EP2715254A2 - Système de compresseur hybride et procédés - Google Patents

Système de compresseur hybride et procédés

Info

Publication number
EP2715254A2
EP2715254A2 EP12722646.2A EP12722646A EP2715254A2 EP 2715254 A2 EP2715254 A2 EP 2715254A2 EP 12722646 A EP12722646 A EP 12722646A EP 2715254 A2 EP2715254 A2 EP 2715254A2
Authority
EP
European Patent Office
Prior art keywords
mode
compressor
positive displacement
centrifugal compressor
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12722646.2A
Other languages
German (de)
English (en)
Inventor
Vishnu M. Sishtla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP2715254A2 publication Critical patent/EP2715254A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the disclosure relates to refrigeration. More particularly, the disclosure relates to chiller systems.
  • One aspect of the disclosure involves an apparatus having a centrifugal compressor, a positive displacement compressor, a first heat exchanger, and a second heat exchanger.
  • a plurality of valves are positioned to provide operation in at least two modes. In a first mode, refrigerant is compressed in the positive displacement compressor and the centrifugal compressor at least partially in parallel. In a second mode, refrigerant is compressed in the positive displacement compressor and the centrifugal compressor is offline. In a third mode, refrigerant is compressed in the positive displacement compressor and the centrifugal compressor at least partially in series.
  • An exemplary system 20 is a chiller system wherein the first heat exchanger 32 is a liquid-cooled condenser or gas cooler and the second heat exchanger 36 is the cooler.
  • An exemplary expansion device 34 is an electronic expansion valve (EV) which may be controlled by the chiller's controller 40 (e.g., a computer or microcontroller).
  • An alternative expansion device 34 is a float valve within the condenser 32.
  • the exemplary first heat exchanger has at least one inlet 50 and at least one outlet 52 along the refrigerant flowpath 30.
  • the second heat exchanger 36 has at least one inlet 54 and at least one outlet 56 along the refrigerant flowpath.
  • the compressor 24 has an inlet port 60 and an outlet port 62.
  • the second compressor 26 has an inlet port 64 and an outlet port 66.
  • valve 72 In the exemplary at least partially parallel operation, the valve 72 is closed whereas the valves 74 and 70 are open. In a second mode, only the second compressor 26 is in operation. The valves 70 and 72 are closed whereas the valve 74 is open.
  • a third mode is a series mode wherein the compressors are operated in series. In the exemplary series mode, the valves 70 and 74 are closed whereas the valve 72 is open. Refrigerant passes without diversion from the second heat exchanger outlet 56 through the first compressor, the valve 72, and the second compressor before entering the first heat exchanger inlet 50.
  • a fourth possible mode involves having only the first compressor 24 in operation. In this mode, the valves 72 and 74 are closed and the valve 70 is open.
  • Line 202 represents a constant temperature of 85F (29.44C).
  • 85F 85F
  • the ambient temperature changes very little from day to night. In such regions, the condenser water temperature remains constant. It' s an industry standard, to consider the entering condenser water temperature constant at 85F between 25% and 100% load.
  • Table I shows lift for the ARI conditions and corresponding tropical conditions. Centigrade temperatures are conversions from the listed Fahrenheit values and thus do not add and present false precision. Other SI parentheticals herein similarly represent conversions from the original US or English values.
  • the at least partially parallel first mode is utilized at high loads and the second mode (positive displacement compressor-only) is used at low loads.
  • the second mode may be used from essentially zero load to an intermediate load value. Between the intermediate load value and the maximum load, the at least partially parallel mode is used.
  • the intermediate load value may, however, be subject to appropriate hysteresis control to avoid excessive cycling when operating near changeover conditions.
  • the second compressor may be operated at increasing speed and/or power.
  • the first compressor may be brought online at full or near full capacity and the second compressor reset to zero or other low capacity value. Thereafter, with increasing load, the speed and/or power of the second compressor may be increased.
  • a control process 300 starts by measuring or otherwise determining 302 the saturation temperatures of the condenser (T COND ) and the cooler (T COOL )- T COND and T COOL may respectively be determined by measuring the pressures via the pressure sensors 132 and 182 and then calculating the saturation temperatures (either via a lookup table or programmed function).
  • the lift is calculated 304 as T COND minus T COOL - If the lift is greater than a given threshold (e.g., 50F (28C)) the system may be operated 306 in the fourth (series) mode. In the series mode, the capacity of the centrifugal compressor is controlled by compressor speed and by inlet guide vane orientation.
  • centrifugal compressor speed is incrementally increased and its guide vanes are incrementally closed until the centrifugal compressor comes out of surge.
  • a similar logic is applied for the screw compressor (i.e., first speed followed by slide valve). Reducing the speed always results in reduced power consumption or increased efficiency.
  • Capacity is controlled via speed when variable speed drive is present and by slide valve for fixed speed case.
  • operation may also be in the first mode.
  • Balance between the compressors may be refined based upon the head.
  • the system is run in the parallel mode with the screw compressor operating at a fixed capacity and the centrifugal compressor operating at variable capacity to provide the required overall capacity.
  • the screw compressor may be operated at 50% of its maximum capacity and the centrifugal compressor being operated at between 50 and 100% of its maximum capacity (thereby combining to provide the exemplary 50-75% of maximum system capacity operation).
  • Such an operation is chosen so as to avoid surge of the centrifugal compressor.
  • operation may also be in the first mode, with compressors running 340 at equal loads.
  • compressors running 340 at equal loads.
  • each may be run at between 75 and 100% of its own maximum capacity to satisfy the required capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

L'invention porte sur un dispositif (20) comprenant un compresseur centrifuge (24), un compresseur à déplacement positif (26), un premier échangeur de chaleur (32) et un second échangeur de chaleur (36). Une pluralité de soupapes (70, 72, 74) sont positionnées pour assurer un fonctionnement dans au moins deux modes. Dans un premier mode, un fluide frigorigène est comprimé dans le compresseur à déplacement positif et dans le compresseur centrifuge au moins partiellement en parallèle. Dans un deuxième mode, le fluide frigorigène est comprimé dans le compresseur à déplacement positif et le compresseur centrifuge est hors circuit. Dans un troisième mode, le fluide frigorigène est comprimé dans le compresseur à déplacement positif et dans le compresseur centrifuge qui sont au moins partiellement en série.
EP12722646.2A 2011-05-31 2012-05-15 Système de compresseur hybride et procédés Withdrawn EP2715254A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161491515P 2011-05-31 2011-05-31
PCT/US2012/037872 WO2012166338A2 (fr) 2011-05-31 2012-05-15 Système de compresseur hybride et procédés

Publications (1)

Publication Number Publication Date
EP2715254A2 true EP2715254A2 (fr) 2014-04-09

Family

ID=46147093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12722646.2A Withdrawn EP2715254A2 (fr) 2011-05-31 2012-05-15 Système de compresseur hybride et procédés

Country Status (4)

Country Link
US (1) US20130177393A1 (fr)
EP (1) EP2715254A2 (fr)
CN (1) CN103748425B (fr)
WO (1) WO2012166338A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951984B2 (en) 2013-05-21 2018-04-24 Carrier Corporation Tandem compressor refrigeration system and a method of using the same
US10684032B2 (en) * 2015-03-09 2020-06-16 Lennox Industries Inc. Sensor coupling verification in tandem compressor units
US10180282B2 (en) * 2015-09-30 2019-01-15 Air Products And Chemicals, Inc. Parallel compression in LNG plants using a positive displacement compressor
EP3365675B1 (fr) 2015-10-20 2022-11-30 Carrier Corporation Surveillance de paramètre biodégradable
DE102017115623A1 (de) * 2016-07-13 2018-01-18 Trane International Inc. Variable Economizereinspritzposition
US11268744B2 (en) 2017-10-24 2022-03-08 Hussmann Corporation Refrigeration system and method of refrigeration load control
US11994135B2 (en) 2021-06-14 2024-05-28 Air Products And Chemicals, Inc. Method and apparatus for compressing a gas feed with a variable flow rate
US11656612B2 (en) 2021-07-19 2023-05-23 Air Products And Chemicals, Inc. Method and apparatus for managing industrial gas production
JP2024021198A (ja) * 2022-08-03 2024-02-16 パナソニックIpマネジメント株式会社 蒸気圧縮式冷凍サイクル装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938361A (en) * 1957-09-13 1960-05-31 Borg Warner Reversible refrigerating system
GB952873A (en) * 1960-05-16 1964-03-18 York Shipley Ltd Reversible refrigerating system
DE2848030A1 (de) * 1978-11-06 1980-05-14 Gutehoffnungshuette Sterkrade Mehrstufiger kompressor
US4607498A (en) * 1984-05-25 1986-08-26 Dinh Company, Inc. High efficiency air-conditioner/dehumidifier
JPS63212797A (ja) * 1987-02-27 1988-09-05 Toshiba Corp 2シリンダ型ロ−タリ式圧縮機
DE3937152A1 (de) * 1989-11-08 1991-05-16 Gutehoffnungshuette Man Verfahren zum optimierten betreiben zweier oder mehrerer kompressoren im parallel- oder reihenbetrieb
JPH0420751A (ja) * 1990-05-15 1992-01-24 Toshiba Corp 冷凍サイクル
US5363674A (en) * 1993-05-04 1994-11-15 Ecoair Corp. Zero superheat refrigeration compression system
US5570585A (en) * 1994-10-03 1996-11-05 Vaynberg; Mikhail Universal cooling system automatically configured to operate in compound or single compressor mode
JPH09145189A (ja) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd 冷凍サイクル及びその冷凍サイクルを備えた空気調和機
KR100274257B1 (ko) * 1998-04-06 2001-03-02 윤종용 냉매량 조절을 위한 바이패스 부를 가지는 멀티 에어컨
JP2003176957A (ja) * 2001-10-03 2003-06-27 Denso Corp 冷凍サイクル装置
JP3642335B2 (ja) * 2003-05-30 2005-04-27 ダイキン工業株式会社 冷凍装置
EP1571337B1 (fr) * 2004-03-05 2007-11-28 Corac Group plc Compresseur sans huile pour gaz à plusieurs étages
US20050257545A1 (en) * 2004-05-24 2005-11-24 Ziehr Lawrence P Dual compressor HVAC system
DE502004007683D1 (de) * 2004-09-22 2008-09-04 Ford Global Tech Llc Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
CN101568770A (zh) * 2006-12-26 2009-10-28 开利公司 具有串轴式压缩机、膨胀器和经济器的co2制冷剂系统
WO2009018150A1 (fr) * 2007-07-27 2009-02-05 Johnson Controls Technology Company Echangeur thermique a multiples canaux
WO2009048464A1 (fr) * 2007-10-10 2009-04-16 Carrier Corporation Compresseurs en tandem de types différents
CN101946138B (zh) * 2007-12-28 2013-06-26 江森自控科技公司 蒸气压缩系统
CN201297801Y (zh) * 2008-10-17 2009-08-26 广东美的电器股份有限公司 双压缩机的连接结构
JP5446694B2 (ja) * 2008-12-15 2014-03-19 株式会社デンソー エジェクタ式冷凍サイクル
US20110265506A1 (en) * 2010-05-01 2011-11-03 Gerald Allen Alston High Ratio Mobile Electric HVAC System
US20110289953A1 (en) * 2010-05-27 2011-12-01 Gerald Allen Alston Thermally Enhanced Cascade Cooling System

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012166338A2 *

Also Published As

Publication number Publication date
US20130177393A1 (en) 2013-07-11
CN103748425B (zh) 2017-10-17
CN103748425A (zh) 2014-04-23
WO2012166338A3 (fr) 2013-01-24
WO2012166338A2 (fr) 2012-12-06

Similar Documents

Publication Publication Date Title
WO2012166338A2 (fr) Système de compresseur hybride et procédés
CN102741623B (zh) 涡轮制冷机和热源系统以及它们的控制方法
EP2182304B1 (fr) Procédé de commande de fonctionnement d'appareil a cycle de réfrigération
EP2211123B1 (fr) Climatiseur
CN100587368C (zh) 具有内部热交换器的制冷回路的控制
US10174986B2 (en) Heat source machine and control method therefor
US9541318B2 (en) Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
KR101445992B1 (ko) 열매체 유량 추정 장치, 열원기 및 열매체 유량 추정 방법
JP5981180B2 (ja) ターボ冷凍機及びその制御方法
WO2014113397A1 (fr) Refroidisseur refroidi par air avec récupération de la chaleur
CN113419574B (zh) 半导体用低温温控设备
CN104567054B (zh) 一种离心式制冷机组防喘振系统
CN101832689B (zh) 压缩机控制方法与系统
JP2014159923A (ja) ターボ冷凍機
CN107816818A (zh) 一种冷库用带热气融霜的复叠式制冷系统
JP2007232259A (ja) ターボ冷凍機及びそのホットガスバイパス方法
CN204757425U (zh) 一种离心式制冷机组防喘振系统
CN206449925U (zh) 一种高精度温控热交换系统
CN102589220B (zh) 即时出冰风冷冰浆系统及制冰方法
CN105299943B (zh) 双机头离心式冷水机组系统
CN102345946A (zh) 用于冷却器型制冷机的能耗节约装置
JP6630627B2 (ja) ターボ冷凍機
CN111023608A (zh) 能耗低、效率和稳定性高的又可防止喘振的制冷机组
CN211601179U (zh) 一种轧钢厂四辊电机用冷却装置
CN211625756U (zh) 能耗低、效率和稳定性高的又可防止喘振的制冷机组

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130918

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220104