Examples of co-catalysts are given, for example, in US Pat. No. 4,631,315.
  • Preferred co-catalyst is triphenylphosphine.
  • the co-catalyst is preferably used in amounts in a range of 0.3-5 wt.%, Preferably in the range of 0.5-4 wt.%, Based on the weight of the nitrile rubber to be hydrogenated. Furthermore, the weight ratio of the rhodium-containing catalyst to the cocatalyst is preferably in the range from 1: 3 to 1:55, particularly preferably in the
  • the co-catalyst Based on 100 parts by weight of the nitrile rubber to be hydrogenated, suitably 0.1 to 33 parts by weight of the co-catalyst, preferably 0.5 to 20 and most preferably 1 to 5 parts by weight, especially more than 2 but less than 5 parts by weight of co-catalyst based 100 parts by weight of the nitrile rubber to be hydrogenated.
  • hydrogenation is understood as meaning a conversion of the double bonds present in the starting nitrile rubber to at least 50%, preferably 70-100%, particularly preferably 80-100% and in particular 90 to 100%.
  • heterogeneous catalysts are usually supported catalysts based on palladium, z. B. supported on carbon, silica, calcium carbonate or barium sulfate.
  • nitrile rubbers or the corresponding optionally hydrogenated nitrile rubbers obtained by the process according to the invention it is also possible to use vulcanizable mixtures containing the optionally hydrogenated nitrile rubber, at least one crosslinker and optionally at least one filler.
  • such vulcanizable mixtures may also contain one or more additives known to the person skilled in the rubber art.
  • additives include anti-aging agents, anti-reversion agents, light stabilizers, antiozonants, processing aids, plasticizers, mineral oils, tackifiers, blowing agents, dyes, pigments, waxes, resins, extenders, organic acids, vulcanization retarders, metal oxides, and other filler activators, such as triethanolamine, trimethylolpropane, polyethylene glycol, hexanetriol aliphatic trialkoxysilanes or other additives known in the rubber industry (Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1993, vol. A 23 "Chemicals and Additives", pp. 366-417).
  • Suitable crosslinkers are, for example, peroxidic crosslinkers such as bis (2,4-dichlorobenzyl) peroxide, dibenzoyl peroxide, bis (4-chlorobenzoyl) peroxide, 1,1-bis (t-butylperoxy) -
  • crosslinking yield can be increased.
  • additives include triallyl isocyanurate, triallyl cyanurate, trimethylolpropane tri (meth) acrylate, triallyl trimellitate, ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane trimethacrylate, zinc acrylate , Zinc diacrylate, zinc methacrylate, zinc dimethacrylate, 1, 2-polybutadiene or N, N'-m-phenylenedimaleimide suitable.
  • the total amount of crosslinker (s) is usually in the range of 1 to 20 phr, preferably in the range of 1.5 to 15 phr and more preferably in the range of 2 to 10 phr, based on the optionally hydrogenated nitrile rubber.
  • crosslinkers it is also possible to use sulfur in elementary soluble or insoluble form or sulfur donors. Suitable sulfur donors are, for example, dimorpholyl disulfide (DTDM), 2-morpholino-dithiobenzothiazole (MBSS), caprolactam disulfide, dipentamethylene thiuram tetrasulfide (DPTT), and tetramethylthiuram disulfide (TMTD).
  • DTDM dimorpholyl disulfide
  • MBSS 2-morpholino-dithiobenzothiazole
  • DPTT dipentamethylene thiuram tetrasulfide
  • TMTD tetramethylthiuram disulfide
  • crosslinking of the optionally hydrogenated nitrile rubber according to the invention can also be carried out only in the presence of the abovementioned additives, i. without addition of elemental
  • additives with the aid of which the crosslinking yield can be increased e.g. Dithiocarbamates, thiurams, thiazoles, sulfenamides, xanthogenates, guanidine derivatives, caprolactams and thiourea derivatives.
  • dithiocarbamates which may be used are: ammonium dimethyldithiocarbamate, sodium diethyldithiocarbamate (SDEC), sodium dibutyldithiocarbamate (SDBC),
  • Zinc dimethyldithiocarbamate ZDMC
  • zinc diethyldithiocarbamate ZDEC
  • zinc dibutyldithiocarbamate ZDBC
  • zinc ethylphenyldithiocarbamate ZEPC
  • zinc dibenzyldithiocarbamate ZBEC
  • Zinc pentamethylene dithiocarbamate (Z5MC), tellurium diethyldithio-carbamate, nickel dibutyl dithio carbamate, nickel dimethyl dithiocarbamate and zinc diisononyl dithio carbamate.
  • thiurams which may be used are: tetramethylthiuram disulphide (TMTD), tetramethylthiuram monosulphide (TMTM), dimethyldiphenylthiuram disulphide, tetrabenzylthiuram disulphide, dipentamethylenethiuram tetrasulphide and tetraethylthiuram disulphide (TETD),
  • Suitable thiazoles are 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), zinc mercaptobenzothiazole (ZMBT) and copper 2-mercaptobenzothiazole.
  • sulfenamide derivatives which can be used are: N-cyclohexyl-2-benzothiazyl sulfenamide (CBS), N-tert-butyl-2-benzthiazyl sulfenamide (TBBS), N, N'-dicyclohexyl-2-benzthiazyl sulfenamide (DCBS), (MBS), N-oxydiethylenethiocarbamyl-N-tert-butylsulfenamide and oxydiethylenethiocarbamyl-N-oxyethylenesulfenamide.
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • TBBS N-tert-butyl-2-benzthiazyl sulfenamide
  • DCBS N'-dicyclohexyl-2-benzthiazyl sulfenamide
  • MVS N-oxydiethylenethiocarbamyl-N-tert-butylsulf
  • guanidine derivatives which can be used are: diphenylguanidine (DPG), di-o-tolylguanidine (DOTG) and o-tolylbiguanide (OTBG).
  • DPG diphenylguanidine
  • DDG di-o-tolylguanidine
  • OTBG o-tolylbiguanide
  • dithiophosphates which can be used are: zinc dialkydithiophosphates (chain length of the alkyl radicals C2 to C16), copper dialkyldithiophosphates (chain length of the alkyl radicals C 2 to CI 6 ) and dithiophosphoryl polysulfide.
  • caprolactam for example, dithio-bis-caprolactam can be used.
  • thiourea derivatives for example, ⁇ , ⁇ '-diphenylthiourea (DPTU), diethylthiourea (DETU) and ethylene thiourea (ETU) can be used.
  • DPTU ⁇ , ⁇ '-diphenylthiourea
  • DETU diethylthiourea
  • ETU ethylene thiourea
  • additives are, for example: zinc diamine diisocyanate, hexamethylenetetramine, 1,3-bis (citraconimidomethyl) benzene and cyclic disulfanes.
  • the additives mentioned as well as the crosslinking agents can be used both individually and in mixtures.
  • the following substances for crosslinking the nitrile rubbers are preferably used: sulfur, 2-mercaptobenzothiazole, tetramethylthiuram disulfide, tetramethylthiuram monosulfide, zinc dibenzyldithiocarbamate, dipentamethylenethiuram tetrasulfide, Zinkdialkydithiophosphat, dimorpholyl, tellurium, Nickeldibutyl- dithiocarbamate, zinc dibutyldithiocarbamate, zinc dimethyldithiocarbamate and dithiobis-caprolactam.
  • crosslinking agents and the abovementioned additives can each be used in amounts of about 0.05 to 10 phr, preferably 0.1 to 8 phr, in particular 0.5 to 5 phr (single metering, in each case based on the active substance) based on the optionally hydrogenated nitrile rubber be used.
  • sulfur crosslinking it may also be advisable to use other inorganic or organic substances in addition to the crosslinking agents and additives mentioned above, for example: zinc oxide, zinc carbonate, lead oxide, magnesium oxide, calcium oxide, saturated or unsaturated organic fatty acids and their zinc salts, Polyalcohols, amino alcohols such as triethanolamine and amines such as dibutylamine, dicyclohexylamine, cyclohexylethylamine and polyetheramines.
  • inorganic or organic substances for example: zinc oxide, zinc carbonate, lead oxide, magnesium oxide, calcium oxide, saturated or unsaturated organic fatty acids and their zinc salts, Polyalcohols, amino alcohols such as triethanolamine and amines such as dibutylamine, dicyclohexylamine, cyclohexylethylamine and polyetheramines.
  • crosslinking can also be effected via the use of a polyamine crosslinker, preferably in the presence of a crosslinking accelerator.
  • the polyamine crosslinker is not limited so long as it is (1) a compound containing either two or more amino groups (optionally also in salt form) or (2) a species which is present during the crosslinking reaction in - Forms a compound that forms two or more amino groups.
  • An aliphatic or aromatic hydrocarbon compound is preferably used in which at least two hydrogen atoms are replaced either by amino groups or by hydrazide structures
  • polyamine crosslinkers (ii) examples are:
  • Aliphatic polyamines preferably hexamethylenediamine, hexamethylenediamine carbamate, tetramethylenepentamine, hexamethylenediamine cinnamaldehyde adduct or hexamethylenediamine dibenzoate;
  • Aromatic polyamines preferably 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 4,4'-methylenedianiline, m-phenylenediamine, p-phenylenediamine or 4,4'-methylenebis (o-chloroaniline;
  • Compounds having at least two hydrazide structures preferably isophthalic dihydrazide, adipic dihydrazide or sebacic dihydrazide.
  • hexamethylenediamine and hexamethylenediamine carbamate are particularly preferred.
  • the amount of the polyamine Vernetzeres in the vulcanizable mixture is usually in the range of 0.2 to 20 parts by weight, preferably in the range of 1 to 15 parts by weight and more preferably in the range of 1.5 to 10 wt. Parts based on 100 parts by weight of the optionally hydrogenated nitrile rubber.
  • crosslinking accelerator any known to those skilled in the art can be used in combination with the polyamine crosslinker, preferably a basic crosslinking accelerator.
  • aldehyde-amine crosslinking accelerators such as, for example, n-butylaldehydoaniline.
  • crosslinking accelerator at least one bi- or polycyclic amine base.
  • DBU dec-7-ene
  • DBN diazabicyclo [4.3.0] -5-nonene
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • TBD dec-5-ene
  • MTBD dec-5-ene
  • the amount of crosslinking accelerator in this case is usually in the range from 0.5 to 10 parts by weight, preferably from 1 to 7.5 parts by weight, in particular from 2 to 5 parts by weight, based on 100% by weight.
  • Parts of the optionally hydrogenated nitrile rubber are usually in the range from 0.5 to 10 parts by weight, preferably from 1 to 7.5 parts by weight, in particular from 2 to 5 parts by weight, based on 100% by weight.
  • the vulcanizable mixture based on the optionally hydrogenated nitrile rubber according to the invention may in principle also contain scorch retarders. These include cyclohexylthiophthalimide (CTP), ⁇ , ⁇ 'dinitrosopentamethylenetetramine (DNPT), phthalic anhydride (PTA) and diphenylnitrosamine. Cyclohexylthiophthalimide (CTP) is preferred.
  • the optionally hydrogenated nitrile rubber according to the invention may also be mixed with other customary rubber additives.
  • fillers e.g. Carbon black, silica, barium sulfate, titanium dioxide, zinc oxide, calcium oxide,
  • Calcium carbonate magnesium oxide, alumina, iron oxide, aluminum hydroxide, magnesium hydroxide, aluminum silicates, diatomaceous earth, talc, kaolins, bentonites, carbon nanotubes, Teflon (the latter preferably in powder form) or silicates are used.
  • Suitable filler activators are, in particular, organic silanes, for example vinyltrimethyloxysilane, vinyldimethoxymethylsilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N-cyclohexyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, isooctyltrimethoxysilane Isooctyltriethoxysilane, hexadecyltrimethoxysilane or (octadecyl) methyldimethoxysilane into consideration.
  • Other filler activators include, for example, surfactants such as triethanolamine and ethylene glycols having molecular weights of
  • the amount of filler activators is usually 0 to 10 phr, based on 100 phr of the optionally hydrogenated nitrile rubber.
  • aging inhibitors known from the literature may be added to the vulcanizable mixtures. They are usually used in amounts of about 0 to 5 phr, preferably 0.5 to 3 phr, based on 100 phr of the optionally hydrogenated nitrile rubber.
  • Suitable phenolic antioxidants are alkylated phenols, styrenated phenol, sterically hindered phenols such as 2,6-di-tert-butylphenol, 2,6-di-tert-butyl / cresol (BHT), 2,6-di-tert. Butyl-4-ethylphenol, sterically hindered phenols containing estrogen, thioether-containing hindered phenols, 2,2'-methylenebis (4-methyl-6-but-butyl-phenol) (BPH) and sterically hindered thiobisphenols. If a discoloration of the nitrile rubber is irrelevant, are also aminic
  • Anti-aging agent z. B mixtures of diaryl-p-phenylenediamines (DTPD), octylated diphenylamine (ODPA), phenyl-a-naphthylamine (PAN), phenyl-i-naphthylamine (PBN), preferably those based on phenylenediamine used.
  • DTPD diaryl-p-phenylenediamines
  • ODPA octylated diphenylamine
  • PAN phenyl-a-naphthylamine
  • PBN phenyl-i-naphthylamine
  • phenylenediamines are N-isopropyl-N'-phenyl-p-phenylenediamine, N, 3-dimethylbutyl-N'-phenyl-p-phenylenediamine (6PPD), N, 4-dimethylpentyl-N'-phenyl-p-phenylenediamine ( 7PPD) and N, N'-1,4-l, 4- (1,4-dimethylpentyl) - / phenylenediamine (77PD).
  • anti-aging agents include phosphites such as tris (nonylphenyl) phosphite, polymerized 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ), 2-mercaptobenzimidazole (MBI), methyl-2-mercaptobenzimidazole (MMBI), Zinc methylmercaptobenzimidazole (ZMMBI).
  • phosphites such as tris (nonylphenyl) phosphite, polymerized 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ), 2-mercaptobenzimidazole (MBI), methyl-2-mercaptobenzimidazole (MMBI), Zinc methylmercaptobenzimidazole (ZMMBI).
  • TMQ, MBI and MMBI are mainly used when peroxide vulcanization.
  • Suitable mold release agents are, for example: saturated and partially unsaturated fatty and oleic acids and derivatives thereof (fatty acid esters, fatty acid salts, fatty alcohols, fatty acid amides) which are preferably used as a mixing component, furthermore products which can be applied to the mold surface, for example products based on low molecular weight silicone compounds , Products based on fluoropolymers and products based on phenolic resins.
  • the mold release agents are used as a blend component in amounts of about 0 to 10 phr, preferably 0.5 to 5 phr, based on 100 phr of the optionally hydrogenated nitrile rubber.
  • Fibers Reinforcing with glass strengtheners (fibers) according to the teachings of US-A-4,826,721 is also possible, as well as reinforcement by cords, fabrics, fibers of aliphatic and aromatic polyamides (Nylon®, Aramid®), polyesters and natural fiber products.
  • vulcanizates can be prepared in the next step by subjecting the vulcanizable mixture to crosslinking.
  • the crosslinking is typically induced by either at least one crosslinker or by photochemical activation.
  • UV activators may be those which are known to those skilled in the art, for example benzophenone, 2-methylbenzophenone, 3,4-dimethylbenzophenone, 3-methylbenzophenone, 4,4'-bis (diethylamino) benzophenone, 4 , 4'-di-hydroxybenzophenone, 4,4'-bis [2- (1-propenyl) phenoxy] benzophenone, 4- (diethylamino) benzophenone, 4- (dimethylamino) benzophenone, 4-benzoylbiphenyl, 4-hydroxybenzo-phenone, 4-methylbenzophenone, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, 4,4'-bis (dimethylamino) benzophenone, acetophenone, 1-hydroxycyclohexylphenyl ketone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-
  • the vulcanization is carried out as part of a shaping process, preferably using an injection molding process.
  • the invention thus also relates to the special molding which is obtainable by the aforementioned vulcanization process.
  • moldings such as seals, caps, hoses or membranes.
  • O-ring seals, flat gaskets, shaft seals, sealing gaskets, sealing caps, dust caps, plug seals, heat-insulating hoses (with and without PVC additive), oil cooler hoses, air intake hoses, power steering hoses or pump diaphragms can be produced.
  • the chemicals used in the synthesis have the following purities: acrylonitrile (+ 99%, acros) and 1,3-butadiene (> 99.5%, Air Liquide), 2,2'-azobis (N-butyl-2-methylpropionamide ) (Vam 110, Wako Pure Chemical Industries Ltd) were used as received.
  • the molecular weight regulator tert-Dodecylmercaptan came from the Lanxess Germany GmbH.
  • 1,4-Dioxane (> 99.8%) and toluene (> 99.8%) were obtained from VWR.
  • NN-dimethylacetamide (DMAc,> 99.5%), monochlorobenzene (> 99%) and acetonitrile (> 99%) were obtained from Acros Organics.
  • tert-butanol (99%) was from ABCR. The solvents used were used directly without further purification.
  • Example 1-14 (according to the invention and comparative examples):
  • NBR nitrile rubbers
  • NBR # 1 to # 14 used in the following examples was carried out according to the base formulation given in Table 1, all starting materials being in parts by weight based on 100 parts by weight of the monomer mixture. Table 1 also lists the respective polymerization conditions. All equipment is made oxygen free by three evacuating and purging with nitrogen prior to contact with 1,3-butadiene. In example 1, the following was polymerized:
  • Example 2 to 10 The polymerizations of Examples 2 to 10 were carried out analogously with variation of the amount of the regulator and the initiator and the type of solvent (see Table 1).
  • Examples 8-11 and Example 13 are comparative examples in which the polymerization was carried out in a pure solvent.
  • Example 14 is a comparative example in which the polymerization was carried out in a mixture of monochlorobenzene and dimethylacetamide, but the main solvent had only a proportion of 60% by volume, based on the total volume of the solvent. Insofar as the polymerization conditions deviated from those in Example 1, this is likewise listed in Table 1.
  • M w number average molecular weight
  • PDI polydispersity index as a quotient of M w and M n

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un nouveau procédé amélioré pour produire des caoutchoucs nitriles par polymérisation radicalaire dans des mélanges de solvants spéciaux. Les caoutchoucs nitriles obtenus peuvent ensuite être soumis à une hydrogénation. Le procédé se distingue en ce qu'il présente d'excellentes courbes temps-conversion.
EP12740995.1A 2011-08-02 2012-08-01 Procédé pour produire des caoutchoucs nitriles dans des solvants organiques Withdrawn EP2739661A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12740995.1A EP2739661A1 (fr) 2011-08-02 2012-08-01 Procédé pour produire des caoutchoucs nitriles dans des solvants organiques

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11290355A EP2554558A1 (fr) 2011-08-02 2011-08-02 Procédé de fabrication de caoutchoucs nitriles dans des solvants organiques
PCT/EP2012/064989 WO2013017610A1 (fr) 2011-08-02 2012-08-01 Procédé pour produire des caoutchoucs nitriles dans des solvants organiques
EP12740995.1A EP2739661A1 (fr) 2011-08-02 2012-08-01 Procédé pour produire des caoutchoucs nitriles dans des solvants organiques

Publications (1)

Publication Number Publication Date
EP2739661A1 true EP2739661A1 (fr) 2014-06-11

Family

ID=46598540

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11290355A Withdrawn EP2554558A1 (fr) 2011-08-02 2011-08-02 Procédé de fabrication de caoutchoucs nitriles dans des solvants organiques
EP12740995.1A Withdrawn EP2739661A1 (fr) 2011-08-02 2012-08-01 Procédé pour produire des caoutchoucs nitriles dans des solvants organiques

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11290355A Withdrawn EP2554558A1 (fr) 2011-08-02 2011-08-02 Procédé de fabrication de caoutchoucs nitriles dans des solvants organiques

Country Status (8)

Country Link
US (1) US20140235744A1 (fr)
EP (2) EP2554558A1 (fr)
JP (1) JP2014521799A (fr)
KR (1) KR20140041901A (fr)
CN (1) CN104185645A (fr)
CA (1) CA2843199A1 (fr)
TW (1) TW201323460A (fr)
WO (1) WO2013017610A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741994B1 (en) * 2012-12-13 2014-06-03 Toyo Tire & Rubber Co., Ltd. Alkoxysilyl group-containing azo compound and rubber composition using the same
EP2810956A1 (fr) * 2013-06-03 2014-12-10 LANXESS Deutschland GmbH Caoutchoucs nitriles couplés par groupes bisdihydropyrazol, leur fabrication et leur utilisation
US10584226B2 (en) * 2015-04-13 2020-03-10 Arlanxeo Deutschland Gmbh Pulverulent mixtures containing low-emission nitrile rubbers
JP2018524437A (ja) 2015-06-22 2018-08-30 スリーエム イノベイティブ プロパティズ カンパニー (メタ)アクリルポリマー及びアミノ酸架橋剤を含む感圧性接着剤
AR106771A1 (es) * 2015-11-23 2018-02-14 Ecolab Usa Inc Sistema de gel débil para recuperación de petróleo mejorada química
JP6871383B2 (ja) * 2016-12-15 2021-05-12 シントマー スンディリアン ブルハド ゴム製品製造用の硬化性ポリマーラテックス組成物
CN107559472B (zh) * 2017-09-30 2019-06-25 南京晟强橡塑有限公司 一种阀盖体
CN108360143B (zh) * 2017-12-25 2019-06-18 江苏美翔体育用品有限公司 一种复合跳床网的加工方法
CN114539473B (zh) * 2021-12-31 2023-09-29 中国科学院青岛生物能源与过程研究所 溶聚类交替丁腈橡胶及其制备方法和所得产品

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531602A (en) 1946-12-28 1950-11-28 Pure Oil Co Production of thioethers and/or mercaptans
GB823824A (en) 1957-07-05 1959-11-18 Ici Ltd Process for the preparation of mercaptans
GB823823A (en) 1957-07-05 1959-11-18 Ici Ltd Process for the preparation of mercaptans
US3137735A (en) 1961-10-20 1964-06-16 Phillips Petroleum Co Process for synthesis for mercaptans
NL299571A (fr) * 1962-10-22
DD137307A3 (de) 1970-04-07 1979-08-29 Wolfgang Cleve Verfahren zur herstellung von tertiaeren mercaptanen
DD160222A3 (de) 1970-04-07 1983-05-18 Wolfgang Cleve Verfahren zur herstellung von tertiaeren mercaptanen
US3700637A (en) 1970-05-08 1972-10-24 Shell Oil Co Diene-nitrile rubbers
DE2539132A1 (de) 1975-09-03 1977-03-17 Bayer Ag Hydrierung von polymeren
CA1220300A (fr) 1982-12-08 1987-04-07 Polysar Limited Hydrogenation du polymere
CA1203047A (fr) 1982-12-08 1986-04-08 Hormoz Azizian Hydrogenation de polymeres
DE3329974A1 (de) 1983-08-19 1985-02-28 Bayer Ag, 5090 Leverkusen Herstellung von hydrierten nitrilkautschuken
DE3433392A1 (de) 1984-09-12 1986-03-20 Bayer Ag, 5090 Leverkusen Hydrierung nitrilgruppenhaltiger ungesaettigter polymerer
DE3529252A1 (de) 1985-08-16 1987-02-19 Bayer Ag Verfahren zur selektiven hydrierung ungesaettigter verbindungen
DE3540918A1 (de) 1985-11-19 1987-05-21 Bayer Ag Verfahren zur selektiven hydrierung ungesaettigter verbindungen
DE3541689A1 (de) 1985-11-26 1987-05-27 Bayer Ag Verfahren zur selektiven hydrierung nitrilgruppenhaltiger ungesaettigter polymerer
DE3618907A1 (de) 1986-06-05 1987-12-10 Bayer Ag Verbundwerkstoffe aus vorbehandeltem fasermaterial und vulkanisaten aus hnbr
US4816525A (en) 1987-07-06 1989-03-28 University Of Waterloo Polymer hydrogenation process
DE4025781A1 (de) 1990-08-15 1992-02-20 Bayer Ag Hydrierte butadien/isopren/(meth-)acrylnitril- copolymerisate
JP3558096B2 (ja) 1993-12-29 2004-08-25 日本ゼオン株式会社 2,2,4,6,6−ペンタメチルヘプタン−4−チオールの製造法
JP3587215B2 (ja) 1994-03-31 2004-11-10 日本ゼオン株式会社 2,2,4,6,6−ペンタメチルヘプタン−4−チオールの製法
JPH07316127A (ja) 1994-03-31 1995-12-05 Nippon Zeon Co Ltd 2,2,4,6,6−ペンタメチルヘプタン−4−チオールの製造方法
DE69709110T2 (de) 1996-07-10 2002-04-25 Du Pont Polymerisation mit "living" kennzeichen
US6596899B1 (en) 2000-02-16 2003-07-22 Noveon Ip Holdings Corp. S,S′BIS-(α, α′-DISUBSTITUTED-α″-ACETIC ACID)- TRITHIOCARBONATES AND DERIVATIVES AS INITIATOR-CHAIN TRANSFER AGENT-TERMINATOR FOR CONTROLLED RADICAL POLYMERIZATIONS AND THE PROCESS FOR MAKING THE SAME
CA2329844A1 (fr) 2000-12-28 2002-06-28 Bayer Inc. Hydrogenation amelioree a l'aide de esbo
US6673881B2 (en) 2001-06-12 2004-01-06 Bayer Inc. Process for the preparation of low molecular weight hydrogenated nitrile rubber
CA2350280A1 (fr) 2001-06-12 2002-12-12 Bayer Inc. Caoutchouc nitrile hydrogene de faible poids moleculaire
AU2004303587A1 (en) 2003-12-23 2005-07-07 The University Of Leeds Polymerisation using chain transfer agents
FR2866024A1 (fr) 2004-02-06 2005-08-12 Arkema Procede de fabrication de dodecylmercaptans.
CN1865304A (zh) * 2005-05-20 2006-11-22 中国石油天然气股份有限公司 丁腈橡胶的加氢方法
FR2887888A1 (fr) 2005-07-04 2007-01-05 Biomerieux Sa Nouveaux agents de transfert fonctionnalises pour polymerisation radiculaire controlee raft, procedes raft mettant en oeuvre de tels agents de transfert et polymeres susceptibles d'etre obtenus par de tels procedes
US7230063B1 (en) 2005-12-22 2007-06-12 The Goodyear Tire & Rubber Company Functional trithiocarbonate RAFT agents
US20080153982A1 (en) 2006-12-20 2008-06-26 John Ta-Yuan Lai Vinyl-Thiocarbonate and Polyol Containing Block Copolymers
DE102007024009A1 (de) 2007-05-22 2008-11-27 Lanxess Deutschland Gmbh Mercaptangemisch
EP2298824A1 (fr) * 2009-09-17 2011-03-23 LANXESS Deutschland GmbH Caoutchouc nitrile et sa fabrication dans des solvants organiques
WO2011032832A1 (fr) 2009-09-17 2011-03-24 Lanxess Deutschland Gmbh Caoutchouc de nitrile et sa fabrication dans des solvants organiques
EP2423238A1 (fr) 2010-08-31 2012-02-29 LANXESS Deutschland GmbH Procédé de fabrication de caoutchoucs nitriles dans des solvants organiques
EP2423235A1 (fr) 2010-08-31 2012-02-29 LANXESS Deutschland GmbH Procédé de fabrication de caoutchoucs nitriles dans des solvants organiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013017610A1 *

Also Published As

Publication number Publication date
EP2554558A1 (fr) 2013-02-06
WO2013017610A1 (fr) 2013-02-07
KR20140041901A (ko) 2014-04-04
CN104185645A (zh) 2014-12-03
TW201323460A (zh) 2013-06-16
US20140235744A1 (en) 2014-08-21
CA2843199A1 (fr) 2013-02-07
JP2014521799A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
EP2478021B1 (fr) Caoutchouc nitrile et sa fabrication dans des solvants organiques
EP2739661A1 (fr) Procédé pour produire des caoutchoucs nitriles dans des solvants organiques
EP2611837B1 (fr) Procédé pour produire des caoutchoucs nitriles dans des solvants organiques
EP2316860B1 (fr) Caoutchouc de nitrile
EP2152759A1 (fr) Caoutchoucs nitrile
EP2860197B1 (fr) Caoutchouc nitrile à faibles valeurs d'émissions
EP2611836A1 (fr) Mélanges de caoutchoucs constitués de différents caoutchoucs nitriles
EP2798001A1 (fr) Procede pour la production de caoutchoucs nitrile épurés
EP3034518B1 (fr) Caoutchouc de nitrile à couleur stabilisée
EP2298824A1 (fr) Caoutchouc nitrile et sa fabrication dans des solvants organiques
EP2810957A1 (fr) Caoutchoucs nitriles couplés par groupes bisdihydropyrazol, leur fabrication et leur utilisation
WO2012028501A1 (fr) Procédé pour produire des caoutchoucs nitriles dans des solvants organiques
EP2385074A1 (fr) Caoutchouc nitrile et sa fabrication dans des solvants organiques
EP2623518A1 (fr) Caoutchoucs nitriles couplés par groupes bistriazolyl, leur fabrication et leur utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141212