EP2705121B1 - Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire - Google Patents

Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire Download PDF

Info

Publication number
EP2705121B1
EP2705121B1 EP12719675.6A EP12719675A EP2705121B1 EP 2705121 B1 EP2705121 B1 EP 2705121B1 EP 12719675 A EP12719675 A EP 12719675A EP 2705121 B1 EP2705121 B1 EP 2705121B1
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
reactor
housing section
heating
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12719675.6A
Other languages
German (de)
English (en)
Other versions
EP2705121A1 (fr
Inventor
Hubertus Winkler
Hanno Tautz
Rolf Schmitt
Martin Karch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHMITT, ROLF
Original Assignee
Linde GmbH
Babcock Noell GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH, Babcock Noell GmbH filed Critical Linde GmbH
Publication of EP2705121A1 publication Critical patent/EP2705121A1/fr
Application granted granted Critical
Publication of EP2705121B1 publication Critical patent/EP2705121B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1261Heating the gasifier by pulse burners

Definitions

  • the invention relates to a method and an apparatus for producing synthesis gas from carbonaceous educts by gasification in a fluidized bed reactor.
  • a method and such a device are known from DE 10 2004 032 830 A1
  • Another method and apparatus for the gasification of biomass are known from the DE 102 270 74 A1
  • Other methods and devices in the context of the invention are known from the DE 10 2007 006 980 A1 , of the DE 10 2008 032 166 A1 , of the DE 10 2006 022 265 A1 , of the DE 10 2009 039 845 A1 , of the DE 102 58 485 A1 , of the DE 10 2004 045 772 A1 , of the DE 10 2007 012 452 A1 , of the DE 10 2008 036 A1 , of the EP 1 865 046 A1 , the Article "Choren fuelR from the Carbo-V® Carburetor", Conference Report Biomass Gasification - International Conference Leipzig, October 2003, pages 234 to 2
  • the starting material is fed in the lowest fluidized bed zone by means of a screw.
  • the first fluidized bed zone has a temperature between 700 and 800 ° C.
  • the 2nd fluidized bed zone, which adjoins above the first zone is heated by oxygen to more than 1100 ° C. This heating is done again before the syngas leaves the reactor at the top.
  • At the bottom of the reactor is the ash discharge.
  • a method for operating a fluidized bed reactor for gasifying solid carbonaceous material is described. This is done using gaseous reactants such. B. of oxygen-containing gases and steam.
  • the DE 10 2008 032166 A1 relates to a process for producing synthesis gas from biomass.
  • the method is used when the ash melts glassy and can not be used as a mineral fertilizer.
  • the tar content in the synthesis gas is lowered by splitting the biomass into pyrolysis coke and pyrolysis gas in a fluidized bed reactor and feeding them both to another fluidized bed reactor. Tars are catalytically split at higher temperature on the largely tarry pyrolysis without the ash melting point is exceeded.
  • the DE 10 2009 039837 A1 shows a fluidized bed gasification reactor for biomass with a separate hybrid heating for the upper and lower part of the reactor.
  • the radiators can optionally be charged with oxygen and thus increase the reaction temperature or act by means of electricity as a radiator.
  • Biomass coke is added to the bottom of the reactor.
  • the generated synthesis gas leaves the reactor by means of a line.
  • the gasification leads to undesired adhesions of ash and / or starting material, for example biomass, to the fluidized bed material and / or to components of the production device. This leads either to the fact that certain starting materials can not be used with the methods and apparatuses for synthesis gas generation according to the prior art, or that these methods and devices can only be operated with low and thus uneconomic efficiency.
  • This object is achieved by a method having the features specified in claim 1 in a device having the features specified in claim 5.
  • a method with two heating stages leads to the possibility of first carrying out a first pyrolysis gasification step at the first, lower gasification temperature.
  • This first gasification temperature is chosen so that it is lower than an ash softening temperature of the starting materials or lower than a softening temperature of the starting materials in general.
  • the pyrolysis gasification step results in a corresponding reduction in agglomeration of ash or educts in the first, deep-bed fluidized bed area.
  • 50% to 80% of the reactants can be gasified.
  • a corresponding vertical extent of that fluidized bed area can be predetermined, in which the pyrolysis step takes place due to the heating to the first gasification temperature.
  • a homogeneous first gasification temperature is set as far as possible.
  • the first gasification temperature can be in the range between 600 ° C and 770 ° C and can be particularly in the range between 700 ° C and 770 ° C lie.
  • the remaining after the pyrolysis step remaining lighter and educt particles are carried by the fluidized bed up into the second reactor housing section and then gasified in the second reactor housing section at the higher second gasification temperature with higher turnover speed.
  • homogeneous gas phase reactions can continue to proceed at the second gasification temperature, which further convert pyrolysis gases generated in the first, deep-bed fluidized bed region to the synthesis gas to be generated.
  • a reduction of an undesirable tar content in the synthesis gas produced can take place.
  • the second gasification temperature can be in the range between 770 ° C and 1000 ° C or in the range between 770 ° C and 900 ° C and is preferably in the range between 770 ° C and 810 ° C.
  • the fluidized bed may be stationary during syngas production and may form bubbles.
  • a circulating fluidized bed can also be present in the fluidized-bed reactor.
  • the first fluidized bed region and the second reactor housing section are present in one and the same reactor housing.
  • starting materials for syngas production biomass or coal can be used.
  • the heating to the first gasification temperature and the heating to the second gasification temperature is in each case an active heating, that is to say a heating independent of any heat of reaction which arises in the production process.
  • the heating can be done by external energy supply.
  • the heating of the first fluidized bed region and / or the second fluidized bed region can be effected by supplying an oxygen-containing gas, by supplying a synthesis gas and / or by supplying steam.
  • the fluidized bed itself is in two temperature zones, Thus, divided into two fluidized bed regions, wherein the first, deep fluidized bed region is heated to the first gasification temperature and the second, higher fluidized bed region to the higher second gasification temperature. Both the pyrolysis step and the reaction of the remaining, lighter particles and the homogeneous gas phase reactions for the implementation of the pyrolysis gases initially generated can then take place within the fluidized bed.
  • the heating of a reactor housing section which contains a fluidized bed area, is in the sense of the present description equivalent to a heating of this fluidized bed area itself. It is also possible to heat more than two superimposed fluidized bed regions of the same fluidized bed to different temperatures.
  • the method of claim 2 utilizes different principles for providing heat energy for heating the two adjacent fluidized bed regions. Since a comparatively low gasification temperature of the fluidized bed reactor has to be achieved in the first, low-lying fluidized bed region, a burner can be used for the allothermal energy input, whereby a surface temperature of the burner can be kept low and well below a softening point of the educts. About the autothermal energy input then the second, higher gasification temperature in the second fluidized bed area is reached.
  • the entries in the first and in the second fluidized bed need not be exclusively allothermic or autothermic, but the allothermal energy input on the one hand and the autothermal energy input on the other hand can represent the main energy inputs that are supported by other energy inputs. It may in the first, deep-fluidized bed area and / or in the second, higher-lying fluidized bed area one each Combination of an all-thermal and an autothermal energy input take place.
  • a third temperature zone is provided for the post-reaction, wherein the post-reaction temperature is higher than the second gasification temperature.
  • an undesirable tar content in the synthesis gas produced is further reduced by after-reaction.
  • the post-reaction temperature may range between 830 ° C and 1000 ° C, may range between 830 ° C and 900 ° C and may range between 830 ° C and 850 ° C.
  • the further, heated to the post-reaction temperature reactor housing section can be directly adjacent to the fluidized bed.
  • the further, heated to the post-reaction temperature reactor housing portion may be spaced from the fluidized bed.
  • heating to the post-reaction temperature is an active or autothermal heating. It applies, what has already been stated above with respect to the heating to the first and the second gasification temperature.
  • the post-reaction can take place in a degassing section of the reactor.
  • Another object of the invention is to provide an apparatus for carrying out the synthesis gas production process.
  • the advantages of the synthesis gas producing apparatus of the present invention are the same as those already explained above with reference to the synthesis gas producing method of the present invention.
  • the first, deep-bed fluidized bed housing section, on the one hand, and the second, higher-lying reactor housing section, on the other hand, which can be heated to the two gasification temperatures via the two heaters may be sections of one and the same reactor housing. This is not mandatory.
  • a cross-sectional deviation within the reactor housing according to claim 8 can be used to optimize the reaction conditions in the various reactor housing sections.
  • a degassing housing section may have a larger cross section than a fluidized bed housing section. This leads to a large potential reaction volume in the after-reaction.
  • a degassing housing section can also taper to a tubular housing section with a small tube diameter compared to the other reactor housing. This can be used for the desired acceleration of a synthesis gas / solid mixture.
  • a heat exchanger according to claim 9 can be heated by a burner. Another heating of the heat exchanger is possible.
  • fuel gas a natural gas / air mixture and / or a synthesis gas / air mixture can be used. Another fuel gas can be used.
  • the heat exchanger can deliver the heat generated via a heat transfer surface, for example via a burner jacket surface, in the fluidized bed housing section.
  • the heat transfer surface for example the burner jacket surface, can be designed with a large surface area.
  • a heater according to claim 10 can be controlled and / or regulated by adding in particular an oxygen-containing gas in their heating power with a low reaction time.
  • the feed unit may be the only heat source of the respective heating device.
  • the heater may also represent a combination of a heat exchanger with such a supply unit for a particular oxygen-containing gas.
  • a fluidized bed circuit according to claim 12 can be used to increase a reactor efficiency.
  • the fluidized bed material including not yet gasified carbon residues and ash in a separator, in particular a cyclone, deposited and nachverbrannt with air. This can be used to reheat the fluidized bed material before it is recycled to the fluidized bed within the cycle.
  • a flow reactor according to claim 13 represents a variant for the reaction of residual, lighter particles after the pyrolysis step and / or for reducing the tar content via an after-reaction.
  • a device 1 is used to generate synthesis gas from carbonaceous educts, for example from biomass or coal, by gasification.
  • the device 1 has a fluidized bed reactor 2.
  • a reactor housing 3 of the fluidized bed reactor 2 is functionally divided into a plurality of housing sections 4 to 6. In the embodiment according to Fig. 1 These housing sections 4 to 6 parts of the same reactor housing. 3
  • the first, deep-bed fluidized bed housing section 4 serves to receive a first, deep-bed fluidized bed region 7 of a fluidized bed 8 of the fluidized-bed reactor 2.
  • Sand can be used as the fluidized bed material.
  • An upper phase boundary 9 of the fluidized bed 8 is in the Fig. 1 indicated by a curved line. This phase boundary is approximately at the level of an upper boundary of the second reactor housing section 5, which lies above the fluidized bed housing section 4 and directly adjacent thereto.
  • the second reactor housing section 5 is designed in the form of a second fluidized bed housing section and serves to receive a second fluidized bed region 10 of the fluidized bed 8.
  • the fluidized-bed reactor 3 has the degassing housing section 6. It adjoins the reactor housing section 5 directly upwards. A cross section of the degassing housing section 6 increases at the transition to the reactor housing section 5 via an expansion cone 11. In the region of the degassing housing section 6, the reactor housing 3 thus has a housing cross-section, the housing cross section of the fluidized bed housing section 4 and from Housing cross-section of the reactor housing section 5 differs and in the case of the embodiment according to Fig. 1 is larger.
  • the device 1 has a first heating device 12 for heating the fluidized bed region 7 in the fluidized bed housing section 4 to a first gasification temperature.
  • the first heater 12 has a heating unit in the form of a burner 13 as a heat exchanger and a further heating unit in the form of an oxygen-containing gas supply unit 14.
  • Water vapor and / or air and / or oxygen is fed to the fluidized bed region 7 via the feed unit 14.
  • the oxygen-containing gas is supplied in the region of a bottom 14 a of the reactor housing 3 in the fluidized bed region 7 via a plurality of nozzles 14 b, which in the Fig. 1 are shown schematically. These nozzles 14b may be arranged annularly around the burner 13.
  • the nozzles 14b discharge the oxygen-containing gas upward.
  • design of the feed unit 14, alternatively or additionally, nozzles corresponding to the nozzles 14b may be provided which flow out the oxygen-containing gas downwards.
  • the burner 13 is operated via a combustible air / gas mixture, which has a in the Fig. 1 schematically shown by two arrows feed line 15 is supplied to the burner 13.
  • the gas of the air / gas mixture may be natural gas, synthesis gas or a mixture of both.
  • the burner 13 is designed tubular, wherein a tube longitudinal axis 15a of the burner 13 coincides with a longitudinal axis of the likewise tubular reactor housing 3. The burner 13 thus "stands" centrally in the fluidized bed region 7.
  • An upper-side termination of the burner 13 extends to near a range boundary between the fluidized bed regions 7 and 10 or between the housing sections 4 and 5.
  • the heating device 12 has a heating capacity that makes it possible for the fluidized bed region 7 along an entire height extent of the burner 13, ie within the first, deep-bed fluidized bed housing section 4, to a first gasification temperature in the range between 600 ° C and 770 ° C. , in particular in the range between 700 ° C and 770 ° C to bring.
  • This first gasification temperature is lower than an ash softening temperature or as a biomass softening temperature.
  • the heating power of the first heating device 12 can be distributed between the burner 13 and the feed device 14 in a controlled or predetermined manner.
  • the device 1 has a schematically illustrated control / regulating device 16. This communicates with control valves 17 on the one hand, the feed unit 14 and on the other hand, the supply line 15 in a manner not shown in signal connection.
  • the control / regulating device 16 in the Fig. 1 sensors not shown, for example, with temperature or gas concentration sensors, which are housed in the reactor 2, are in signal communication.
  • the apparatus 1 has a second heater 18 for heating the reactor housing section 5 to a second gasification temperature higher than the first gasification temperature.
  • the second heater 18 is, as with the supply unit 14 of the first heater 12, designed as an oxygen-containing gas supply device. Components of the second heater 18, which correspond to those in the feed unit 14, bear the same reference numerals and will not be explained again in detail. Also the second Heating device 18 can be controlled or regulated via the control / regulating device 16.
  • the second gasification temperature is in the range between 770 ° C and 1000 ° C and in particular in the range between 770 ° C and 900 ° C or in the range between 770 ° C and 810 ° C.
  • the second heating device 18 is arranged in the reactor housing section 5 near the region boundary to the fluidized-bed housing section 4.
  • a further heating device in the form of a post-reaction heater 19 is arranged in the degassing housing section 6 of the reactor housing 3.
  • the post-reaction heating device 19 is arranged above the phase boundary 9.
  • a structural design with the post-reaction heater 19 corresponds to that of the second heater 18.
  • the post-reaction heater 19 is used for heating above the phase boundary 9 present media within the reactor housing 3 to a post-reaction temperature, which is higher than the second gasification temperature.
  • the post-reaction temperature may be in the range of 830 ° C, but may be higher and in the range between 830 ° C and 1000 ° C and be for example 850 ° C, 900 ° C or 1000 ° C.
  • the post-reaction heating device 19 is arranged at the level of the expansion cone 11 of the reactor housing 3.
  • the feed unit 14 or the heating devices 18, 19 may have annular nozzle line sections, which are guided around the central longitudinal axis 15a of the reactor housing 3.
  • the device 1 has a feed device 20 for feeding the educts which are to be gasified into the first fluidized bed region 7
  • Feeder 20 is designed as a screw conveyor.
  • a feed end 21 of the screw conveyor passes through a housing wall of the reactor housing 3 in the region of a lower third of the housing section 4 above the nozzles 14b of the feed unit 14 of the first heating device 12.
  • the device 1 has above the degassing housing section 6 a discharge device for the synthesis gas generated in the form of a schematically indicated outlet 22.
  • the device 1 further has a removal device 23 for removing a portion of the fluidized bed at the bottom.
  • the removal device has a removal valve 24, which is arranged in a withdrawal line 25, which opens out from the bottom 14a of the reactor housing 3 downwards.
  • the extraction line 25 leads the fluidized bed portions taken to a in the Fig. 1 schematically indicated removal container 26th
  • the device 1 further has a refilling device 27 for refilling fluidized bed material, in particular for equalizing the removal by the removal device 23.
  • the refill 27 has a refill 28 which is connected via a refill 29 with an upper-side housing cover 30 of the reactor housing 3 and over this opens into the degassing housing section 6 from above.
  • a refill valve 31 is arranged in the refill line 29, a refill valve 31 is arranged.
  • the removal valve 24 on the one hand and the refill valve 31 on the other hand can each be designed in the form of a lock with two sequentially arranged valve units.
  • the removal valve 24 and the refill valve 31 are again in a manner not shown with the control / regulating device 16 in signal connection.
  • the device 1 operates to generate synthesis gas from carbonaceous educts by gasification in the fluidized bed reactor 2 as follows:
  • the first, deep-bed fluidized bed region 7 is heated by the first heater to the first gasification temperature by external energy supply.
  • the reactor housing section 5 is heated by the second heater 18 to the second gasification temperature by external energy supply.
  • the feedstock 20 to be gasified educts are introduced into the fluidized bed region 7. Since the first gasification temperature is lower than an ash softening or biomass softening temperature, agglomeration of ash or biomass in the fluidized bed region 7 is reduced or even completely prevented in the first gasification step in the housing section 4 of the reactor housing. In the first fluidized bed region 7 pyrolysis takes place, wherein about 50% to 80% of the biomass are gasified.
  • this first gasification temperature is adjusted as homogeneously as possible.
  • An actual gasification temperature deviates from a predetermined nominal gasification temperature by a maximum of 30 ° C to 50 ° C. For example, if a target temperature of 720 ° C for the first gasification temperature is given, is present in the entire housing section 4, an actual temperature in the range between 670 ° C and 770 ° C, preferably in the range between 690 ° C and 750 ° C and more preferably with even smaller deviation from the target temperature.
  • lighter biomass particles are supported via the fluidized bed 8 from the housing section 4 upwards into the housing section 5 and thereby delimited locally by the first, lower fluidized bed region 4. These lighter particles are now due to the higher second gasification temperature gasified in the fluidized bed region 10 with sufficient turnover speed. In the fluidized bed region 10, moreover, homogeneous gas phase reactions proceed, which lead to a further conversion of the pyrolysis gases generated in the fluidized bed region 7.
  • Residual ash and / or biomass agglomeration or sticking to the bed material of the fluidized bed 8 sinks downwards in the fluidized bed 8 and can be removed in a controlled manner via the removal device 23 by controlling the removal valve 24. A corresponding loss of bed material can be compensated for controlled by the refill device 27.
  • FIG. 2 a further embodiment of a device 32 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
  • Components and functions corresponding to those described above with reference to FIGS Fig. 1 have the same reference numbers and will not be discussed again in detail.
  • a second burner 33 is provided for heating the reactor housing section 5 to the second gasification temperature.
  • the burner 33 can be operated with an air / natural gas mixture.
  • the second burner 33 is not standing, but installed horizontally and passes, comparable to the feeder 20, a jacket wall of the reactor housing 3.
  • An end portion of the burner 33 extends beyond the longitudinal axis 15a out into the fluidized bed region 10 and thus provides for a good heat exchange with the fluidized bed in the region of the fluidized bed region 10.
  • the structure of the burner 33 corresponds to that of the burner thirteenth
  • FIG. 3 a further embodiment of a device 34 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
  • Components and functions corresponding to those described above with reference to FIGS Fig. 1 and 2 have the same reference numbers and will not be discussed again in detail.
  • the device 34 instead of the running as a feed unit Nachreticians-heating direction 19, a third, third burner 35.
  • This is like the burner 33 installed transversely to the longitudinal axis 15a of the reactor housing 3 and passes through the jacket wall of the reactor housing 3 at the level of the expansion cone 11.
  • the burner 35 is an open burner.
  • the burner 35 can be operated with an oxygen / natural gas mixture.
  • An end region of the burner 35 projects into the degassing housing section 6 approximately to the longitudinal axis 15a of the reactor housing 3 inside. Except for the fact that now the burner 35 is used for heating the degassing housing section 6 to the post-reaction temperature, the operation of the device 34 in the synthesis gas production by gasification corresponds to that described above with reference to FIGS Fig. 1 and 2 has already been explained.
  • FIG. 4 a further embodiment of a device 36 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
  • Components and functions corresponding to those described above with reference to FIGS Fig. 1 to 3 have the same reference numbers and will not be discussed again in detail.
  • the device 36 after Fig. 4 operates with a circulating fluidized bed 8.
  • the device 36 has a fluidized bed circuit 37.
  • the fluidized bed housing section 4, the reactor housing section 5 and the degassing housing section 6 are components of the fluidized bed circuit 37, as well as the outlet 22 for the synthesis gas.
  • the latter is in fluid communication with a separator 38 which may be configured as a cyclone separator.
  • the synthesis gas separated from the fluidized bed material in the separator 38 leaves the separator 38 via an outlet 39.
  • the fluidized bed material deposited in the separator 38 is passed back into the reactor housing 3 via a bottom outlet 40 of the separator 38 and a return line 41.
  • the return line 41 opens into the fluidized bed housing section 4 of the reactor housing 3 just above the feed unit 14 of the first heater 12 a.
  • the gasification reaction in the device 36 proceeds analogously to what has been described above in connection with the synthesis gas production process in the device 1 Fig. 1 was explained.
  • the fluidized bed reactor 2 is operated in the device 36 so that at least a portion of the fluidized bed material is discharged through the degassing housing section 6 upwards and via the outlet 22 from the reactor housing 3.
  • the fluidized bed material discharged in this way is fed back to the reactor housing 3 via the separator 38 and the return line 41, so that a circulating fluidized bed is formed in the device 36.
  • FIG. 5 a further embodiment of a device 42 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
  • Components and functions corresponding to those described above with reference to FIGS Fig. 1 to 4 have the same reference numbers and will not be discussed again in detail.
  • the device 42 there is a single fluidized-bed housing section 43, which extends from the bottom 14 a of the reactor housing 3 to the phase boundary 9 in the reactor housing 3.
  • the first heater 12 is similarly constructed and arranged in the apparatus 42 as in the apparatus 1 and heats the fluidized bed 8 to the first gasification temperature.
  • a further heating device may be arranged which heats a fluidized bed region which is higher than the fluidized bed region that is heated by the heating device 12.
  • a second reactor housing section is formed at the device 42 by an outlet section 44, which in addition to the function of the synthesis gas outlet corresponding to the outlet 22 in the embodiments of the Fig. 1 to 4 also has the function of the second reactor housing section to be heated to the second gasification temperature.
  • For this heating to the second gasification temperature serves a second heater 45 of the device 42 in the form of an oxygen-containing gas supply unit.
  • Air and / or oxygen is supplied via the feed unit 45.
  • the outlet section 44 connects the reactor housing 3 with a likewise tubular degassing section 46.
  • the latter has the function of the degassing housing section 6 in the embodiments according to FIGS Fig. 1 to 4 .
  • a feed unit 47 is arranged, which is the function of the post-reaction heater of the embodiments according to the Fig. 1 to 4 Has.
  • the outlet section 44 and the degassing section 46 have a tube cross section that is significantly smaller than the cross section of the reactor housing 3.
  • the outlet section 44 on the one hand and the degassing section 46 on the other hand therefore have a smaller cross section than the fluidized bed housing section 43.
  • the mixture of synthesis gas and remaining, lightweight biomass particles leaving the reactor housing 42 is brought to the second gasification temperature by the second heating device 45, whereby the initially unfavorable particles are then gasified and start the further homogeneous reaction gas phase reactions.
  • the synthesis gas with the entrained solids passes through the degassing section 46 and is heated with the third heater 47 to the post-reaction temperature. As a result, the post-reaction takes place for tar degradation in the synthesis gas.
  • the degassing section 46 may in turn be followed by a separator.
  • a further embodiment of a device 48 for the production of synthesis gas from carbon dioxide-containing educts by gasification is described.
  • Components and functions corresponding to those described above with reference to FIGS Fig. 1 to 5 have the same reference numbers and will not be discussed again in detail.
  • the device 48 is constructed like the device 1 according to Fig. 1 ,
  • a burner 49 at the transition is arranged between the outlet portion 44 and the degassing section 46.
  • the burner 49 ensures heating of the remaining, not yet pyrolytically reacted, light biomass particles to the second gasification temperature and optionally subsequently in the further course in the degassing section 46 also to the post-reaction temperature.
  • the burner 49 thus constitutes the post-reaction heating device of the device 48.
  • the synthesis gas production process otherwise corresponds to that described above with reference to FIGS Fig. 1 to 5 and in particular with reference to Fig. 5 has already been explained.
  • the entrained flow reactor 50 is followed by a discharge device 51, which in the Fig. 5 and 6 is indicated schematically and in which the synthesis gas is separated from the entrained solid components via a separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Processing Of Solid Wastes (AREA)

Claims (13)

  1. Procédé de génération d'un gaz de synthèse avec un dispositif selon l'une quelconque des revendications 5 à 13 à partir de réactifs contenant du carbone par gazéification dans un réacteur à lit fluidisé (2), comprenant les étapes suivantes :
    - le chauffage d'une première zone de lit fluidisé située en profondeur (7) d'un lit fluidisé (8) du réacteur à lit fluidisé (2) à une première température de gazéification, la première température de gazéification étant inférieure à une température de ramollissement des réactifs ou leur cendre,
    - le chauffage d'une deuxième section de boîtier de réacteur (5 ; 44) qui est située plus en hauteur que la première zone de lit fluidisé (7) et contient une deuxième zone de lit fluidisé (10) du lit fluidisé (8) du réacteur à lit fluidisé (2), la deuxième zone de lit fluidisé (10) étant située plus en hauteur que la première zone de lit fluidisé (7) et étant adjacente à celle-ci, à une deuxième température de gazéification, la deuxième température de gazéification étant plus élevée que la première température de gazéification,
    - l'introduction des réactifs dans la première zone de lit fluidisé (7),
    - le déchargement du gaz de synthèse généré.
  2. Procédé selon la revendication 1, caractérisé par un chauffage allotherme de la première zone de lit fluidisé située en profondeur (7) et par un chauffage autotherme de la deuxième zone de lit fluidisé située plus en hauteur (10).
  3. Procédé selon la revendication 1 ou 2, caractérisé par un chauffage d'une autre section de boîtier de réacteur (6 ; 46) au-dessus du lit fluidisé (8) à une température de réaction secondaire, la température de réaction secondaire étant plus élevée que la deuxième température de gazéification.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé par un soutirage d'une partie du lit fluidisé et un remplissage de matériau de lit pour compenser le soutirage.
  5. Dispositif (1 ; 32 ; 34 ; 36 ; 42 ; 48) pour la génération d'un gaz de synthèse à partir de réactifs contenant du carbone par gazéification,
    - comprenant un réacteur à lit fluidisé (2), un boîtier (3) du réacteur à lit fluidisé (2) étant divisé en
    - une première section de boîtier de lit fluidisé située en profondeur (4 ; 43) pour le soutirage d'une première zone de lit fluidisé située en profondeur (7) d'un lit fluidisé (8) du réacteur à lit fluidisé (2),
    - une deuxième section de boîtier de réacteur (7 ; 44) sous la forme d'une deuxième section de boîtier de lit fluidisé, qui est située plus en hauteur que la première section de boîtier de lit fluidisé (4 ; 43) et est adjacente à celle-ci, pour le soutirage d'une deuxième zone de lit fluidisé (10) du lit fluidisé (8),
    - comprenant un premier dispositif de chauffage (12) pour le chauffage de la première zone de lit fluidisé (7) à une première température de gazéification,
    - comprenant un deuxième dispositif de chauffage (18 ; 33 ; 45) pour le chauffage de la deuxième zone de boîtier de réacteur (5 ; 44) à une deuxième température de gazéification qui est supérieure à la première température de gazéification,
    - comprenant un dispositif d'alimentation (20) pour l'introduction des réactifs dans la première zone de lit fluidisé (7),
    - comprenant un dispositif de déchargement (22 ; 39 ; 44, 51) pour le gaz de synthèse généré,
    - le premier dispositif de chauffage (12) comprenant une unité de chauffage configurée sous la forme d'un échangeur de chaleur sous la forme d'un brûleur (13) et une autre unité de chauffage sous la forme d'une unité d'alimentation (14) pour un gaz contenant de l'oxygène.
  6. Dispositif selon la revendication 5, caractérisé en ce que le premier dispositif de chauffage (12) est configuré pour l'apport d'énergie allotherme, le deuxième dispositif de chauffage (18 ; 33) étant configuré pour l'apport d'énergie autotherme.
  7. Dispositif selon la revendication 5 ou 6, caractérisé en ce que le boîtier du réacteur à lit fluidisé (2) comprend une section de boîtier de dégazage (6 ; 46) au-dessus de la deuxième section de boîtier de réacteur (5 ; 44), un dispositif de chauffage de réaction secondaire (19 ; 35 ; 47 ; 49) pour le chauffage de la section de boîtier de dégazage (6 ; 46) à une température de réaction secondaire étant présent.
  8. Dispositif selon la revendication 7, caractérisé en ce que le réacteur (2) présente dans la zone de la section de boîtier de dégazage (6 ; 46) une section transversale de boîtier qui est différente de la section transversale de boîtier de la section de boîtier de lit fluidisé (4).
  9. Dispositif selon l'une quelconque des revendications 5 à 8, caractérisé en ce qu'au moins un des dispositifs de chauffage (12 ; 33 ; 35 ; 49) comprend un échangeur de chaleur.
  10. Dispositif selon l'une quelconque des revendications 5 à 9, caractérisé en ce qu'au moins un des dispositifs de chauffage (12 ; 18 ; 19 ; 45 ; 47) comprend au moins une unité d'alimentation (14) pour de la vapeur d'eau, de l'air ou de l'oxygène.
  11. Dispositif selon l'une quelconque des revendications 5 à 10, caractérisé par un dispositif de soutirage (23) pour le soutirage du côté du fond d'une partie du lit fluidisé hors du boîtier de réacteur (2) et un dispositif de remplissage (27) pour le remplissage de matériau de lit pour compenser le soutirage.
  12. Dispositif selon l'une quelconque des revendications 5 à 11, caractérisé par un circuit de lit fluidisé (37), la section de boîtier de lit fluidisé (4) et la section de boîtier de dégazage (6) faisant partie du circuit de lit fluidisé (37), et un séparateur (38) pour la séparation du gaz de synthèse généré de fractions solides étant agencé dans le circuit de lit fluidisé ultérieur (37).
  13. Dispositif selon l'une quelconque des revendications 5 à 12, caractérisé par un réacteur à flux entraîné (50) agencé en aval de la première section de boîtier de lit fluidisé située en profondeur (4 ; 43).
EP12719675.6A 2011-05-06 2012-05-03 Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire Active EP2705121B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011075438A DE102011075438A1 (de) 2011-05-06 2011-05-06 Verfahren und Vorrichtung zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung
PCT/EP2012/058081 WO2012152638A1 (fr) 2011-05-06 2012-05-03 Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire

Publications (2)

Publication Number Publication Date
EP2705121A1 EP2705121A1 (fr) 2014-03-12
EP2705121B1 true EP2705121B1 (fr) 2018-05-02

Family

ID=46046177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12719675.6A Active EP2705121B1 (fr) 2011-05-06 2012-05-03 Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire

Country Status (3)

Country Link
EP (1) EP2705121B1 (fr)
DE (1) DE102011075438A1 (fr)
WO (1) WO2012152638A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021134191A1 (de) 2021-12-22 2023-06-22 BHYO GmbH Verfahren und Anlageverbund zur Erzeugung von Synthesegas
DE102022105359A1 (de) 2022-03-08 2023-09-14 BHYO GmbH Verfahren zur Herstellung von Wasserstoff aus Biomasse

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312575B (zh) * 2017-08-01 2023-07-18 中国科学院工程热物理研究所 分级配风的循环流化床气化装置以及气化方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2949533A1 (de) * 1979-12-08 1981-06-11 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE3033115A1 (de) * 1980-09-03 1982-04-22 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE3635215A1 (de) * 1986-10-16 1988-04-28 Bergwerksverband Gmbh Verfahren zur allothermen kohlevergasung und wirbelbett-gasgenerator zur durchfuehrung des verfahrens
TW245651B (en) * 1994-02-24 1995-04-21 Babcock & Wilcox Co Black liquor gasifier
DE10227074A1 (de) 2002-06-17 2004-01-15 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Verfahren zur Vergasung von Biomasse und Anlage hierzu
DE10258485A1 (de) 2002-12-10 2004-07-08 Innovativer Anlagenbau E&H Gmbh Verfahren und Vorrichtung zur Gewinnung von Wärmeenergie und/oder motortauglichem Gas durch Vergasung von Feststoffen
DE102004032830A1 (de) * 2004-07-06 2006-02-23 Rolf Schmitt Verfahren zur Erzeugung von wasserstoffreichen Synthesegas aus biogenen Stoffen und sonstigen kohlenstoffhaltigen Verbindungen mittels Wasserdampfvergasung (Dampfreformierung) in einem indirekt beheizten Wirbelschichtreaktor bei gleichzeitiger partieller Oxidation der Einsatzstoffe durch geregelte Einbringung von Sauerstoff in den Wirbelschichtreaktor (Hybridverfahren)
DE102004045772A1 (de) 2004-09-15 2006-03-16 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Verfahren und Vorrichtung zur Erzeugung eines Produktgases durch thermochemische Vergasung eines kohlenstoffhaltigen Einsatzstoffes
DE102006022265A1 (de) 2006-04-26 2007-10-31 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur optimierten Wirbelschichtvergasung
DE202006009174U1 (de) 2006-06-08 2007-10-11 Rudolf Hörmann GmbH & Co. KG Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff
DE102007006980B4 (de) * 2007-02-07 2009-03-19 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE102007012452B4 (de) 2007-03-15 2014-01-16 SynCraft Enegineering GmbH Vergaser
DE102008032166A1 (de) * 2008-07-08 2010-01-14 Karl-Heinz Tetzlaff Verfahren und Vorrichtung zur Herstellung von teerfreiem Synthesgas aus Biomasse
DE102008036734A1 (de) 2008-08-07 2010-02-18 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur Herstellung von Energie, DME (Dimethylether und Bio-Silica unter Einsatz von CO2-neutralen biogenen reaktiven und reaktionsträgen Einsatzstoffen
AT507068B1 (de) 2008-09-02 2010-02-15 Rudolf Berger Anlage zur erzeugung von holzgas
DE102009039837A1 (de) * 2009-09-03 2011-03-10 Karl-Heinz Tetzlaff Elektrische Heizung für einen Wirbelschichtreaktor zur Herstellung von Synthesegas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021134191A1 (de) 2021-12-22 2023-06-22 BHYO GmbH Verfahren und Anlageverbund zur Erzeugung von Synthesegas
WO2023117637A1 (fr) 2021-12-22 2023-06-29 BHYO GmbH Procédé et ensemble d'installations pour la production de gaz de synthèse
DE102022105359A1 (de) 2022-03-08 2023-09-14 BHYO GmbH Verfahren zur Herstellung von Wasserstoff aus Biomasse
WO2023170020A1 (fr) 2022-03-08 2023-09-14 BHYO GmbH Procédé de production d'hydrogène à partir de biomasse

Also Published As

Publication number Publication date
DE102011075438A1 (de) 2012-11-08
WO2012152638A1 (fr) 2012-11-15
EP2705121A1 (fr) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2011026630A2 (fr) Procédé et dispositif pour utiliser de l'oxygène dans le reformage à la vapeur de biomasse
DE102009047445A1 (de) Anlage zum Erzeugen eines Produktgases aus organischen Einsatzstoffen
DE102016121046B4 (de) Duplex-TEK-Mehrstufen-Vergaser
DE102008043131B4 (de) Verfahren und Vorrichtung zum thermochemischen Vergasen fester Brennstoffe
EP1218471B1 (fr) Procede et dispositif pour la production de gaz combustibles a pouvoir calorifique eleve
DE102010028816A1 (de) Wirbelschichtreaktor und Verfahren zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen
EP2451904A2 (fr) Réacteur pour produire un gaz-produit par gazéification allothermique de matières de charge carbonées
EP2705121B1 (fr) Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire
AT507176B1 (de) Verfahren und vorrichtung zur erzeugung eines stickstoffarmen bzw. nahezu stickstofffreien gases
WO2018024404A1 (fr) Installation et procédé de conversion de combustibles contenant du carbone en gaz de synthèse
EP3792216B1 (fr) Intégration thermique lors de la génération des gaz de synthèse par oxydation partielle
WO2018095781A1 (fr) Procédé et système pour la réduction du carbone dans la fraction de queue d'un gazéificateur à lit fluidisé
EP3046997B1 (fr) Gazéifieur en 3 zônes et méthode pour faire fonctioner ce gazéifieur pour la conversion thermique des déchets
EP3214155B1 (fr) Procédé pour la production de gaz de synthèse pour la combustion dans un moteur à combustion interne.
EP2480632A2 (fr) Réacteur de gaz de synthèse à nuage de coke chauffé
DE102008037318B4 (de) Verfahren, Vorrichtung und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck
AT509681B1 (de) Verfahren und vorrichtung zur erzeugung eines gases
EP1338847B1 (fr) Réacteur vertical à cocourant
DE202009010833U1 (de) Anordnung zur Aufbereitung und thermischen Behandlung von Abprodukten und Abfällen
DE202016106184U1 (de) Duplex-TEK-Mehrstufen-Vergaser
DE102006058673A1 (de) Vorrichtung und Verfahren zur Schwachgaserzeugung aus organischen Energieträgern
DE102021005175A1 (de) Methanol synthesesystem welches wasserstoff zusammen mit calciumcarbonat caco3 zu methanol umwandelt und zugehöriges verfahren zur methanol synthese
DE102015015594A1 (de) Verfahren und Anlage zur Synthesegaserzeugung durch Vergasung von flüssigen, festen oder pastösen Kohlenstoffträgern in einer Wirbelschicht,

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

Owner name: BABCOCK NOELL GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 995245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012633

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

Owner name: BABCOCK NOELL GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BABCOCK NOELL GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BILFINGER NOELL GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHMITT, ROLF

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20181213 AND 20181219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012633

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012012633

Country of ref document: DE

Representative=s name: DR. BUSCH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012012633

Country of ref document: DE

Owner name: BGREEN GMBH, DE

Free format text: FORMER OWNERS: BABCOCK NOELL GMBH, 97080 WUERZBURG, DE; LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012012633

Country of ref document: DE

Owner name: BHYO GMBH, DE

Free format text: FORMER OWNERS: BABCOCK NOELL GMBH, 97080 WUERZBURG, DE; LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180503

26N No opposition filed

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180503

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190429 AND 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 995245

Country of ref document: AT

Kind code of ref document: T

Owner name: BGREEN GMBH, DE

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012012633

Country of ref document: DE

Representative=s name: DR. BUSCH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012012633

Country of ref document: DE

Owner name: BHYO GMBH, DE

Free format text: FORMER OWNER: BGREEN GMBH, 67069 LUDWIGSHAFEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120503

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230428

Year of fee payment: 12

Ref country code: FR

Payment date: 20230508

Year of fee payment: 12

Ref country code: DE

Payment date: 20230531

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230504

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230509

Year of fee payment: 12