WO2012152638A1 - Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire - Google Patents

Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire Download PDF

Info

Publication number
WO2012152638A1
WO2012152638A1 PCT/EP2012/058081 EP2012058081W WO2012152638A1 WO 2012152638 A1 WO2012152638 A1 WO 2012152638A1 EP 2012058081 W EP2012058081 W EP 2012058081W WO 2012152638 A1 WO2012152638 A1 WO 2012152638A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
reactor
heating
gasification
section
Prior art date
Application number
PCT/EP2012/058081
Other languages
German (de)
English (en)
Inventor
Hubertus Winkler
Hanno Tautz
Rolf Schmitt
Martin Karch
Original Assignee
Bilfinger Berger Industrial Services Gmbh
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bilfinger Berger Industrial Services Gmbh, Linde Aktiengesellschaft filed Critical Bilfinger Berger Industrial Services Gmbh
Priority to EP12719675.6A priority Critical patent/EP2705121B1/fr
Publication of WO2012152638A1 publication Critical patent/WO2012152638A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1261Heating the gasifier by pulse burners

Definitions

  • the invention relates to a method and a device for generating
  • gasification leads to undesired adhesions of ash and / or educt material, for example biomass, to the fluidized bed material and / or with
  • a process with two heating stages leads to the possibility of first carrying out a first pyrolysis gasification step at the first, lower gasification temperature.
  • This first gasification temperature is chosen so that it is lower than an ash softening temperature of the starting materials or lower than a softening temperature of the starting materials in general.
  • a corresponding reduction in the agglomeration of ash or educts in the first, low-lying fluidized bed region results.
  • 50% to 80% of the reactants can be gasified.
  • a corresponding height extent of that fluidized bed region can be predetermined, in which the pyrolysis step takes place due to the heating to the first gasification temperature.
  • a homogeneous first gasification temperature is set as far as possible.
  • the first gasification temperature can be in the range between 600 ° C and 770 ° C and can be particularly rich between 700 ° C and 770 ° C lie.
  • the second gasification temperature can be in the range between 770 ° C and 1000 ° C or in the range between 770 ° C and 900 ° C and is preferably in the range between 770 ° C and 810 ° C.
  • the fluidized bed may be stationary during syngas production and may form bubbles.
  • a circulating fluidized bed can also be present in the fluidized-bed reactor.
  • the first fluidized bed region and the second reactor housing section are present in one and the same reactor housing.
  • As starting materials for syngas production biomass or coal can be used.
  • the heating to the first gasification temperature and the heating to the second gasification temperature is in each case an active heating, that is to say a heating independent of a reaction heat which may arise during the production process.
  • the heating can be done by external energy supply.
  • the heating of the first fluidized bed region and / or the second fluidized bed region can be effected by supplying an oxygen-containing gas, by supplying a synthesis gas and / or by supplying steam.
  • the fluidized bed itself is divided into two temperatures.
  • the method of claim 2 uses different principles for providing heat energy for heating the two adjacent fluidized bed areas. Since a comparatively low gasification temperature of the fluidized bed reactor has to be achieved in the first, low-lying fluidized bed region, a burner can be used for the allothermal energy input, whereby a surface temperature of the burner can be kept low and well below a softening point of the educts. About the autothermal energy input then the second, higher gasification temperature in the second fluidized bed area is reached.
  • the entries in the first and in the second fluidized bed need not be exclusively allothermic or autothermic, but the allothermal energy input on the one hand and the autothermal energy input on the other hand can represent the main energy inputs that are supported by other energy inputs. It may in the first, deep-fluidized bed area and / or in the second, higher-lying fluidized bed area one each Combination of an all-thermal and an autothermal energy input take place.
  • a third temperature zone is provided for post-reaction above the second temperature zone, which is heated to the second gasification temperature, the post-reaction temperature being higher than the second gasification temperature.
  • an undesirable tar content in the synthesis gas produced is further reduced by after-reaction.
  • the postreaction temperature can range between 830 ° C and 1000 ° C, can range between 830 ° C and 900 ° C and can range between 830 ° C and 850 ° C.
  • the further, heated to the post-reaction temperature reactor housing section can be directly adjacent to the fluidized bed.
  • the further, heated to the post-reaction temperature reactor housing portion may be spaced from the fluidized bed.
  • heating to the post-reaction temperature is an active or autothermal heating. It applies, what has already been stated above with respect to the heating to the first and the second gasification temperature.
  • the post-reaction can take place in a degassing section of the reactor.
  • Another object of the invention is to provide an apparatus for carrying out the synthesis gas production process.
  • the advantages of the synthesis gas producing apparatus of the present invention are the same as those already explained above with reference to the synthesis gas producing method of the present invention.
  • the first, low-bed fluidized-bed housing section on the one hand and the second, higher-lying reactor housing section on the other hand, which can be heated to the two gasification temperatures via the two heaters, can be sections of one and the same reactor housing. This is not mandatory.
  • the advantages of the device according to claims 6 and 7 correspond to those which have been explained above in connection with the method according to claims 2 and 3.
  • a cross-sectional deviation within the reactor housing according to claim 8 can be used to optimize the reaction conditions in the various reactor housing sections.
  • a degassing housing section may have a larger cross section than a fluidized bed housing section.
  • a degassing housing section can also taper to a tubular housing section with a small tube diameter compared to the other reactor housing. This can be used for the desired acceleration of a synthesis gas / solid mixture.
  • a heat exchanger according to claim 9 can be heated by a burner. Another heating of the heat exchanger is possible.
  • fuel gas a natural gas / air mixture and / or a synthesis gas / air mixture can be used. Another fuel gas can be used.
  • the heat exchanger can deliver the heat generated via a heat transfer surface, for example via a burner jacket surface, in the fluidized bed housing section.
  • the heat transfer surface for example the burner jacket surface, can be designed with a large surface area.
  • a heater according to claim 10 can be controlled and / or regulated by adding in particular an oxygen-containing gas in their heating power with a low reaction time.
  • the feed unit may be the only heat source of the respective heating device.
  • the heater may also represent a combination of a heat exchanger with such a supply unit for a particular oxygen-containing gas.
  • a fluidized bed circuit according to claim 12 can be used to increase a reactor efficiency.
  • the fluidized bed material including not yet gasified carbon residues and ash in a separator, in particular a cyclone, deposited and nachverbrannt with air. This can be used to reheat the fluidized bed material before it is recycled to the fluidized bed within the cycle.
  • a fly-flow reactor according to claim 13 represents a variant for the reaction of residual, lighter particles after the pyrolysis step and / or for reducing the tar content via an after-reaction. Exemplary embodiments of the invention are explained in more detail below with reference to the drawing. In this show:
  • FIG. 1 shows a schematic longitudinal section illustration of an apparatus for producing synthesis gas from carbonaceous educts by gasification
  • FIG. 2 to 6 further embodiments of such a device.
  • a device 1 is used to generate synthesis gas from carbonaceous educts, for example from biomass or coal, by gasification.
  • a reactor housing 3 of the fluidized bed reactor 2 is functionally divided into a plurality of housing sections 4 to 6. In the embodiment of FIG. 1, these housing sections 4 to 6 parts of the same reactor housing.
  • the first, deep-bed fluidized-bed housing section 4 serves to receive a first, deep-bed fluidized bed region 7 of a fluidized bed 8 of the fluidized-bed reactor 2
  • An upper phase boundary 9 of the fluidized bed 8 is indicated in FIG. 1 by a curved line. This phase boundary is approximately at the level of an upper boundary of the second reactor housing section 5, which lies above the fluidized bed housing section 4 and directly adjacent thereto.
  • the second reactor housing section 5 is formed in the form of a second fluidized bed housing section and serves to receive a second fluidized bed section 10 of the fluidized bed 8.
  • Above the second reactor housing section 5, the fluidized bed reactor 3 has the degassing housing section 6. This adjoins above directly to the reactor housing section 5 at. A cross-section of the degassing housing section 6 increases at the transition to the reactor housing section 5 via an expansion cone 1 1.
  • the reactor housing 3 thus has a housing cross-section which is the housing cross-section of the fluidized bed - Housing section 4 and the housing cross-section of the reactor housing section 5 deviates and in the case of the embodiment of FIG. 1 is larger.
  • the device 1 has a first heating device 12 for heating the fluidized bed region 7 in the fluidized bed housing section 4 to a first gasification temperature.
  • the first heater 12 has a heating unit in the form of a burner 13 as a heat exchanger and a further heating unit in the form of an oxygen-containing gas supply unit 14.
  • water vapor and / or air and / or oxygen is fed to the fluidized bed region 7 via the feed unit 14.
  • the oxygen-containing gas is supplied in the region of a bottom 14 a of the reactor housing 3 in the fluidized bed region 7 via a plurality of nozzles 14 b, which are shown schematically in FIG. 1. These nozzles 14b may be arranged annularly around the burner 13. The nozzles 14b discharge the oxygen-containing gas upward. In an alternative design, not shown, of the feed unit 14, alternatively or additionally, nozzles may be provided corresponding to the nozzles 14b, which discharge the oxygen-containing gas downwards.
  • the burner 13 is operated via a combustible air / gas mixture which is supplied to the burner 13 via a supply line 15 shown schematically in FIG. 1 by two arrows.
  • the gas of the air / gas mixture may be natural gas, syngas or a mixture of both.
  • the burner 13 is designed tubular, wherein a tube longitudinal axis 15a of the burner 13 coincides with a longitudinal axis of the likewise tubular reactor housing 3. The burner 13 thus "stands" centrally in the fluidized bed region 7.
  • An upper-side termination of the burner 13 extends to near a range boundary between the fluidized bed regions 7 and 10 or between the housing sections 4 and 5.
  • the heating device 12 has a heating capacity, which makes it possible, the fluidized bed region 7 along an entire height extent of the burner 13, ie within the first, low-bed fluidized bed housing section 4, to a first gasification temperature in the range between 600 ° C and 770 ° C. , in particular in the range between 700 ° C and 770 ° C to bring.
  • This first gasification temperature is lower than an ash softening temperature or as a biomass softening temperature.
  • the heating power of the first heating device 12 can be distributed between the burner 13 and the feed device 14 in a controlled or predetermined manner.
  • the device 1 has a schematically illustrated control / regulating device 16. This communicates with control valves 17 on the one hand, the feed unit 14 and on the other hand, the supply line 15 in a manner not shown in signal connection.
  • the control / regulating device 16 may be in signal connection with measuring sensors, not shown in FIG. 1, for example with temperature or gas concentration sensors, which are accommodated in the reactor 2.
  • the apparatus 1 has a second heater 18 for heating the reactor housing section 5 to a second gasification temperature higher than the first gasification temperature.
  • the second heater 18 is, as with the supply unit 14 of the first heater 12, designed as an oxygen-containing gas supply device. Components of the second heater 18, which correspond to those in the feed unit 14, bear the same reference numerals and will not be explained again in detail. Also the second Heating device 18 can be controlled or regulated via the control / regulating device 16.
  • the second gasification temperature is in the range between 770 ° C and 1000 ° C and in particular in the range between 770 ° C and 900 ° C or in the range between 770 ° C and 810 ° C.
  • the second heating device 18 is arranged in the reactor housing section 5 near the region boundary to the fluidized-bed housing section 4.
  • a further heating device in the form of a post-reaction heater 19 is arranged in the degassing housing section 6 of the reactor housing 3.
  • the post-reaction heating device 19 is arranged above the phase boundary 9.
  • a structural design with the after-reaction heater 19 corresponds to that of the second heater 18.
  • the post-reaction heater 19 is used for heating above the phase boundary 9 present media within the reactor housing 3 to a post-reaction temperature, which is higher than the second gasification temperature.
  • the post-reaction temperature may be in the range of 830 ° C, but may be higher and in the range between 830 ° C and 1000 ° C and be for example 850 ° C, 900 ° C or 1000 ° C.
  • the post-reaction heater 19 is arranged at the level of the expansion cone 1 1 of the reactor housing 3.
  • the feed unit 14 or the heating devices 18, 19 can have ring-shaped nozzle line sections, which are guided around the central longitudinal axis 15a of the reactor housing 3.
  • the device 1 has a feed device 20 for feeding the educts, which are to be gasified, into the first fluidized bed region 7
  • Feeder 20 is designed as a screw conveyor.
  • a feed end 21 of the screw conveyor passes through a housing wall of the reactor housing 3 in the region of a lower third of the housing section 4 above the nozzles 14b of the feed unit 14 of the first heating device 12.
  • the device 1 has, above the degasification housing section 6, a discharge device for the synthesis gas produced in the form of a schematically indicated outlet 22.
  • the device 1 furthermore has a removal device 23 for removing a portion of the fluidized bed from the bottom.
  • the removal device has a removal valve 24, which is arranged in a withdrawal line 25, which opens out from the bottom 14a of the reactor housing 3 downwards.
  • the removal line 25 leads the removed fluidized bed portions toward a removal container 26 schematically indicated in FIG. 1.
  • the device 1 further has a refilling device 27 for refilling fluidized bed material, in particular for equalizing the removal by the removal device 23.
  • the refill 27 has a refill 28 which is connected via a refill 29 with an upper-side housing cover 30 of the reactor housing 3 and over this section in the degassing Gerissauseab 6 opens from above.
  • a refill valve 31 is arranged in the refill line 29, a refill valve 31 is arranged.
  • the removal valve 24 on the one hand and the refill valve 31 on the other hand can each be designed in the form of a lock with two sequentially arranged valve units.
  • the removal valve 24 and the refill valve 31 are again in a manner not shown with the control / regulating device 16 in signal connection.
  • the device 1 operates to generate synthesis gas from carbonaceous educts by gasification in the fluidized bed reactor 2 as follows:
  • the first, deep-bed fluidized bed region 7 is heated by the first heater to the first gasification temperature by external energy supply.
  • the reactor housing section 5 is heated by the second heater 18 to the second gasification temperature by external energy supply.
  • the feedstock 20 to be gasified educts are introduced into the fluidized bed region 7. Since the first gasification temperature is lower than an ash softening or biomass softening temperature, agglomeration of ash or biomass in the fluidized bed region 7 is reduced or even completely prevented in the first gasification step in the housing section 4 of the reactor housing. In the first fluidized bed region 7 pyrolysis takes place, wherein about 50% to 80% of the biomass are gasified.
  • this first gasification temperature is adjusted as homogeneously as possible.
  • An actual gasification temperature deviates from a predetermined nominal gasification temperature by a maximum of 30 ° C to 50 ° C. If, for example, a target temperature of 720 ° C. is specified for the first gasification temperature, an actual temperature in the entire housing section 4 is present in the range between 670 ° C. and 770 ° C., preferably in the range between 690 ° C. and 750 ° C and more preferably with even smaller deviation from the target temperature.
  • lighter biomass particles are supported via the fluidized bed 8 from the housing section 4 upwards into the housing section 5 and thereby delimited locally by the first, lower fluidized bed region 4. These lighter particles are now due to the higher second gasification Temperature in the fluidized bed region 10 gasified with sufficient turnover speed. In the fluidized bed region 10, moreover, homogeneous gas phase reactions proceed, which lead to a further conversion of the pyrolysis gases generated in the fluidized bed region 7.
  • Residual ash and / or biomass agglomeration or sticking with the bed material of the fluidized bed 8 sinks downwards in the fluidized bed 8 and can be removed in a controlled manner via the removal device 23 by activating the removal valve 24. A corresponding loss of bed material can be compensated for controlled by the refill device 27.
  • a further embodiment of a device 32 for the production of synthesis gas from coal-containing educts by gasification is described below with reference to FIG. Components and functions corresponding to those discussed above with reference to FIG. 1 bear the same reference numerals and will not be discussed again in detail.
  • a second burner 33 is provided for heating the reactor housing section 5 to the second gasification temperature.
  • the burner 33 can be operated with an air / natural gas mixture.
  • the second burner 33 is not standing, but installed horizontally and passes, comparable to the feeder 20, a jacket wall of the reactor housing 3.
  • An end portion of the burner 33 extends beyond the longitudinal axis 15a out into the fluidized bed region 10 and thus ensures a good heat exchange with the fluidized bed in the region of the fluidized bed region 10.
  • the structure of the burner 33 corresponds to that of the burner thirteenth
  • a third, third burner 35 In contrast to the device 32, the device 34 instead of the running as a feed unit Nachreticians-heating direction 19, a third, third burner 35.
  • This is like the burner 33 installed transversely to the longitudinal axis 15a of the reactor housing 3 and passes through the jacket wall of the reactor housing 3 at the level of the expansion cone 1 1.
  • the burner 35 is an open burner.
  • the burner 35 can be operated with an oxygen / natural gas mixture.
  • An end region of the burner 35 projects into the degassing housing section 6 approximately up to the longitudinal axis. se 15a of the reactor housing 3 inside.
  • FIG. 3 In a modification of the embodiment of FIG. 3, another, not shown embodiment of the synthesis gas generating device is possible, in which instead of the second burner 33, in turn, a feed unit in the form of the second heater 18 of FIG. 1 is used.
  • the first heating device 12 is exclusively a burner or exclusively a supply unit for an oxygen-containing gas for heating the first, deep fluidized bed region 7.
  • FIG. 4 A further embodiment of a device 36 for the production of synthesis gas from coal-containing educts by gasification is described below with reference to FIG. 4. Components and functions corresponding to those discussed above with reference to Figs. 1 to 3 bear the same reference numerals and will not be discussed again in detail.
  • the device 36 of FIG. 4 operates with a circulating fluidized bed 8.
  • the device 36 has a fluidized bed circuit 37.
  • the fluidized bed housing section 4, the reactor housing section 5 and the degassing housing section 6 are components of the fluidized bed circuit 37, as well as the outlet 22 for the synthesis gas.
  • the latter is in fluid communication with a separator 38, which may be designed as a cyclone separator.
  • the synthesis gas separated from the fluidized bed material in the separator 38 leaves the separator 38 via an outlet 39.
  • the fluidized bed material deposited in the separator 38 is returned to the reactor housing 3 via a bottom outlet 40 of the separator 38 and a return line 41.
  • the return line 41 opens into the fluidized bed housing section 4 of the reactor housing 3 just above the feed unit 14 of the first heater 12 a.
  • the gasification reaction in the device 36 proceeds analogously to what was described above in connection with the synthesis gas generation process in the device 1 according to FIG. 1.
  • the fluidized bed reactor 2 is operated in the device 36 so that at least a portion of the fluidized bed material is discharged through the degassing housing section 6 upwards and via the outlet 22 from the reactor housing 3.
  • the fluidized bed material discharged in this way is fed back to the reactor housing 3 via the separator 38 and the return line 41, so that a circulating fluidized bed is formed in the device 36.
  • a further embodiment of a device 42 for producing synthesis gas from coal-containing educts by gasification is described below with reference to FIG. Components and functions corresponding to those discussed above with reference to FIGS. 1 to 4 bear the same reference numerals and will not be discussed again in detail.
  • the first heater 12 is similarly constructed and arranged in the apparatus 42 as in the apparatus 1 and heats the fluidized bed 8 to the first gasification temperature.
  • a further heating device may be arranged which heats a fluidized bed region which is higher than the fluidized bed region that is heated by the heating device 12.
  • a second reactor housing section is formed in the device 42 by an outlet section 44, which in addition to the function of the synthesis gas outlet corresponding to the outlet 22 in the embodiments of FIGS. 1 to 4 and the function of to be heated to the second gasification temperature second reactor housing section.
  • a second heating device 45 of the device 42 serves in the form of a feed unit for a gas containing oxygen. In the embodiment according to FIG. 5, air and / or oxygen is supplied via the feed unit 45.
  • the outlet section 44 connects the reactor housing 3 with a likewise tubular degassing section 46.
  • the latter has the function of the degassing housing section 6 in the embodiments according to FIGS. 1 to 4.
  • a feed unit 47 is arranged which performs the function of the post-reaction Heating device of the embodiments according to FIGS. 1 to 4 has.
  • the outlet section 44 and the degassing section 46 have a tube cross section that is significantly smaller than the cross section of the reactor housing 3.
  • the outlet section 44 on the one hand and the degassing section 46 on the other hand therefore have a smaller cross section than the fluidized bed housing section 43.
  • the mixture of synthesis gas and residual light biomass particles leaving the reactor housing 42 through the outlet section 44 will be at the second gasification temperature with the second heater 45 brought, whereby the initially unfavorable particles are then gasified and start the other homogeneous reaction gas phase reactions.
  • the synthesis gas with the entrained solids passes through the degassing section 46 and is heated with the third heating device 47 to the post-reaction temperature.
  • the degassing section 46 may in turn be followed by a separator.
  • a further embodiment of a device 48 for the production of synthesis gas from coal-containing educts by gasification is described below with reference to FIG. Components and functions corresponding to those discussed above with reference to Figs. 1 to 5 bear the same reference numerals and will not be discussed again in detail.
  • the device 48 is constructed like the device 1 according to FIG. 1.
  • the device 48 according to FIG. 6 has a burner 49 which is connected to the supercharger. passage between the outlet portion 44 and the degassing section 46 is arranged.
  • the burner 49 ensures heating of the remaining, not yet pyrolytically reacted, light biomass particles to the second gasification temperature and optionally subsequently in the further course in the degassing section 46 also to the post-reaction temperature.
  • the burner 49 thus constitutes the after-reaction heating device of the device 48.
  • the synthesis gas production method otherwise corresponds to that which has already been explained above with reference to FIGS. 1 to 5 and in particular with reference to FIG.
  • the entrained flow reactor 50 is a discharge device 51 downstream, which is schematically indicated in Figs. 5 and 6 and in which the synthesis gas of the entrained solids is separated via a separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur (2) à couche tourbillonnaire. Pour ce faire, on chauffe tout d'abord une première zone (7) à couche tourbillonnaire située en profondeur du réacteur (2) à couche tourbillonnaire à une première température de gazéification par apport d'énergie externe. Cette zone (7) à couche tourbillonnaire située en profondeur est prélevée dans une première section (4) d'enveloppe à couche tourbillonnaire située en profondeur d'une enveloppe (3) du réacteur (2) à couche tourbillonnaire. La première température de gazéification est plus basse qu'une température de ramollissement des substances de départ ou de leurs cendres. Ce chauffage à la première température de gazéification est effectué à l'aide d'une première installation de chauffage (12). Une deuxième section d'enveloppe (5) de réacteur, qui est plus haute que la première zone à couche tourbillonnaire, est chauffée à une deuxième température de gazéification par un apport d'énergie externe. Ce chauffage à la deuxième température de gazéification est effectué à l'aide d'une deuxième installation de chauffage (18). Les substances de départ sont amenées dans la première zone (7) à couche tourbillonnaire par l'intermédiaire d'une installation d'alimentation (20). Une installation d'évacuation (22) sert à évacuer le gaz de synthèse élaboré. Il en résulte un procédé et un dispositif pour l'élaboration d'un gaz de synthèse à partir de substances de départ carbonées, dans lesquels, un collage indésirable pour un rendement de gazéification convenable étant réduit ou si possible complètement évité même lors de l'utilisation de substances de départ à ramollissement critique.
PCT/EP2012/058081 2011-05-06 2012-05-03 Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire WO2012152638A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12719675.6A EP2705121B1 (fr) 2011-05-06 2012-05-03 Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011075438.5 2011-05-06
DE102011075438A DE102011075438A1 (de) 2011-05-06 2011-05-06 Verfahren und Vorrichtung zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung

Publications (1)

Publication Number Publication Date
WO2012152638A1 true WO2012152638A1 (fr) 2012-11-15

Family

ID=46046177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/058081 WO2012152638A1 (fr) 2011-05-06 2012-05-03 Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire

Country Status (3)

Country Link
EP (1) EP2705121B1 (fr)
DE (1) DE102011075438A1 (fr)
WO (1) WO2012152638A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312575B (zh) * 2017-08-01 2023-07-18 中国科学院工程热物理研究所 分级配风的循环流化床气化装置以及气化方法
DE102021134191A1 (de) 2021-12-22 2023-06-22 BHYO GmbH Verfahren und Anlageverbund zur Erzeugung von Synthesegas
DE102022105359A1 (de) 2022-03-08 2023-09-14 BHYO GmbH Verfahren zur Herstellung von Wasserstoff aus Biomasse

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2949533A1 (de) * 1979-12-08 1981-06-11 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE3033115A1 (de) * 1980-09-03 1982-04-22 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
WO1988002769A1 (fr) * 1986-10-16 1988-04-21 Bergwerksverband Gmbh Procede et generateur de gaz a lit fluidise de gazeification allothermique de charbon
US5634950A (en) * 1994-02-24 1997-06-03 The Babcock & Wilcox Company Black liquor gasifier
DE10227074A1 (de) 2002-06-17 2004-01-15 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Verfahren zur Vergasung von Biomasse und Anlage hierzu
DE10258485A1 (de) 2002-12-10 2004-07-08 Innovativer Anlagenbau E&H Gmbh Verfahren und Vorrichtung zur Gewinnung von Wärmeenergie und/oder motortauglichem Gas durch Vergasung von Feststoffen
DE102004032830A1 (de) 2004-07-06 2006-02-23 Rolf Schmitt Verfahren zur Erzeugung von wasserstoffreichen Synthesegas aus biogenen Stoffen und sonstigen kohlenstoffhaltigen Verbindungen mittels Wasserdampfvergasung (Dampfreformierung) in einem indirekt beheizten Wirbelschichtreaktor bei gleichzeitiger partieller Oxidation der Einsatzstoffe durch geregelte Einbringung von Sauerstoff in den Wirbelschichtreaktor (Hybridverfahren)
DE102004045772A1 (de) 2004-09-15 2006-03-16 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Verfahren und Vorrichtung zur Erzeugung eines Produktgases durch thermochemische Vergasung eines kohlenstoffhaltigen Einsatzstoffes
DE102006022265A1 (de) 2006-04-26 2007-10-31 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur optimierten Wirbelschichtvergasung
EP1865046A1 (fr) 2006-06-08 2007-12-12 Hörmann Energietechnik GmbH & Co. KG Procédé et dispositif destinés à la production de gaz combustible à partir d'un combustible solide
DE102007006980A1 (de) 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE102007012452A1 (de) 2007-03-15 2008-09-25 Mci Management Center Innsbruck Internationale Fachhochschulgesellschaft Mbh Vergaser
DE102008032166A1 (de) 2008-07-08 2010-01-14 Karl-Heinz Tetzlaff Verfahren und Vorrichtung zur Herstellung von teerfreiem Synthesgas aus Biomasse
DE102008036734A1 (de) 2008-08-07 2010-02-18 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur Herstellung von Energie, DME (Dimethylether und Bio-Silica unter Einsatz von CO2-neutralen biogenen reaktiven und reaktionsträgen Einsatzstoffen
DE102009039845A1 (de) 2008-09-02 2010-03-04 Berger, Manfred Anlage zur Erzeugung von Holzgas
DE102009039837A1 (de) * 2009-09-03 2011-03-10 Karl-Heinz Tetzlaff Elektrische Heizung für einen Wirbelschichtreaktor zur Herstellung von Synthesegas

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2949533A1 (de) * 1979-12-08 1981-06-11 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE3033115A1 (de) * 1980-09-03 1982-04-22 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
WO1988002769A1 (fr) * 1986-10-16 1988-04-21 Bergwerksverband Gmbh Procede et generateur de gaz a lit fluidise de gazeification allothermique de charbon
US5634950A (en) * 1994-02-24 1997-06-03 The Babcock & Wilcox Company Black liquor gasifier
DE10227074A1 (de) 2002-06-17 2004-01-15 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Verfahren zur Vergasung von Biomasse und Anlage hierzu
DE10258485A1 (de) 2002-12-10 2004-07-08 Innovativer Anlagenbau E&H Gmbh Verfahren und Vorrichtung zur Gewinnung von Wärmeenergie und/oder motortauglichem Gas durch Vergasung von Feststoffen
DE102004032830A1 (de) 2004-07-06 2006-02-23 Rolf Schmitt Verfahren zur Erzeugung von wasserstoffreichen Synthesegas aus biogenen Stoffen und sonstigen kohlenstoffhaltigen Verbindungen mittels Wasserdampfvergasung (Dampfreformierung) in einem indirekt beheizten Wirbelschichtreaktor bei gleichzeitiger partieller Oxidation der Einsatzstoffe durch geregelte Einbringung von Sauerstoff in den Wirbelschichtreaktor (Hybridverfahren)
DE102004045772A1 (de) 2004-09-15 2006-03-16 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Verfahren und Vorrichtung zur Erzeugung eines Produktgases durch thermochemische Vergasung eines kohlenstoffhaltigen Einsatzstoffes
DE102006022265A1 (de) 2006-04-26 2007-10-31 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur optimierten Wirbelschichtvergasung
EP1865046A1 (fr) 2006-06-08 2007-12-12 Hörmann Energietechnik GmbH & Co. KG Procédé et dispositif destinés à la production de gaz combustible à partir d'un combustible solide
DE102007006980A1 (de) 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE102007012452A1 (de) 2007-03-15 2008-09-25 Mci Management Center Innsbruck Internationale Fachhochschulgesellschaft Mbh Vergaser
DE102008032166A1 (de) 2008-07-08 2010-01-14 Karl-Heinz Tetzlaff Verfahren und Vorrichtung zur Herstellung von teerfreiem Synthesgas aus Biomasse
DE102008036734A1 (de) 2008-08-07 2010-02-18 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur Herstellung von Energie, DME (Dimethylether und Bio-Silica unter Einsatz von CO2-neutralen biogenen reaktiven und reaktionsträgen Einsatzstoffen
DE102009039845A1 (de) 2008-09-02 2010-03-04 Berger, Manfred Anlage zur Erzeugung von Holzgas
DE102009039837A1 (de) * 2009-09-03 2011-03-10 Karl-Heinz Tetzlaff Elektrische Heizung für einen Wirbelschichtreaktor zur Herstellung von Synthesegas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Choren fuel® aus dem Carbo-V®-Vergaser", TAGUNGSBERICHT BIOMASSE-VERGASUNG - INTERNATIONALE TAGUNG LEIPZIG, October 2003 (2003-10-01), pages 234 - 238
"Der Blaue Turm - Wasserstoff aus Biomasse", TAGUNGSBERICHT BIOMASSE-VERGASUNG - INTERNATIONALE TAGUNG LEIPZIG, October 2003 (2003-10-01), pages 240 - 249

Also Published As

Publication number Publication date
DE102011075438A1 (de) 2012-11-08
EP2705121B1 (fr) 2018-05-02
EP2705121A1 (fr) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2008095977A1 (fr) Procédé et dispositif de gazéification à flux entraîné de combustibles solides sous pression
EP2356200B1 (fr) Procédé pour la gazéification thermochimique de combustibles solides
WO2018082738A1 (fr) Gazéificateur multi-étagé à lit de carbone à expansion tourbillonnaire duplex
WO2010057458A2 (fr) Dispositif en forme de gazéificateur à lit mobile et procédé pour faire fonctionner celui-ci dans un système de décomposition thermique de résidus et de déchets
EP1218471B1 (fr) Procede et dispositif pour la production de gaz combustibles a pouvoir calorifique eleve
DE102010028816A1 (de) Wirbelschichtreaktor und Verfahren zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen
EP3309240A1 (fr) Procédé et dispositif de gazéification de biomasse
WO2011003731A2 (fr) Réacteur pour produire un gaz-produit par gazéification allothermique de matières de charge carbonées
EP2705121B1 (fr) Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire
AT507176B1 (de) Verfahren und vorrichtung zur erzeugung eines stickstoffarmen bzw. nahezu stickstofffreien gases
EP3548587B1 (fr) Procédé et appareil de réduction de carbone dans le produit inférieur d'un gazéificateur à lit fluidisé
WO2018024404A1 (fr) Installation et procédé de conversion de combustibles contenant du carbone en gaz de synthèse
EP3792216B1 (fr) Intégration thermique lors de la génération des gaz de synthèse par oxydation partielle
EP3046997B1 (fr) Gazéifieur en 3 zônes et méthode pour faire fonctioner ce gazéifieur pour la conversion thermique des déchets
WO2011026631A2 (fr) Réacteur de gaz de synthèse à nuage de coke chauffé
DE102008037318B4 (de) Verfahren, Vorrichtung und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck
DE102017105984A1 (de) System und Verfahren zur Vergasung
EP1338847B1 (fr) Réacteur vertical à cocourant
AT508002B1 (de) Verfahren und vorrichtung zur erzeugung eines gases
DE102007006980A1 (de) Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE202009010833U1 (de) Anordnung zur Aufbereitung und thermischen Behandlung von Abprodukten und Abfällen
DE202016106184U1 (de) Duplex-TEK-Mehrstufen-Vergaser
EP4453132A1 (fr) Procédé de pyrolyse et dispositif de pyrolyse pour la production de gaz de pyrolyse et de coke de pyrolyse
DE102021133899A1 (de) Pyrolyseverfahren und Pyrolysevorrichtung zur Herstellung von Pyrolysegas und Pyrolysekoks
EP2785818B1 (fr) Procédé et dispositif de carbonisation hydrothermale de biomasse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12719675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012719675

Country of ref document: EP