EP2708749A1 - Machine à fluide du type à volute - Google Patents
Machine à fluide du type à volute Download PDFInfo
- Publication number
- EP2708749A1 EP2708749A1 EP12782824.2A EP12782824A EP2708749A1 EP 2708749 A1 EP2708749 A1 EP 2708749A1 EP 12782824 A EP12782824 A EP 12782824A EP 2708749 A1 EP2708749 A1 EP 2708749A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- scroll
- boss part
- bearing
- rotary
- insert member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/0078—Fixing rotors on shafts, e.g. by clamping together hub and shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
- F04C2240/51—Bearings for cantilever assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
- F04C2240/56—Bearing bushings or details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/13—Noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/04—Thermal properties
- F05C2251/042—Expansivity
- F05C2251/046—Expansivity dissimilar
Definitions
- the present invention relates to a scroll-type fluid machine in which a sealed chamber confining a fluid is formed by a pair of fixed scroll and rotary scroll meshed together.
- a scroll compressor in which a compression chamber is formed by a pair of fixed scroll and rotary scroll meshed together, includes a wall erected on one side face of an end plate of the rotary scroll and a boss part protruding from the other side face.
- a bush part of a crankshaft is inserted in a rotary bearing inserted in the boss part, and the bush part is rotatably supported by the rotary bearing.
- the rotary scroll is caused to revolve, via the rotary bearing and the boss part, by rotation of the crankshaft around an axis. Since an axis of the bush part is eccentric to the axis of the crankshaft, the rotary scroll makes orbital motion.
- Patent Literature 1 a technique is disclosed in Patent Literature 1 in which use of the rotary bearing is avoided by adopting a drive bush made of polyimide resin and directly fitting the drive bush into the boss.
- the rotary bearing is prevented from coming off by inserting a snap ring in a groove provided on the inner face of the boss part.
- deformation of the rotary scroll caused by press-fitting and swaging can be prevented, but a gap is generated between the boss part and the rotary bearing during a temperature rise due to the difference in thermal expansion coefficients. This leads to a problem that the boss part and the rotary bearing partially come into contact with each other and develop surface damage (fretting) by being subjected to vibration, repeated stress, and the like.
- the present invention has been made in view of these circumstances, and an object thereof is to provide a scroll-type fluid machine which can reduce deformation of the rotary scroll caused when fixing the bearing into the boss part.
- the scroll-type fluid machine of the present invention adopts the following solutions.
- the scroll-type fluid machine is a scroll-type fluid machine in which a sealed chamber confining a fluid is formed by a fixed scroll and a rotary scroll meshed together, each of the scrolls having a spiral wall erected on one side face of an end plate.
- the scroll-type fluid machine includes: a metallic boss part protruding from the other side face of the end plate of the rotary scroll; a metallic bearing inserted into the boss part; a crankshaft rotating around an axis and including a bush part inserted in the bearing and rotatably supported by the bearing; and an insert member disposed between the boss part and the bearing and having a thermal expansion coefficient greater than those of the boss part and the bearing.
- the rotary scroll is provided with the wall erected on the one side face of the end plate, and the boss part protruding from the other side face, and the bush part is inserted in the bearing, which is inserted in the boss part, so that the bush part is rotatably supported by the bearing.
- the crankshaft having the bush part around the axis the rotary scroll is caused to revolve via the bearing and the boss part.
- the rotary scroll makes orbital motion.
- the insert member is disposed between the boss part and the bearing. Since the insert member has the thermal expansion coefficient greater than those of the metallic boss part and bearing, the boss part and the bearing are securely fixed by the insert member at high temperatures. It is therefore not necessary to press-fit the bearing into the boss part at low temperatures in expectation of the difference in expansion occurring at high temperatures, and deformation of the rotary scroll caused when press-fitting the bearing into the boss part can be reduced or prevented.
- the insert member is made of, for example, synthetic resin or synthetic rubber, it is also possible to reduce noise and vibration during revolution of the rotary scroll.
- the insert member may have a ring shape and be disposed along the inner face of the boss part.
- the ring-shaped insert member is disposed along the inner face of the boss part, the metallic boss part and bearing do not come into contact with each other.
- surface damage fintting
- deformation of the rotary scroll caused when fixing the bearing into the boss part can be reduced.
- Fig. 1 is a longitudinal cross-sectional view illustrating a scroll compressor 1 according to the embodiment of the present invention.
- the scroll compressor 1 includes a housing 2 constituting an outer shell.
- the housing 2 is constituted by integrally fastening and fixing a front housing 3 and a rear housing 4 by a bolt 5.
- the front housing 3 and the rear housing 4 have fastening flanges 3A and 4A integrally formed at regular intervals at multiple places, for example, at four places on a circumference. By fastening these flanges 3A and 4A to each other by the bolt 5, the front housing 3 and the rear housing 4 are integrally coupled.
- a crankshaft 6 is supported freely rotatably around its axis L via a main bearing 7 and a sub-bearing 8 inside the front housing 3.
- One end side of the crankshaft 6 (the left side in Fig. 1 ) forms a small-diameter shaft part 6A, and the small-diameter shaft part 6A passes through the front housing 3 to protrude toward the left side in Fig. 1 .
- a protruding portion of the small-diameter shaft part 6A is provided, as well known, with an electromagnetic clutch, a pulley, or the like (not shown) for receiving power, and the power is transmitted from a drive source such as an engine via a V-belt, etc.
- a mechanical seal (lip seal) 9 is disposed between the main bearing 7 and the sub-bearing 8 to air-tightly seal between the inside of the housing 2 and the atmosphere.
- crankshaft 6 (the right side in Fig. 1 ) is provided with a large-diameter shaft part 6B, and the large-diameter shaft part 6B has a crank pin 6C integrally formed in a state of being eccentric to the axis L of the crankshaft 6 by a predetermined dimension.
- the crankshaft 6 is freely rotatably supported by the large-diameter shaft part 6B and the small-diameter shaft part 6A being supported by the front housing 3 via the main bearing 7 and the sub-bearing 8.
- a rotary scroll 15 to be described later is coupled to the crank pin 6C via a drive bush 10, a cylinder ring (floating bush) 11, and a rotary bearing 12, and the rotary scroll 15 is configured to be driven to revolve by the rotation of the crankshaft 6.
- the drive bush 10 includes a balance weight 10A integrally formed for removing an unbalanced load generated when the rotary scroll 15 is driven to revolve, and is configured to revolve together with the rotary scroll 15 being driven to revolve. Further, the drive bush 10 is provided with a crank pin hole 10B for fitting the crank pin 6C at a position eccentric to the center thereof. Thus, the drive bush 10 fitted with the crank pin 6C and the rotary scroll 15 are caused to revolve around the crank pin 6C upon receiving gas compression reaction force, constituting a known driven crank mechanism with a variable revolution radius of the rotary scroll 15.
- the housing 2 has incorporated therein a scroll compression mechanism 13 constituted of a pair of fixed scroll 14 and rotary scroll 15.
- the fixed scroll 14 is constituted of a fixed end plate 14A and a fixed spiral lap 14B (wall) erected on the fixed end plate 14A
- the rotary scroll 15 is constituted of a revolving end plate 15A and a revolving spiral lap 15B (wall) erected on the revolving end plate 15A.
- both scrolls 14 and 15 are configured so that a plurality of pairs of compression chambers 16 formed therebetween by being partitioned by each end plate 14A and 15A and each spiral lap 14B and 15B are point-symmetric with respect to a scroll center, and the rotary scroll 15 can smoothly revolve around the fixed scroll 14.
- the compression chambers 16 have a height in a rotation axis direction which is larger on an outer circumferential side than on an inner circumferential side of each spiral lap 14B and 15B, thereby constituting the scroll compression mechanism 13 capable of compressing gas three-dimensionally in both a circumferential direction and a height direction of each spiral lap 14B and 15B.
- the spiral laps 14B and 15B of the fixed scroll 14 and rotary scroll 15 may have incorporated therein tip seals 17 and 18, respectively, which seal a tip clearance formed between the tooth tip face and the tooth bottom face of the mating scroll, fitted to a seal groove provided on each tooth tip face.
- the fixed scroll 14 is fixedly installed on the inner face of the rear housing 4 via a bolt 27.
- the rotary scroll 15 has the boss part 15C, which is provided on a back face of the revolving end plate 15A, coupled to the crank pin 6C, which is provided on one end side of the crankshaft 6, via the drive bush 10, the cylinder ring (floating bush) 11, and the rotary bearing 12, and is configured to be driven to revolve.
- the rotary scroll 15 has the back face of the revolving end plate 15A supported by a thrust receiving surface 3B of the front housing 3, and is configured to be driven to revolve around the fixed scroll 14 while being prevented from rotating on its own axis through a rotation preventing mechanism 19 provided between the thrust receiving surface 3B and the back face of the revolving end plate 15A.
- the rotation preventing mechanism 19 of the present embodiment is the pin-ring type rotation preventing mechanism 19, in which a rotation preventing pin 19B which is incorporated in a pin hole provided in the front housing 3 is freely slidably fitted to an inner circumferential face of the rotation preventing ring 19A which is incorporated in a ring hole provided in the revolving end plate 15A of the rotary scroll 15.
- the fixed scroll 14 has a discharge port 14C for discharging compressed refrigerant gas opened at a central portion of the fixed end plate 14A, and the discharge port 14C has installed therein a discharge reed valve 21 mounted to the fixed end plate 14A via a retainer 20. Further, a seal material 22 such as an O-ring is inserted on the back face side of the fixed end plate 14A so as to be in close contact with the inner face of the rear housing 4, thereby forming a discharge chamber 23 divided from the inner space of the housing 2 between the back face of the fixed end plate and the inner face of the rear housing 4. Thus, the inner space of the housing 2 except for the discharge chamber 23 is configured to function as a suction chamber 24.
- the refrigerant gas returning from a refrigeration cycle through a suction port 25 provided in the front housing 3 is sucked into the suction chamber 24, and the refrigerant gas is sucked through this suction chamber 24 into the compression chamber 16.
- a seal material 26 such as an O-ring is interposed between joining faces of the front housing 3 and the rear housing 4 so as to air-tightly seal the suction chamber 24 formed inside of the housing 2 against the atmosphere.
- the scroll compressor 1 uses lubricant oil for smoothly moving a sliding part inside thereof.
- the lubricant oil coexists with the refrigerant in a predetermined ratio, and is sucked into the fixed scroll 14 and the rotary scroll 15 together with the refrigerant.
- This lubricant oil is capable of sealing a minute clearance by adhering to inner wall faces of the fixed scroll 14 and the rotary scroll 15.
- an oil film thickness of the lubricant oil adhering to the inner wall faces is approximately 5 ⁇ m in a thin part, approximately 100 ⁇ m in a thick part, and approximately 40 ⁇ m on average.
- the lubricant oil is discharged from the scroll compressor 1 to, for example, a refrigerant pipe constituting a refrigeration circuit, passes through each component of the refrigeration circuit, returns to the scroll compressor 1, and is sucked into the scroll compressor 1.
- some refrigeration circuits are provided with an oil separator for separating the lubricant oil and the refrigerant installed on the discharge side of the scroll compressor 1, and the oil separator is capable of returning the separated lubricant oil into the scroll compressor 1.
- an insert member 31 is disposed in a gap formed between the boss part 15C and the rotary bearing 12.
- the boss part 15C has a ring shape and is made of metal, for example, aluminum, and protrudes from the back face of the revolving end plate 15A.
- the insert member 31 and the rotary bearing 12 are inserted into the boss part 15C.
- the rotary bearing 12 is a metallic, for example, steel needle bearing.
- An outer diameter of the rotary bearing 12 is smaller than an inner diameter of the boss part 15C.
- the rotary bearing 12 is constituted of an outer ring 28, a plurality of needle rollers 29, and a holder 30.
- the outer ring 28 is of a substantially hollow cylindrical shape, and for example, has a collar part, which is bent at an approximately right angle toward the inside, formed on both ends in the axis L direction of the crankshaft 6.
- the holder 30 holds the plurality of needle rollers 29 at almost equal intervals in the circumferential direction, and is mounted to the inside of the outer ring 28.
- the insert member 31 has a ring shape.
- the insert member 31 has a thermal expansion coefficient greater than those of the metallic boss part 15C and rotary bearing 12, and is made of synthetic resin, for example, nylon 66, or synthetic rubber.
- two insert members 31 are disposed between the boss part 15C and the rotary bearing 12.
- the insert member 31 is first installed on the inner face of the boss part 15C at room temperature, and thereafter the rotary bearing 12 is inserted into the insert member 31.
- the boss part 15C may have a groove portion formed on the inner face to prevent displacement of the insert member 31.
- one end side 31a of the insert member 31 may be round-chamfered or corner-chamfered as shown in Fig. 4 . This shape allows the rotary bearing 12 to be smoothly inserted into the insert member 31.
- the other end side 31b may be chamfered, or have a right-angled shape as it is as shown in Fig. 4 .
- the insert member 31 and the rotary bearing 12 are securely fixed to the boss part 15C, that is, to the rotary scroll 15 at room temperature.
- the insert member 31 since the insert member 31 has the thermal expansion coefficient greater than those of the metallic boss part 15C and rotary bearing 12, even if each member expands at high temperatures at which the scroll compressor 1 is operating, the rotary bearing 12 is securely fixed to the boss part 15C by the insert member 31.
- the rotary scroll 15 and the boss part 15C are made of aluminum and the rotary bearing 12 is made of steel, linear thermal expansion coefficients are 22.0 ⁇ 10 -6 /°C and 12.5 ⁇ 10 -6 /°C, respectively, and the outer diameter of the rotary bearing 12 is 36 mm, if the temperature rises by 80°C, a difference of 27 ⁇ m is produced, generating a gap between the boss part 15C and the rotary bearing 12. For this reason, the inner diameter of the boss part 15C has been set smaller at room temperature, and the rotary bearing 12 has been press-fitted into the boss part 15C in the conventional practice.
- the insert member 31 when supposing that the insert member 31 is, for example, made of nylon 66 and has a linear thermal expansion coefficient of 10 ⁇ 10 -5 /°C, since the thermal expansion coefficient is greater compared with that of the boss part 15C and the rotary bearing 12, the rotary bearing 12 is securely fixed to the boss part 15C by the insert member 31. It is preferable that the thickness, material, and the like of the insert member 31 are set or selected such that a gap generated between the boss part 15C and the rotary bearing 12 at high temperatures, and an expansion difference of the insert member 31 when the temperature shifts from room temperature to a high temperature are equal.
- the insert member 31 has a ring shape and is evenly disposed between the boss part 15C and the rotary bearing 12, the metallic boss part 15C and rotary bearing 12 do not come into contact with each other. It is therefore possible to prevent surface damage (fretting) which has been conventionally caused, when the insert member 31 is not provided, on the contact portion between the boss part 15C and the rotary bearing 12 by being subjected to vibration, repeated stress, and the like.
- the shape of the insert member 31 is not limited to the ring shape, and other shapes may be used as long as the boss part 15C and the rotary bearing 12 do not come into contact with each other.
- the insert member 31 is made of, for example, synthetic resin or synthetic rubber, it is also possible to reduce noise and vibration during revolution of the rotary scroll 15.
- the present embodiment can be applied even where the outer ring is thin like in the case of the needle bearing, that is, even where no groove can be formed on the outer face of the outer ring unlike the outer ring of a ball bearing, etc.
- the insert member of the present invention is not limited to the insert member 31 described above.
- the insert member may be sheet-shaped, like the insert member 32 shown in Figs. 5 and 6 , and a wider member than the example shown in Figs. 1 to 4 , or may be an O-ring made of NBR.
- a slit 33 may be provided as shown in Figs. 5 and 6 .
- the insert members 31 and 32 are disposed between the boss part 15C and the rotary bearing 12, and that the boss part 15C and the rotary bearing 12 do not come into contact with each other.
- the rotary bearing 12 may be inserted into the boss part 15C while compressing the insert members 31 and 32 with a press-fitting allowance for the fitting between the boss part 15C and the rotary bearing 12 set to 0 or a value smaller than a conventional allowance.
- the boss part 15C and the rotary bearing 12 partially come into contact with each other at low temperatures, for example, at room temperature. Even by such an insertion method, it is possible to suppress deformation caused when press-fitting the rotary bearing 12 into the boss part 15C, and also to reduce noise and vibration during revolution of the rotary scroll.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011107196A JP2012237251A (ja) | 2011-05-12 | 2011-05-12 | スクロール型流体機械 |
PCT/JP2012/061181 WO2012153644A1 (fr) | 2011-05-12 | 2012-04-26 | Machine à fluide du type à volute |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2708749A1 true EP2708749A1 (fr) | 2014-03-19 |
EP2708749A4 EP2708749A4 (fr) | 2015-01-14 |
EP2708749A8 EP2708749A8 (fr) | 2015-02-25 |
Family
ID=47139128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12782824.2A Withdrawn EP2708749A4 (fr) | 2011-05-12 | 2012-04-26 | Machine à fluide du type à volute |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130243635A1 (fr) |
EP (1) | EP2708749A4 (fr) |
JP (1) | JP2012237251A (fr) |
CN (1) | CN103370542A (fr) |
WO (1) | WO2012153644A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2806165B1 (fr) * | 2013-05-22 | 2015-09-09 | Obrist Engineering GmbH | Compresseur à spirale et installation de climatisation de véhicule à CO2 dotée d'un compresseur à spirale |
EP2806164B1 (fr) * | 2013-05-22 | 2015-09-09 | Obrist Engineering GmbH | Compresseur à spirale et installation de climatisation de véhicule à CO2 dotée d'un compresseur à spirale |
US9611846B2 (en) * | 2014-12-31 | 2017-04-04 | Smith International, Inc. | Flow restrictor for a mud motor |
JP6596787B2 (ja) * | 2015-08-03 | 2019-10-30 | 三菱重工サーマルシステムズ株式会社 | スクロール圧縮機 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0759512A1 (fr) * | 1995-08-10 | 1997-02-26 | The Torrington Company | Assemblage de palier avec un insert dont le coefficient thermique est plus grand que celui du boîtier |
US6273614B1 (en) * | 1997-01-31 | 2001-08-14 | Snr Roulements | Rolling and bearing comprising a temperature compensating insert |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2466428A (en) * | 1945-06-20 | 1949-04-05 | Weatherhead Co | Piston seal |
US3572729A (en) * | 1968-05-23 | 1971-03-30 | Olin Corp | Expanding ring seal |
JPS63100293A (ja) * | 1986-10-17 | 1988-05-02 | Mitsui Seiki Kogyo Co Ltd | スクロ−ル圧縮機の旋回スクロ−ル支持構造 |
JPH0357893A (ja) * | 1989-07-26 | 1991-03-13 | Mitsubishi Electric Corp | スクロール流体機械 |
JP3629336B2 (ja) * | 1996-05-30 | 2005-03-16 | 光洋精工株式会社 | 転がり軸受 |
JP3801332B2 (ja) * | 1997-11-20 | 2006-07-26 | 三菱重工業株式会社 | 圧縮機 |
US6126423A (en) * | 1998-11-13 | 2000-10-03 | Ford Global Technologies, Inc. | Preloaded spring mount for crank pin/rotor bearing assembly |
JP2006112379A (ja) * | 2004-10-18 | 2006-04-27 | Matsushita Electric Ind Co Ltd | 流体機械の製造方法および流体機械 |
US20070222162A1 (en) * | 2006-03-24 | 2007-09-27 | Stoner Jack C | Back-up ring and sealing assembly |
JP2009264370A (ja) * | 2008-03-31 | 2009-11-12 | Hitachi Ltd | スクロール式流体機械 |
-
2011
- 2011-05-12 JP JP2011107196A patent/JP2012237251A/ja not_active Withdrawn
-
2012
- 2012-04-26 CN CN2012800039138A patent/CN103370542A/zh active Pending
- 2012-04-26 EP EP12782824.2A patent/EP2708749A4/fr not_active Withdrawn
- 2012-04-26 US US13/988,830 patent/US20130243635A1/en not_active Abandoned
- 2012-04-26 WO PCT/JP2012/061181 patent/WO2012153644A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0759512A1 (fr) * | 1995-08-10 | 1997-02-26 | The Torrington Company | Assemblage de palier avec un insert dont le coefficient thermique est plus grand que celui du boîtier |
US6273614B1 (en) * | 1997-01-31 | 2001-08-14 | Snr Roulements | Rolling and bearing comprising a temperature compensating insert |
Non-Patent Citations (1)
Title |
---|
See also references of WO2012153644A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN103370542A (zh) | 2013-10-23 |
JP2012237251A (ja) | 2012-12-06 |
EP2708749A8 (fr) | 2015-02-25 |
US20130243635A1 (en) | 2013-09-19 |
EP2708749A4 (fr) | 2015-01-14 |
WO2012153644A1 (fr) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8556605B2 (en) | Scroll compressor having a rotation inhibitor | |
US7967584B2 (en) | Scroll machine using floating seal with backer | |
US8776669B2 (en) | Anti-abrasion device and reciprocating compressor having the same | |
US9366253B2 (en) | Scroll compressor and processing method of scroll including a projection on a tip seal and a hole in a tip seal groove | |
US9732753B2 (en) | Scroll compressor with inclined surfaces on the stepped portions | |
EP2708749A1 (fr) | Machine à fluide du type à volute | |
US20160003247A1 (en) | Scroll Compressor | |
US9523361B2 (en) | Scroll compressor having back pressure chamber that operatively contains a discharge pressure and an intermediate pressure during different periods of time within a single compression cycle | |
CN110337543B (zh) | 双旋转涡旋型压缩机 | |
US7905716B2 (en) | Scroll compressor | |
KR102538446B1 (ko) | 스크롤 압축기 | |
JP2018017161A (ja) | 冷媒用軸シール、これを備えた開放型冷媒圧縮機 | |
JP2009047040A (ja) | スクロール型流体機械 | |
US20180163724A1 (en) | Scroll compressor | |
US8714950B2 (en) | Scroll compressor having tip seals of different lengths having different thickness or widths | |
US10920775B2 (en) | Scroll compressor with different sized gaps formed between inner and outer peripheral surfaces of scroll laps | |
WO2016121658A1 (fr) | Machine hydraulique à volutes | |
JP4875474B2 (ja) | スクロール型流体機械 | |
JP5864883B2 (ja) | スクロール圧縮機 | |
JP2002147361A (ja) | 圧縮機 | |
CN111255682A (zh) | 涡旋压缩机 | |
JPH09195958A (ja) | スクロール型圧縮機 | |
WO2017169523A1 (fr) | Structure d'étanchéité de carter et compresseur la comprenant | |
JP4199135B2 (ja) | スクロール圧縮機 | |
JP2010031794A (ja) | スクロール式流体機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20141211 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04C 18/02 20060101AFI20141205BHEP Ipc: F04C 29/00 20060101ALI20141205BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MITSUBISHI HEAVY INDUSTRIES AUTOMOTIVE THERMAL SYS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150723 |