EP2710183A1 - Séchoir à capteur d'humidité et procédé permettant de faire fonctionner ledit séchoir - Google Patents

Séchoir à capteur d'humidité et procédé permettant de faire fonctionner ledit séchoir

Info

Publication number
EP2710183A1
EP2710183A1 EP12719726.7A EP12719726A EP2710183A1 EP 2710183 A1 EP2710183 A1 EP 2710183A1 EP 12719726 A EP12719726 A EP 12719726A EP 2710183 A1 EP2710183 A1 EP 2710183A1
Authority
EP
European Patent Office
Prior art keywords
dryer
drying
sensor
condensation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12719726.7A
Other languages
German (de)
English (en)
Other versions
EP2710183B1 (fr
Inventor
Marcus Heyer-Wevers
Harald MOSCHÜTZ
Gudrun Schliecker
Thomas Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP2710183A1 publication Critical patent/EP2710183A1/fr
Application granted granted Critical
Publication of EP2710183B1 publication Critical patent/EP2710183B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2101/00User input for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2101/02Characteristics of laundry or load
    • D06F2101/04Quantity, e.g. weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2101/00User input for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2101/14Time settings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/08Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/38Time, e.g. duration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/52Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to electric heating means, e.g. temperature or voltage
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/58Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to condensation, e.g. condensate water level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/46Control of the operating time

Definitions

  • the invention relates to a dryer, comprising a drying chamber for receiving items of laundry, a humidity sensor, a control device and a process air duct, in which a heater for heating air and a fan are located, and a method for its operation.
  • washer In a tumble dryer (hereinafter abbreviated to "dryer"), wet laundry is dried by means of warm and dry process air
  • dryer stands for dryers as such, but also for laundry dryers in which laundry is also used can be washed. Washer dryers are popular because they combine the functions of a washing machine and a tumble dryer in a space-saving device.
  • a washer-dryer is already provided with a water connection, so that water is not only available for washing laundry, but also for further treatment of laundry items.
  • a drying process is carried out only up to a certain moisture content ("residual moisture") of the laundry items, because it can be detrimental to the further treatment of the laundry items if the drying is carried out too long and the laundry items contain less moisture as they do when stored under normal ambient conditions in a cabinet, they are very stiff and poorly folded or ironed, and for reasons of energy efficiency a drying process should only be carried out until a desired residual moisture of the dried laundry is achieved An additional drying process would lead to unnecessary energy consumption, since if the laundry is too dry it would be necessary to rewet the laundry during subsequent ironing.
  • the moisture content of laundry items usually has to be measured by a suitable method.
  • the determination of the moisture of the items of laundry can take place in various ways, for example by measuring electrical properties which are dependent on the moisture of the items of laundry, in particular the electrical conductivity of the items of laundry.
  • two electrodes can be placed as moisture sensors in a drying chamber of the dryer, which is usually designed as a drum, that they contact the wet laundry items. An electrical voltage is then applied to the electrodes and the current intensity or the electrical conductance between the electrodes is measured. If the measured current intensity or the measured electrical conductance falls below a respectively predetermined threshold value, this can be concluded that a desired residual moisture level has been reached, so that a drying process can be ended.
  • thermoelectric process air is measured in particular at suitable locations in the process air duct, for example in front of and behind a heat exchanger, at which the moisture contained in the wet laundry items and carried with the moist, warm process air from the drying chamber condenses.
  • the known methods also make it possible to estimate the heat energy required for drying, in particular if the quantity of items to be dried can be clearly indicated.
  • DE 10 2006 053 274 A1 discloses a method for determining the charge amount of laundry in a cargo space with air outlet of a tumble dryer, wherein the absolute humidity in the air outlet from the cargo space is measured by means of a humidity sensor and the amount of charge in the cargo compartment by determining the maximum value and / or the course of the absolute humidity in the air outlet is determined from the hold. As soon as the amount of laundry and, if appropriate, other values such as the residual moisture are determined, the controller can stop the drying process with regard to time, air supply and possibly air temperature.
  • US 201 1/0041562 A1 describes a laundry treatment device having at least one sensor which is functionally coupled to the treatment chamber and which emits at least one signal which is indicative of the humidity inside the treatment chamber and which in the control for starting a moisture reduction device in accordance is used with a moisture reduction program.
  • the internal humidity sensors can be located anywhere in the process air duct, e.g. be arranged in the treatment chamber, in the supply air pipe, in the KinderSystemsabzugsö réelle or in the exhaust pipe. Any type of sensor capable of determining relative or absolute humidity, such as infrared sensors, capacitive sensors, resistive sensors, and electrical conductivity sensors, can be used.
  • the sensors used in these methods have disadvantages.
  • the sensor When using conductivity sensors, the sensor is not galvanically decoupled from the evaluating electronics, so that problems may arise due to possible coupling.
  • Temperature sensors eg NTC resistors
  • adhering impurities lint, lime, etc.
  • an association between measured temperature values and a drying progress for example the moisture content of the laundry, difficult.
  • a dryer and in particular a washer-dryer, has surfaces on which moisture can precipitate on contact with moist, warm process air. It can thus come to a dewing of different surfaces associated with the moist, warm process air.
  • JP 5 184 791 A discloses a clothes dryer with a dew condensation apparatus, wherein a sensor for detecting condensation is arranged in a part of the exhaust pipe. In this case, the moisture is detected in the exhaust pipe by means of the sensor arranged in the exhaust pipe. The controller, when the value measured by the sensor exceeds a constant value, performs a dew condensation prevention operation for a certain time.
  • DE 10 2005 016 640 A1 describes a fiber-optic sensor device for detecting condensation and / or for temperature measurement with a light source, a light-emitting fiber connected to the light source, a light-receiving fiber and a light detector connected to the light-receiving fiber, and a light-emitting fiber and light-receiving fiber optically transparent sensor head.
  • a first and a second hollow curved interface are formed and arranged such that from the first hollow curved interface the light coupled via the light transmitting fiber into the sensor element is reflected onto the second hollow curved interface and reflected from the second hollow curved interface Light is coupled out into the light receiving fiber.
  • the object of the invention was to provide a dryer and a method for its operation with which a drying method based on the determined residual moisture in laundry items can be better controlled.
  • a point in time for the termination of a drying process should be able to be determined on the basis of the determined residual moisture content.
  • the washer-dryer should preferably be easy to operate and have a simple construction.
  • the object underlying the invention is achieved by a dryer and a method for its operation according to the respective independent claim.
  • Preferred embodiments of the invention are listed in the respective dependent claims.
  • Preferred embodiments of the dryer according to the invention correspond to preferred embodiments of the method according to the invention, even if it is not separately pointed out here in each case.
  • the invention thus relates to a dryer, comprising a drying chamber for receiving laundry items, a humidity sensor, a control device and a process air duct, in which there is a heater for heating air and a fan, wherein arranged as a humidity sensor outside the drying chamber at least one optical Betauungssensor is.
  • “outside the drying chamber” means, in particular, a space, such as a container or a pipe, in which a wall of the space can come into contact with moist, warm process air and thereby be dewatered with moisture.
  • a dew point sensor is a sensor whose physical properties are due to the wetting of a surface of the sensor with a liquid, in particular an aqueous liquid, e.g. a condensation with water, change.
  • the physical properties may include, for example, electrical or optical properties. In the latter case, it is an optical condensation sensor. In any case, it does not matter that a dew sensor actually measures the dew of any surface or the like, but that the dew sensor makes a measurement using condensation on its own surface or a certain portion thereof.
  • the at least one dewing sensor is an optical dewing sensor.
  • the dryer is particularly advantageous if it has points at which condensation of a condensation sensor can be measured particularly well.
  • the dryer is therefore designed as a washer-dryer with a tub in which a drum rotatably mounted in the tub is present as a drying chamber.
  • at least one condensation sensor is arranged in a suds tank wall.
  • At least two Betauungssensoren are advantageously arranged in the tub wall.
  • a first dew sensor in a front tub wall, a second dew sensor in an upper tub wall and a third dew sensor in a back tub wall are arranged.
  • At least one condensation sensor is arranged above a rotational axis of the drum.
  • the optical dewing sensor used in embodiments of the invention preferably has a first interface and a second interface, wherein the interfaces are formed and arranged relative to one another such that the light coupled into the dew sensor from a light-input fiber strikes the first interface and from there to the first interface second interface is reflected and the reflected light is coupled into a light-emitting fiber.
  • the light-introducing fiber and the light-exfoliating fiber which generally comprise glass fibers, are generally connected to another outer surface (hereinafter referred to as "base surface") of the dew sensor, the light from the light-introducing fiber is preferably coupled perpendicularly to a base surface other than the interfaces the reflected light preferably decoupled perpendicular to the base surface.
  • the optical condensation sensor can also have very different shapes.
  • these molds are selected such that the at least one dewing sensor is flush with a tub wall. Then the risk of contamination of the sensor should be particularly low.
  • the material used for the optical condensation sensor, as well as the shape and arrangement of the interfaces and the light introduction fiber and light extraction fiber, are preferably selected so that in the dew-free state the light coupled into the condensation sensor from the light introduction fiber is reflected to the light extraction fiber as far as possible without scattering losses and can be completely detected.
  • the condensation of an optical condensation sensor changes its optical properties. If a light-exposed interface of the optical condensation sensor is dewed, the coupled-in light is no longer completely reflected, but is partially refracted at the interface and emitted outward from the optical condensation sensor. As a result, the light intensity arriving at the light-deflecting fiber decreases, the decrease in intensity being a measure of condensation of the interface of the optical condensation sensor.
  • the optical condensation sensor generally comprises a sensor head, which is preferably made in one piece from a material such as glass or a plastic such as polycarbonate or polymethylmethacrylate.
  • the Lichtein endeavors- and light dissipation fiber, generally namable as optical fibers, connected.
  • the refractive indices of sensor head and optical waveguides are identical in this case.
  • a suitable sensor head advantageously has a volume of 10 to 50 mm 3 and preferably of 20 to 40 mm 3 .
  • the refractive index of the material of the sensor generally depends on the material used, the wavelength of the light used and the temperature. Since the temperature changes in a dryer, a material is preferably selected for the optical condensation sensor whose refractive index is as little as possible dependent on the temperature.
  • the optical properties important for the operation of the optical condensation sensor depend on the temperature depending on the material used, it may be useful for precise measurements to take account of this temperature dependence and to deposit corresponding working curves in the control unit of the dryer.
  • a temperature sensor generally also present in the dryer could be used.
  • a relationship between a Betauungsgrad the Betauungssensors at a time t s in a drying program and a duration t prog the drying program is stored in the control device of the dryer.
  • the measurement of the time t and thus the reference point for the time t s for example, the turning on of the dryer and in particular the heater, but also the achievement of a predetermined temperature value.
  • the load of laundry items may be predetermined by a user of the dryer or measured automatically in a suitable manner in the dryer, for example, based on the weight increase of the drying chamber. For example, a user could manually enter the load on the dryer and thus supply the controller for further processing.
  • the control device is preferably designed such that a duration t prog of a drying program can be determined, so that a drying program can be ended at a desired optimum time.
  • the duration t per g determined for a given drying program it is also possible for the duration t per g determined for a given drying program to be compared with a desired drying program duration t set and then to be carried out by the control device to initiate a drying program enabling this desired drying program duration t set .
  • an initially preset drying program duration t set of a given drying program can be changed accordingly.
  • the type and amount of laundry to be dried are taken into account.
  • a washer dryer is preferably used as the dryer.
  • a washer-dryer has a heat exchanger in which the moisture contained in the moist warm air from the drying chamber can be condensed, the heat exchanger with cooling air, cooling water, or when using a heat pump with a refrigerant of the heat pump operated.
  • a laundry dryer generally also includes a heater for direct heating of an aqueous fluid, such as a wash liquor Heating called heating is generally located in the tub below the drum.
  • a washer-dryer has a water supply system with which water can be passed through a generally existing dispenser tray from which detergent or laundry adjuvant portions can be added to the washer-dryer.
  • a washer-dryer generally has a lye drainage system arranged on the bottom of the lye container with a drain pump and, in general, laundry hoppers and / or scooping devices.
  • a washer-dryer in the tub also contains a pressure sensor, which is preferably arranged in a lower region of the tub, so that the pressure of an aqueous liquid present in the tub can be measured.
  • the invention also relates to a method for operating a dryer, comprising a drying chamber for receiving items of laundry, a humidity sensor, a control device and a process air duct in which a heating for heating air and a fan are located, wherein as a moisture sensor outside the Drying chamber is disposed at least one optical Betauungssensor, comprising the steps
  • the duration t prog of the drying program for different values of a residual moisture of the laundry items to be achieved is stored in the control device .
  • a time t 0 is determined in the control device, at which the condensation of the condensation sensor has reached a predetermined condensation B 0 , and the duration t per g of the drying program is determined from the time t 0 .
  • the control device is designed such that a drying program is terminated after the time t pr0 g.
  • a drying program can be configured and carried out such that a user-specified time period for a drying program is maintained.
  • the dryer is designed as a washer-dryer with a tub in which a drum rotatably mounted in the tub is present as a drying chamber.
  • the invention has numerous advantages.
  • the drying process can be followed in a very efficient manner, so that a drying process can be automatically ended when a desired residual moisture content of the laundry items to be dried is reached.
  • a desired drying result can be easily achieved in an energy-efficient manner.
  • the operation of the dryer according to the invention is relatively insensitive to contamination of the sensor, since the sensor can be easily calibrated before each drying process. This is particularly good because the dew sensor is an optical dew point sensor.
  • the invention works particularly well when the dryer is designed as a washer-dryer, in particular when in embodiments of the invention, at least one Betauungssensor is integrated into a suds container wall.
  • the invention will be further explained below with reference to an exemplary dryer shown in the attached drawing.
  • the dryer is designed here as a washer-dryer.
  • Other embodiments than those illustrated are conceivable.
  • the washer-dryer 1 shown in the figure as a dryer has a lye container 3 with a front lye container wall 15, an upper lye container wall 16 and a rear lye container wall 17.
  • a substantially horizontal axis 27 rotatably mounted drum 2 is arranged as a drying chamber in which are to be dried laundry items 4.
  • a front Betauungssensor 10 in the upper tub wall 16 is an upper Betauungssensor 1 1 and in the rear tub wall 17, a rear Betauungssensor 12 is arranged.
  • the optical condensation sensors 10, 1 1 and 12 are located in an upper part of the tub 3, ie above the substantially horizontally arranged axis of rotation 27.
  • the Betauungssensoren 10, 1 1 and 12 are each about optical fibers 30 with a control unit 26 for the Betauungssensoren which communicates with a controller 18 of the dryer, connected.
  • an optical fiber 30, not shown here in detail comprises two fibers, a light-guiding fiber for the light transmitted to the respective condensation sensor, and a light-deflecting fiber for the light derived from the respective condensation sensor.
  • the difference in the generally wavelength-dependent intensity between incoming and outgoing light is a measure of the dew of the optical dew sensor 10, 11, 12.
  • the tub 3 is otherwise connected via a lye drain line 19 to a drain pump 14 containing an aqueous liquid 28, e.g. in the drying accumulating condensate can dispose of the tub 3 via a sewer line 13 to the outside of the washer dryer.
  • the drum 2 is driven by means of a drive motor 29.
  • the drum 2 is loaded through a filling opening 22 with laundry items 4 to be dried.
  • the washer-dryer 1 is connected via a water supply system 20 to an external water supply not shown here.
  • the water supply system 20 is connected via a valve 9 with a dispenser 21, from which with the aid of water from the water supply system 20 detergent or Waschosffenportionen can be transported into the tub 3. In the present case, this takes place via a part of a process air channel 5 and a sleeve 23.
  • process air For drying wet laundry in the drum 2, in the washer-dryer 1 of the figure, which operates on the recirculation principle, the air heated by means of a heater 7 ("process air") is conveyed through a fan 6 in a process air duct 5. Dry dry warmed occurs here After passage through the drum 2 and drying of moist laundry items 4 located in this then the moist warm process air 31 passes through a rear outlet 24 from the tub 3.
  • the moist, warm process air 31 reaches a heat exchanger 8, where the moisture contained in it condense due to the cooling of the process air and can be collected in a condensate container (not shown here)
  • the condensate can flow into the tub 3, from where it flows over the Laugenablauftechnisch 19 using the drain pump 14 via the wastewater line 13 to the outside of the washer-dryer can be taken care of.
  • the condensate 28 is then pumped out of the tub 3 via the lye drain line 19 by means of the sewage pump 14.
  • the small arrow indicates the flow direction of the condensate.
  • the dehumidified process air then continues to flow in the process air duct 5 and can be heated again by means of the heater 7 and enter the drum 2 as a warm, dry process air 25 via the sleeve 23, etc.
  • Betauungssensors 10, 1 1, 12 decreases with time, the measured at the time t s2 > t s1 condensation of the Betauungssensors 10, 1 1, 12 with that for the second
  • Drying phase in the control device 18 deposited relationship between a Betauungssensor the Betauungssensors 10, 1 1, 12 at a time t s and a duration t per g of the drying program compared and in Evaluated for a determination of the duration t pr0 g of the drying program.
  • a time t 0 is determined in the control device 18, at which the condensation of the Betauungssensors 10, 1 1, 12 or a selected one of the plurality of Betauungssensoren 10,1 1, 12 has reached a predetermined condensation B 0 , and is the duration t prog the drying program determined from the time t 0 .
  • the individual Betauungssensoren can be dewetted differently.
  • the dewing sensors 10, 11 and 12 are gradually dewatered with water in a first drying phase (generally the heating phase). If, in this first phase, the condensation is measured at two different points in time, there is a temporal increase in condensation. In the later course of the drying process, the dewing of the dewing sensors will generally decrease in a second drying phase. As a rule, first the dew at the front dew point sensor, then at the upper dew point sensor and finally at the rear dew point sensor will decrease.
  • the process air is circulated until a desired degree of drying, ie residual moisture content of the laundry items, is reached. Then, the drying process caused by the controller is ended.
  • aqueous liquid e.g. condensate
  • optical fiber (s) (optical fiber)

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Séchoir (1) qui comporte une chambre de séchage (2) destinée à recevoir du linge (4), un capteur d'humidité (10, 11, 12), un dispositif de commande (18) et un conduit d'air de traitement (5) dans lequel se trouvent un dispositif de chauffe (7) destiné à réchauffer l'air et une soufflante (6), au moins un capteur de buée optique (10, 11, 12) étant conçu sous forme de capteur d'humidité (10, 11, 12) et situé à l'extérieur de la chambre de séchage (2). La présente invention concerne en outre un procédé permettant de faire fonctionner ce séchoir.
EP12719726.7A 2011-05-20 2012-05-09 Séchoir à capteur d'humidité et procédé permettant de faire fonctionner ledit séchoir Not-in-force EP2710183B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076220A DE102011076220A1 (de) 2011-05-20 2011-05-20 Trockner mit Feuchtesensor sowie Verfahren zu seinem Betrieb
PCT/EP2012/058539 WO2012159883A1 (fr) 2011-05-20 2012-05-09 Séchoir à capteur d'humidité et procédé permettant de faire fonctionner ledit séchoir

Publications (2)

Publication Number Publication Date
EP2710183A1 true EP2710183A1 (fr) 2014-03-26
EP2710183B1 EP2710183B1 (fr) 2016-04-06

Family

ID=46046220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12719726.7A Not-in-force EP2710183B1 (fr) 2011-05-20 2012-05-09 Séchoir à capteur d'humidité et procédé permettant de faire fonctionner ledit séchoir

Country Status (5)

Country Link
EP (1) EP2710183B1 (fr)
CN (1) CN103547729B (fr)
DE (1) DE102011076220A1 (fr)
PL (1) PL2710183T3 (fr)
WO (1) WO2012159883A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063980B (zh) * 2015-08-06 2018-11-23 无锡小天鹅股份有限公司 洗干一体机
DE102017204366A1 (de) * 2017-03-16 2018-09-20 BSH Hausgeräte GmbH Haushaltsgerät mit einer Trocknungsfunktion und mit einer Vorrichtung zur Erfassung einer Feuchte, sowie Verfahren zum Erfassen einer Feuchte
DE102017212313A1 (de) * 2017-07-19 2019-01-24 BSH Hausgeräte GmbH Haushaltsgeschirrspülmaschine und Verfahren zum Betreiben einer Haushaltsgeschirrspülmaschine
CN111553564B (zh) * 2020-04-09 2022-05-13 厦门大学 一种蒸汽干燥机能效评估方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329821A1 (de) * 1983-08-18 1985-02-28 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Detektor zur bestimmung einer dampfkonzentration
JP3009288B2 (ja) * 1992-01-13 2000-02-14 東京瓦斯株式会社 結露制御機能付衣類乾燥機
IL126826A0 (en) * 1998-10-30 1999-08-17 Optiguide Ltd Optical hygrometers
CN1231627C (zh) * 2002-05-08 2005-12-14 江苏海狮机械集团有限公司 模糊控制工业洗衣机浑浊度的检测及控制方法
DE102005016640B4 (de) 2005-04-11 2012-09-13 Hochschule Niederrhein Faseroptische Sensorvorrichtung
CN1904190A (zh) * 2005-07-30 2007-01-31 乐金电子(天津)电器有限公司 自动烘干装置及其控制方法
DE102006053274A1 (de) * 2006-11-06 2008-05-08 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Ermitteln der Ladungsmenge in einem Wäschetrockner und Wäschetrockner
DE102007052796B4 (de) * 2007-11-02 2018-10-11 Hochschule Niederrhein Aktive faseroptische Betauungsvorrichtung
US20090178295A1 (en) * 2008-01-15 2009-07-16 The Dial Corporation Apparatus and methods for treating fabrics in a laundry dryer
US8984692B2 (en) * 2009-08-21 2015-03-24 Whirlpool Corporation Active moisture removal in a laundry treating appliance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012159883A1 *

Also Published As

Publication number Publication date
EP2710183B1 (fr) 2016-04-06
CN103547729A (zh) 2014-01-29
CN103547729B (zh) 2016-04-06
PL2710183T3 (pl) 2016-10-31
DE102011076220A1 (de) 2012-11-22
WO2012159883A1 (fr) 2012-11-29

Similar Documents

Publication Publication Date Title
DE112007003110B4 (de) Wäschemaschine
DE60018151T2 (de) Trommelwaschmaschine mit Trübungssensor
EP2052106B1 (fr) Procédé et appareil ménager pour sécher du linge humide
DE102006053274A1 (de) Verfahren zum Ermitteln der Ladungsmenge in einem Wäschetrockner und Wäschetrockner
DE102009042903B4 (de) Wäschetrockner mit Duftzuführungseinrichtung unter Verwendung eines Vibrators
DE102006042486B3 (de) Verfahren zum Reinigen und Trocknen von Spülgut
EP2710183B1 (fr) Séchoir à capteur d'humidité et procédé permettant de faire fonctionner ledit séchoir
DE102006039908A1 (de) Wäschereinigungsgerät und Steuerverfahren dafür
DE102010039552A1 (de) Wäschebehandlungsgerät mit Siebaufnahme und Verfahren zum Betreiben eines Wäschebehandlungsgeräts mit einem Flusensieb
TW201200674A (en) Laundry machine
DE102009001548A1 (de) Wäschetrocknungsgerät mit einem innerhalb eines Prozessluftkreislaufs angeordneten Flusensieb und Verfahren zum Betreiben des Wäschetrocknungsgeräts
EP2289389B1 (fr) Procédé de surveillage du temps de séchage dans des lave-vaisselles
DE112005001111T5 (de) Kondensatortyptrockner und Steuerungsverfahren desselben
WO2011154252A1 (fr) Séchoir à condensation à nettoyage d'échangeur de chaleur intégré et procédé pour le faire fonctionner
WO2014040904A2 (fr) Sèche-linge à condensation à détermination de la charge ainsi que procédé pour son fonctionnement
WO2009095316A1 (fr) Dispositif de séchage par condensation comportant une cuve et un contenant de condensat et procédé d'utilisation du dispositif
EP3253914B1 (fr) Procédé de détermination des propriétés de séchage et sèche-linge à condensation adapté à ce dernier
WO2011054761A1 (fr) Procédé pour nettoyer un lave-linge séchant et lave-linge séchant approprié à cet effet
EP3000924B1 (fr) Procede de fonctionnement d'un seche -linge dote d'une protection contre le choc thermique et seche-linge adapte
WO2009077336A1 (fr) Sèche-linge et procédé de séchage de linge
WO2018219602A1 (fr) Procédé permettant la commande améliorée d'un appareil ménager à conduction d'eau et appareil ménager approprié
DE102021207441B3 (de) Verfahren zum Betrieb einer Waschmaschine und Waschmaschine
EP1344487B1 (fr) Dispositif et procédé pour la mesure optique du degree de secherese dans un appareil électroménager
WO2013186125A1 (fr) Appareil domestique comprenant un dispositif de protection contre des effets environnementaux nuisibles
DE112007000566T5 (de) Steuerverfahren eines Trockners

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 787971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006605

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160806

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160808

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160707

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006605

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170131

26N No opposition filed

Effective date: 20170110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120509

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160509

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 787971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180427

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180523

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012006605

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D06F0058280000

Ipc: D06F0058300000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012006605

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190509